//===--- SemaExprCXX.cpp - Semantic Analysis for Expressions --------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements semantic analysis for C++ expressions. // //===----------------------------------------------------------------------===// #include "clang/Sema/SemaInternal.h" #include "clang/Sema/DeclSpec.h" #include "clang/Sema/Initialization.h" #include "clang/Sema/Lookup.h" #include "clang/Sema/ParsedTemplate.h" #include "clang/Sema/TemplateDeduction.h" #include "clang/AST/ASTContext.h" #include "clang/AST/CXXInheritance.h" #include "clang/AST/DeclObjC.h" #include "clang/AST/ExprCXX.h" #include "clang/AST/ExprObjC.h" #include "clang/AST/TypeLoc.h" #include "clang/Basic/PartialDiagnostic.h" #include "clang/Basic/TargetInfo.h" #include "clang/Lex/Preprocessor.h" #include "llvm/ADT/STLExtras.h" using namespace clang; using namespace sema; ParsedType Sema::getDestructorName(SourceLocation TildeLoc, IdentifierInfo &II, SourceLocation NameLoc, Scope *S, CXXScopeSpec &SS, ParsedType ObjectTypePtr, bool EnteringContext) { // Determine where to perform name lookup. // FIXME: This area of the standard is very messy, and the current // wording is rather unclear about which scopes we search for the // destructor name; see core issues 399 and 555. Issue 399 in // particular shows where the current description of destructor name // lookup is completely out of line with existing practice, e.g., // this appears to be ill-formed: // // namespace N { // template struct S { // ~S(); // }; // } // // void f(N::S* s) { // s->N::S::~S(); // } // // See also PR6358 and PR6359. // For this reason, we're currently only doing the C++03 version of this // code; the C++0x version has to wait until we get a proper spec. QualType SearchType; DeclContext *LookupCtx = 0; bool isDependent = false; bool LookInScope = false; // If we have an object type, it's because we are in a // pseudo-destructor-expression or a member access expression, and // we know what type we're looking for. if (ObjectTypePtr) SearchType = GetTypeFromParser(ObjectTypePtr); if (SS.isSet()) { NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep(); bool AlreadySearched = false; bool LookAtPrefix = true; // C++ [basic.lookup.qual]p6: // If a pseudo-destructor-name (5.2.4) contains a nested-name-specifier, // the type-names are looked up as types in the scope designated by the // nested-name-specifier. In a qualified-id of the form: // // ::[opt] nested-name-specifier ̃ class-name // // where the nested-name-specifier designates a namespace scope, and in // a qualified-id of the form: // // ::opt nested-name-specifier class-name :: ̃ class-name // // the class-names are looked up as types in the scope designated by // the nested-name-specifier. // // Here, we check the first case (completely) and determine whether the // code below is permitted to look at the prefix of the // nested-name-specifier. DeclContext *DC = computeDeclContext(SS, EnteringContext); if (DC && DC->isFileContext()) { AlreadySearched = true; LookupCtx = DC; isDependent = false; } else if (DC && isa(DC)) LookAtPrefix = false; // The second case from the C++03 rules quoted further above. NestedNameSpecifier *Prefix = 0; if (AlreadySearched) { // Nothing left to do. } else if (LookAtPrefix && (Prefix = NNS->getPrefix())) { CXXScopeSpec PrefixSS; PrefixSS.setScopeRep(Prefix); LookupCtx = computeDeclContext(PrefixSS, EnteringContext); isDependent = isDependentScopeSpecifier(PrefixSS); } else if (ObjectTypePtr) { LookupCtx = computeDeclContext(SearchType); isDependent = SearchType->isDependentType(); } else { LookupCtx = computeDeclContext(SS, EnteringContext); isDependent = LookupCtx && LookupCtx->isDependentContext(); } LookInScope = false; } else if (ObjectTypePtr) { // C++ [basic.lookup.classref]p3: // If the unqualified-id is ~type-name, the type-name is looked up // in the context of the entire postfix-expression. If the type T // of the object expression is of a class type C, the type-name is // also looked up in the scope of class C. At least one of the // lookups shall find a name that refers to (possibly // cv-qualified) T. LookupCtx = computeDeclContext(SearchType); isDependent = SearchType->isDependentType(); assert((isDependent || !SearchType->isIncompleteType()) && "Caller should have completed object type"); LookInScope = true; } else { // Perform lookup into the current scope (only). LookInScope = true; } LookupResult Found(*this, &II, NameLoc, LookupOrdinaryName); for (unsigned Step = 0; Step != 2; ++Step) { // Look for the name first in the computed lookup context (if we // have one) and, if that fails to find a match, in the sope (if // we're allowed to look there). Found.clear(); if (Step == 0 && LookupCtx) LookupQualifiedName(Found, LookupCtx); else if (Step == 1 && LookInScope && S) LookupName(Found, S); else continue; // FIXME: Should we be suppressing ambiguities here? if (Found.isAmbiguous()) return ParsedType(); if (TypeDecl *Type = Found.getAsSingle()) { QualType T = Context.getTypeDeclType(Type); if (SearchType.isNull() || SearchType->isDependentType() || Context.hasSameUnqualifiedType(T, SearchType)) { // We found our type! return ParsedType::make(T); } } // If the name that we found is a class template name, and it is // the same name as the template name in the last part of the // nested-name-specifier (if present) or the object type, then // this is the destructor for that class. // FIXME: This is a workaround until we get real drafting for core // issue 399, for which there isn't even an obvious direction. if (ClassTemplateDecl *Template = Found.getAsSingle()) { QualType MemberOfType; if (SS.isSet()) { if (DeclContext *Ctx = computeDeclContext(SS, EnteringContext)) { // Figure out the type of the context, if it has one. if (CXXRecordDecl *Record = dyn_cast(Ctx)) MemberOfType = Context.getTypeDeclType(Record); } } if (MemberOfType.isNull()) MemberOfType = SearchType; if (MemberOfType.isNull()) continue; // We're referring into a class template specialization. If the // class template we found is the same as the template being // specialized, we found what we are looking for. if (const RecordType *Record = MemberOfType->getAs()) { if (ClassTemplateSpecializationDecl *Spec = dyn_cast(Record->getDecl())) { if (Spec->getSpecializedTemplate()->getCanonicalDecl() == Template->getCanonicalDecl()) return ParsedType::make(MemberOfType); } continue; } // We're referring to an unresolved class template // specialization. Determine whether we class template we found // is the same as the template being specialized or, if we don't // know which template is being specialized, that it at least // has the same name. if (const TemplateSpecializationType *SpecType = MemberOfType->getAs()) { TemplateName SpecName = SpecType->getTemplateName(); // The class template we found is the same template being // specialized. if (TemplateDecl *SpecTemplate = SpecName.getAsTemplateDecl()) { if (SpecTemplate->getCanonicalDecl() == Template->getCanonicalDecl()) return ParsedType::make(MemberOfType); continue; } // The class template we found has the same name as the // (dependent) template name being specialized. if (DependentTemplateName *DepTemplate = SpecName.getAsDependentTemplateName()) { if (DepTemplate->isIdentifier() && DepTemplate->getIdentifier() == Template->getIdentifier()) return ParsedType::make(MemberOfType); continue; } } } } if (isDependent) { // We didn't find our type, but that's okay: it's dependent // anyway. NestedNameSpecifier *NNS = 0; SourceRange Range; if (SS.isSet()) { NNS = (NestedNameSpecifier *)SS.getScopeRep(); Range = SourceRange(SS.getRange().getBegin(), NameLoc); } else { NNS = NestedNameSpecifier::Create(Context, &II); Range = SourceRange(NameLoc); } QualType T = CheckTypenameType(ETK_None, NNS, II, SourceLocation(), Range, NameLoc); return ParsedType::make(T); } if (ObjectTypePtr) Diag(NameLoc, diag::err_ident_in_pseudo_dtor_not_a_type) << &II; else Diag(NameLoc, diag::err_destructor_class_name); return ParsedType(); } /// \brief Build a C++ typeid expression with a type operand. ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType, SourceLocation TypeidLoc, TypeSourceInfo *Operand, SourceLocation RParenLoc) { // C++ [expr.typeid]p4: // The top-level cv-qualifiers of the lvalue expression or the type-id // that is the operand of typeid are always ignored. // If the type of the type-id is a class type or a reference to a class // type, the class shall be completely-defined. Qualifiers Quals; QualType T = Context.getUnqualifiedArrayType(Operand->getType().getNonReferenceType(), Quals); if (T->getAs() && RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid)) return ExprError(); return Owned(new (Context) CXXTypeidExpr(TypeInfoType.withConst(), Operand, SourceRange(TypeidLoc, RParenLoc))); } /// \brief Build a C++ typeid expression with an expression operand. ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType, SourceLocation TypeidLoc, Expr *E, SourceLocation RParenLoc) { bool isUnevaluatedOperand = true; if (E && !E->isTypeDependent()) { QualType T = E->getType(); if (const RecordType *RecordT = T->getAs()) { CXXRecordDecl *RecordD = cast(RecordT->getDecl()); // C++ [expr.typeid]p3: // [...] If the type of the expression is a class type, the class // shall be completely-defined. if (RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid)) return ExprError(); // C++ [expr.typeid]p3: // When typeid is applied to an expression other than an glvalue of a // polymorphic class type [...] [the] expression is an unevaluated // operand. [...] if (RecordD->isPolymorphic() && E->Classify(Context).isGLValue()) { isUnevaluatedOperand = false; // We require a vtable to query the type at run time. MarkVTableUsed(TypeidLoc, RecordD); } } // C++ [expr.typeid]p4: // [...] If the type of the type-id is a reference to a possibly // cv-qualified type, the result of the typeid expression refers to a // std::type_info object representing the cv-unqualified referenced // type. Qualifiers Quals; QualType UnqualT = Context.getUnqualifiedArrayType(T, Quals); if (!Context.hasSameType(T, UnqualT)) { T = UnqualT; ImpCastExprToType(E, UnqualT, CK_NoOp, CastCategory(E)); } } // If this is an unevaluated operand, clear out the set of // declaration references we have been computing and eliminate any // temporaries introduced in its computation. if (isUnevaluatedOperand) ExprEvalContexts.back().Context = Unevaluated; return Owned(new (Context) CXXTypeidExpr(TypeInfoType.withConst(), E, SourceRange(TypeidLoc, RParenLoc))); } /// ActOnCXXTypeidOfType - Parse typeid( type-id ) or typeid (expression); ExprResult Sema::ActOnCXXTypeid(SourceLocation OpLoc, SourceLocation LParenLoc, bool isType, void *TyOrExpr, SourceLocation RParenLoc) { // Find the std::type_info type. if (!StdNamespace) return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid)); IdentifierInfo *TypeInfoII = &PP.getIdentifierTable().get("type_info"); LookupResult R(*this, TypeInfoII, SourceLocation(), LookupTagName); LookupQualifiedName(R, getStdNamespace()); RecordDecl *TypeInfoRecordDecl = R.getAsSingle(); if (!TypeInfoRecordDecl) return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid)); QualType TypeInfoType = Context.getTypeDeclType(TypeInfoRecordDecl); if (isType) { // The operand is a type; handle it as such. TypeSourceInfo *TInfo = 0; QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr), &TInfo); if (T.isNull()) return ExprError(); if (!TInfo) TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc); return BuildCXXTypeId(TypeInfoType, OpLoc, TInfo, RParenLoc); } // The operand is an expression. return BuildCXXTypeId(TypeInfoType, OpLoc, (Expr*)TyOrExpr, RParenLoc); } /// ActOnCXXBoolLiteral - Parse {true,false} literals. ExprResult Sema::ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) { assert((Kind == tok::kw_true || Kind == tok::kw_false) && "Unknown C++ Boolean value!"); return Owned(new (Context) CXXBoolLiteralExpr(Kind == tok::kw_true, Context.BoolTy, OpLoc)); } /// ActOnCXXNullPtrLiteral - Parse 'nullptr'. ExprResult Sema::ActOnCXXNullPtrLiteral(SourceLocation Loc) { return Owned(new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc)); } /// ActOnCXXThrow - Parse throw expressions. ExprResult Sema::ActOnCXXThrow(SourceLocation OpLoc, Expr *Ex) { if (Ex && !Ex->isTypeDependent() && CheckCXXThrowOperand(OpLoc, Ex)) return ExprError(); return Owned(new (Context) CXXThrowExpr(Ex, Context.VoidTy, OpLoc)); } /// CheckCXXThrowOperand - Validate the operand of a throw. bool Sema::CheckCXXThrowOperand(SourceLocation ThrowLoc, Expr *&E) { // C++ [except.throw]p3: // A throw-expression initializes a temporary object, called the exception // object, the type of which is determined by removing any top-level // cv-qualifiers from the static type of the operand of throw and adjusting // the type from "array of T" or "function returning T" to "pointer to T" // or "pointer to function returning T", [...] if (E->getType().hasQualifiers()) ImpCastExprToType(E, E->getType().getUnqualifiedType(), CK_NoOp, CastCategory(E)); DefaultFunctionArrayConversion(E); // If the type of the exception would be an incomplete type or a pointer // to an incomplete type other than (cv) void the program is ill-formed. QualType Ty = E->getType(); bool isPointer = false; if (const PointerType* Ptr = Ty->getAs()) { Ty = Ptr->getPointeeType(); isPointer = true; } if (!isPointer || !Ty->isVoidType()) { if (RequireCompleteType(ThrowLoc, Ty, PDiag(isPointer ? diag::err_throw_incomplete_ptr : diag::err_throw_incomplete) << E->getSourceRange())) return true; if (RequireNonAbstractType(ThrowLoc, E->getType(), PDiag(diag::err_throw_abstract_type) << E->getSourceRange())) return true; } // Initialize the exception result. This implicitly weeds out // abstract types or types with inaccessible copy constructors. // FIXME: Determine whether we can elide this copy per C++0x [class.copy]p34. InitializedEntity Entity = InitializedEntity::InitializeException(ThrowLoc, E->getType(), /*NRVO=*/false); ExprResult Res = PerformCopyInitialization(Entity, SourceLocation(), Owned(E)); if (Res.isInvalid()) return true; E = Res.takeAs(); // If the exception has class type, we need additional handling. const RecordType *RecordTy = Ty->getAs(); if (!RecordTy) return false; CXXRecordDecl *RD = cast(RecordTy->getDecl()); // If we are throwing a polymorphic class type or pointer thereof, // exception handling will make use of the vtable. MarkVTableUsed(ThrowLoc, RD); // If the class has a non-trivial destructor, we must be able to call it. if (RD->hasTrivialDestructor()) return false; CXXDestructorDecl *Destructor = const_cast(LookupDestructor(RD)); if (!Destructor) return false; MarkDeclarationReferenced(E->getExprLoc(), Destructor); CheckDestructorAccess(E->getExprLoc(), Destructor, PDiag(diag::err_access_dtor_exception) << Ty); return false; } ExprResult Sema::ActOnCXXThis(SourceLocation ThisLoc) { /// C++ 9.3.2: In the body of a non-static member function, the keyword this /// is a non-lvalue expression whose value is the address of the object for /// which the function is called. DeclContext *DC = getFunctionLevelDeclContext(); if (CXXMethodDecl *MD = dyn_cast(DC)) if (MD->isInstance()) return Owned(new (Context) CXXThisExpr(ThisLoc, MD->getThisType(Context), /*isImplicit=*/false)); return ExprError(Diag(ThisLoc, diag::err_invalid_this_use)); } /// ActOnCXXTypeConstructExpr - Parse construction of a specified type. /// Can be interpreted either as function-style casting ("int(x)") /// or class type construction ("ClassType(x,y,z)") /// or creation of a value-initialized type ("int()"). ExprResult Sema::ActOnCXXTypeConstructExpr(SourceRange TypeRange, ParsedType TypeRep, SourceLocation LParenLoc, MultiExprArg exprs, SourceLocation *CommaLocs, SourceLocation RParenLoc) { if (!TypeRep) return ExprError(); TypeSourceInfo *TInfo; QualType Ty = GetTypeFromParser(TypeRep, &TInfo); if (!TInfo) TInfo = Context.getTrivialTypeSourceInfo(Ty, SourceLocation()); unsigned NumExprs = exprs.size(); Expr **Exprs = (Expr**)exprs.get(); SourceLocation TyBeginLoc = TypeRange.getBegin(); SourceRange FullRange = SourceRange(TyBeginLoc, RParenLoc); if (Ty->isDependentType() || CallExpr::hasAnyTypeDependentArguments(Exprs, NumExprs)) { exprs.release(); return Owned(CXXUnresolvedConstructExpr::Create(Context, TypeRange.getBegin(), Ty, LParenLoc, Exprs, NumExprs, RParenLoc)); } if (Ty->isArrayType()) return ExprError(Diag(TyBeginLoc, diag::err_value_init_for_array_type) << FullRange); if (!Ty->isVoidType() && RequireCompleteType(TyBeginLoc, Ty, PDiag(diag::err_invalid_incomplete_type_use) << FullRange)) return ExprError(); if (RequireNonAbstractType(TyBeginLoc, Ty, diag::err_allocation_of_abstract_type)) return ExprError(); // C++ [expr.type.conv]p1: // If the expression list is a single expression, the type conversion // expression is equivalent (in definedness, and if defined in meaning) to the // corresponding cast expression. // if (NumExprs == 1) { CastKind Kind = CK_Unknown; CXXCastPath BasePath; if (CheckCastTypes(TypeRange, Ty, Exprs[0], Kind, BasePath, /*FunctionalStyle=*/true)) return ExprError(); exprs.release(); return Owned(CXXFunctionalCastExpr::Create(Context, Ty.getNonLValueExprType(Context), TInfo, TyBeginLoc, Kind, Exprs[0], &BasePath, RParenLoc)); } if (Ty->isRecordType()) { InitializedEntity Entity = InitializedEntity::InitializeTemporary(Ty); InitializationKind Kind = NumExprs ? InitializationKind::CreateDirect(TypeRange.getBegin(), LParenLoc, RParenLoc) : InitializationKind::CreateValue(TypeRange.getBegin(), LParenLoc, RParenLoc); InitializationSequence InitSeq(*this, Entity, Kind, Exprs, NumExprs); ExprResult Result = InitSeq.Perform(*this, Entity, Kind, move(exprs)); // FIXME: Improve AST representation? return move(Result); } // C++ [expr.type.conv]p1: // If the expression list specifies more than a single value, the type shall // be a class with a suitably declared constructor. // if (NumExprs > 1) return ExprError(Diag(CommaLocs[0], diag::err_builtin_func_cast_more_than_one_arg) << FullRange); assert(NumExprs == 0 && "Expected 0 expressions"); // C++ [expr.type.conv]p2: // The expression T(), where T is a simple-type-specifier for a non-array // complete object type or the (possibly cv-qualified) void type, creates an // rvalue of the specified type, which is value-initialized. // exprs.release(); return Owned(new (Context) CXXScalarValueInitExpr(Ty, TyBeginLoc, RParenLoc)); } /// ActOnCXXNew - Parsed a C++ 'new' expression (C++ 5.3.4), as in e.g.: /// @code new (memory) int[size][4] @endcode /// or /// @code ::new Foo(23, "hello") @endcode /// For the interpretation of this heap of arguments, consult the base version. ExprResult Sema::ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal, SourceLocation PlacementLParen, MultiExprArg PlacementArgs, SourceLocation PlacementRParen, SourceRange TypeIdParens, Declarator &D, SourceLocation ConstructorLParen, MultiExprArg ConstructorArgs, SourceLocation ConstructorRParen) { Expr *ArraySize = 0; // If the specified type is an array, unwrap it and save the expression. if (D.getNumTypeObjects() > 0 && D.getTypeObject(0).Kind == DeclaratorChunk::Array) { DeclaratorChunk &Chunk = D.getTypeObject(0); if (Chunk.Arr.hasStatic) return ExprError(Diag(Chunk.Loc, diag::err_static_illegal_in_new) << D.getSourceRange()); if (!Chunk.Arr.NumElts) return ExprError(Diag(Chunk.Loc, diag::err_array_new_needs_size) << D.getSourceRange()); ArraySize = static_cast(Chunk.Arr.NumElts); D.DropFirstTypeObject(); } // Every dimension shall be of constant size. if (ArraySize) { for (unsigned I = 0, N = D.getNumTypeObjects(); I < N; ++I) { if (D.getTypeObject(I).Kind != DeclaratorChunk::Array) break; DeclaratorChunk::ArrayTypeInfo &Array = D.getTypeObject(I).Arr; if (Expr *NumElts = (Expr *)Array.NumElts) { if (!NumElts->isTypeDependent() && !NumElts->isValueDependent() && !NumElts->isIntegerConstantExpr(Context)) { Diag(D.getTypeObject(I).Loc, diag::err_new_array_nonconst) << NumElts->getSourceRange(); return ExprError(); } } } } //FIXME: Store TypeSourceInfo in CXXNew expression. TypeSourceInfo *TInfo = GetTypeForDeclarator(D, /*Scope=*/0); QualType AllocType = TInfo->getType(); if (D.isInvalidType()) return ExprError(); SourceRange R = TInfo->getTypeLoc().getSourceRange(); return BuildCXXNew(StartLoc, UseGlobal, PlacementLParen, move(PlacementArgs), PlacementRParen, TypeIdParens, AllocType, D.getSourceRange().getBegin(), R, ArraySize, ConstructorLParen, move(ConstructorArgs), ConstructorRParen); } ExprResult Sema::BuildCXXNew(SourceLocation StartLoc, bool UseGlobal, SourceLocation PlacementLParen, MultiExprArg PlacementArgs, SourceLocation PlacementRParen, SourceRange TypeIdParens, QualType AllocType, SourceLocation TypeLoc, SourceRange TypeRange, Expr *ArraySize, SourceLocation ConstructorLParen, MultiExprArg ConstructorArgs, SourceLocation ConstructorRParen) { if (CheckAllocatedType(AllocType, TypeLoc, TypeRange)) return ExprError(); // Per C++0x [expr.new]p5, the type being constructed may be a // typedef of an array type. if (!ArraySize) { if (const ConstantArrayType *Array = Context.getAsConstantArrayType(AllocType)) { ArraySize = IntegerLiteral::Create(Context, Array->getSize(), Context.getSizeType(), TypeRange.getEnd()); AllocType = Array->getElementType(); } } QualType ResultType = Context.getPointerType(AllocType); // C++ 5.3.4p6: "The expression in a direct-new-declarator shall have integral // or enumeration type with a non-negative value." if (ArraySize && !ArraySize->isTypeDependent()) { QualType SizeType = ArraySize->getType(); ExprResult ConvertedSize = ConvertToIntegralOrEnumerationType(StartLoc, ArraySize, PDiag(diag::err_array_size_not_integral), PDiag(diag::err_array_size_incomplete_type) << ArraySize->getSourceRange(), PDiag(diag::err_array_size_explicit_conversion), PDiag(diag::note_array_size_conversion), PDiag(diag::err_array_size_ambiguous_conversion), PDiag(diag::note_array_size_conversion), PDiag(getLangOptions().CPlusPlus0x? 0 : diag::ext_array_size_conversion)); if (ConvertedSize.isInvalid()) return ExprError(); ArraySize = ConvertedSize.take(); SizeType = ArraySize->getType(); if (!SizeType->isIntegralOrEnumerationType()) return ExprError(); // Let's see if this is a constant < 0. If so, we reject it out of hand. // We don't care about special rules, so we tell the machinery it's not // evaluated - it gives us a result in more cases. if (!ArraySize->isValueDependent()) { llvm::APSInt Value; if (ArraySize->isIntegerConstantExpr(Value, Context, 0, false)) { if (Value < llvm::APSInt( llvm::APInt::getNullValue(Value.getBitWidth()), Value.isUnsigned())) return ExprError(Diag(ArraySize->getSourceRange().getBegin(), diag::err_typecheck_negative_array_size) << ArraySize->getSourceRange()); if (!AllocType->isDependentType()) { unsigned ActiveSizeBits = ConstantArrayType::getNumAddressingBits(Context, AllocType, Value); if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) { Diag(ArraySize->getSourceRange().getBegin(), diag::err_array_too_large) << Value.toString(10) << ArraySize->getSourceRange(); return ExprError(); } } } else if (TypeIdParens.isValid()) { // Can't have dynamic array size when the type-id is in parentheses. Diag(ArraySize->getLocStart(), diag::ext_new_paren_array_nonconst) << ArraySize->getSourceRange() << FixItHint::CreateRemoval(TypeIdParens.getBegin()) << FixItHint::CreateRemoval(TypeIdParens.getEnd()); TypeIdParens = SourceRange(); } } ImpCastExprToType(ArraySize, Context.getSizeType(), CK_IntegralCast); } FunctionDecl *OperatorNew = 0; FunctionDecl *OperatorDelete = 0; Expr **PlaceArgs = (Expr**)PlacementArgs.get(); unsigned NumPlaceArgs = PlacementArgs.size(); if (!AllocType->isDependentType() && !Expr::hasAnyTypeDependentArguments(PlaceArgs, NumPlaceArgs) && FindAllocationFunctions(StartLoc, SourceRange(PlacementLParen, PlacementRParen), UseGlobal, AllocType, ArraySize, PlaceArgs, NumPlaceArgs, OperatorNew, OperatorDelete)) return ExprError(); llvm::SmallVector AllPlaceArgs; if (OperatorNew) { // Add default arguments, if any. const FunctionProtoType *Proto = OperatorNew->getType()->getAs(); VariadicCallType CallType = Proto->isVariadic() ? VariadicFunction : VariadicDoesNotApply; if (GatherArgumentsForCall(PlacementLParen, OperatorNew, Proto, 1, PlaceArgs, NumPlaceArgs, AllPlaceArgs, CallType)) return ExprError(); NumPlaceArgs = AllPlaceArgs.size(); if (NumPlaceArgs > 0) PlaceArgs = &AllPlaceArgs[0]; } bool Init = ConstructorLParen.isValid(); // --- Choosing a constructor --- CXXConstructorDecl *Constructor = 0; Expr **ConsArgs = (Expr**)ConstructorArgs.get(); unsigned NumConsArgs = ConstructorArgs.size(); ASTOwningVector ConvertedConstructorArgs(*this); // Array 'new' can't have any initializers. if (NumConsArgs && (ResultType->isArrayType() || ArraySize)) { SourceRange InitRange(ConsArgs[0]->getLocStart(), ConsArgs[NumConsArgs - 1]->getLocEnd()); Diag(StartLoc, diag::err_new_array_init_args) << InitRange; return ExprError(); } if (!AllocType->isDependentType() && !Expr::hasAnyTypeDependentArguments(ConsArgs, NumConsArgs)) { // C++0x [expr.new]p15: // A new-expression that creates an object of type T initializes that // object as follows: InitializationKind Kind // - If the new-initializer is omitted, the object is default- // initialized (8.5); if no initialization is performed, // the object has indeterminate value = !Init? InitializationKind::CreateDefault(TypeLoc) // - Otherwise, the new-initializer is interpreted according to the // initialization rules of 8.5 for direct-initialization. : InitializationKind::CreateDirect(TypeLoc, ConstructorLParen, ConstructorRParen); InitializedEntity Entity = InitializedEntity::InitializeNew(StartLoc, AllocType); InitializationSequence InitSeq(*this, Entity, Kind, ConsArgs, NumConsArgs); ExprResult FullInit = InitSeq.Perform(*this, Entity, Kind, move(ConstructorArgs)); if (FullInit.isInvalid()) return ExprError(); // FullInit is our initializer; walk through it to determine if it's a // constructor call, which CXXNewExpr handles directly. if (Expr *FullInitExpr = (Expr *)FullInit.get()) { if (CXXBindTemporaryExpr *Binder = dyn_cast(FullInitExpr)) FullInitExpr = Binder->getSubExpr(); if (CXXConstructExpr *Construct = dyn_cast(FullInitExpr)) { Constructor = Construct->getConstructor(); for (CXXConstructExpr::arg_iterator A = Construct->arg_begin(), AEnd = Construct->arg_end(); A != AEnd; ++A) ConvertedConstructorArgs.push_back(A->Retain()); } else { // Take the converted initializer. ConvertedConstructorArgs.push_back(FullInit.release()); } } else { // No initialization required. } // Take the converted arguments and use them for the new expression. NumConsArgs = ConvertedConstructorArgs.size(); ConsArgs = (Expr **)ConvertedConstructorArgs.take(); } // Mark the new and delete operators as referenced. if (OperatorNew) MarkDeclarationReferenced(StartLoc, OperatorNew); if (OperatorDelete) MarkDeclarationReferenced(StartLoc, OperatorDelete); // FIXME: Also check that the destructor is accessible. (C++ 5.3.4p16) PlacementArgs.release(); ConstructorArgs.release(); // FIXME: The TypeSourceInfo should also be included in CXXNewExpr. return Owned(new (Context) CXXNewExpr(Context, UseGlobal, OperatorNew, PlaceArgs, NumPlaceArgs, TypeIdParens, ArraySize, Constructor, Init, ConsArgs, NumConsArgs, OperatorDelete, ResultType, StartLoc, Init ? ConstructorRParen : TypeRange.getEnd())); } /// CheckAllocatedType - Checks that a type is suitable as the allocated type /// in a new-expression. /// dimension off and stores the size expression in ArraySize. bool Sema::CheckAllocatedType(QualType AllocType, SourceLocation Loc, SourceRange R) { // C++ 5.3.4p1: "[The] type shall be a complete object type, but not an // abstract class type or array thereof. if (AllocType->isFunctionType()) return Diag(Loc, diag::err_bad_new_type) << AllocType << 0 << R; else if (AllocType->isReferenceType()) return Diag(Loc, diag::err_bad_new_type) << AllocType << 1 << R; else if (!AllocType->isDependentType() && RequireCompleteType(Loc, AllocType, PDiag(diag::err_new_incomplete_type) << R)) return true; else if (RequireNonAbstractType(Loc, AllocType, diag::err_allocation_of_abstract_type)) return true; return false; } /// \brief Determine whether the given function is a non-placement /// deallocation function. static bool isNonPlacementDeallocationFunction(FunctionDecl *FD) { if (FD->isInvalidDecl()) return false; if (CXXMethodDecl *Method = dyn_cast(FD)) return Method->isUsualDeallocationFunction(); return ((FD->getOverloadedOperator() == OO_Delete || FD->getOverloadedOperator() == OO_Array_Delete) && FD->getNumParams() == 1); } /// FindAllocationFunctions - Finds the overloads of operator new and delete /// that are appropriate for the allocation. bool Sema::FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range, bool UseGlobal, QualType AllocType, bool IsArray, Expr **PlaceArgs, unsigned NumPlaceArgs, FunctionDecl *&OperatorNew, FunctionDecl *&OperatorDelete) { // --- Choosing an allocation function --- // C++ 5.3.4p8 - 14 & 18 // 1) If UseGlobal is true, only look in the global scope. Else, also look // in the scope of the allocated class. // 2) If an array size is given, look for operator new[], else look for // operator new. // 3) The first argument is always size_t. Append the arguments from the // placement form. llvm::SmallVector AllocArgs(1 + NumPlaceArgs); // We don't care about the actual value of this argument. // FIXME: Should the Sema create the expression and embed it in the syntax // tree? Or should the consumer just recalculate the value? IntegerLiteral Size(Context, llvm::APInt::getNullValue( Context.Target.getPointerWidth(0)), Context.getSizeType(), SourceLocation()); AllocArgs[0] = &Size; std::copy(PlaceArgs, PlaceArgs + NumPlaceArgs, AllocArgs.begin() + 1); // C++ [expr.new]p8: // If the allocated type is a non-array type, the allocation // function’s name is operator new and the deallocation function’s // name is operator delete. If the allocated type is an array // type, the allocation function’s name is operator new[] and the // deallocation function’s name is operator delete[]. DeclarationName NewName = Context.DeclarationNames.getCXXOperatorName( IsArray ? OO_Array_New : OO_New); DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName( IsArray ? OO_Array_Delete : OO_Delete); QualType AllocElemType = Context.getBaseElementType(AllocType); if (AllocElemType->isRecordType() && !UseGlobal) { CXXRecordDecl *Record = cast(AllocElemType->getAs()->getDecl()); if (FindAllocationOverload(StartLoc, Range, NewName, &AllocArgs[0], AllocArgs.size(), Record, /*AllowMissing=*/true, OperatorNew)) return true; } if (!OperatorNew) { // Didn't find a member overload. Look for a global one. DeclareGlobalNewDelete(); DeclContext *TUDecl = Context.getTranslationUnitDecl(); if (FindAllocationOverload(StartLoc, Range, NewName, &AllocArgs[0], AllocArgs.size(), TUDecl, /*AllowMissing=*/false, OperatorNew)) return true; } // We don't need an operator delete if we're running under // -fno-exceptions. if (!getLangOptions().Exceptions) { OperatorDelete = 0; return false; } // FindAllocationOverload can change the passed in arguments, so we need to // copy them back. if (NumPlaceArgs > 0) std::copy(&AllocArgs[1], AllocArgs.end(), PlaceArgs); // C++ [expr.new]p19: // // If the new-expression begins with a unary :: operator, the // deallocation function’s name is looked up in the global // scope. Otherwise, if the allocated type is a class type T or an // array thereof, the deallocation function’s name is looked up in // the scope of T. If this lookup fails to find the name, or if // the allocated type is not a class type or array thereof, the // deallocation function’s name is looked up in the global scope. LookupResult FoundDelete(*this, DeleteName, StartLoc, LookupOrdinaryName); if (AllocElemType->isRecordType() && !UseGlobal) { CXXRecordDecl *RD = cast(AllocElemType->getAs()->getDecl()); LookupQualifiedName(FoundDelete, RD); } if (FoundDelete.isAmbiguous()) return true; // FIXME: clean up expressions? if (FoundDelete.empty()) { DeclareGlobalNewDelete(); LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl()); } FoundDelete.suppressDiagnostics(); llvm::SmallVector, 2> Matches; if (NumPlaceArgs > 0) { // C++ [expr.new]p20: // A declaration of a placement deallocation function matches the // declaration of a placement allocation function if it has the // same number of parameters and, after parameter transformations // (8.3.5), all parameter types except the first are // identical. [...] // // To perform this comparison, we compute the function type that // the deallocation function should have, and use that type both // for template argument deduction and for comparison purposes. QualType ExpectedFunctionType; { const FunctionProtoType *Proto = OperatorNew->getType()->getAs(); llvm::SmallVector ArgTypes; ArgTypes.push_back(Context.VoidPtrTy); for (unsigned I = 1, N = Proto->getNumArgs(); I < N; ++I) ArgTypes.push_back(Proto->getArgType(I)); ExpectedFunctionType = Context.getFunctionType(Context.VoidTy, ArgTypes.data(), ArgTypes.size(), Proto->isVariadic(), 0, false, false, 0, 0, FunctionType::ExtInfo()); } for (LookupResult::iterator D = FoundDelete.begin(), DEnd = FoundDelete.end(); D != DEnd; ++D) { FunctionDecl *Fn = 0; if (FunctionTemplateDecl *FnTmpl = dyn_cast((*D)->getUnderlyingDecl())) { // Perform template argument deduction to try to match the // expected function type. TemplateDeductionInfo Info(Context, StartLoc); if (DeduceTemplateArguments(FnTmpl, 0, ExpectedFunctionType, Fn, Info)) continue; } else Fn = cast((*D)->getUnderlyingDecl()); if (Context.hasSameType(Fn->getType(), ExpectedFunctionType)) Matches.push_back(std::make_pair(D.getPair(), Fn)); } } else { // C++ [expr.new]p20: // [...] Any non-placement deallocation function matches a // non-placement allocation function. [...] for (LookupResult::iterator D = FoundDelete.begin(), DEnd = FoundDelete.end(); D != DEnd; ++D) { if (FunctionDecl *Fn = dyn_cast((*D)->getUnderlyingDecl())) if (isNonPlacementDeallocationFunction(Fn)) Matches.push_back(std::make_pair(D.getPair(), Fn)); } } // C++ [expr.new]p20: // [...] If the lookup finds a single matching deallocation // function, that function will be called; otherwise, no // deallocation function will be called. if (Matches.size() == 1) { OperatorDelete = Matches[0].second; // C++0x [expr.new]p20: // If the lookup finds the two-parameter form of a usual // deallocation function (3.7.4.2) and that function, considered // as a placement deallocation function, would have been // selected as a match for the allocation function, the program // is ill-formed. if (NumPlaceArgs && getLangOptions().CPlusPlus0x && isNonPlacementDeallocationFunction(OperatorDelete)) { Diag(StartLoc, diag::err_placement_new_non_placement_delete) << SourceRange(PlaceArgs[0]->getLocStart(), PlaceArgs[NumPlaceArgs - 1]->getLocEnd()); Diag(OperatorDelete->getLocation(), diag::note_previous_decl) << DeleteName; } else { CheckAllocationAccess(StartLoc, Range, FoundDelete.getNamingClass(), Matches[0].first); } } return false; } /// FindAllocationOverload - Find an fitting overload for the allocation /// function in the specified scope. bool Sema::FindAllocationOverload(SourceLocation StartLoc, SourceRange Range, DeclarationName Name, Expr** Args, unsigned NumArgs, DeclContext *Ctx, bool AllowMissing, FunctionDecl *&Operator) { LookupResult R(*this, Name, StartLoc, LookupOrdinaryName); LookupQualifiedName(R, Ctx); if (R.empty()) { if (AllowMissing) return false; return Diag(StartLoc, diag::err_ovl_no_viable_function_in_call) << Name << Range; } if (R.isAmbiguous()) return true; R.suppressDiagnostics(); OverloadCandidateSet Candidates(StartLoc); for (LookupResult::iterator Alloc = R.begin(), AllocEnd = R.end(); Alloc != AllocEnd; ++Alloc) { // Even member operator new/delete are implicitly treated as // static, so don't use AddMemberCandidate. NamedDecl *D = (*Alloc)->getUnderlyingDecl(); if (FunctionTemplateDecl *FnTemplate = dyn_cast(D)) { AddTemplateOverloadCandidate(FnTemplate, Alloc.getPair(), /*ExplicitTemplateArgs=*/0, Args, NumArgs, Candidates, /*SuppressUserConversions=*/false); continue; } FunctionDecl *Fn = cast(D); AddOverloadCandidate(Fn, Alloc.getPair(), Args, NumArgs, Candidates, /*SuppressUserConversions=*/false); } // Do the resolution. OverloadCandidateSet::iterator Best; switch (Candidates.BestViableFunction(*this, StartLoc, Best)) { case OR_Success: { // Got one! FunctionDecl *FnDecl = Best->Function; // The first argument is size_t, and the first parameter must be size_t, // too. This is checked on declaration and can be assumed. (It can't be // asserted on, though, since invalid decls are left in there.) // Watch out for variadic allocator function. unsigned NumArgsInFnDecl = FnDecl->getNumParams(); for (unsigned i = 0; (i < NumArgs && i < NumArgsInFnDecl); ++i) { ExprResult Result = PerformCopyInitialization(InitializedEntity::InitializeParameter( FnDecl->getParamDecl(i)), SourceLocation(), Owned(Args[i]->Retain())); if (Result.isInvalid()) return true; Args[i] = Result.takeAs(); } Operator = FnDecl; CheckAllocationAccess(StartLoc, Range, R.getNamingClass(), Best->FoundDecl); return false; } case OR_No_Viable_Function: Diag(StartLoc, diag::err_ovl_no_viable_function_in_call) << Name << Range; Candidates.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs); return true; case OR_Ambiguous: Diag(StartLoc, diag::err_ovl_ambiguous_call) << Name << Range; Candidates.NoteCandidates(*this, OCD_ViableCandidates, Args, NumArgs); return true; case OR_Deleted: Diag(StartLoc, diag::err_ovl_deleted_call) << Best->Function->isDeleted() << Name << Range; Candidates.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs); return true; } assert(false && "Unreachable, bad result from BestViableFunction"); return true; } /// DeclareGlobalNewDelete - Declare the global forms of operator new and /// delete. These are: /// @code /// void* operator new(std::size_t) throw(std::bad_alloc); /// void* operator new[](std::size_t) throw(std::bad_alloc); /// void operator delete(void *) throw(); /// void operator delete[](void *) throw(); /// @endcode /// Note that the placement and nothrow forms of new are *not* implicitly /// declared. Their use requires including \. void Sema::DeclareGlobalNewDelete() { if (GlobalNewDeleteDeclared) return; // C++ [basic.std.dynamic]p2: // [...] The following allocation and deallocation functions (18.4) are // implicitly declared in global scope in each translation unit of a // program // // void* operator new(std::size_t) throw(std::bad_alloc); // void* operator new[](std::size_t) throw(std::bad_alloc); // void operator delete(void*) throw(); // void operator delete[](void*) throw(); // // These implicit declarations introduce only the function names operator // new, operator new[], operator delete, operator delete[]. // // Here, we need to refer to std::bad_alloc, so we will implicitly declare // "std" or "bad_alloc" as necessary to form the exception specification. // However, we do not make these implicit declarations visible to name // lookup. if (!StdBadAlloc) { // The "std::bad_alloc" class has not yet been declared, so build it // implicitly. StdBadAlloc = CXXRecordDecl::Create(Context, TTK_Class, getOrCreateStdNamespace(), SourceLocation(), &PP.getIdentifierTable().get("bad_alloc"), SourceLocation(), 0); getStdBadAlloc()->setImplicit(true); } GlobalNewDeleteDeclared = true; QualType VoidPtr = Context.getPointerType(Context.VoidTy); QualType SizeT = Context.getSizeType(); bool AssumeSaneOperatorNew = getLangOptions().AssumeSaneOperatorNew; DeclareGlobalAllocationFunction( Context.DeclarationNames.getCXXOperatorName(OO_New), VoidPtr, SizeT, AssumeSaneOperatorNew); DeclareGlobalAllocationFunction( Context.DeclarationNames.getCXXOperatorName(OO_Array_New), VoidPtr, SizeT, AssumeSaneOperatorNew); DeclareGlobalAllocationFunction( Context.DeclarationNames.getCXXOperatorName(OO_Delete), Context.VoidTy, VoidPtr); DeclareGlobalAllocationFunction( Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete), Context.VoidTy, VoidPtr); } /// DeclareGlobalAllocationFunction - Declares a single implicit global /// allocation function if it doesn't already exist. void Sema::DeclareGlobalAllocationFunction(DeclarationName Name, QualType Return, QualType Argument, bool AddMallocAttr) { DeclContext *GlobalCtx = Context.getTranslationUnitDecl(); // Check if this function is already declared. { DeclContext::lookup_iterator Alloc, AllocEnd; for (llvm::tie(Alloc, AllocEnd) = GlobalCtx->lookup(Name); Alloc != AllocEnd; ++Alloc) { // Only look at non-template functions, as it is the predefined, // non-templated allocation function we are trying to declare here. if (FunctionDecl *Func = dyn_cast(*Alloc)) { QualType InitialParamType = Context.getCanonicalType( Func->getParamDecl(0)->getType().getUnqualifiedType()); // FIXME: Do we need to check for default arguments here? if (Func->getNumParams() == 1 && InitialParamType == Argument) { if(AddMallocAttr && !Func->hasAttr()) Func->addAttr(::new (Context) MallocAttr(SourceLocation(), Context)); return; } } } } QualType BadAllocType; bool HasBadAllocExceptionSpec = (Name.getCXXOverloadedOperator() == OO_New || Name.getCXXOverloadedOperator() == OO_Array_New); if (HasBadAllocExceptionSpec) { assert(StdBadAlloc && "Must have std::bad_alloc declared"); BadAllocType = Context.getTypeDeclType(getStdBadAlloc()); } QualType FnType = Context.getFunctionType(Return, &Argument, 1, false, 0, true, false, HasBadAllocExceptionSpec? 1 : 0, &BadAllocType, FunctionType::ExtInfo()); FunctionDecl *Alloc = FunctionDecl::Create(Context, GlobalCtx, SourceLocation(), Name, FnType, /*TInfo=*/0, SC_None, SC_None, false, true); Alloc->setImplicit(); if (AddMallocAttr) Alloc->addAttr(::new (Context) MallocAttr(SourceLocation(), Context)); ParmVarDecl *Param = ParmVarDecl::Create(Context, Alloc, SourceLocation(), 0, Argument, /*TInfo=*/0, SC_None, SC_None, 0); Alloc->setParams(&Param, 1); // FIXME: Also add this declaration to the IdentifierResolver, but // make sure it is at the end of the chain to coincide with the // global scope. Context.getTranslationUnitDecl()->addDecl(Alloc); } bool Sema::FindDeallocationFunction(SourceLocation StartLoc, CXXRecordDecl *RD, DeclarationName Name, FunctionDecl* &Operator) { LookupResult Found(*this, Name, StartLoc, LookupOrdinaryName); // Try to find operator delete/operator delete[] in class scope. LookupQualifiedName(Found, RD); if (Found.isAmbiguous()) return true; Found.suppressDiagnostics(); llvm::SmallVector Matches; for (LookupResult::iterator F = Found.begin(), FEnd = Found.end(); F != FEnd; ++F) { NamedDecl *ND = (*F)->getUnderlyingDecl(); // Ignore template operator delete members from the check for a usual // deallocation function. if (isa(ND)) continue; if (cast(ND)->isUsualDeallocationFunction()) Matches.push_back(F.getPair()); } // There's exactly one suitable operator; pick it. if (Matches.size() == 1) { Operator = cast(Matches[0]->getUnderlyingDecl()); CheckAllocationAccess(StartLoc, SourceRange(), Found.getNamingClass(), Matches[0]); return false; // We found multiple suitable operators; complain about the ambiguity. } else if (!Matches.empty()) { Diag(StartLoc, diag::err_ambiguous_suitable_delete_member_function_found) << Name << RD; for (llvm::SmallVectorImpl::iterator F = Matches.begin(), FEnd = Matches.end(); F != FEnd; ++F) Diag((*F)->getUnderlyingDecl()->getLocation(), diag::note_member_declared_here) << Name; return true; } // We did find operator delete/operator delete[] declarations, but // none of them were suitable. if (!Found.empty()) { Diag(StartLoc, diag::err_no_suitable_delete_member_function_found) << Name << RD; for (LookupResult::iterator F = Found.begin(), FEnd = Found.end(); F != FEnd; ++F) Diag((*F)->getUnderlyingDecl()->getLocation(), diag::note_member_declared_here) << Name; return true; } // Look for a global declaration. DeclareGlobalNewDelete(); DeclContext *TUDecl = Context.getTranslationUnitDecl(); CXXNullPtrLiteralExpr Null(Context.VoidPtrTy, SourceLocation()); Expr* DeallocArgs[1]; DeallocArgs[0] = &Null; if (FindAllocationOverload(StartLoc, SourceRange(), Name, DeallocArgs, 1, TUDecl, /*AllowMissing=*/false, Operator)) return true; assert(Operator && "Did not find a deallocation function!"); return false; } /// ActOnCXXDelete - Parsed a C++ 'delete' expression (C++ 5.3.5), as in: /// @code ::delete ptr; @endcode /// or /// @code delete [] ptr; @endcode ExprResult Sema::ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal, bool ArrayForm, Expr *Ex) { // C++ [expr.delete]p1: // The operand shall have a pointer type, or a class type having a single // conversion function to a pointer type. The result has type void. // // DR599 amends "pointer type" to "pointer to object type" in both cases. FunctionDecl *OperatorDelete = 0; if (!Ex->isTypeDependent()) { QualType Type = Ex->getType(); if (const RecordType *Record = Type->getAs()) { if (RequireCompleteType(StartLoc, Type, PDiag(diag::err_delete_incomplete_class_type))) return ExprError(); llvm::SmallVector ObjectPtrConversions; CXXRecordDecl *RD = cast(Record->getDecl()); const UnresolvedSetImpl *Conversions = RD->getVisibleConversionFunctions(); for (UnresolvedSetImpl::iterator I = Conversions->begin(), E = Conversions->end(); I != E; ++I) { NamedDecl *D = I.getDecl(); if (isa(D)) D = cast(D)->getTargetDecl(); // Skip over templated conversion functions; they aren't considered. if (isa(D)) continue; CXXConversionDecl *Conv = cast(D); QualType ConvType = Conv->getConversionType().getNonReferenceType(); if (const PointerType *ConvPtrType = ConvType->getAs()) if (ConvPtrType->getPointeeType()->isIncompleteOrObjectType()) ObjectPtrConversions.push_back(Conv); } if (ObjectPtrConversions.size() == 1) { // We have a single conversion to a pointer-to-object type. Perform // that conversion. // TODO: don't redo the conversion calculation. if (!PerformImplicitConversion(Ex, ObjectPtrConversions.front()->getConversionType(), AA_Converting)) { Type = Ex->getType(); } } else if (ObjectPtrConversions.size() > 1) { Diag(StartLoc, diag::err_ambiguous_delete_operand) << Type << Ex->getSourceRange(); for (unsigned i= 0; i < ObjectPtrConversions.size(); i++) NoteOverloadCandidate(ObjectPtrConversions[i]); return ExprError(); } } if (!Type->isPointerType()) return ExprError(Diag(StartLoc, diag::err_delete_operand) << Type << Ex->getSourceRange()); QualType Pointee = Type->getAs()->getPointeeType(); if (Pointee->isVoidType() && !isSFINAEContext()) { // The C++ standard bans deleting a pointer to a non-object type, which // effectively bans deletion of "void*". However, most compilers support // this, so we treat it as a warning unless we're in a SFINAE context. Diag(StartLoc, diag::ext_delete_void_ptr_operand) << Type << Ex->getSourceRange(); } else if (Pointee->isFunctionType() || Pointee->isVoidType()) return ExprError(Diag(StartLoc, diag::err_delete_operand) << Type << Ex->getSourceRange()); else if (!Pointee->isDependentType() && RequireCompleteType(StartLoc, Pointee, PDiag(diag::warn_delete_incomplete) << Ex->getSourceRange())) return ExprError(); // C++ [expr.delete]p2: // [Note: a pointer to a const type can be the operand of a // delete-expression; it is not necessary to cast away the constness // (5.2.11) of the pointer expression before it is used as the operand // of the delete-expression. ] ImpCastExprToType(Ex, Context.getPointerType(Context.VoidTy), CK_NoOp); DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName( ArrayForm ? OO_Array_Delete : OO_Delete); QualType PointeeElem = Context.getBaseElementType(Pointee); if (const RecordType *RT = PointeeElem->getAs()) { CXXRecordDecl *RD = cast(RT->getDecl()); if (!UseGlobal && FindDeallocationFunction(StartLoc, RD, DeleteName, OperatorDelete)) return ExprError(); if (!RD->hasTrivialDestructor()) if (const CXXDestructorDecl *Dtor = LookupDestructor(RD)) MarkDeclarationReferenced(StartLoc, const_cast(Dtor)); } if (!OperatorDelete) { // Look for a global declaration. DeclareGlobalNewDelete(); DeclContext *TUDecl = Context.getTranslationUnitDecl(); if (FindAllocationOverload(StartLoc, SourceRange(), DeleteName, &Ex, 1, TUDecl, /*AllowMissing=*/false, OperatorDelete)) return ExprError(); } MarkDeclarationReferenced(StartLoc, OperatorDelete); // FIXME: Check access and ambiguity of operator delete and destructor. } return Owned(new (Context) CXXDeleteExpr(Context.VoidTy, UseGlobal, ArrayForm, OperatorDelete, Ex, StartLoc)); } /// \brief Check the use of the given variable as a C++ condition in an if, /// while, do-while, or switch statement. ExprResult Sema::CheckConditionVariable(VarDecl *ConditionVar, SourceLocation StmtLoc, bool ConvertToBoolean) { QualType T = ConditionVar->getType(); // C++ [stmt.select]p2: // The declarator shall not specify a function or an array. if (T->isFunctionType()) return ExprError(Diag(ConditionVar->getLocation(), diag::err_invalid_use_of_function_type) << ConditionVar->getSourceRange()); else if (T->isArrayType()) return ExprError(Diag(ConditionVar->getLocation(), diag::err_invalid_use_of_array_type) << ConditionVar->getSourceRange()); Expr *Condition = DeclRefExpr::Create(Context, 0, SourceRange(), ConditionVar, ConditionVar->getLocation(), ConditionVar->getType().getNonReferenceType()); if (ConvertToBoolean && CheckBooleanCondition(Condition, StmtLoc)) return ExprError(); return Owned(Condition); } /// CheckCXXBooleanCondition - Returns true if a conversion to bool is invalid. bool Sema::CheckCXXBooleanCondition(Expr *&CondExpr) { // C++ 6.4p4: // The value of a condition that is an initialized declaration in a statement // other than a switch statement is the value of the declared variable // implicitly converted to type bool. If that conversion is ill-formed, the // program is ill-formed. // The value of a condition that is an expression is the value of the // expression, implicitly converted to bool. // return PerformContextuallyConvertToBool(CondExpr); } /// Helper function to determine whether this is the (deprecated) C++ /// conversion from a string literal to a pointer to non-const char or /// non-const wchar_t (for narrow and wide string literals, /// respectively). bool Sema::IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType) { // Look inside the implicit cast, if it exists. if (ImplicitCastExpr *Cast = dyn_cast(From)) From = Cast->getSubExpr(); // A string literal (2.13.4) that is not a wide string literal can // be converted to an rvalue of type "pointer to char"; a wide // string literal can be converted to an rvalue of type "pointer // to wchar_t" (C++ 4.2p2). if (StringLiteral *StrLit = dyn_cast(From->IgnoreParens())) if (const PointerType *ToPtrType = ToType->getAs()) if (const BuiltinType *ToPointeeType = ToPtrType->getPointeeType()->getAs()) { // This conversion is considered only when there is an // explicit appropriate pointer target type (C++ 4.2p2). if (!ToPtrType->getPointeeType().hasQualifiers() && ((StrLit->isWide() && ToPointeeType->isWideCharType()) || (!StrLit->isWide() && (ToPointeeType->getKind() == BuiltinType::Char_U || ToPointeeType->getKind() == BuiltinType::Char_S)))) return true; } return false; } static ExprResult BuildCXXCastArgument(Sema &S, SourceLocation CastLoc, QualType Ty, CastKind Kind, CXXMethodDecl *Method, Expr *From) { switch (Kind) { default: assert(0 && "Unhandled cast kind!"); case CK_ConstructorConversion: { ASTOwningVector ConstructorArgs(S); if (S.CompleteConstructorCall(cast(Method), MultiExprArg(&From, 1), CastLoc, ConstructorArgs)) return ExprError(); ExprResult Result = S.BuildCXXConstructExpr(CastLoc, Ty, cast(Method), move_arg(ConstructorArgs), /*ZeroInit*/ false, CXXConstructExpr::CK_Complete); if (Result.isInvalid()) return ExprError(); return S.MaybeBindToTemporary(Result.takeAs()); } case CK_UserDefinedConversion: { assert(!From->getType()->isPointerType() && "Arg can't have pointer type!"); // Create an implicit call expr that calls it. // FIXME: pass the FoundDecl for the user-defined conversion here CXXMemberCallExpr *CE = S.BuildCXXMemberCallExpr(From, Method, Method); return S.MaybeBindToTemporary(CE); } } } /// PerformImplicitConversion - Perform an implicit conversion of the /// expression From to the type ToType using the pre-computed implicit /// conversion sequence ICS. Returns true if there was an error, false /// otherwise. The expression From is replaced with the converted /// expression. Action is the kind of conversion we're performing, /// used in the error message. bool Sema::PerformImplicitConversion(Expr *&From, QualType ToType, const ImplicitConversionSequence &ICS, AssignmentAction Action, bool IgnoreBaseAccess) { switch (ICS.getKind()) { case ImplicitConversionSequence::StandardConversion: if (PerformImplicitConversion(From, ToType, ICS.Standard, Action, IgnoreBaseAccess)) return true; break; case ImplicitConversionSequence::UserDefinedConversion: { FunctionDecl *FD = ICS.UserDefined.ConversionFunction; CastKind CastKind = CK_Unknown; QualType BeforeToType; if (const CXXConversionDecl *Conv = dyn_cast(FD)) { CastKind = CK_UserDefinedConversion; // If the user-defined conversion is specified by a conversion function, // the initial standard conversion sequence converts the source type to // the implicit object parameter of the conversion function. BeforeToType = Context.getTagDeclType(Conv->getParent()); } else if (const CXXConstructorDecl *Ctor = dyn_cast(FD)) { CastKind = CK_ConstructorConversion; // Do no conversion if dealing with ... for the first conversion. if (!ICS.UserDefined.EllipsisConversion) { // If the user-defined conversion is specified by a constructor, the // initial standard conversion sequence converts the source type to the // type required by the argument of the constructor BeforeToType = Ctor->getParamDecl(0)->getType().getNonReferenceType(); } } else assert(0 && "Unknown conversion function kind!"); // Whatch out for elipsis conversion. if (!ICS.UserDefined.EllipsisConversion) { if (PerformImplicitConversion(From, BeforeToType, ICS.UserDefined.Before, AA_Converting, IgnoreBaseAccess)) return true; } ExprResult CastArg = BuildCXXCastArgument(*this, From->getLocStart(), ToType.getNonReferenceType(), CastKind, cast(FD), From); if (CastArg.isInvalid()) return true; From = CastArg.takeAs(); return PerformImplicitConversion(From, ToType, ICS.UserDefined.After, AA_Converting, IgnoreBaseAccess); } case ImplicitConversionSequence::AmbiguousConversion: ICS.DiagnoseAmbiguousConversion(*this, From->getExprLoc(), PDiag(diag::err_typecheck_ambiguous_condition) << From->getSourceRange()); return true; case ImplicitConversionSequence::EllipsisConversion: assert(false && "Cannot perform an ellipsis conversion"); return false; case ImplicitConversionSequence::BadConversion: return true; } // Everything went well. return false; } /// PerformImplicitConversion - Perform an implicit conversion of the /// expression From to the type ToType by following the standard /// conversion sequence SCS. Returns true if there was an error, false /// otherwise. The expression From is replaced with the converted /// expression. Flavor is the context in which we're performing this /// conversion, for use in error messages. bool Sema::PerformImplicitConversion(Expr *&From, QualType ToType, const StandardConversionSequence& SCS, AssignmentAction Action, bool IgnoreBaseAccess) { // Overall FIXME: we are recomputing too many types here and doing far too // much extra work. What this means is that we need to keep track of more // information that is computed when we try the implicit conversion initially, // so that we don't need to recompute anything here. QualType FromType = From->getType(); if (SCS.CopyConstructor) { // FIXME: When can ToType be a reference type? assert(!ToType->isReferenceType()); if (SCS.Second == ICK_Derived_To_Base) { ASTOwningVector ConstructorArgs(*this); if (CompleteConstructorCall(cast(SCS.CopyConstructor), MultiExprArg(*this, &From, 1), /*FIXME:ConstructLoc*/SourceLocation(), ConstructorArgs)) return true; ExprResult FromResult = BuildCXXConstructExpr(/*FIXME:ConstructLoc*/SourceLocation(), ToType, SCS.CopyConstructor, move_arg(ConstructorArgs), /*ZeroInit*/ false, CXXConstructExpr::CK_Complete); if (FromResult.isInvalid()) return true; From = FromResult.takeAs(); return false; } ExprResult FromResult = BuildCXXConstructExpr(/*FIXME:ConstructLoc*/SourceLocation(), ToType, SCS.CopyConstructor, MultiExprArg(*this, &From, 1), /*ZeroInit*/ false, CXXConstructExpr::CK_Complete); if (FromResult.isInvalid()) return true; From = FromResult.takeAs(); return false; } // Resolve overloaded function references. if (Context.hasSameType(FromType, Context.OverloadTy)) { DeclAccessPair Found; FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(From, ToType, true, Found); if (!Fn) return true; if (DiagnoseUseOfDecl(Fn, From->getSourceRange().getBegin())) return true; From = FixOverloadedFunctionReference(From, Found, Fn); FromType = From->getType(); } // Perform the first implicit conversion. switch (SCS.First) { case ICK_Identity: case ICK_Lvalue_To_Rvalue: // Nothing to do. break; case ICK_Array_To_Pointer: FromType = Context.getArrayDecayedType(FromType); ImpCastExprToType(From, FromType, CK_ArrayToPointerDecay); break; case ICK_Function_To_Pointer: FromType = Context.getPointerType(FromType); ImpCastExprToType(From, FromType, CK_FunctionToPointerDecay); break; default: assert(false && "Improper first standard conversion"); break; } // Perform the second implicit conversion switch (SCS.Second) { case ICK_Identity: // If both sides are functions (or pointers/references to them), there could // be incompatible exception declarations. if (CheckExceptionSpecCompatibility(From, ToType)) return true; // Nothing else to do. break; case ICK_NoReturn_Adjustment: // If both sides are functions (or pointers/references to them), there could // be incompatible exception declarations. if (CheckExceptionSpecCompatibility(From, ToType)) return true; ImpCastExprToType(From, Context.getNoReturnType(From->getType(), false), CK_NoOp); break; case ICK_Integral_Promotion: case ICK_Integral_Conversion: ImpCastExprToType(From, ToType, CK_IntegralCast); break; case ICK_Floating_Promotion: case ICK_Floating_Conversion: ImpCastExprToType(From, ToType, CK_FloatingCast); break; case ICK_Complex_Promotion: case ICK_Complex_Conversion: ImpCastExprToType(From, ToType, CK_Unknown); break; case ICK_Floating_Integral: if (ToType->isRealFloatingType()) ImpCastExprToType(From, ToType, CK_IntegralToFloating); else ImpCastExprToType(From, ToType, CK_FloatingToIntegral); break; case ICK_Compatible_Conversion: ImpCastExprToType(From, ToType, CK_NoOp); break; case ICK_Pointer_Conversion: { if (SCS.IncompatibleObjC) { // Diagnose incompatible Objective-C conversions Diag(From->getSourceRange().getBegin(), diag::ext_typecheck_convert_incompatible_pointer) << From->getType() << ToType << Action << From->getSourceRange(); } CastKind Kind = CK_Unknown; CXXCastPath BasePath; if (CheckPointerConversion(From, ToType, Kind, BasePath, IgnoreBaseAccess)) return true; ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath); break; } case ICK_Pointer_Member: { CastKind Kind = CK_Unknown; CXXCastPath BasePath; if (CheckMemberPointerConversion(From, ToType, Kind, BasePath, IgnoreBaseAccess)) return true; if (CheckExceptionSpecCompatibility(From, ToType)) return true; ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath); break; } case ICK_Boolean_Conversion: { CastKind Kind = CK_Unknown; if (FromType->isMemberPointerType()) Kind = CK_MemberPointerToBoolean; ImpCastExprToType(From, Context.BoolTy, Kind); break; } case ICK_Derived_To_Base: { CXXCastPath BasePath; if (CheckDerivedToBaseConversion(From->getType(), ToType.getNonReferenceType(), From->getLocStart(), From->getSourceRange(), &BasePath, IgnoreBaseAccess)) return true; ImpCastExprToType(From, ToType.getNonReferenceType(), CK_DerivedToBase, CastCategory(From), &BasePath); break; } case ICK_Vector_Conversion: ImpCastExprToType(From, ToType, CK_BitCast); break; case ICK_Vector_Splat: ImpCastExprToType(From, ToType, CK_VectorSplat); break; case ICK_Complex_Real: ImpCastExprToType(From, ToType, CK_Unknown); break; case ICK_Lvalue_To_Rvalue: case ICK_Array_To_Pointer: case ICK_Function_To_Pointer: case ICK_Qualification: case ICK_Num_Conversion_Kinds: assert(false && "Improper second standard conversion"); break; } switch (SCS.Third) { case ICK_Identity: // Nothing to do. break; case ICK_Qualification: { // The qualification keeps the category of the inner expression, unless the // target type isn't a reference. ExprValueKind VK = ToType->isReferenceType() ? CastCategory(From) : VK_RValue; ImpCastExprToType(From, ToType.getNonLValueExprType(Context), CK_NoOp, VK); if (SCS.DeprecatedStringLiteralToCharPtr) Diag(From->getLocStart(), diag::warn_deprecated_string_literal_conversion) << ToType.getNonReferenceType(); break; } default: assert(false && "Improper third standard conversion"); break; } return false; } ExprResult Sema::ActOnUnaryTypeTrait(UnaryTypeTrait OTT, SourceLocation KWLoc, SourceLocation LParen, ParsedType Ty, SourceLocation RParen) { QualType T = GetTypeFromParser(Ty); // According to http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html // all traits except __is_class, __is_enum and __is_union require a the type // to be complete. if (OTT != UTT_IsClass && OTT != UTT_IsEnum && OTT != UTT_IsUnion) { if (RequireCompleteType(KWLoc, T, diag::err_incomplete_type_used_in_type_trait_expr)) return ExprError(); } // There is no point in eagerly computing the value. The traits are designed // to be used from type trait templates, so Ty will be a template parameter // 99% of the time. return Owned(new (Context) UnaryTypeTraitExpr(KWLoc, OTT, T, RParen, Context.BoolTy)); } QualType Sema::CheckPointerToMemberOperands( Expr *&lex, Expr *&rex, SourceLocation Loc, bool isIndirect) { const char *OpSpelling = isIndirect ? "->*" : ".*"; // C++ 5.5p2 // The binary operator .* [p3: ->*] binds its second operand, which shall // be of type "pointer to member of T" (where T is a completely-defined // class type) [...] QualType RType = rex->getType(); const MemberPointerType *MemPtr = RType->getAs(); if (!MemPtr) { Diag(Loc, diag::err_bad_memptr_rhs) << OpSpelling << RType << rex->getSourceRange(); return QualType(); } QualType Class(MemPtr->getClass(), 0); if (RequireCompleteType(Loc, Class, diag::err_memptr_rhs_to_incomplete)) return QualType(); // C++ 5.5p2 // [...] to its first operand, which shall be of class T or of a class of // which T is an unambiguous and accessible base class. [p3: a pointer to // such a class] QualType LType = lex->getType(); if (isIndirect) { if (const PointerType *Ptr = LType->getAs()) LType = Ptr->getPointeeType().getNonReferenceType(); else { Diag(Loc, diag::err_bad_memptr_lhs) << OpSpelling << 1 << LType << FixItHint::CreateReplacement(SourceRange(Loc), ".*"); return QualType(); } } if (!Context.hasSameUnqualifiedType(Class, LType)) { // If we want to check the hierarchy, we need a complete type. if (RequireCompleteType(Loc, LType, PDiag(diag::err_bad_memptr_lhs) << OpSpelling << (int)isIndirect)) { return QualType(); } CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, /*DetectVirtual=*/false); // FIXME: Would it be useful to print full ambiguity paths, or is that // overkill? if (!IsDerivedFrom(LType, Class, Paths) || Paths.isAmbiguous(Context.getCanonicalType(Class))) { Diag(Loc, diag::err_bad_memptr_lhs) << OpSpelling << (int)isIndirect << lex->getType(); return QualType(); } // Cast LHS to type of use. QualType UseType = isIndirect ? Context.getPointerType(Class) : Class; ExprValueKind VK = isIndirect ? VK_RValue : CastCategory(lex); CXXCastPath BasePath; BuildBasePathArray(Paths, BasePath); ImpCastExprToType(lex, UseType, CK_DerivedToBase, VK, &BasePath); } if (isa(rex->IgnoreParens())) { // Diagnose use of pointer-to-member type which when used as // the functional cast in a pointer-to-member expression. Diag(Loc, diag::err_pointer_to_member_type) << isIndirect; return QualType(); } // C++ 5.5p2 // The result is an object or a function of the type specified by the // second operand. // The cv qualifiers are the union of those in the pointer and the left side, // in accordance with 5.5p5 and 5.2.5. // FIXME: This returns a dereferenced member function pointer as a normal // function type. However, the only operation valid on such functions is // calling them. There's also a GCC extension to get a function pointer to the // thing, which is another complication, because this type - unlike the type // that is the result of this expression - takes the class as the first // argument. // We probably need a "MemberFunctionClosureType" or something like that. QualType Result = MemPtr->getPointeeType(); Result = Context.getCVRQualifiedType(Result, LType.getCVRQualifiers()); return Result; } /// \brief Try to convert a type to another according to C++0x 5.16p3. /// /// This is part of the parameter validation for the ? operator. If either /// value operand is a class type, the two operands are attempted to be /// converted to each other. This function does the conversion in one direction. /// It returns true if the program is ill-formed and has already been diagnosed /// as such. static bool TryClassUnification(Sema &Self, Expr *From, Expr *To, SourceLocation QuestionLoc, bool &HaveConversion, QualType &ToType) { HaveConversion = false; ToType = To->getType(); InitializationKind Kind = InitializationKind::CreateCopy(To->getLocStart(), SourceLocation()); // C++0x 5.16p3 // The process for determining whether an operand expression E1 of type T1 // can be converted to match an operand expression E2 of type T2 is defined // as follows: // -- If E2 is an lvalue: bool ToIsLvalue = (To->isLvalue(Self.Context) == Expr::LV_Valid); if (ToIsLvalue) { // E1 can be converted to match E2 if E1 can be implicitly converted to // type "lvalue reference to T2", subject to the constraint that in the // conversion the reference must bind directly to E1. QualType T = Self.Context.getLValueReferenceType(ToType); InitializedEntity Entity = InitializedEntity::InitializeTemporary(T); InitializationSequence InitSeq(Self, Entity, Kind, &From, 1); if (InitSeq.isDirectReferenceBinding()) { ToType = T; HaveConversion = true; return false; } if (InitSeq.isAmbiguous()) return InitSeq.Diagnose(Self, Entity, Kind, &From, 1); } // -- If E2 is an rvalue, or if the conversion above cannot be done: // -- if E1 and E2 have class type, and the underlying class types are // the same or one is a base class of the other: QualType FTy = From->getType(); QualType TTy = To->getType(); const RecordType *FRec = FTy->getAs(); const RecordType *TRec = TTy->getAs(); bool FDerivedFromT = FRec && TRec && FRec != TRec && Self.IsDerivedFrom(FTy, TTy); if (FRec && TRec && (FRec == TRec || FDerivedFromT || Self.IsDerivedFrom(TTy, FTy))) { // E1 can be converted to match E2 if the class of T2 is the // same type as, or a base class of, the class of T1, and // [cv2 > cv1]. if (FRec == TRec || FDerivedFromT) { if (TTy.isAtLeastAsQualifiedAs(FTy)) { InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy); InitializationSequence InitSeq(Self, Entity, Kind, &From, 1); if (InitSeq.getKind() != InitializationSequence::FailedSequence) { HaveConversion = true; return false; } if (InitSeq.isAmbiguous()) return InitSeq.Diagnose(Self, Entity, Kind, &From, 1); } } return false; } // -- Otherwise: E1 can be converted to match E2 if E1 can be // implicitly converted to the type that expression E2 would have // if E2 were converted to an rvalue (or the type it has, if E2 is // an rvalue). // // This actually refers very narrowly to the lvalue-to-rvalue conversion, not // to the array-to-pointer or function-to-pointer conversions. if (!TTy->getAs()) TTy = TTy.getUnqualifiedType(); InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy); InitializationSequence InitSeq(Self, Entity, Kind, &From, 1); HaveConversion = InitSeq.getKind() != InitializationSequence::FailedSequence; ToType = TTy; if (InitSeq.isAmbiguous()) return InitSeq.Diagnose(Self, Entity, Kind, &From, 1); return false; } /// \brief Try to find a common type for two according to C++0x 5.16p5. /// /// This is part of the parameter validation for the ? operator. If either /// value operand is a class type, overload resolution is used to find a /// conversion to a common type. static bool FindConditionalOverload(Sema &Self, Expr *&LHS, Expr *&RHS, SourceLocation Loc) { Expr *Args[2] = { LHS, RHS }; OverloadCandidateSet CandidateSet(Loc); Self.AddBuiltinOperatorCandidates(OO_Conditional, Loc, Args, 2, CandidateSet); OverloadCandidateSet::iterator Best; switch (CandidateSet.BestViableFunction(Self, Loc, Best)) { case OR_Success: // We found a match. Perform the conversions on the arguments and move on. if (Self.PerformImplicitConversion(LHS, Best->BuiltinTypes.ParamTypes[0], Best->Conversions[0], Sema::AA_Converting) || Self.PerformImplicitConversion(RHS, Best->BuiltinTypes.ParamTypes[1], Best->Conversions[1], Sema::AA_Converting)) break; return false; case OR_No_Viable_Function: Self.Diag(Loc, diag::err_typecheck_cond_incompatible_operands) << LHS->getType() << RHS->getType() << LHS->getSourceRange() << RHS->getSourceRange(); return true; case OR_Ambiguous: Self.Diag(Loc, diag::err_conditional_ambiguous_ovl) << LHS->getType() << RHS->getType() << LHS->getSourceRange() << RHS->getSourceRange(); // FIXME: Print the possible common types by printing the return types of // the viable candidates. break; case OR_Deleted: assert(false && "Conditional operator has only built-in overloads"); break; } return true; } /// \brief Perform an "extended" implicit conversion as returned by /// TryClassUnification. static bool ConvertForConditional(Sema &Self, Expr *&E, QualType T) { InitializedEntity Entity = InitializedEntity::InitializeTemporary(T); InitializationKind Kind = InitializationKind::CreateCopy(E->getLocStart(), SourceLocation()); InitializationSequence InitSeq(Self, Entity, Kind, &E, 1); ExprResult Result = InitSeq.Perform(Self, Entity, Kind, MultiExprArg(&E, 1)); if (Result.isInvalid()) return true; E = Result.takeAs(); return false; } /// \brief Check the operands of ?: under C++ semantics. /// /// See C++ [expr.cond]. Note that LHS is never null, even for the GNU x ?: y /// extension. In this case, LHS == Cond. (But they're not aliases.) QualType Sema::CXXCheckConditionalOperands(Expr *&Cond, Expr *&LHS, Expr *&RHS, SourceLocation QuestionLoc) { // FIXME: Handle C99's complex types, vector types, block pointers and Obj-C++ // interface pointers. // C++0x 5.16p1 // The first expression is contextually converted to bool. if (!Cond->isTypeDependent()) { if (CheckCXXBooleanCondition(Cond)) return QualType(); } // Either of the arguments dependent? if (LHS->isTypeDependent() || RHS->isTypeDependent()) return Context.DependentTy; // C++0x 5.16p2 // If either the second or the third operand has type (cv) void, ... QualType LTy = LHS->getType(); QualType RTy = RHS->getType(); bool LVoid = LTy->isVoidType(); bool RVoid = RTy->isVoidType(); if (LVoid || RVoid) { // ... then the [l2r] conversions are performed on the second and third // operands ... DefaultFunctionArrayLvalueConversion(LHS); DefaultFunctionArrayLvalueConversion(RHS); LTy = LHS->getType(); RTy = RHS->getType(); // ... and one of the following shall hold: // -- The second or the third operand (but not both) is a throw- // expression; the result is of the type of the other and is an rvalue. bool LThrow = isa(LHS); bool RThrow = isa(RHS); if (LThrow && !RThrow) return RTy; if (RThrow && !LThrow) return LTy; // -- Both the second and third operands have type void; the result is of // type void and is an rvalue. if (LVoid && RVoid) return Context.VoidTy; // Neither holds, error. Diag(QuestionLoc, diag::err_conditional_void_nonvoid) << (LVoid ? RTy : LTy) << (LVoid ? 0 : 1) << LHS->getSourceRange() << RHS->getSourceRange(); return QualType(); } // Neither is void. // C++0x 5.16p3 // Otherwise, if the second and third operand have different types, and // either has (cv) class type, and attempt is made to convert each of those // operands to the other. if (!Context.hasSameType(LTy, RTy) && (LTy->isRecordType() || RTy->isRecordType())) { ImplicitConversionSequence ICSLeftToRight, ICSRightToLeft; // These return true if a single direction is already ambiguous. QualType L2RType, R2LType; bool HaveL2R, HaveR2L; if (TryClassUnification(*this, LHS, RHS, QuestionLoc, HaveL2R, L2RType)) return QualType(); if (TryClassUnification(*this, RHS, LHS, QuestionLoc, HaveR2L, R2LType)) return QualType(); // If both can be converted, [...] the program is ill-formed. if (HaveL2R && HaveR2L) { Diag(QuestionLoc, diag::err_conditional_ambiguous) << LTy << RTy << LHS->getSourceRange() << RHS->getSourceRange(); return QualType(); } // If exactly one conversion is possible, that conversion is applied to // the chosen operand and the converted operands are used in place of the // original operands for the remainder of this section. if (HaveL2R) { if (ConvertForConditional(*this, LHS, L2RType)) return QualType(); LTy = LHS->getType(); } else if (HaveR2L) { if (ConvertForConditional(*this, RHS, R2LType)) return QualType(); RTy = RHS->getType(); } } // C++0x 5.16p4 // If the second and third operands are lvalues and have the same type, // the result is of that type [...] bool Same = Context.hasSameType(LTy, RTy); if (Same && LHS->isLvalue(Context) == Expr::LV_Valid && RHS->isLvalue(Context) == Expr::LV_Valid) return LTy; // C++0x 5.16p5 // Otherwise, the result is an rvalue. If the second and third operands // do not have the same type, and either has (cv) class type, ... if (!Same && (LTy->isRecordType() || RTy->isRecordType())) { // ... overload resolution is used to determine the conversions (if any) // to be applied to the operands. If the overload resolution fails, the // program is ill-formed. if (FindConditionalOverload(*this, LHS, RHS, QuestionLoc)) return QualType(); } // C++0x 5.16p6 // LValue-to-rvalue, array-to-pointer, and function-to-pointer standard // conversions are performed on the second and third operands. DefaultFunctionArrayLvalueConversion(LHS); DefaultFunctionArrayLvalueConversion(RHS); LTy = LHS->getType(); RTy = RHS->getType(); // After those conversions, one of the following shall hold: // -- The second and third operands have the same type; the result // is of that type. If the operands have class type, the result // is a prvalue temporary of the result type, which is // copy-initialized from either the second operand or the third // operand depending on the value of the first operand. if (Context.getCanonicalType(LTy) == Context.getCanonicalType(RTy)) { if (LTy->isRecordType()) { // The operands have class type. Make a temporary copy. InitializedEntity Entity = InitializedEntity::InitializeTemporary(LTy); ExprResult LHSCopy = PerformCopyInitialization(Entity, SourceLocation(), Owned(LHS)); if (LHSCopy.isInvalid()) return QualType(); ExprResult RHSCopy = PerformCopyInitialization(Entity, SourceLocation(), Owned(RHS)); if (RHSCopy.isInvalid()) return QualType(); LHS = LHSCopy.takeAs(); RHS = RHSCopy.takeAs(); } return LTy; } // Extension: conditional operator involving vector types. if (LTy->isVectorType() || RTy->isVectorType()) return CheckVectorOperands(QuestionLoc, LHS, RHS); // -- The second and third operands have arithmetic or enumeration type; // the usual arithmetic conversions are performed to bring them to a // common type, and the result is of that type. if (LTy->isArithmeticType() && RTy->isArithmeticType()) { UsualArithmeticConversions(LHS, RHS); return LHS->getType(); } // -- The second and third operands have pointer type, or one has pointer // type and the other is a null pointer constant; pointer conversions // and qualification conversions are performed to bring them to their // composite pointer type. The result is of the composite pointer type. // -- The second and third operands have pointer to member type, or one has // pointer to member type and the other is a null pointer constant; // pointer to member conversions and qualification conversions are // performed to bring them to a common type, whose cv-qualification // shall match the cv-qualification of either the second or the third // operand. The result is of the common type. bool NonStandardCompositeType = false; QualType Composite = FindCompositePointerType(QuestionLoc, LHS, RHS, isSFINAEContext()? 0 : &NonStandardCompositeType); if (!Composite.isNull()) { if (NonStandardCompositeType) Diag(QuestionLoc, diag::ext_typecheck_cond_incompatible_operands_nonstandard) << LTy << RTy << Composite << LHS->getSourceRange() << RHS->getSourceRange(); return Composite; } // Similarly, attempt to find composite type of two objective-c pointers. Composite = FindCompositeObjCPointerType(LHS, RHS, QuestionLoc); if (!Composite.isNull()) return Composite; Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands) << LHS->getType() << RHS->getType() << LHS->getSourceRange() << RHS->getSourceRange(); return QualType(); } /// \brief Find a merged pointer type and convert the two expressions to it. /// /// This finds the composite pointer type (or member pointer type) for @p E1 /// and @p E2 according to C++0x 5.9p2. It converts both expressions to this /// type and returns it. /// It does not emit diagnostics. /// /// \param Loc The location of the operator requiring these two expressions to /// be converted to the composite pointer type. /// /// If \p NonStandardCompositeType is non-NULL, then we are permitted to find /// a non-standard (but still sane) composite type to which both expressions /// can be converted. When such a type is chosen, \c *NonStandardCompositeType /// will be set true. QualType Sema::FindCompositePointerType(SourceLocation Loc, Expr *&E1, Expr *&E2, bool *NonStandardCompositeType) { if (NonStandardCompositeType) *NonStandardCompositeType = false; assert(getLangOptions().CPlusPlus && "This function assumes C++"); QualType T1 = E1->getType(), T2 = E2->getType(); if (!T1->isAnyPointerType() && !T1->isMemberPointerType() && !T2->isAnyPointerType() && !T2->isMemberPointerType()) return QualType(); // C++0x 5.9p2 // Pointer conversions and qualification conversions are performed on // pointer operands to bring them to their composite pointer type. If // one operand is a null pointer constant, the composite pointer type is // the type of the other operand. if (E1->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) { if (T2->isMemberPointerType()) ImpCastExprToType(E1, T2, CK_NullToMemberPointer); else ImpCastExprToType(E1, T2, CK_IntegralToPointer); return T2; } if (E2->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) { if (T1->isMemberPointerType()) ImpCastExprToType(E2, T1, CK_NullToMemberPointer); else ImpCastExprToType(E2, T1, CK_IntegralToPointer); return T1; } // Now both have to be pointers or member pointers. if ((!T1->isPointerType() && !T1->isMemberPointerType()) || (!T2->isPointerType() && !T2->isMemberPointerType())) return QualType(); // Otherwise, of one of the operands has type "pointer to cv1 void," then // the other has type "pointer to cv2 T" and the composite pointer type is // "pointer to cv12 void," where cv12 is the union of cv1 and cv2. // Otherwise, the composite pointer type is a pointer type similar to the // type of one of the operands, with a cv-qualification signature that is // the union of the cv-qualification signatures of the operand types. // In practice, the first part here is redundant; it's subsumed by the second. // What we do here is, we build the two possible composite types, and try the // conversions in both directions. If only one works, or if the two composite // types are the same, we have succeeded. // FIXME: extended qualifiers? typedef llvm::SmallVector QualifierVector; QualifierVector QualifierUnion; typedef llvm::SmallVector, 4> ContainingClassVector; ContainingClassVector MemberOfClass; QualType Composite1 = Context.getCanonicalType(T1), Composite2 = Context.getCanonicalType(T2); unsigned NeedConstBefore = 0; do { const PointerType *Ptr1, *Ptr2; if ((Ptr1 = Composite1->getAs()) && (Ptr2 = Composite2->getAs())) { Composite1 = Ptr1->getPointeeType(); Composite2 = Ptr2->getPointeeType(); // If we're allowed to create a non-standard composite type, keep track // of where we need to fill in additional 'const' qualifiers. if (NonStandardCompositeType && Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers()) NeedConstBefore = QualifierUnion.size(); QualifierUnion.push_back( Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers()); MemberOfClass.push_back(std::make_pair((const Type *)0, (const Type *)0)); continue; } const MemberPointerType *MemPtr1, *MemPtr2; if ((MemPtr1 = Composite1->getAs()) && (MemPtr2 = Composite2->getAs())) { Composite1 = MemPtr1->getPointeeType(); Composite2 = MemPtr2->getPointeeType(); // If we're allowed to create a non-standard composite type, keep track // of where we need to fill in additional 'const' qualifiers. if (NonStandardCompositeType && Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers()) NeedConstBefore = QualifierUnion.size(); QualifierUnion.push_back( Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers()); MemberOfClass.push_back(std::make_pair(MemPtr1->getClass(), MemPtr2->getClass())); continue; } // FIXME: block pointer types? // Cannot unwrap any more types. break; } while (true); if (NeedConstBefore && NonStandardCompositeType) { // Extension: Add 'const' to qualifiers that come before the first qualifier // mismatch, so that our (non-standard!) composite type meets the // requirements of C++ [conv.qual]p4 bullet 3. for (unsigned I = 0; I != NeedConstBefore; ++I) { if ((QualifierUnion[I] & Qualifiers::Const) == 0) { QualifierUnion[I] = QualifierUnion[I] | Qualifiers::Const; *NonStandardCompositeType = true; } } } // Rewrap the composites as pointers or member pointers with the union CVRs. ContainingClassVector::reverse_iterator MOC = MemberOfClass.rbegin(); for (QualifierVector::reverse_iterator I = QualifierUnion.rbegin(), E = QualifierUnion.rend(); I != E; (void)++I, ++MOC) { Qualifiers Quals = Qualifiers::fromCVRMask(*I); if (MOC->first && MOC->second) { // Rebuild member pointer type Composite1 = Context.getMemberPointerType( Context.getQualifiedType(Composite1, Quals), MOC->first); Composite2 = Context.getMemberPointerType( Context.getQualifiedType(Composite2, Quals), MOC->second); } else { // Rebuild pointer type Composite1 = Context.getPointerType(Context.getQualifiedType(Composite1, Quals)); Composite2 = Context.getPointerType(Context.getQualifiedType(Composite2, Quals)); } } // Try to convert to the first composite pointer type. InitializedEntity Entity1 = InitializedEntity::InitializeTemporary(Composite1); InitializationKind Kind = InitializationKind::CreateCopy(Loc, SourceLocation()); InitializationSequence E1ToC1(*this, Entity1, Kind, &E1, 1); InitializationSequence E2ToC1(*this, Entity1, Kind, &E2, 1); if (E1ToC1 && E2ToC1) { // Conversion to Composite1 is viable. if (!Context.hasSameType(Composite1, Composite2)) { // Composite2 is a different type from Composite1. Check whether // Composite2 is also viable. InitializedEntity Entity2 = InitializedEntity::InitializeTemporary(Composite2); InitializationSequence E1ToC2(*this, Entity2, Kind, &E1, 1); InitializationSequence E2ToC2(*this, Entity2, Kind, &E2, 1); if (E1ToC2 && E2ToC2) { // Both Composite1 and Composite2 are viable and are different; // this is an ambiguity. return QualType(); } } // Convert E1 to Composite1 ExprResult E1Result = E1ToC1.Perform(*this, Entity1, Kind, MultiExprArg(*this,&E1,1)); if (E1Result.isInvalid()) return QualType(); E1 = E1Result.takeAs(); // Convert E2 to Composite1 ExprResult E2Result = E2ToC1.Perform(*this, Entity1, Kind, MultiExprArg(*this,&E2,1)); if (E2Result.isInvalid()) return QualType(); E2 = E2Result.takeAs(); return Composite1; } // Check whether Composite2 is viable. InitializedEntity Entity2 = InitializedEntity::InitializeTemporary(Composite2); InitializationSequence E1ToC2(*this, Entity2, Kind, &E1, 1); InitializationSequence E2ToC2(*this, Entity2, Kind, &E2, 1); if (!E1ToC2 || !E2ToC2) return QualType(); // Convert E1 to Composite2 ExprResult E1Result = E1ToC2.Perform(*this, Entity2, Kind, MultiExprArg(*this, &E1, 1)); if (E1Result.isInvalid()) return QualType(); E1 = E1Result.takeAs(); // Convert E2 to Composite2 ExprResult E2Result = E2ToC2.Perform(*this, Entity2, Kind, MultiExprArg(*this, &E2, 1)); if (E2Result.isInvalid()) return QualType(); E2 = E2Result.takeAs(); return Composite2; } ExprResult Sema::MaybeBindToTemporary(Expr *E) { if (!Context.getLangOptions().CPlusPlus) return Owned(E); assert(!isa(E) && "Double-bound temporary?"); const RecordType *RT = E->getType()->getAs(); if (!RT) return Owned(E); // If this is the result of a call or an Objective-C message send expression, // our source might actually be a reference, in which case we shouldn't bind. if (CallExpr *CE = dyn_cast(E)) { if (CE->getCallReturnType()->isReferenceType()) return Owned(E); } else if (ObjCMessageExpr *ME = dyn_cast(E)) { if (const ObjCMethodDecl *MD = ME->getMethodDecl()) { if (MD->getResultType()->isReferenceType()) return Owned(E); } } // That should be enough to guarantee that this type is complete. // If it has a trivial destructor, we can avoid the extra copy. CXXRecordDecl *RD = cast(RT->getDecl()); if (RD->isInvalidDecl() || RD->hasTrivialDestructor()) return Owned(E); CXXTemporary *Temp = CXXTemporary::Create(Context, LookupDestructor(RD)); ExprTemporaries.push_back(Temp); if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) { MarkDeclarationReferenced(E->getExprLoc(), Destructor); CheckDestructorAccess(E->getExprLoc(), Destructor, PDiag(diag::err_access_dtor_temp) << E->getType()); } // FIXME: Add the temporary to the temporaries vector. return Owned(CXXBindTemporaryExpr::Create(Context, Temp, E)); } Expr *Sema::MaybeCreateCXXExprWithTemporaries(Expr *SubExpr) { assert(SubExpr && "sub expression can't be null!"); // Check any implicit conversions within the expression. CheckImplicitConversions(SubExpr); unsigned FirstTemporary = ExprEvalContexts.back().NumTemporaries; assert(ExprTemporaries.size() >= FirstTemporary); if (ExprTemporaries.size() == FirstTemporary) return SubExpr; Expr *E = CXXExprWithTemporaries::Create(Context, SubExpr, &ExprTemporaries[FirstTemporary], ExprTemporaries.size() - FirstTemporary); ExprTemporaries.erase(ExprTemporaries.begin() + FirstTemporary, ExprTemporaries.end()); return E; } ExprResult Sema::MaybeCreateCXXExprWithTemporaries(ExprResult SubExpr) { if (SubExpr.isInvalid()) return ExprError(); return Owned(MaybeCreateCXXExprWithTemporaries(SubExpr.takeAs())); } FullExpr Sema::CreateFullExpr(Expr *SubExpr) { unsigned FirstTemporary = ExprEvalContexts.back().NumTemporaries; assert(ExprTemporaries.size() >= FirstTemporary); unsigned NumTemporaries = ExprTemporaries.size() - FirstTemporary; CXXTemporary **Temporaries = NumTemporaries == 0 ? 0 : &ExprTemporaries[FirstTemporary]; FullExpr E = FullExpr::Create(Context, SubExpr, Temporaries, NumTemporaries); ExprTemporaries.erase(ExprTemporaries.begin() + FirstTemporary, ExprTemporaries.end()); return E; } ExprResult Sema::ActOnStartCXXMemberReference(Scope *S, Expr *Base, SourceLocation OpLoc, tok::TokenKind OpKind, ParsedType &ObjectType, bool &MayBePseudoDestructor) { // Since this might be a postfix expression, get rid of ParenListExprs. ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base); if (Result.isInvalid()) return ExprError(); Base = Result.get(); QualType BaseType = Base->getType(); MayBePseudoDestructor = false; if (BaseType->isDependentType()) { // If we have a pointer to a dependent type and are using the -> operator, // the object type is the type that the pointer points to. We might still // have enough information about that type to do something useful. if (OpKind == tok::arrow) if (const PointerType *Ptr = BaseType->getAs()) BaseType = Ptr->getPointeeType(); ObjectType = ParsedType::make(BaseType); MayBePseudoDestructor = true; return Owned(Base); } // C++ [over.match.oper]p8: // [...] When operator->returns, the operator-> is applied to the value // returned, with the original second operand. if (OpKind == tok::arrow) { // The set of types we've considered so far. llvm::SmallPtrSet CTypes; llvm::SmallVector Locations; CTypes.insert(Context.getCanonicalType(BaseType)); while (BaseType->isRecordType()) { Result = BuildOverloadedArrowExpr(S, Base, OpLoc); if (Result.isInvalid()) return ExprError(); Base = Result.get(); if (CXXOperatorCallExpr *OpCall = dyn_cast(Base)) Locations.push_back(OpCall->getDirectCallee()->getLocation()); BaseType = Base->getType(); CanQualType CBaseType = Context.getCanonicalType(BaseType); if (!CTypes.insert(CBaseType)) { Diag(OpLoc, diag::err_operator_arrow_circular); for (unsigned i = 0; i < Locations.size(); i++) Diag(Locations[i], diag::note_declared_at); return ExprError(); } } if (BaseType->isPointerType()) BaseType = BaseType->getPointeeType(); } // We could end up with various non-record types here, such as extended // vector types or Objective-C interfaces. Just return early and let // ActOnMemberReferenceExpr do the work. if (!BaseType->isRecordType()) { // C++ [basic.lookup.classref]p2: // [...] If the type of the object expression is of pointer to scalar // type, the unqualified-id is looked up in the context of the complete // postfix-expression. // // This also indicates that we should be parsing a // pseudo-destructor-name. ObjectType = ParsedType(); MayBePseudoDestructor = true; return Owned(Base); } // The object type must be complete (or dependent). if (!BaseType->isDependentType() && RequireCompleteType(OpLoc, BaseType, PDiag(diag::err_incomplete_member_access))) return ExprError(); // C++ [basic.lookup.classref]p2: // If the id-expression in a class member access (5.2.5) is an // unqualified-id, and the type of the object expression is of a class // type C (or of pointer to a class type C), the unqualified-id is looked // up in the scope of class C. [...] ObjectType = ParsedType::make(BaseType); return move(Base); } ExprResult Sema::DiagnoseDtorReference(SourceLocation NameLoc, Expr *MemExpr) { SourceLocation ExpectedLParenLoc = PP.getLocForEndOfToken(NameLoc); Diag(MemExpr->getLocStart(), diag::err_dtor_expr_without_call) << isa(MemExpr) << FixItHint::CreateInsertion(ExpectedLParenLoc, "()"); return ActOnCallExpr(/*Scope*/ 0, MemExpr, /*LPLoc*/ ExpectedLParenLoc, MultiExprArg(), /*CommaLocs*/ 0, /*RPLoc*/ ExpectedLParenLoc); } ExprResult Sema::BuildPseudoDestructorExpr(Expr *Base, SourceLocation OpLoc, tok::TokenKind OpKind, const CXXScopeSpec &SS, TypeSourceInfo *ScopeTypeInfo, SourceLocation CCLoc, SourceLocation TildeLoc, PseudoDestructorTypeStorage Destructed, bool HasTrailingLParen) { TypeSourceInfo *DestructedTypeInfo = Destructed.getTypeSourceInfo(); // C++ [expr.pseudo]p2: // The left-hand side of the dot operator shall be of scalar type. The // left-hand side of the arrow operator shall be of pointer to scalar type. // This scalar type is the object type. QualType ObjectType = Base->getType(); if (OpKind == tok::arrow) { if (const PointerType *Ptr = ObjectType->getAs()) { ObjectType = Ptr->getPointeeType(); } else if (!Base->isTypeDependent()) { // The user wrote "p->" when she probably meant "p."; fix it. Diag(OpLoc, diag::err_typecheck_member_reference_suggestion) << ObjectType << true << FixItHint::CreateReplacement(OpLoc, "."); if (isSFINAEContext()) return ExprError(); OpKind = tok::period; } } if (!ObjectType->isDependentType() && !ObjectType->isScalarType()) { Diag(OpLoc, diag::err_pseudo_dtor_base_not_scalar) << ObjectType << Base->getSourceRange(); return ExprError(); } // C++ [expr.pseudo]p2: // [...] The cv-unqualified versions of the object type and of the type // designated by the pseudo-destructor-name shall be the same type. if (DestructedTypeInfo) { QualType DestructedType = DestructedTypeInfo->getType(); SourceLocation DestructedTypeStart = DestructedTypeInfo->getTypeLoc().getLocalSourceRange().getBegin(); if (!DestructedType->isDependentType() && !ObjectType->isDependentType() && !Context.hasSameUnqualifiedType(DestructedType, ObjectType)) { Diag(DestructedTypeStart, diag::err_pseudo_dtor_type_mismatch) << ObjectType << DestructedType << Base->getSourceRange() << DestructedTypeInfo->getTypeLoc().getLocalSourceRange(); // Recover by setting the destructed type to the object type. DestructedType = ObjectType; DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType, DestructedTypeStart); Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo); } } // C++ [expr.pseudo]p2: // [...] Furthermore, the two type-names in a pseudo-destructor-name of the // form // // ::[opt] nested-name-specifier[opt] type-name :: ~ type-name // // shall designate the same scalar type. if (ScopeTypeInfo) { QualType ScopeType = ScopeTypeInfo->getType(); if (!ScopeType->isDependentType() && !ObjectType->isDependentType() && !Context.hasSameUnqualifiedType(ScopeType, ObjectType)) { Diag(ScopeTypeInfo->getTypeLoc().getLocalSourceRange().getBegin(), diag::err_pseudo_dtor_type_mismatch) << ObjectType << ScopeType << Base->getSourceRange() << ScopeTypeInfo->getTypeLoc().getLocalSourceRange(); ScopeType = QualType(); ScopeTypeInfo = 0; } } Expr *Result = new (Context) CXXPseudoDestructorExpr(Context, Base, OpKind == tok::arrow, OpLoc, SS.getScopeRep(), SS.getRange(), ScopeTypeInfo, CCLoc, TildeLoc, Destructed); if (HasTrailingLParen) return Owned(Result); return DiagnoseDtorReference(Destructed.getLocation(), Result); } ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base, SourceLocation OpLoc, tok::TokenKind OpKind, CXXScopeSpec &SS, UnqualifiedId &FirstTypeName, SourceLocation CCLoc, SourceLocation TildeLoc, UnqualifiedId &SecondTypeName, bool HasTrailingLParen) { assert((FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId || FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) && "Invalid first type name in pseudo-destructor"); assert((SecondTypeName.getKind() == UnqualifiedId::IK_TemplateId || SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) && "Invalid second type name in pseudo-destructor"); // C++ [expr.pseudo]p2: // The left-hand side of the dot operator shall be of scalar type. The // left-hand side of the arrow operator shall be of pointer to scalar type. // This scalar type is the object type. QualType ObjectType = Base->getType(); if (OpKind == tok::arrow) { if (const PointerType *Ptr = ObjectType->getAs()) { ObjectType = Ptr->getPointeeType(); } else if (!ObjectType->isDependentType()) { // The user wrote "p->" when she probably meant "p."; fix it. Diag(OpLoc, diag::err_typecheck_member_reference_suggestion) << ObjectType << true << FixItHint::CreateReplacement(OpLoc, "."); if (isSFINAEContext()) return ExprError(); OpKind = tok::period; } } // Compute the object type that we should use for name lookup purposes. Only // record types and dependent types matter. ParsedType ObjectTypePtrForLookup; if (!SS.isSet()) { if (const Type *T = ObjectType->getAs()) ObjectTypePtrForLookup = ParsedType::make(QualType(T, 0)); else if (ObjectType->isDependentType()) ObjectTypePtrForLookup = ParsedType::make(Context.DependentTy); } // Convert the name of the type being destructed (following the ~) into a // type (with source-location information). QualType DestructedType; TypeSourceInfo *DestructedTypeInfo = 0; PseudoDestructorTypeStorage Destructed; if (SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) { ParsedType T = getTypeName(*SecondTypeName.Identifier, SecondTypeName.StartLocation, S, &SS, true, ObjectTypePtrForLookup); if (!T && ((SS.isSet() && !computeDeclContext(SS, false)) || (!SS.isSet() && ObjectType->isDependentType()))) { // The name of the type being destroyed is a dependent name, and we // couldn't find anything useful in scope. Just store the identifier and // it's location, and we'll perform (qualified) name lookup again at // template instantiation time. Destructed = PseudoDestructorTypeStorage(SecondTypeName.Identifier, SecondTypeName.StartLocation); } else if (!T) { Diag(SecondTypeName.StartLocation, diag::err_pseudo_dtor_destructor_non_type) << SecondTypeName.Identifier << ObjectType; if (isSFINAEContext()) return ExprError(); // Recover by assuming we had the right type all along. DestructedType = ObjectType; } else DestructedType = GetTypeFromParser(T, &DestructedTypeInfo); } else { // Resolve the template-id to a type. TemplateIdAnnotation *TemplateId = SecondTypeName.TemplateId; ASTTemplateArgsPtr TemplateArgsPtr(*this, TemplateId->getTemplateArgs(), TemplateId->NumArgs); TypeResult T = ActOnTemplateIdType(TemplateId->Template, TemplateId->TemplateNameLoc, TemplateId->LAngleLoc, TemplateArgsPtr, TemplateId->RAngleLoc); if (T.isInvalid() || !T.get()) { // Recover by assuming we had the right type all along. DestructedType = ObjectType; } else DestructedType = GetTypeFromParser(T.get(), &DestructedTypeInfo); } // If we've performed some kind of recovery, (re-)build the type source // information. if (!DestructedType.isNull()) { if (!DestructedTypeInfo) DestructedTypeInfo = Context.getTrivialTypeSourceInfo(DestructedType, SecondTypeName.StartLocation); Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo); } // Convert the name of the scope type (the type prior to '::') into a type. TypeSourceInfo *ScopeTypeInfo = 0; QualType ScopeType; if (FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId || FirstTypeName.Identifier) { if (FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) { ParsedType T = getTypeName(*FirstTypeName.Identifier, FirstTypeName.StartLocation, S, &SS, false, ObjectTypePtrForLookup); if (!T) { Diag(FirstTypeName.StartLocation, diag::err_pseudo_dtor_destructor_non_type) << FirstTypeName.Identifier << ObjectType; if (isSFINAEContext()) return ExprError(); // Just drop this type. It's unnecessary anyway. ScopeType = QualType(); } else ScopeType = GetTypeFromParser(T, &ScopeTypeInfo); } else { // Resolve the template-id to a type. TemplateIdAnnotation *TemplateId = FirstTypeName.TemplateId; ASTTemplateArgsPtr TemplateArgsPtr(*this, TemplateId->getTemplateArgs(), TemplateId->NumArgs); TypeResult T = ActOnTemplateIdType(TemplateId->Template, TemplateId->TemplateNameLoc, TemplateId->LAngleLoc, TemplateArgsPtr, TemplateId->RAngleLoc); if (T.isInvalid() || !T.get()) { // Recover by dropping this type. ScopeType = QualType(); } else ScopeType = GetTypeFromParser(T.get(), &ScopeTypeInfo); } } if (!ScopeType.isNull() && !ScopeTypeInfo) ScopeTypeInfo = Context.getTrivialTypeSourceInfo(ScopeType, FirstTypeName.StartLocation); return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, SS, ScopeTypeInfo, CCLoc, TildeLoc, Destructed, HasTrailingLParen); } CXXMemberCallExpr *Sema::BuildCXXMemberCallExpr(Expr *Exp, NamedDecl *FoundDecl, CXXMethodDecl *Method) { if (PerformObjectArgumentInitialization(Exp, /*Qualifier=*/0, FoundDecl, Method)) assert(0 && "Calling BuildCXXMemberCallExpr with invalid call?"); MemberExpr *ME = new (Context) MemberExpr(Exp, /*IsArrow=*/false, Method, SourceLocation(), Method->getType()); QualType ResultType = Method->getCallResultType(); MarkDeclarationReferenced(Exp->getLocStart(), Method); CXXMemberCallExpr *CE = new (Context) CXXMemberCallExpr(Context, ME, 0, 0, ResultType, Exp->getLocEnd()); return CE; } ExprResult Sema::ActOnFinishFullExpr(Expr *FullExpr) { if (!FullExpr) return ExprError(); return MaybeCreateCXXExprWithTemporaries(FullExpr); }