//===--- ParseCXXInlineMethods.cpp - C++ class inline methods parsing------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements parsing for C++ class inline methods. // //===----------------------------------------------------------------------===// #include "clang/Parse/ParseDiagnostic.h" #include "clang/Parse/Parser.h" #include "clang/Sema/DeclSpec.h" #include "clang/Sema/Scope.h" #include "clang/AST/DeclTemplate.h" using namespace clang; /// ParseCXXInlineMethodDef - We parsed and verified that the specified /// Declarator is a well formed C++ inline method definition. Now lex its body /// and store its tokens for parsing after the C++ class is complete. Decl *Parser::ParseCXXInlineMethodDef(AccessSpecifier AS, AttributeList *AccessAttrs, ParsingDeclarator &D, const ParsedTemplateInfo &TemplateInfo, const VirtSpecifiers& VS, FunctionDefinitionKind DefinitionKind, ExprResult& Init) { assert(D.isFunctionDeclarator() && "This isn't a function declarator!"); assert((Tok.is(tok::l_brace) || Tok.is(tok::colon) || Tok.is(tok::kw_try) || Tok.is(tok::equal)) && "Current token not a '{', ':', '=', or 'try'!"); MultiTemplateParamsArg TemplateParams(Actions, TemplateInfo.TemplateParams ? TemplateInfo.TemplateParams->data() : 0, TemplateInfo.TemplateParams ? TemplateInfo.TemplateParams->size() : 0); Decl *FnD; D.setFunctionDefinitionKind(DefinitionKind); if (D.getDeclSpec().isFriendSpecified()) FnD = Actions.ActOnFriendFunctionDecl(getCurScope(), D, move(TemplateParams)); else { FnD = Actions.ActOnCXXMemberDeclarator(getCurScope(), AS, D, move(TemplateParams), 0, VS, /*HasDeferredInit=*/false); if (FnD) { Actions.ProcessDeclAttributeList(getCurScope(), FnD, AccessAttrs, false, true); bool TypeSpecContainsAuto = D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto; if (Init.isUsable()) Actions.AddInitializerToDecl(FnD, Init.get(), false, TypeSpecContainsAuto); else Actions.ActOnUninitializedDecl(FnD, TypeSpecContainsAuto); } } HandleMemberFunctionDeclDelays(D, FnD); D.complete(FnD); if (Tok.is(tok::equal)) { ConsumeToken(); if (!FnD) { SkipUntil(tok::semi); return 0; } bool Delete = false; SourceLocation KWLoc; if (Tok.is(tok::kw_delete)) { Diag(Tok, getLangOpts().CPlusPlus0x ? diag::warn_cxx98_compat_deleted_function : diag::ext_deleted_function); KWLoc = ConsumeToken(); Actions.SetDeclDeleted(FnD, KWLoc); Delete = true; } else if (Tok.is(tok::kw_default)) { Diag(Tok, getLangOpts().CPlusPlus0x ? diag::warn_cxx98_compat_defaulted_function : diag::ext_defaulted_function); KWLoc = ConsumeToken(); Actions.SetDeclDefaulted(FnD, KWLoc); } else { llvm_unreachable("function definition after = not 'delete' or 'default'"); } if (Tok.is(tok::comma)) { Diag(KWLoc, diag::err_default_delete_in_multiple_declaration) << Delete; SkipUntil(tok::semi); } else { ExpectAndConsume(tok::semi, diag::err_expected_semi_after, Delete ? "delete" : "default", tok::semi); } return FnD; } // In delayed template parsing mode, if we are within a class template // or if we are about to parse function member template then consume // the tokens and store them for parsing at the end of the translation unit. if (getLangOpts().DelayedTemplateParsing && ((Actions.CurContext->isDependentContext() || TemplateInfo.Kind != ParsedTemplateInfo::NonTemplate) && !Actions.IsInsideALocalClassWithinATemplateFunction())) { if (FnD) { LateParsedTemplatedFunction *LPT = new LateParsedTemplatedFunction(FnD); FunctionDecl *FD = 0; if (FunctionTemplateDecl *FunTmpl = dyn_cast(FnD)) FD = FunTmpl->getTemplatedDecl(); else FD = cast(FnD); Actions.CheckForFunctionRedefinition(FD); LateParsedTemplateMap[FD] = LPT; Actions.MarkAsLateParsedTemplate(FD); LexTemplateFunctionForLateParsing(LPT->Toks); } else { CachedTokens Toks; LexTemplateFunctionForLateParsing(Toks); } return FnD; } // Consume the tokens and store them for later parsing. LexedMethod* LM = new LexedMethod(this, FnD); getCurrentClass().LateParsedDeclarations.push_back(LM); LM->TemplateScope = getCurScope()->isTemplateParamScope(); CachedTokens &Toks = LM->Toks; tok::TokenKind kind = Tok.getKind(); // Consume everything up to (and including) the left brace of the // function body. if (ConsumeAndStoreFunctionPrologue(Toks)) { // We didn't find the left-brace we expected after the // constructor initializer; we already printed an error, and it's likely // impossible to recover, so don't try to parse this method later. // If we stopped at a semicolon, consume it to avoid an extra warning. if (Tok.is(tok::semi)) ConsumeToken(); delete getCurrentClass().LateParsedDeclarations.back(); getCurrentClass().LateParsedDeclarations.pop_back(); return FnD; } else { // Consume everything up to (and including) the matching right brace. ConsumeAndStoreUntil(tok::r_brace, Toks, /*StopAtSemi=*/false); } // If we're in a function-try-block, we need to store all the catch blocks. if (kind == tok::kw_try) { while (Tok.is(tok::kw_catch)) { ConsumeAndStoreUntil(tok::l_brace, Toks, /*StopAtSemi=*/false); ConsumeAndStoreUntil(tok::r_brace, Toks, /*StopAtSemi=*/false); } } if (!FnD) { // If semantic analysis could not build a function declaration, // just throw away the late-parsed declaration. delete getCurrentClass().LateParsedDeclarations.back(); getCurrentClass().LateParsedDeclarations.pop_back(); } return FnD; } /// ParseCXXNonStaticMemberInitializer - We parsed and verified that the /// specified Declarator is a well formed C++ non-static data member /// declaration. Now lex its initializer and store its tokens for parsing /// after the class is complete. void Parser::ParseCXXNonStaticMemberInitializer(Decl *VarD) { assert((Tok.is(tok::l_brace) || Tok.is(tok::equal)) && "Current token not a '{' or '='!"); LateParsedMemberInitializer *MI = new LateParsedMemberInitializer(this, VarD); getCurrentClass().LateParsedDeclarations.push_back(MI); CachedTokens &Toks = MI->Toks; tok::TokenKind kind = Tok.getKind(); if (kind == tok::equal) { Toks.push_back(Tok); ConsumeToken(); } if (kind == tok::l_brace) { // Begin by storing the '{' token. Toks.push_back(Tok); ConsumeBrace(); // Consume everything up to (and including) the matching right brace. ConsumeAndStoreUntil(tok::r_brace, Toks, /*StopAtSemi=*/true); } else { // Consume everything up to (but excluding) the comma or semicolon. ConsumeAndStoreUntil(tok::comma, Toks, /*StopAtSemi=*/true, /*ConsumeFinalToken=*/false); } // Store an artificial EOF token to ensure that we don't run off the end of // the initializer when we come to parse it. Token Eof; Eof.startToken(); Eof.setKind(tok::eof); Eof.setLocation(Tok.getLocation()); Toks.push_back(Eof); } Parser::LateParsedDeclaration::~LateParsedDeclaration() {} void Parser::LateParsedDeclaration::ParseLexedMethodDeclarations() {} void Parser::LateParsedDeclaration::ParseLexedMemberInitializers() {} void Parser::LateParsedDeclaration::ParseLexedMethodDefs() {} Parser::LateParsedClass::LateParsedClass(Parser *P, ParsingClass *C) : Self(P), Class(C) {} Parser::LateParsedClass::~LateParsedClass() { Self->DeallocateParsedClasses(Class); } void Parser::LateParsedClass::ParseLexedMethodDeclarations() { Self->ParseLexedMethodDeclarations(*Class); } void Parser::LateParsedClass::ParseLexedMemberInitializers() { Self->ParseLexedMemberInitializers(*Class); } void Parser::LateParsedClass::ParseLexedMethodDefs() { Self->ParseLexedMethodDefs(*Class); } void Parser::LateParsedMethodDeclaration::ParseLexedMethodDeclarations() { Self->ParseLexedMethodDeclaration(*this); } void Parser::LexedMethod::ParseLexedMethodDefs() { Self->ParseLexedMethodDef(*this); } void Parser::LateParsedMemberInitializer::ParseLexedMemberInitializers() { Self->ParseLexedMemberInitializer(*this); } /// ParseLexedMethodDeclarations - We finished parsing the member /// specification of a top (non-nested) C++ class. Now go over the /// stack of method declarations with some parts for which parsing was /// delayed (such as default arguments) and parse them. void Parser::ParseLexedMethodDeclarations(ParsingClass &Class) { bool HasTemplateScope = !Class.TopLevelClass && Class.TemplateScope; ParseScope ClassTemplateScope(this, Scope::TemplateParamScope, HasTemplateScope); if (HasTemplateScope) Actions.ActOnReenterTemplateScope(getCurScope(), Class.TagOrTemplate); // The current scope is still active if we're the top-level class. // Otherwise we'll need to push and enter a new scope. bool HasClassScope = !Class.TopLevelClass; ParseScope ClassScope(this, Scope::ClassScope|Scope::DeclScope, HasClassScope); if (HasClassScope) Actions.ActOnStartDelayedMemberDeclarations(getCurScope(), Class.TagOrTemplate); for (size_t i = 0; i < Class.LateParsedDeclarations.size(); ++i) { Class.LateParsedDeclarations[i]->ParseLexedMethodDeclarations(); } if (HasClassScope) Actions.ActOnFinishDelayedMemberDeclarations(getCurScope(), Class.TagOrTemplate); } void Parser::ParseLexedMethodDeclaration(LateParsedMethodDeclaration &LM) { // If this is a member template, introduce the template parameter scope. ParseScope TemplateScope(this, Scope::TemplateParamScope, LM.TemplateScope); if (LM.TemplateScope) Actions.ActOnReenterTemplateScope(getCurScope(), LM.Method); // Start the delayed C++ method declaration Actions.ActOnStartDelayedCXXMethodDeclaration(getCurScope(), LM.Method); // Introduce the parameters into scope and parse their default // arguments. ParseScope PrototypeScope(this, Scope::FunctionPrototypeScope|Scope::DeclScope); for (unsigned I = 0, N = LM.DefaultArgs.size(); I != N; ++I) { // Introduce the parameter into scope. Actions.ActOnDelayedCXXMethodParameter(getCurScope(), LM.DefaultArgs[I].Param); if (CachedTokens *Toks = LM.DefaultArgs[I].Toks) { // Save the current token position. SourceLocation origLoc = Tok.getLocation(); // Parse the default argument from its saved token stream. Toks->push_back(Tok); // So that the current token doesn't get lost PP.EnterTokenStream(&Toks->front(), Toks->size(), true, false); // Consume the previously-pushed token. ConsumeAnyToken(); // Consume the '='. assert(Tok.is(tok::equal) && "Default argument not starting with '='"); SourceLocation EqualLoc = ConsumeToken(); // The argument isn't actually potentially evaluated unless it is // used. EnterExpressionEvaluationContext Eval(Actions, Sema::PotentiallyEvaluatedIfUsed, LM.DefaultArgs[I].Param); ExprResult DefArgResult; if (getLangOpts().CPlusPlus0x && Tok.is(tok::l_brace)) { Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists); DefArgResult = ParseBraceInitializer(); } else DefArgResult = ParseAssignmentExpression(); if (DefArgResult.isInvalid()) Actions.ActOnParamDefaultArgumentError(LM.DefaultArgs[I].Param); else { if (Tok.is(tok::cxx_defaultarg_end)) ConsumeToken(); else Diag(Tok.getLocation(), diag::err_default_arg_unparsed); Actions.ActOnParamDefaultArgument(LM.DefaultArgs[I].Param, EqualLoc, DefArgResult.take()); } assert(!PP.getSourceManager().isBeforeInTranslationUnit(origLoc, Tok.getLocation()) && "ParseAssignmentExpression went over the default arg tokens!"); // There could be leftover tokens (e.g. because of an error). // Skip through until we reach the original token position. while (Tok.getLocation() != origLoc && Tok.isNot(tok::eof)) ConsumeAnyToken(); delete Toks; LM.DefaultArgs[I].Toks = 0; } } PrototypeScope.Exit(); // Finish the delayed C++ method declaration. Actions.ActOnFinishDelayedCXXMethodDeclaration(getCurScope(), LM.Method); } /// ParseLexedMethodDefs - We finished parsing the member specification of a top /// (non-nested) C++ class. Now go over the stack of lexed methods that were /// collected during its parsing and parse them all. void Parser::ParseLexedMethodDefs(ParsingClass &Class) { bool HasTemplateScope = !Class.TopLevelClass && Class.TemplateScope; ParseScope ClassTemplateScope(this, Scope::TemplateParamScope, HasTemplateScope); if (HasTemplateScope) Actions.ActOnReenterTemplateScope(getCurScope(), Class.TagOrTemplate); bool HasClassScope = !Class.TopLevelClass; ParseScope ClassScope(this, Scope::ClassScope|Scope::DeclScope, HasClassScope); for (size_t i = 0; i < Class.LateParsedDeclarations.size(); ++i) { Class.LateParsedDeclarations[i]->ParseLexedMethodDefs(); } } void Parser::ParseLexedMethodDef(LexedMethod &LM) { // If this is a member template, introduce the template parameter scope. ParseScope TemplateScope(this, Scope::TemplateParamScope, LM.TemplateScope); if (LM.TemplateScope) Actions.ActOnReenterTemplateScope(getCurScope(), LM.D); // Save the current token position. SourceLocation origLoc = Tok.getLocation(); assert(!LM.Toks.empty() && "Empty body!"); // Append the current token at the end of the new token stream so that it // doesn't get lost. LM.Toks.push_back(Tok); PP.EnterTokenStream(LM.Toks.data(), LM.Toks.size(), true, false); // Consume the previously pushed token. ConsumeAnyToken(); assert((Tok.is(tok::l_brace) || Tok.is(tok::colon) || Tok.is(tok::kw_try)) && "Inline method not starting with '{', ':' or 'try'"); // Parse the method body. Function body parsing code is similar enough // to be re-used for method bodies as well. ParseScope FnScope(this, Scope::FnScope|Scope::DeclScope); Actions.ActOnStartOfFunctionDef(getCurScope(), LM.D); if (Tok.is(tok::kw_try)) { ParseFunctionTryBlock(LM.D, FnScope); assert(!PP.getSourceManager().isBeforeInTranslationUnit(origLoc, Tok.getLocation()) && "ParseFunctionTryBlock went over the cached tokens!"); // There could be leftover tokens (e.g. because of an error). // Skip through until we reach the original token position. while (Tok.getLocation() != origLoc && Tok.isNot(tok::eof)) ConsumeAnyToken(); return; } if (Tok.is(tok::colon)) { ParseConstructorInitializer(LM.D); // Error recovery. if (!Tok.is(tok::l_brace)) { FnScope.Exit(); Actions.ActOnFinishFunctionBody(LM.D, 0); while (Tok.getLocation() != origLoc && Tok.isNot(tok::eof)) ConsumeAnyToken(); return; } } else Actions.ActOnDefaultCtorInitializers(LM.D); ParseFunctionStatementBody(LM.D, FnScope); if (Tok.getLocation() != origLoc) { // Due to parsing error, we either went over the cached tokens or // there are still cached tokens left. If it's the latter case skip the // leftover tokens. // Since this is an uncommon situation that should be avoided, use the // expensive isBeforeInTranslationUnit call. if (PP.getSourceManager().isBeforeInTranslationUnit(Tok.getLocation(), origLoc)) while (Tok.getLocation() != origLoc && Tok.isNot(tok::eof)) ConsumeAnyToken(); } } /// ParseLexedMemberInitializers - We finished parsing the member specification /// of a top (non-nested) C++ class. Now go over the stack of lexed data member /// initializers that were collected during its parsing and parse them all. void Parser::ParseLexedMemberInitializers(ParsingClass &Class) { bool HasTemplateScope = !Class.TopLevelClass && Class.TemplateScope; ParseScope ClassTemplateScope(this, Scope::TemplateParamScope, HasTemplateScope); if (HasTemplateScope) Actions.ActOnReenterTemplateScope(getCurScope(), Class.TagOrTemplate); // Set or update the scope flags. bool AlreadyHasClassScope = Class.TopLevelClass; unsigned ScopeFlags = Scope::ClassScope|Scope::DeclScope; ParseScope ClassScope(this, ScopeFlags, !AlreadyHasClassScope); ParseScopeFlags ClassScopeFlags(this, ScopeFlags, AlreadyHasClassScope); if (!AlreadyHasClassScope) Actions.ActOnStartDelayedMemberDeclarations(getCurScope(), Class.TagOrTemplate); { // C++11 [expr.prim.general]p4: // Otherwise, if a member-declarator declares a non-static data member // (9.2) of a class X, the expression this is a prvalue of type "pointer // to X" within the optional brace-or-equal-initializer. It shall not // appear elsewhere in the member-declarator. Sema::CXXThisScopeRAII ThisScope(Actions, Class.TagOrTemplate, /*TypeQuals=*/(unsigned)0); for (size_t i = 0; i < Class.LateParsedDeclarations.size(); ++i) { Class.LateParsedDeclarations[i]->ParseLexedMemberInitializers(); } } if (!AlreadyHasClassScope) Actions.ActOnFinishDelayedMemberDeclarations(getCurScope(), Class.TagOrTemplate); Actions.ActOnFinishDelayedMemberInitializers(Class.TagOrTemplate); } void Parser::ParseLexedMemberInitializer(LateParsedMemberInitializer &MI) { if (!MI.Field || MI.Field->isInvalidDecl()) return; // Append the current token at the end of the new token stream so that it // doesn't get lost. MI.Toks.push_back(Tok); PP.EnterTokenStream(MI.Toks.data(), MI.Toks.size(), true, false); // Consume the previously pushed token. ConsumeAnyToken(); SourceLocation EqualLoc; ExprResult Init = ParseCXXMemberInitializer(MI.Field, /*IsFunction=*/false, EqualLoc); Actions.ActOnCXXInClassMemberInitializer(MI.Field, EqualLoc, Init.release()); // The next token should be our artificial terminating EOF token. if (Tok.isNot(tok::eof)) { SourceLocation EndLoc = PP.getLocForEndOfToken(PrevTokLocation); if (!EndLoc.isValid()) EndLoc = Tok.getLocation(); // No fixit; we can't recover as if there were a semicolon here. Diag(EndLoc, diag::err_expected_semi_decl_list); // Consume tokens until we hit the artificial EOF. while (Tok.isNot(tok::eof)) ConsumeAnyToken(); } ConsumeAnyToken(); } /// ConsumeAndStoreUntil - Consume and store the token at the passed token /// container until the token 'T' is reached (which gets /// consumed/stored too, if ConsumeFinalToken). /// If StopAtSemi is true, then we will stop early at a ';' character. /// Returns true if token 'T1' or 'T2' was found. /// NOTE: This is a specialized version of Parser::SkipUntil. bool Parser::ConsumeAndStoreUntil(tok::TokenKind T1, tok::TokenKind T2, CachedTokens &Toks, bool StopAtSemi, bool ConsumeFinalToken) { // We always want this function to consume at least one token if the first // token isn't T and if not at EOF. bool isFirstTokenConsumed = true; while (1) { // If we found one of the tokens, stop and return true. if (Tok.is(T1) || Tok.is(T2)) { if (ConsumeFinalToken) { Toks.push_back(Tok); ConsumeAnyToken(); } return true; } switch (Tok.getKind()) { case tok::eof: // Ran out of tokens. return false; case tok::l_paren: // Recursively consume properly-nested parens. Toks.push_back(Tok); ConsumeParen(); ConsumeAndStoreUntil(tok::r_paren, Toks, /*StopAtSemi=*/false); break; case tok::l_square: // Recursively consume properly-nested square brackets. Toks.push_back(Tok); ConsumeBracket(); ConsumeAndStoreUntil(tok::r_square, Toks, /*StopAtSemi=*/false); break; case tok::l_brace: // Recursively consume properly-nested braces. Toks.push_back(Tok); ConsumeBrace(); ConsumeAndStoreUntil(tok::r_brace, Toks, /*StopAtSemi=*/false); break; // Okay, we found a ']' or '}' or ')', which we think should be balanced. // Since the user wasn't looking for this token (if they were, it would // already be handled), this isn't balanced. If there is a LHS token at a // higher level, we will assume that this matches the unbalanced token // and return it. Otherwise, this is a spurious RHS token, which we skip. case tok::r_paren: if (ParenCount && !isFirstTokenConsumed) return false; // Matches something. Toks.push_back(Tok); ConsumeParen(); break; case tok::r_square: if (BracketCount && !isFirstTokenConsumed) return false; // Matches something. Toks.push_back(Tok); ConsumeBracket(); break; case tok::r_brace: if (BraceCount && !isFirstTokenConsumed) return false; // Matches something. Toks.push_back(Tok); ConsumeBrace(); break; case tok::code_completion: Toks.push_back(Tok); ConsumeCodeCompletionToken(); break; case tok::string_literal: case tok::wide_string_literal: case tok::utf8_string_literal: case tok::utf16_string_literal: case tok::utf32_string_literal: Toks.push_back(Tok); ConsumeStringToken(); break; case tok::semi: if (StopAtSemi) return false; // FALL THROUGH. default: // consume this token. Toks.push_back(Tok); ConsumeToken(); break; } isFirstTokenConsumed = false; } } /// \brief Consume tokens and store them in the passed token container until /// we've passed the try keyword and constructor initializers and have consumed /// the opening brace of the function body. The opening brace will be consumed /// if and only if there was no error. /// /// \return True on error. bool Parser::ConsumeAndStoreFunctionPrologue(CachedTokens &Toks) { if (Tok.is(tok::kw_try)) { Toks.push_back(Tok); ConsumeToken(); } bool ReadInitializer = false; if (Tok.is(tok::colon)) { // Initializers can contain braces too. Toks.push_back(Tok); ConsumeToken(); while (Tok.is(tok::identifier) || Tok.is(tok::coloncolon)) { if (Tok.is(tok::eof) || Tok.is(tok::semi)) return Diag(Tok.getLocation(), diag::err_expected_lbrace); // Grab the identifier. if (!ConsumeAndStoreUntil(tok::l_paren, tok::l_brace, Toks, /*StopAtSemi=*/true, /*ConsumeFinalToken=*/false)) return Diag(Tok.getLocation(), diag::err_expected_lparen); tok::TokenKind kind = Tok.getKind(); Toks.push_back(Tok); bool IsLParen = (kind == tok::l_paren); SourceLocation LOpen = Tok.getLocation(); if (IsLParen) { ConsumeParen(); } else { assert(kind == tok::l_brace && "Must be left paren or brace here."); ConsumeBrace(); // In C++03, this has to be the start of the function body, which // means the initializer is malformed; we'll diagnose it later. if (!getLangOpts().CPlusPlus0x) return false; } // Grab the initializer if (!ConsumeAndStoreUntil(IsLParen ? tok::r_paren : tok::r_brace, Toks, /*StopAtSemi=*/true)) { Diag(Tok, IsLParen ? diag::err_expected_rparen : diag::err_expected_rbrace); Diag(LOpen, diag::note_matching) << (IsLParen ? "(" : "{"); return true; } // Grab pack ellipsis, if present if (Tok.is(tok::ellipsis)) { Toks.push_back(Tok); ConsumeToken(); } // Grab the separating comma, if any. if (Tok.is(tok::comma)) { Toks.push_back(Tok); ConsumeToken(); } else if (Tok.isNot(tok::l_brace)) { ReadInitializer = true; break; } } } // Grab any remaining garbage to be diagnosed later. We stop when we reach a // brace: an opening one is the function body, while a closing one probably // means we've reached the end of the class. ConsumeAndStoreUntil(tok::l_brace, tok::r_brace, Toks, /*StopAtSemi=*/true, /*ConsumeFinalToken=*/false); if (Tok.isNot(tok::l_brace)) { if (ReadInitializer) return Diag(Tok.getLocation(), diag::err_expected_lbrace_or_comma); return Diag(Tok.getLocation(), diag::err_expected_lbrace); } Toks.push_back(Tok); ConsumeBrace(); return false; }