//===--- ASTReader.cpp - AST File Reader ------------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the ASTReader class, which reads AST files. // //===----------------------------------------------------------------------===// #include "clang/Serialization/ASTReader.h" #include "clang/Serialization/ASTDeserializationListener.h" #include "clang/Serialization/ModuleManager.h" #include "clang/Serialization/SerializationDiagnostic.h" #include "ASTCommon.h" #include "ASTReaderInternals.h" #include "clang/Sema/Sema.h" #include "clang/Sema/Scope.h" #include "clang/AST/ASTConsumer.h" #include "clang/AST/ASTContext.h" #include "clang/AST/DeclTemplate.h" #include "clang/AST/Expr.h" #include "clang/AST/ExprCXX.h" #include "clang/AST/NestedNameSpecifier.h" #include "clang/AST/Type.h" #include "clang/AST/TypeLocVisitor.h" #include "clang/Lex/MacroInfo.h" #include "clang/Lex/PreprocessingRecord.h" #include "clang/Lex/Preprocessor.h" #include "clang/Lex/HeaderSearch.h" #include "clang/Basic/OnDiskHashTable.h" #include "clang/Basic/SourceManager.h" #include "clang/Basic/SourceManagerInternals.h" #include "clang/Basic/FileManager.h" #include "clang/Basic/FileSystemStatCache.h" #include "clang/Basic/TargetInfo.h" #include "clang/Basic/Version.h" #include "clang/Basic/VersionTuple.h" #include "llvm/ADT/StringExtras.h" #include "llvm/Bitcode/BitstreamReader.h" #include "llvm/Support/MemoryBuffer.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/FileSystem.h" #include "llvm/Support/Path.h" #include "llvm/Support/SaveAndRestore.h" #include "llvm/Support/system_error.h" #include #include #include #include using namespace clang; using namespace clang::serialization; using namespace clang::serialization::reader; //===----------------------------------------------------------------------===// // PCH validator implementation //===----------------------------------------------------------------------===// ASTReaderListener::~ASTReaderListener() {} bool PCHValidator::ReadLanguageOptions(const LangOptions &LangOpts) { const LangOptions &PPLangOpts = PP.getLangOpts(); #define LANGOPT(Name, Bits, Default, Description) \ if (PPLangOpts.Name != LangOpts.Name) { \ Reader.Diag(diag::err_pch_langopt_mismatch) \ << Description << LangOpts.Name << PPLangOpts.Name; \ return true; \ } #define VALUE_LANGOPT(Name, Bits, Default, Description) \ if (PPLangOpts.Name != LangOpts.Name) { \ Reader.Diag(diag::err_pch_langopt_value_mismatch) \ << Description; \ return true; \ } #define ENUM_LANGOPT(Name, Type, Bits, Default, Description) \ if (PPLangOpts.get##Name() != LangOpts.get##Name()) { \ Reader.Diag(diag::err_pch_langopt_value_mismatch) \ << Description; \ return true; \ } #define BENIGN_LANGOPT(Name, Bits, Default, Description) #define BENIGN_ENUM_LANGOPT(Name, Type, Bits, Default, Description) #include "clang/Basic/LangOptions.def" return false; } bool PCHValidator::ReadTargetTriple(StringRef Triple) { if (Triple == PP.getTargetInfo().getTriple().str()) return false; Reader.Diag(diag::warn_pch_target_triple) << Triple << PP.getTargetInfo().getTriple().str(); return true; } namespace { struct EmptyStringRef { bool operator ()(StringRef r) const { return r.empty(); } }; struct EmptyBlock { bool operator ()(const PCHPredefinesBlock &r) const {return r.Data.empty();} }; } static bool EqualConcatenations(SmallVector L, PCHPredefinesBlocks R) { // First, sum up the lengths. unsigned LL = 0, RL = 0; for (unsigned I = 0, N = L.size(); I != N; ++I) { LL += L[I].size(); } for (unsigned I = 0, N = R.size(); I != N; ++I) { RL += R[I].Data.size(); } if (LL != RL) return false; if (LL == 0 && RL == 0) return true; // Kick out empty parts, they confuse the algorithm below. L.erase(std::remove_if(L.begin(), L.end(), EmptyStringRef()), L.end()); R.erase(std::remove_if(R.begin(), R.end(), EmptyBlock()), R.end()); // Do it the hard way. At this point, both vectors must be non-empty. StringRef LR = L[0], RR = R[0].Data; unsigned LI = 0, RI = 0, LN = L.size(), RN = R.size(); (void) RN; for (;;) { // Compare the current pieces. if (LR.size() == RR.size()) { // If they're the same length, it's pretty easy. if (LR != RR) return false; // Both pieces are done, advance. ++LI; ++RI; // If either string is done, they're both done, since they're the same // length. if (LI == LN) { assert(RI == RN && "Strings not the same length after all?"); return true; } LR = L[LI]; RR = R[RI].Data; } else if (LR.size() < RR.size()) { // Right piece is longer. if (!RR.startswith(LR)) return false; ++LI; assert(LI != LN && "Strings not the same length after all?"); RR = RR.substr(LR.size()); LR = L[LI]; } else { // Left piece is longer. if (!LR.startswith(RR)) return false; ++RI; assert(RI != RN && "Strings not the same length after all?"); LR = LR.substr(RR.size()); RR = R[RI].Data; } } } static std::pair FindMacro(const PCHPredefinesBlocks &Buffers, StringRef MacroDef) { std::pair Res; for (unsigned I = 0, N = Buffers.size(); I != N; ++I) { Res.second = Buffers[I].Data.find(MacroDef); if (Res.second != StringRef::npos) { Res.first = Buffers[I].BufferID; break; } } return Res; } bool PCHValidator::ReadPredefinesBuffer(const PCHPredefinesBlocks &Buffers, StringRef OriginalFileName, std::string &SuggestedPredefines, FileManager &FileMgr) { // We are in the context of an implicit include, so the predefines buffer will // have a #include entry for the PCH file itself (as normalized by the // preprocessor initialization). Find it and skip over it in the checking // below. SmallString<256> PCHInclude; PCHInclude += "#include \""; PCHInclude += HeaderSearch::NormalizeDashIncludePath(OriginalFileName, FileMgr); PCHInclude += "\"\n"; std::pair Split = StringRef(PP.getPredefines()).split(PCHInclude.str()); StringRef Left = Split.first, Right = Split.second; if (Left == PP.getPredefines()) { Error("Missing PCH include entry!"); return true; } // If the concatenation of all the PCH buffers is equal to the adjusted // command line, we're done. SmallVector CommandLine; CommandLine.push_back(Left); CommandLine.push_back(Right); if (EqualConcatenations(CommandLine, Buffers)) return false; SourceManager &SourceMgr = PP.getSourceManager(); // The predefines buffers are different. Determine what the differences are, // and whether they require us to reject the PCH file. SmallVector PCHLines; for (unsigned I = 0, N = Buffers.size(); I != N; ++I) Buffers[I].Data.split(PCHLines, "\n", /*MaxSplit=*/-1, /*KeepEmpty=*/false); SmallVector CmdLineLines; Left.split(CmdLineLines, "\n", /*MaxSplit=*/-1, /*KeepEmpty=*/false); // Pick out implicit #includes after the PCH and don't consider them for // validation; we will insert them into SuggestedPredefines so that the // preprocessor includes them. std::string IncludesAfterPCH; SmallVector AfterPCHLines; Right.split(AfterPCHLines, "\n", /*MaxSplit=*/-1, /*KeepEmpty=*/false); for (unsigned i = 0, e = AfterPCHLines.size(); i != e; ++i) { if (AfterPCHLines[i].startswith("#include ")) { IncludesAfterPCH += AfterPCHLines[i]; IncludesAfterPCH += '\n'; } else { CmdLineLines.push_back(AfterPCHLines[i]); } } // Make sure we add the includes last into SuggestedPredefines before we // exit this function. struct AddIncludesRAII { std::string &SuggestedPredefines; std::string &IncludesAfterPCH; AddIncludesRAII(std::string &SuggestedPredefines, std::string &IncludesAfterPCH) : SuggestedPredefines(SuggestedPredefines), IncludesAfterPCH(IncludesAfterPCH) { } ~AddIncludesRAII() { SuggestedPredefines += IncludesAfterPCH; } } AddIncludes(SuggestedPredefines, IncludesAfterPCH); // Sort both sets of predefined buffer lines, since we allow some extra // definitions and they may appear at any point in the output. std::sort(CmdLineLines.begin(), CmdLineLines.end()); std::sort(PCHLines.begin(), PCHLines.end()); // Determine which predefines that were used to build the PCH file are missing // from the command line. std::vector MissingPredefines; std::set_difference(PCHLines.begin(), PCHLines.end(), CmdLineLines.begin(), CmdLineLines.end(), std::back_inserter(MissingPredefines)); bool MissingDefines = false; bool ConflictingDefines = false; for (unsigned I = 0, N = MissingPredefines.size(); I != N; ++I) { StringRef Missing = MissingPredefines[I]; if (Missing.startswith("#include ")) { // An -include was specified when generating the PCH; it is included in // the PCH, just ignore it. continue; } if (!Missing.startswith("#define ")) { Reader.Diag(diag::warn_pch_compiler_options_mismatch); return true; } // This is a macro definition. Determine the name of the macro we're // defining. std::string::size_type StartOfMacroName = strlen("#define "); std::string::size_type EndOfMacroName = Missing.find_first_of("( \n\r", StartOfMacroName); assert(EndOfMacroName != std::string::npos && "Couldn't find the end of the macro name"); StringRef MacroName = Missing.slice(StartOfMacroName, EndOfMacroName); // Determine whether this macro was given a different definition on the // command line. std::string MacroDefStart = "#define " + MacroName.str(); std::string::size_type MacroDefLen = MacroDefStart.size(); SmallVector::iterator ConflictPos = std::lower_bound(CmdLineLines.begin(), CmdLineLines.end(), MacroDefStart); for (; ConflictPos != CmdLineLines.end(); ++ConflictPos) { if (!ConflictPos->startswith(MacroDefStart)) { // Different macro; we're done. ConflictPos = CmdLineLines.end(); break; } assert(ConflictPos->size() > MacroDefLen && "Invalid #define in predefines buffer?"); if ((*ConflictPos)[MacroDefLen] != ' ' && (*ConflictPos)[MacroDefLen] != '(') continue; // Longer macro name; keep trying. // We found a conflicting macro definition. break; } if (ConflictPos != CmdLineLines.end()) { Reader.Diag(diag::warn_cmdline_conflicting_macro_def) << MacroName; // Show the definition of this macro within the PCH file. std::pair MacroLoc = FindMacro(Buffers, Missing); assert(MacroLoc.second!=StringRef::npos && "Unable to find macro!"); SourceLocation PCHMissingLoc = SourceMgr.getLocForStartOfFile(MacroLoc.first) .getLocWithOffset(MacroLoc.second); Reader.Diag(PCHMissingLoc, diag::note_pch_macro_defined_as) << MacroName; ConflictingDefines = true; continue; } // If the macro doesn't conflict, then we'll just pick up the macro // definition from the PCH file. Warn the user that they made a mistake. if (ConflictingDefines) continue; // Don't complain if there are already conflicting defs if (!MissingDefines) { Reader.Diag(diag::warn_cmdline_missing_macro_defs); MissingDefines = true; } // Show the definition of this macro within the PCH file. std::pair MacroLoc = FindMacro(Buffers, Missing); assert(MacroLoc.second!=StringRef::npos && "Unable to find macro!"); SourceLocation PCHMissingLoc = SourceMgr.getLocForStartOfFile(MacroLoc.first) .getLocWithOffset(MacroLoc.second); Reader.Diag(PCHMissingLoc, diag::note_using_macro_def_from_pch); } if (ConflictingDefines) return true; // Determine what predefines were introduced based on command-line // parameters that were not present when building the PCH // file. Extra #defines are okay, so long as the identifiers being // defined were not used within the precompiled header. std::vector ExtraPredefines; std::set_difference(CmdLineLines.begin(), CmdLineLines.end(), PCHLines.begin(), PCHLines.end(), std::back_inserter(ExtraPredefines)); for (unsigned I = 0, N = ExtraPredefines.size(); I != N; ++I) { StringRef &Extra = ExtraPredefines[I]; if (!Extra.startswith("#define ")) { Reader.Diag(diag::warn_pch_compiler_options_mismatch); return true; } // This is an extra macro definition. Determine the name of the // macro we're defining. std::string::size_type StartOfMacroName = strlen("#define "); std::string::size_type EndOfMacroName = Extra.find_first_of("( \n\r", StartOfMacroName); assert(EndOfMacroName != std::string::npos && "Couldn't find the end of the macro name"); StringRef MacroName = Extra.slice(StartOfMacroName, EndOfMacroName); // Check whether this name was used somewhere in the PCH file. If // so, defining it as a macro could change behavior, so we reject // the PCH file. if (IdentifierInfo *II = Reader.get(MacroName)) { Reader.Diag(diag::warn_macro_name_used_in_pch) << II; return true; } // Add this definition to the suggested predefines buffer. SuggestedPredefines += Extra; SuggestedPredefines += '\n'; } // If we get here, it's because the predefines buffer had compatible // contents. Accept the PCH file. return false; } void PCHValidator::ReadHeaderFileInfo(const HeaderFileInfo &HFI, unsigned ID) { PP.getHeaderSearchInfo().setHeaderFileInfoForUID(HFI, ID); ++NumHeaderInfos; } void PCHValidator::ReadCounter(unsigned Value) { PP.setCounterValue(Value); } //===----------------------------------------------------------------------===// // AST reader implementation //===----------------------------------------------------------------------===// void ASTReader::setDeserializationListener(ASTDeserializationListener *Listener) { DeserializationListener = Listener; } unsigned ASTSelectorLookupTrait::ComputeHash(Selector Sel) { return serialization::ComputeHash(Sel); } std::pair ASTSelectorLookupTrait::ReadKeyDataLength(const unsigned char*& d) { using namespace clang::io; unsigned KeyLen = ReadUnalignedLE16(d); unsigned DataLen = ReadUnalignedLE16(d); return std::make_pair(KeyLen, DataLen); } ASTSelectorLookupTrait::internal_key_type ASTSelectorLookupTrait::ReadKey(const unsigned char* d, unsigned) { using namespace clang::io; SelectorTable &SelTable = Reader.getContext().Selectors; unsigned N = ReadUnalignedLE16(d); IdentifierInfo *FirstII = Reader.getLocalIdentifier(F, ReadUnalignedLE32(d)); if (N == 0) return SelTable.getNullarySelector(FirstII); else if (N == 1) return SelTable.getUnarySelector(FirstII); SmallVector Args; Args.push_back(FirstII); for (unsigned I = 1; I != N; ++I) Args.push_back(Reader.getLocalIdentifier(F, ReadUnalignedLE32(d))); return SelTable.getSelector(N, Args.data()); } ASTSelectorLookupTrait::data_type ASTSelectorLookupTrait::ReadData(Selector, const unsigned char* d, unsigned DataLen) { using namespace clang::io; data_type Result; Result.ID = Reader.getGlobalSelectorID(F, ReadUnalignedLE32(d)); unsigned NumInstanceMethods = ReadUnalignedLE16(d); unsigned NumFactoryMethods = ReadUnalignedLE16(d); // Load instance methods for (unsigned I = 0; I != NumInstanceMethods; ++I) { if (ObjCMethodDecl *Method = Reader.GetLocalDeclAs(F, ReadUnalignedLE32(d))) Result.Instance.push_back(Method); } // Load factory methods for (unsigned I = 0; I != NumFactoryMethods; ++I) { if (ObjCMethodDecl *Method = Reader.GetLocalDeclAs(F, ReadUnalignedLE32(d))) Result.Factory.push_back(Method); } return Result; } unsigned ASTIdentifierLookupTrait::ComputeHash(const internal_key_type& a) { return llvm::HashString(StringRef(a.first, a.second)); } std::pair ASTIdentifierLookupTrait::ReadKeyDataLength(const unsigned char*& d) { using namespace clang::io; unsigned DataLen = ReadUnalignedLE16(d); unsigned KeyLen = ReadUnalignedLE16(d); return std::make_pair(KeyLen, DataLen); } std::pair ASTIdentifierLookupTrait::ReadKey(const unsigned char* d, unsigned n) { assert(n >= 2 && d[n-1] == '\0'); return std::make_pair((const char*) d, n-1); } IdentifierInfo *ASTIdentifierLookupTrait::ReadData(const internal_key_type& k, const unsigned char* d, unsigned DataLen) { using namespace clang::io; unsigned RawID = ReadUnalignedLE32(d); bool IsInteresting = RawID & 0x01; // Wipe out the "is interesting" bit. RawID = RawID >> 1; IdentID ID = Reader.getGlobalIdentifierID(F, RawID); if (!IsInteresting) { // For uninteresting identifiers, just build the IdentifierInfo // and associate it with the persistent ID. IdentifierInfo *II = KnownII; if (!II) { II = &Reader.getIdentifierTable().getOwn(StringRef(k.first, k.second)); KnownII = II; } Reader.SetIdentifierInfo(ID, II); II->setIsFromAST(); Reader.markIdentifierUpToDate(II); return II; } unsigned Bits = ReadUnalignedLE16(d); bool CPlusPlusOperatorKeyword = Bits & 0x01; Bits >>= 1; bool HasRevertedTokenIDToIdentifier = Bits & 0x01; Bits >>= 1; bool Poisoned = Bits & 0x01; Bits >>= 1; bool ExtensionToken = Bits & 0x01; Bits >>= 1; bool hasMacroDefinition = Bits & 0x01; Bits >>= 1; unsigned ObjCOrBuiltinID = Bits & 0x7FF; Bits >>= 11; assert(Bits == 0 && "Extra bits in the identifier?"); DataLen -= 6; // Build the IdentifierInfo itself and link the identifier ID with // the new IdentifierInfo. IdentifierInfo *II = KnownII; if (!II) { II = &Reader.getIdentifierTable().getOwn(StringRef(k.first, k.second)); KnownII = II; } Reader.markIdentifierUpToDate(II); II->setIsFromAST(); // Set or check the various bits in the IdentifierInfo structure. // Token IDs are read-only. if (HasRevertedTokenIDToIdentifier) II->RevertTokenIDToIdentifier(); II->setObjCOrBuiltinID(ObjCOrBuiltinID); assert(II->isExtensionToken() == ExtensionToken && "Incorrect extension token flag"); (void)ExtensionToken; if (Poisoned) II->setIsPoisoned(true); assert(II->isCPlusPlusOperatorKeyword() == CPlusPlusOperatorKeyword && "Incorrect C++ operator keyword flag"); (void)CPlusPlusOperatorKeyword; // If this identifier is a macro, deserialize the macro // definition. if (hasMacroDefinition) { // FIXME: Check for conflicts? uint32_t Offset = ReadUnalignedLE32(d); unsigned LocalSubmoduleID = ReadUnalignedLE32(d); // Determine whether this macro definition should be visible now, or // whether it is in a hidden submodule. bool Visible = true; if (SubmoduleID GlobalSubmoduleID = Reader.getGlobalSubmoduleID(F, LocalSubmoduleID)) { if (Module *Owner = Reader.getSubmodule(GlobalSubmoduleID)) { if (Owner->NameVisibility == Module::Hidden) { // The owning module is not visible, and this macro definition should // not be, either. Visible = false; // Note that this macro definition was hidden because its owning // module is not yet visible. Reader.HiddenNamesMap[Owner].push_back(II); } } } Reader.setIdentifierIsMacro(II, F, Offset, Visible); DataLen -= 8; } Reader.SetIdentifierInfo(ID, II); // Read all of the declarations visible at global scope with this // name. if (DataLen > 0) { SmallVector DeclIDs; for (; DataLen > 0; DataLen -= 4) DeclIDs.push_back(Reader.getGlobalDeclID(F, ReadUnalignedLE32(d))); Reader.SetGloballyVisibleDecls(II, DeclIDs); } return II; } unsigned ASTDeclContextNameLookupTrait::ComputeHash(const DeclNameKey &Key) const { llvm::FoldingSetNodeID ID; ID.AddInteger(Key.Kind); switch (Key.Kind) { case DeclarationName::Identifier: case DeclarationName::CXXLiteralOperatorName: ID.AddString(((IdentifierInfo*)Key.Data)->getName()); break; case DeclarationName::ObjCZeroArgSelector: case DeclarationName::ObjCOneArgSelector: case DeclarationName::ObjCMultiArgSelector: ID.AddInteger(serialization::ComputeHash(Selector(Key.Data))); break; case DeclarationName::CXXOperatorName: ID.AddInteger((OverloadedOperatorKind)Key.Data); break; case DeclarationName::CXXConstructorName: case DeclarationName::CXXDestructorName: case DeclarationName::CXXConversionFunctionName: case DeclarationName::CXXUsingDirective: break; } return ID.ComputeHash(); } ASTDeclContextNameLookupTrait::internal_key_type ASTDeclContextNameLookupTrait::GetInternalKey( const external_key_type& Name) const { DeclNameKey Key; Key.Kind = Name.getNameKind(); switch (Name.getNameKind()) { case DeclarationName::Identifier: Key.Data = (uint64_t)Name.getAsIdentifierInfo(); break; case DeclarationName::ObjCZeroArgSelector: case DeclarationName::ObjCOneArgSelector: case DeclarationName::ObjCMultiArgSelector: Key.Data = (uint64_t)Name.getObjCSelector().getAsOpaquePtr(); break; case DeclarationName::CXXOperatorName: Key.Data = Name.getCXXOverloadedOperator(); break; case DeclarationName::CXXLiteralOperatorName: Key.Data = (uint64_t)Name.getCXXLiteralIdentifier(); break; case DeclarationName::CXXConstructorName: case DeclarationName::CXXDestructorName: case DeclarationName::CXXConversionFunctionName: case DeclarationName::CXXUsingDirective: Key.Data = 0; break; } return Key; } std::pair ASTDeclContextNameLookupTrait::ReadKeyDataLength(const unsigned char*& d) { using namespace clang::io; unsigned KeyLen = ReadUnalignedLE16(d); unsigned DataLen = ReadUnalignedLE16(d); return std::make_pair(KeyLen, DataLen); } ASTDeclContextNameLookupTrait::internal_key_type ASTDeclContextNameLookupTrait::ReadKey(const unsigned char* d, unsigned) { using namespace clang::io; DeclNameKey Key; Key.Kind = (DeclarationName::NameKind)*d++; switch (Key.Kind) { case DeclarationName::Identifier: Key.Data = (uint64_t)Reader.getLocalIdentifier(F, ReadUnalignedLE32(d)); break; case DeclarationName::ObjCZeroArgSelector: case DeclarationName::ObjCOneArgSelector: case DeclarationName::ObjCMultiArgSelector: Key.Data = (uint64_t)Reader.getLocalSelector(F, ReadUnalignedLE32(d)) .getAsOpaquePtr(); break; case DeclarationName::CXXOperatorName: Key.Data = *d++; // OverloadedOperatorKind break; case DeclarationName::CXXLiteralOperatorName: Key.Data = (uint64_t)Reader.getLocalIdentifier(F, ReadUnalignedLE32(d)); break; case DeclarationName::CXXConstructorName: case DeclarationName::CXXDestructorName: case DeclarationName::CXXConversionFunctionName: case DeclarationName::CXXUsingDirective: Key.Data = 0; break; } return Key; } ASTDeclContextNameLookupTrait::data_type ASTDeclContextNameLookupTrait::ReadData(internal_key_type, const unsigned char* d, unsigned DataLen) { using namespace clang::io; unsigned NumDecls = ReadUnalignedLE16(d); LE32DeclID *Start = (LE32DeclID *)d; return std::make_pair(Start, Start + NumDecls); } bool ASTReader::ReadDeclContextStorage(ModuleFile &M, llvm::BitstreamCursor &Cursor, const std::pair &Offsets, DeclContextInfo &Info) { SavedStreamPosition SavedPosition(Cursor); // First the lexical decls. if (Offsets.first != 0) { Cursor.JumpToBit(Offsets.first); RecordData Record; const char *Blob; unsigned BlobLen; unsigned Code = Cursor.ReadCode(); unsigned RecCode = Cursor.ReadRecord(Code, Record, &Blob, &BlobLen); if (RecCode != DECL_CONTEXT_LEXICAL) { Error("Expected lexical block"); return true; } Info.LexicalDecls = reinterpret_cast(Blob); Info.NumLexicalDecls = BlobLen / sizeof(KindDeclIDPair); } // Now the lookup table. if (Offsets.second != 0) { Cursor.JumpToBit(Offsets.second); RecordData Record; const char *Blob; unsigned BlobLen; unsigned Code = Cursor.ReadCode(); unsigned RecCode = Cursor.ReadRecord(Code, Record, &Blob, &BlobLen); if (RecCode != DECL_CONTEXT_VISIBLE) { Error("Expected visible lookup table block"); return true; } Info.NameLookupTableData = ASTDeclContextNameLookupTable::Create( (const unsigned char *)Blob + Record[0], (const unsigned char *)Blob, ASTDeclContextNameLookupTrait(*this, M)); } return false; } void ASTReader::Error(StringRef Msg) { Error(diag::err_fe_pch_malformed, Msg); } void ASTReader::Error(unsigned DiagID, StringRef Arg1, StringRef Arg2) { if (Diags.isDiagnosticInFlight()) Diags.SetDelayedDiagnostic(DiagID, Arg1, Arg2); else Diag(DiagID) << Arg1 << Arg2; } /// \brief Tell the AST listener about the predefines buffers in the chain. bool ASTReader::CheckPredefinesBuffers() { if (Listener) return Listener->ReadPredefinesBuffer(PCHPredefinesBuffers, ActualOriginalFileName, SuggestedPredefines, FileMgr); return false; } //===----------------------------------------------------------------------===// // Source Manager Deserialization //===----------------------------------------------------------------------===// /// \brief Read the line table in the source manager block. /// \returns true if there was an error. bool ASTReader::ParseLineTable(ModuleFile &F, SmallVectorImpl &Record) { unsigned Idx = 0; LineTableInfo &LineTable = SourceMgr.getLineTable(); // Parse the file names std::map FileIDs; for (int I = 0, N = Record[Idx++]; I != N; ++I) { // Extract the file name unsigned FilenameLen = Record[Idx++]; std::string Filename(&Record[Idx], &Record[Idx] + FilenameLen); Idx += FilenameLen; MaybeAddSystemRootToFilename(Filename); FileIDs[I] = LineTable.getLineTableFilenameID(Filename); } // Parse the line entries std::vector Entries; while (Idx < Record.size()) { int FID = Record[Idx++]; assert(FID >= 0 && "Serialized line entries for non-local file."); // Remap FileID from 1-based old view. FID += F.SLocEntryBaseID - 1; // Extract the line entries unsigned NumEntries = Record[Idx++]; assert(NumEntries && "Numentries is 00000"); Entries.clear(); Entries.reserve(NumEntries); for (unsigned I = 0; I != NumEntries; ++I) { unsigned FileOffset = Record[Idx++]; unsigned LineNo = Record[Idx++]; int FilenameID = FileIDs[Record[Idx++]]; SrcMgr::CharacteristicKind FileKind = (SrcMgr::CharacteristicKind)Record[Idx++]; unsigned IncludeOffset = Record[Idx++]; Entries.push_back(LineEntry::get(FileOffset, LineNo, FilenameID, FileKind, IncludeOffset)); } LineTable.AddEntry(FID, Entries); } return false; } namespace { class ASTStatData { public: const ino_t ino; const dev_t dev; const mode_t mode; const time_t mtime; const off_t size; ASTStatData(ino_t i, dev_t d, mode_t mo, time_t m, off_t s) : ino(i), dev(d), mode(mo), mtime(m), size(s) {} }; class ASTStatLookupTrait { public: typedef const char *external_key_type; typedef const char *internal_key_type; typedef ASTStatData data_type; static unsigned ComputeHash(const char *path) { return llvm::HashString(path); } static internal_key_type GetInternalKey(const char *path) { return path; } static bool EqualKey(internal_key_type a, internal_key_type b) { return strcmp(a, b) == 0; } static std::pair ReadKeyDataLength(const unsigned char*& d) { unsigned KeyLen = (unsigned) clang::io::ReadUnalignedLE16(d); unsigned DataLen = (unsigned) *d++; return std::make_pair(KeyLen + 1, DataLen); } static internal_key_type ReadKey(const unsigned char *d, unsigned) { return (const char *)d; } static data_type ReadData(const internal_key_type, const unsigned char *d, unsigned /*DataLen*/) { using namespace clang::io; ino_t ino = (ino_t) ReadUnalignedLE32(d); dev_t dev = (dev_t) ReadUnalignedLE32(d); mode_t mode = (mode_t) ReadUnalignedLE16(d); time_t mtime = (time_t) ReadUnalignedLE64(d); off_t size = (off_t) ReadUnalignedLE64(d); return data_type(ino, dev, mode, mtime, size); } }; /// \brief stat() cache for precompiled headers. /// /// This cache is very similar to the stat cache used by pretokenized /// headers. class ASTStatCache : public FileSystemStatCache { typedef OnDiskChainedHashTable CacheTy; CacheTy *Cache; unsigned &NumStatHits, &NumStatMisses; public: ASTStatCache(const unsigned char *Buckets, const unsigned char *Base, unsigned &NumStatHits, unsigned &NumStatMisses) : Cache(0), NumStatHits(NumStatHits), NumStatMisses(NumStatMisses) { Cache = CacheTy::Create(Buckets, Base); } ~ASTStatCache() { delete Cache; } LookupResult getStat(const char *Path, struct stat &StatBuf, int *FileDescriptor) { // Do the lookup for the file's data in the AST file. CacheTy::iterator I = Cache->find(Path); // If we don't get a hit in the AST file just forward to 'stat'. if (I == Cache->end()) { ++NumStatMisses; return statChained(Path, StatBuf, FileDescriptor); } ++NumStatHits; ASTStatData Data = *I; StatBuf.st_ino = Data.ino; StatBuf.st_dev = Data.dev; StatBuf.st_mtime = Data.mtime; StatBuf.st_mode = Data.mode; StatBuf.st_size = Data.size; return CacheExists; } }; } // end anonymous namespace /// \brief Read a source manager block ASTReader::ASTReadResult ASTReader::ReadSourceManagerBlock(ModuleFile &F) { using namespace SrcMgr; llvm::BitstreamCursor &SLocEntryCursor = F.SLocEntryCursor; // Set the source-location entry cursor to the current position in // the stream. This cursor will be used to read the contents of the // source manager block initially, and then lazily read // source-location entries as needed. SLocEntryCursor = F.Stream; // The stream itself is going to skip over the source manager block. if (F.Stream.SkipBlock()) { Error("malformed block record in AST file"); return Failure; } // Enter the source manager block. if (SLocEntryCursor.EnterSubBlock(SOURCE_MANAGER_BLOCK_ID)) { Error("malformed source manager block record in AST file"); return Failure; } RecordData Record; while (true) { unsigned Code = SLocEntryCursor.ReadCode(); if (Code == llvm::bitc::END_BLOCK) { if (SLocEntryCursor.ReadBlockEnd()) { Error("error at end of Source Manager block in AST file"); return Failure; } return Success; } if (Code == llvm::bitc::ENTER_SUBBLOCK) { // No known subblocks, always skip them. SLocEntryCursor.ReadSubBlockID(); if (SLocEntryCursor.SkipBlock()) { Error("malformed block record in AST file"); return Failure; } continue; } if (Code == llvm::bitc::DEFINE_ABBREV) { SLocEntryCursor.ReadAbbrevRecord(); continue; } // Read a record. const char *BlobStart; unsigned BlobLen; Record.clear(); switch (SLocEntryCursor.ReadRecord(Code, Record, &BlobStart, &BlobLen)) { default: // Default behavior: ignore. break; case SM_SLOC_FILE_ENTRY: case SM_SLOC_BUFFER_ENTRY: case SM_SLOC_EXPANSION_ENTRY: // Once we hit one of the source location entries, we're done. return Success; } } } /// \brief If a header file is not found at the path that we expect it to be /// and the PCH file was moved from its original location, try to resolve the /// file by assuming that header+PCH were moved together and the header is in /// the same place relative to the PCH. static std::string resolveFileRelativeToOriginalDir(const std::string &Filename, const std::string &OriginalDir, const std::string &CurrDir) { assert(OriginalDir != CurrDir && "No point trying to resolve the file if the PCH dir didn't change"); using namespace llvm::sys; SmallString<128> filePath(Filename); fs::make_absolute(filePath); assert(path::is_absolute(OriginalDir)); SmallString<128> currPCHPath(CurrDir); path::const_iterator fileDirI = path::begin(path::parent_path(filePath)), fileDirE = path::end(path::parent_path(filePath)); path::const_iterator origDirI = path::begin(OriginalDir), origDirE = path::end(OriginalDir); // Skip the common path components from filePath and OriginalDir. while (fileDirI != fileDirE && origDirI != origDirE && *fileDirI == *origDirI) { ++fileDirI; ++origDirI; } for (; origDirI != origDirE; ++origDirI) path::append(currPCHPath, ".."); path::append(currPCHPath, fileDirI, fileDirE); path::append(currPCHPath, path::filename(Filename)); return currPCHPath.str(); } /// \brief Read in the source location entry with the given ID. ASTReader::ASTReadResult ASTReader::ReadSLocEntryRecord(int ID) { if (ID == 0) return Success; if (unsigned(-ID) - 2 >= getTotalNumSLocs() || ID > 0) { Error("source location entry ID out-of-range for AST file"); return Failure; } ModuleFile *F = GlobalSLocEntryMap.find(-ID)->second; F->SLocEntryCursor.JumpToBit(F->SLocEntryOffsets[ID - F->SLocEntryBaseID]); llvm::BitstreamCursor &SLocEntryCursor = F->SLocEntryCursor; unsigned BaseOffset = F->SLocEntryBaseOffset; ++NumSLocEntriesRead; unsigned Code = SLocEntryCursor.ReadCode(); if (Code == llvm::bitc::END_BLOCK || Code == llvm::bitc::ENTER_SUBBLOCK || Code == llvm::bitc::DEFINE_ABBREV) { Error("incorrectly-formatted source location entry in AST file"); return Failure; } RecordData Record; const char *BlobStart; unsigned BlobLen; switch (SLocEntryCursor.ReadRecord(Code, Record, &BlobStart, &BlobLen)) { default: Error("incorrectly-formatted source location entry in AST file"); return Failure; case SM_SLOC_FILE_ENTRY: { if (Record.size() < 7) { Error("source location entry is incorrect"); return Failure; } // We will detect whether a file changed and return 'Failure' for it, but // we will also try to fail gracefully by setting up the SLocEntry. ASTReader::ASTReadResult Result = Success; bool OverriddenBuffer = Record[6]; std::string OrigFilename(BlobStart, BlobStart + BlobLen); std::string Filename = OrigFilename; MaybeAddSystemRootToFilename(Filename); const FileEntry *File = OverriddenBuffer? FileMgr.getVirtualFile(Filename, (off_t)Record[4], (time_t)Record[5]) : FileMgr.getFile(Filename, /*OpenFile=*/false); if (File == 0 && !OriginalDir.empty() && !CurrentDir.empty() && OriginalDir != CurrentDir) { std::string resolved = resolveFileRelativeToOriginalDir(Filename, OriginalDir, CurrentDir); if (!resolved.empty()) File = FileMgr.getFile(resolved); } if (File == 0) File = FileMgr.getVirtualFile(Filename, (off_t)Record[4], (time_t)Record[5]); if (File == 0) { std::string ErrorStr = "could not find file '"; ErrorStr += Filename; ErrorStr += "' referenced by AST file"; Error(ErrorStr.c_str()); return Failure; } if (!DisableValidation && ((off_t)Record[4] != File->getSize() #if !defined(LLVM_ON_WIN32) // In our regression testing, the Windows file system seems to // have inconsistent modification times that sometimes // erroneously trigger this error-handling path. || (time_t)Record[5] != File->getModificationTime() #endif )) { Error(diag::err_fe_pch_file_modified, Filename); Result = Failure; } SourceLocation IncludeLoc = ReadSourceLocation(*F, Record[1]); if (IncludeLoc.isInvalid() && F->Kind != MK_MainFile) { // This is the module's main file. IncludeLoc = getImportLocation(F); } FileID FID = SourceMgr.createFileID(File, IncludeLoc, (SrcMgr::CharacteristicKind)Record[2], ID, BaseOffset + Record[0]); SrcMgr::FileInfo &FileInfo = const_cast(SourceMgr.getSLocEntry(FID).getFile()); FileInfo.NumCreatedFIDs = Record[7]; if (Record[3]) FileInfo.setHasLineDirectives(); const DeclID *FirstDecl = F->FileSortedDecls + Record[8]; unsigned NumFileDecls = Record[9]; if (NumFileDecls) { assert(F->FileSortedDecls && "FILE_SORTED_DECLS not encountered yet ?"); FileDeclIDs[FID] = FileDeclsInfo(F, llvm::makeArrayRef(FirstDecl, NumFileDecls)); } const SrcMgr::ContentCache *ContentCache = SourceMgr.getOrCreateContentCache(File); if (OverriddenBuffer && !ContentCache->BufferOverridden && ContentCache->ContentsEntry == ContentCache->OrigEntry) { unsigned Code = SLocEntryCursor.ReadCode(); Record.clear(); unsigned RecCode = SLocEntryCursor.ReadRecord(Code, Record, &BlobStart, &BlobLen); if (RecCode != SM_SLOC_BUFFER_BLOB) { Error("AST record has invalid code"); return Failure; } llvm::MemoryBuffer *Buffer = llvm::MemoryBuffer::getMemBuffer(StringRef(BlobStart, BlobLen - 1), Filename); SourceMgr.overrideFileContents(File, Buffer); } if (Result == Failure) return Failure; break; } case SM_SLOC_BUFFER_ENTRY: { const char *Name = BlobStart; unsigned Offset = Record[0]; unsigned Code = SLocEntryCursor.ReadCode(); Record.clear(); unsigned RecCode = SLocEntryCursor.ReadRecord(Code, Record, &BlobStart, &BlobLen); if (RecCode != SM_SLOC_BUFFER_BLOB) { Error("AST record has invalid code"); return Failure; } llvm::MemoryBuffer *Buffer = llvm::MemoryBuffer::getMemBuffer(StringRef(BlobStart, BlobLen - 1), Name); FileID BufferID = SourceMgr.createFileIDForMemBuffer(Buffer, ID, BaseOffset + Offset); if (strcmp(Name, "") == 0 && F->Kind == MK_PCH) { PCHPredefinesBlock Block = { BufferID, StringRef(BlobStart, BlobLen - 1) }; PCHPredefinesBuffers.push_back(Block); } break; } case SM_SLOC_EXPANSION_ENTRY: { SourceLocation SpellingLoc = ReadSourceLocation(*F, Record[1]); SourceMgr.createExpansionLoc(SpellingLoc, ReadSourceLocation(*F, Record[2]), ReadSourceLocation(*F, Record[3]), Record[4], ID, BaseOffset + Record[0]); break; } } return Success; } /// \brief Find the location where the module F is imported. SourceLocation ASTReader::getImportLocation(ModuleFile *F) { if (F->ImportLoc.isValid()) return F->ImportLoc; // Otherwise we have a PCH. It's considered to be "imported" at the first // location of its includer. if (F->ImportedBy.empty() || !F->ImportedBy[0]) { // Main file is the importer. We assume that it is the first entry in the // entry table. We can't ask the manager, because at the time of PCH loading // the main file entry doesn't exist yet. // The very first entry is the invalid instantiation loc, which takes up // offsets 0 and 1. return SourceLocation::getFromRawEncoding(2U); } //return F->Loaders[0]->FirstLoc; return F->ImportedBy[0]->FirstLoc; } /// ReadBlockAbbrevs - Enter a subblock of the specified BlockID with the /// specified cursor. Read the abbreviations that are at the top of the block /// and then leave the cursor pointing into the block. bool ASTReader::ReadBlockAbbrevs(llvm::BitstreamCursor &Cursor, unsigned BlockID) { if (Cursor.EnterSubBlock(BlockID)) { Error("malformed block record in AST file"); return Failure; } while (true) { uint64_t Offset = Cursor.GetCurrentBitNo(); unsigned Code = Cursor.ReadCode(); // We expect all abbrevs to be at the start of the block. if (Code != llvm::bitc::DEFINE_ABBREV) { Cursor.JumpToBit(Offset); return false; } Cursor.ReadAbbrevRecord(); } } void ASTReader::ReadMacroRecord(ModuleFile &F, uint64_t Offset) { llvm::BitstreamCursor &Stream = F.MacroCursor; // Keep track of where we are in the stream, then jump back there // after reading this macro. SavedStreamPosition SavedPosition(Stream); Stream.JumpToBit(Offset); RecordData Record; SmallVector MacroArgs; MacroInfo *Macro = 0; while (true) { unsigned Code = Stream.ReadCode(); switch (Code) { case llvm::bitc::END_BLOCK: return; case llvm::bitc::ENTER_SUBBLOCK: // No known subblocks, always skip them. Stream.ReadSubBlockID(); if (Stream.SkipBlock()) { Error("malformed block record in AST file"); return; } continue; case llvm::bitc::DEFINE_ABBREV: Stream.ReadAbbrevRecord(); continue; default: break; } // Read a record. const char *BlobStart = 0; unsigned BlobLen = 0; Record.clear(); PreprocessorRecordTypes RecType = (PreprocessorRecordTypes)Stream.ReadRecord(Code, Record, BlobStart, BlobLen); switch (RecType) { case PP_MACRO_OBJECT_LIKE: case PP_MACRO_FUNCTION_LIKE: { // If we already have a macro, that means that we've hit the end // of the definition of the macro we were looking for. We're // done. if (Macro) return; IdentifierInfo *II = getLocalIdentifier(F, Record[0]); if (II == 0) { Error("macro must have a name in AST file"); return; } SourceLocation Loc = ReadSourceLocation(F, Record[1]); bool isUsed = Record[2]; MacroInfo *MI = PP.AllocateMacroInfo(Loc); MI->setIsUsed(isUsed); MI->setIsFromAST(); bool IsPublic = Record[3]; unsigned NextIndex = 4; MI->setVisibility(IsPublic, ReadSourceLocation(F, Record, NextIndex)); if (RecType == PP_MACRO_FUNCTION_LIKE) { // Decode function-like macro info. bool isC99VarArgs = Record[NextIndex++]; bool isGNUVarArgs = Record[NextIndex++]; MacroArgs.clear(); unsigned NumArgs = Record[NextIndex++]; for (unsigned i = 0; i != NumArgs; ++i) MacroArgs.push_back(getLocalIdentifier(F, Record[NextIndex++])); // Install function-like macro info. MI->setIsFunctionLike(); if (isC99VarArgs) MI->setIsC99Varargs(); if (isGNUVarArgs) MI->setIsGNUVarargs(); MI->setArgumentList(MacroArgs.data(), MacroArgs.size(), PP.getPreprocessorAllocator()); } // Finally, install the macro. PP.setMacroInfo(II, MI, /*LoadedFromAST=*/true); // Remember that we saw this macro last so that we add the tokens that // form its body to it. Macro = MI; if (NextIndex + 1 == Record.size() && PP.getPreprocessingRecord() && Record[NextIndex]) { // We have a macro definition. Register the association PreprocessedEntityID GlobalID = getGlobalPreprocessedEntityID(F, Record[NextIndex]); PreprocessingRecord &PPRec = *PP.getPreprocessingRecord(); PPRec.RegisterMacroDefinition(Macro, PPRec.getPPEntityID(GlobalID-1, /*isLoaded=*/true)); } ++NumMacrosRead; break; } case PP_TOKEN: { // If we see a TOKEN before a PP_MACRO_*, then the file is // erroneous, just pretend we didn't see this. if (Macro == 0) break; Token Tok; Tok.startToken(); Tok.setLocation(ReadSourceLocation(F, Record[0])); Tok.setLength(Record[1]); if (IdentifierInfo *II = getLocalIdentifier(F, Record[2])) Tok.setIdentifierInfo(II); Tok.setKind((tok::TokenKind)Record[3]); Tok.setFlag((Token::TokenFlags)Record[4]); Macro->AddTokenToBody(Tok); break; } } } } PreprocessedEntityID ASTReader::getGlobalPreprocessedEntityID(ModuleFile &M, unsigned LocalID) const { ContinuousRangeMap::const_iterator I = M.PreprocessedEntityRemap.find(LocalID - NUM_PREDEF_PP_ENTITY_IDS); assert(I != M.PreprocessedEntityRemap.end() && "Invalid index into preprocessed entity index remap"); return LocalID + I->second; } unsigned HeaderFileInfoTrait::ComputeHash(const char *path) { return llvm::HashString(llvm::sys::path::filename(path)); } HeaderFileInfoTrait::internal_key_type HeaderFileInfoTrait::GetInternalKey(const char *path) { return path; } bool HeaderFileInfoTrait::EqualKey(internal_key_type a, internal_key_type b) { if (strcmp(a, b) == 0) return true; if (llvm::sys::path::filename(a) != llvm::sys::path::filename(b)) return false; // Determine whether the actual files are equivalent. bool Result = false; if (llvm::sys::fs::equivalent(a, b, Result)) return false; return Result; } std::pair HeaderFileInfoTrait::ReadKeyDataLength(const unsigned char*& d) { unsigned KeyLen = (unsigned) clang::io::ReadUnalignedLE16(d); unsigned DataLen = (unsigned) *d++; return std::make_pair(KeyLen + 1, DataLen); } HeaderFileInfoTrait::data_type HeaderFileInfoTrait::ReadData(const internal_key_type, const unsigned char *d, unsigned DataLen) { const unsigned char *End = d + DataLen; using namespace clang::io; HeaderFileInfo HFI; unsigned Flags = *d++; HFI.isImport = (Flags >> 5) & 0x01; HFI.isPragmaOnce = (Flags >> 4) & 0x01; HFI.DirInfo = (Flags >> 2) & 0x03; HFI.Resolved = (Flags >> 1) & 0x01; HFI.IndexHeaderMapHeader = Flags & 0x01; HFI.NumIncludes = ReadUnalignedLE16(d); HFI.ControllingMacroID = Reader.getGlobalIdentifierID(M, ReadUnalignedLE32(d)); if (unsigned FrameworkOffset = ReadUnalignedLE32(d)) { // The framework offset is 1 greater than the actual offset, // since 0 is used as an indicator for "no framework name". StringRef FrameworkName(FrameworkStrings + FrameworkOffset - 1); HFI.Framework = HS->getUniqueFrameworkName(FrameworkName); } assert(End == d && "Wrong data length in HeaderFileInfo deserialization"); (void)End; // This HeaderFileInfo was externally loaded. HFI.External = true; return HFI; } void ASTReader::setIdentifierIsMacro(IdentifierInfo *II, ModuleFile &F, uint64_t LocalOffset, bool Visible) { if (Visible) { // Note that this identifier has a macro definition. II->setHasMacroDefinition(true); } // Adjust the offset to a global offset. UnreadMacroRecordOffsets[II] = F.GlobalBitOffset + LocalOffset; } void ASTReader::ReadDefinedMacros() { for (ModuleReverseIterator I = ModuleMgr.rbegin(), E = ModuleMgr.rend(); I != E; ++I) { llvm::BitstreamCursor &MacroCursor = (*I)->MacroCursor; // If there was no preprocessor block, skip this file. if (!MacroCursor.getBitStreamReader()) continue; llvm::BitstreamCursor Cursor = MacroCursor; Cursor.JumpToBit((*I)->MacroStartOffset); RecordData Record; while (true) { unsigned Code = Cursor.ReadCode(); if (Code == llvm::bitc::END_BLOCK) break; if (Code == llvm::bitc::ENTER_SUBBLOCK) { // No known subblocks, always skip them. Cursor.ReadSubBlockID(); if (Cursor.SkipBlock()) { Error("malformed block record in AST file"); return; } continue; } if (Code == llvm::bitc::DEFINE_ABBREV) { Cursor.ReadAbbrevRecord(); continue; } // Read a record. const char *BlobStart; unsigned BlobLen; Record.clear(); switch (Cursor.ReadRecord(Code, Record, &BlobStart, &BlobLen)) { default: // Default behavior: ignore. break; case PP_MACRO_OBJECT_LIKE: case PP_MACRO_FUNCTION_LIKE: getLocalIdentifier(**I, Record[0]); break; case PP_TOKEN: // Ignore tokens. break; } } } // Drain the unread macro-record offsets map. while (!UnreadMacroRecordOffsets.empty()) LoadMacroDefinition(UnreadMacroRecordOffsets.begin()); } void ASTReader::LoadMacroDefinition( llvm::DenseMap::iterator Pos) { assert(Pos != UnreadMacroRecordOffsets.end() && "Unknown macro definition"); uint64_t Offset = Pos->second; UnreadMacroRecordOffsets.erase(Pos); RecordLocation Loc = getLocalBitOffset(Offset); ReadMacroRecord(*Loc.F, Loc.Offset); } void ASTReader::LoadMacroDefinition(IdentifierInfo *II) { llvm::DenseMap::iterator Pos = UnreadMacroRecordOffsets.find(II); LoadMacroDefinition(Pos); } namespace { /// \brief Visitor class used to look up identifirs in an AST file. class IdentifierLookupVisitor { StringRef Name; unsigned PriorGeneration; IdentifierInfo *Found; public: IdentifierLookupVisitor(StringRef Name, unsigned PriorGeneration) : Name(Name), PriorGeneration(PriorGeneration), Found() { } static bool visit(ModuleFile &M, void *UserData) { IdentifierLookupVisitor *This = static_cast(UserData); // If we've already searched this module file, skip it now. if (M.Generation <= This->PriorGeneration) return true; ASTIdentifierLookupTable *IdTable = (ASTIdentifierLookupTable *)M.IdentifierLookupTable; if (!IdTable) return false; ASTIdentifierLookupTrait Trait(IdTable->getInfoObj().getReader(), M, This->Found); std::pair Key(This->Name.begin(), This->Name.size()); ASTIdentifierLookupTable::iterator Pos = IdTable->find(Key, &Trait); if (Pos == IdTable->end()) return false; // Dereferencing the iterator has the effect of building the // IdentifierInfo node and populating it with the various // declarations it needs. This->Found = *Pos; return true; } // \brief Retrieve the identifier info found within the module // files. IdentifierInfo *getIdentifierInfo() const { return Found; } }; } void ASTReader::updateOutOfDateIdentifier(IdentifierInfo &II) { unsigned PriorGeneration = 0; if (getContext().getLangOpts().Modules) PriorGeneration = IdentifierGeneration[&II]; IdentifierLookupVisitor Visitor(II.getName(), PriorGeneration); ModuleMgr.visit(IdentifierLookupVisitor::visit, &Visitor); markIdentifierUpToDate(&II); } void ASTReader::markIdentifierUpToDate(IdentifierInfo *II) { if (!II) return; II->setOutOfDate(false); // Update the generation for this identifier. if (getContext().getLangOpts().Modules) IdentifierGeneration[II] = CurrentGeneration; } const FileEntry *ASTReader::getFileEntry(StringRef filenameStrRef) { std::string Filename = filenameStrRef; MaybeAddSystemRootToFilename(Filename); const FileEntry *File = FileMgr.getFile(Filename); if (File == 0 && !OriginalDir.empty() && !CurrentDir.empty() && OriginalDir != CurrentDir) { std::string resolved = resolveFileRelativeToOriginalDir(Filename, OriginalDir, CurrentDir); if (!resolved.empty()) File = FileMgr.getFile(resolved); } return File; } /// \brief If we are loading a relocatable PCH file, and the filename is /// not an absolute path, add the system root to the beginning of the file /// name. void ASTReader::MaybeAddSystemRootToFilename(std::string &Filename) { // If this is not a relocatable PCH file, there's nothing to do. if (!RelocatablePCH) return; if (Filename.empty() || llvm::sys::path::is_absolute(Filename)) return; if (isysroot.empty()) { // If no system root was given, default to '/' Filename.insert(Filename.begin(), '/'); return; } unsigned Length = isysroot.size(); if (isysroot[Length - 1] != '/') Filename.insert(Filename.begin(), '/'); Filename.insert(Filename.begin(), isysroot.begin(), isysroot.end()); } ASTReader::ASTReadResult ASTReader::ReadASTBlock(ModuleFile &F) { llvm::BitstreamCursor &Stream = F.Stream; if (Stream.EnterSubBlock(AST_BLOCK_ID)) { Error("malformed block record in AST file"); return Failure; } // Read all of the records and blocks for the ASt file. RecordData Record; while (!Stream.AtEndOfStream()) { unsigned Code = Stream.ReadCode(); if (Code == llvm::bitc::END_BLOCK) { if (Stream.ReadBlockEnd()) { Error("error at end of module block in AST file"); return Failure; } return Success; } if (Code == llvm::bitc::ENTER_SUBBLOCK) { switch (Stream.ReadSubBlockID()) { case DECLTYPES_BLOCK_ID: // We lazily load the decls block, but we want to set up the // DeclsCursor cursor to point into it. Clone our current bitcode // cursor to it, enter the block and read the abbrevs in that block. // With the main cursor, we just skip over it. F.DeclsCursor = Stream; if (Stream.SkipBlock() || // Skip with the main cursor. // Read the abbrevs. ReadBlockAbbrevs(F.DeclsCursor, DECLTYPES_BLOCK_ID)) { Error("malformed block record in AST file"); return Failure; } break; case DECL_UPDATES_BLOCK_ID: if (Stream.SkipBlock()) { Error("malformed block record in AST file"); return Failure; } break; case PREPROCESSOR_BLOCK_ID: F.MacroCursor = Stream; if (!PP.getExternalSource()) PP.setExternalSource(this); if (Stream.SkipBlock() || ReadBlockAbbrevs(F.MacroCursor, PREPROCESSOR_BLOCK_ID)) { Error("malformed block record in AST file"); return Failure; } F.MacroStartOffset = F.MacroCursor.GetCurrentBitNo(); break; case PREPROCESSOR_DETAIL_BLOCK_ID: F.PreprocessorDetailCursor = Stream; if (Stream.SkipBlock() || ReadBlockAbbrevs(F.PreprocessorDetailCursor, PREPROCESSOR_DETAIL_BLOCK_ID)) { Error("malformed preprocessor detail record in AST file"); return Failure; } F.PreprocessorDetailStartOffset = F.PreprocessorDetailCursor.GetCurrentBitNo(); if (!PP.getPreprocessingRecord()) PP.createPreprocessingRecord(/*RecordConditionalDirectives=*/false); if (!PP.getPreprocessingRecord()->getExternalSource()) PP.getPreprocessingRecord()->SetExternalSource(*this); break; case SOURCE_MANAGER_BLOCK_ID: switch (ReadSourceManagerBlock(F)) { case Success: break; case Failure: Error("malformed source manager block in AST file"); return Failure; case IgnorePCH: return IgnorePCH; } break; case SUBMODULE_BLOCK_ID: switch (ReadSubmoduleBlock(F)) { case Success: break; case Failure: Error("malformed submodule block in AST file"); return Failure; case IgnorePCH: return IgnorePCH; } break; default: if (!Stream.SkipBlock()) break; Error("malformed block record in AST file"); return Failure; } continue; } if (Code == llvm::bitc::DEFINE_ABBREV) { Stream.ReadAbbrevRecord(); continue; } // Read and process a record. Record.clear(); const char *BlobStart = 0; unsigned BlobLen = 0; switch ((ASTRecordTypes)Stream.ReadRecord(Code, Record, &BlobStart, &BlobLen)) { default: // Default behavior: ignore. break; case METADATA: { if (Record[0] != VERSION_MAJOR && !DisableValidation) { Diag(Record[0] < VERSION_MAJOR? diag::warn_pch_version_too_old : diag::warn_pch_version_too_new); return IgnorePCH; } bool hasErrors = Record[5]; if (hasErrors && !DisableValidation && !AllowASTWithCompilerErrors) { Diag(diag::err_pch_with_compiler_errors); return IgnorePCH; } RelocatablePCH = Record[4]; if (Listener) { std::string TargetTriple(BlobStart, BlobLen); if (Listener->ReadTargetTriple(TargetTriple)) return IgnorePCH; } break; } case IMPORTS: { // Load each of the imported PCH files. unsigned Idx = 0, N = Record.size(); while (Idx < N) { // Read information about the AST file. ModuleKind ImportedKind = (ModuleKind)Record[Idx++]; unsigned Length = Record[Idx++]; SmallString<128> ImportedFile(Record.begin() + Idx, Record.begin() + Idx + Length); Idx += Length; // Load the AST file. switch(ReadASTCore(ImportedFile, ImportedKind, &F)) { case Failure: return Failure; // If we have to ignore the dependency, we'll have to ignore this too. case IgnorePCH: return IgnorePCH; case Success: break; } } break; } case TYPE_OFFSET: { if (F.LocalNumTypes != 0) { Error("duplicate TYPE_OFFSET record in AST file"); return Failure; } F.TypeOffsets = (const uint32_t *)BlobStart; F.LocalNumTypes = Record[0]; unsigned LocalBaseTypeIndex = Record[1]; F.BaseTypeIndex = getTotalNumTypes(); if (F.LocalNumTypes > 0) { // Introduce the global -> local mapping for types within this module. GlobalTypeMap.insert(std::make_pair(getTotalNumTypes(), &F)); // Introduce the local -> global mapping for types within this module. F.TypeRemap.insertOrReplace( std::make_pair(LocalBaseTypeIndex, F.BaseTypeIndex - LocalBaseTypeIndex)); TypesLoaded.resize(TypesLoaded.size() + F.LocalNumTypes); } break; } case DECL_OFFSET: { if (F.LocalNumDecls != 0) { Error("duplicate DECL_OFFSET record in AST file"); return Failure; } F.DeclOffsets = (const DeclOffset *)BlobStart; F.LocalNumDecls = Record[0]; unsigned LocalBaseDeclID = Record[1]; F.BaseDeclID = getTotalNumDecls(); if (F.LocalNumDecls > 0) { // Introduce the global -> local mapping for declarations within this // module. GlobalDeclMap.insert( std::make_pair(getTotalNumDecls() + NUM_PREDEF_DECL_IDS, &F)); // Introduce the local -> global mapping for declarations within this // module. F.DeclRemap.insertOrReplace( std::make_pair(LocalBaseDeclID, F.BaseDeclID - LocalBaseDeclID)); // Introduce the global -> local mapping for declarations within this // module. F.GlobalToLocalDeclIDs[&F] = LocalBaseDeclID; DeclsLoaded.resize(DeclsLoaded.size() + F.LocalNumDecls); } break; } case TU_UPDATE_LEXICAL: { DeclContext *TU = Context.getTranslationUnitDecl(); DeclContextInfo &Info = F.DeclContextInfos[TU]; Info.LexicalDecls = reinterpret_cast(BlobStart); Info.NumLexicalDecls = static_cast(BlobLen / sizeof(KindDeclIDPair)); TU->setHasExternalLexicalStorage(true); break; } case UPDATE_VISIBLE: { unsigned Idx = 0; serialization::DeclID ID = ReadDeclID(F, Record, Idx); ASTDeclContextNameLookupTable *Table = ASTDeclContextNameLookupTable::Create( (const unsigned char *)BlobStart + Record[Idx++], (const unsigned char *)BlobStart, ASTDeclContextNameLookupTrait(*this, F)); if (ID == PREDEF_DECL_TRANSLATION_UNIT_ID) { // Is it the TU? DeclContext *TU = Context.getTranslationUnitDecl(); F.DeclContextInfos[TU].NameLookupTableData = Table; TU->setHasExternalVisibleStorage(true); } else PendingVisibleUpdates[ID].push_back(std::make_pair(Table, &F)); break; } case LANGUAGE_OPTIONS: if (ParseLanguageOptions(Record) && !DisableValidation) return IgnorePCH; break; case IDENTIFIER_TABLE: F.IdentifierTableData = BlobStart; if (Record[0]) { F.IdentifierLookupTable = ASTIdentifierLookupTable::Create( (const unsigned char *)F.IdentifierTableData + Record[0], (const unsigned char *)F.IdentifierTableData, ASTIdentifierLookupTrait(*this, F)); PP.getIdentifierTable().setExternalIdentifierLookup(this); } break; case IDENTIFIER_OFFSET: { if (F.LocalNumIdentifiers != 0) { Error("duplicate IDENTIFIER_OFFSET record in AST file"); return Failure; } F.IdentifierOffsets = (const uint32_t *)BlobStart; F.LocalNumIdentifiers = Record[0]; unsigned LocalBaseIdentifierID = Record[1]; F.BaseIdentifierID = getTotalNumIdentifiers(); if (F.LocalNumIdentifiers > 0) { // Introduce the global -> local mapping for identifiers within this // module. GlobalIdentifierMap.insert(std::make_pair(getTotalNumIdentifiers() + 1, &F)); // Introduce the local -> global mapping for identifiers within this // module. F.IdentifierRemap.insertOrReplace( std::make_pair(LocalBaseIdentifierID, F.BaseIdentifierID - LocalBaseIdentifierID)); IdentifiersLoaded.resize(IdentifiersLoaded.size() + F.LocalNumIdentifiers); } break; } case EXTERNAL_DEFINITIONS: for (unsigned I = 0, N = Record.size(); I != N; ++I) ExternalDefinitions.push_back(getGlobalDeclID(F, Record[I])); break; case SPECIAL_TYPES: for (unsigned I = 0, N = Record.size(); I != N; ++I) SpecialTypes.push_back(getGlobalTypeID(F, Record[I])); break; case STATISTICS: TotalNumStatements += Record[0]; TotalNumMacros += Record[1]; TotalLexicalDeclContexts += Record[2]; TotalVisibleDeclContexts += Record[3]; break; case UNUSED_FILESCOPED_DECLS: for (unsigned I = 0, N = Record.size(); I != N; ++I) UnusedFileScopedDecls.push_back(getGlobalDeclID(F, Record[I])); break; case DELEGATING_CTORS: for (unsigned I = 0, N = Record.size(); I != N; ++I) DelegatingCtorDecls.push_back(getGlobalDeclID(F, Record[I])); break; case WEAK_UNDECLARED_IDENTIFIERS: if (Record.size() % 4 != 0) { Error("invalid weak identifiers record"); return Failure; } // FIXME: Ignore weak undeclared identifiers from non-original PCH // files. This isn't the way to do it :) WeakUndeclaredIdentifiers.clear(); // Translate the weak, undeclared identifiers into global IDs. for (unsigned I = 0, N = Record.size(); I < N; /* in loop */) { WeakUndeclaredIdentifiers.push_back( getGlobalIdentifierID(F, Record[I++])); WeakUndeclaredIdentifiers.push_back( getGlobalIdentifierID(F, Record[I++])); WeakUndeclaredIdentifiers.push_back( ReadSourceLocation(F, Record, I).getRawEncoding()); WeakUndeclaredIdentifiers.push_back(Record[I++]); } break; case LOCALLY_SCOPED_EXTERNAL_DECLS: for (unsigned I = 0, N = Record.size(); I != N; ++I) LocallyScopedExternalDecls.push_back(getGlobalDeclID(F, Record[I])); break; case SELECTOR_OFFSETS: { F.SelectorOffsets = (const uint32_t *)BlobStart; F.LocalNumSelectors = Record[0]; unsigned LocalBaseSelectorID = Record[1]; F.BaseSelectorID = getTotalNumSelectors(); if (F.LocalNumSelectors > 0) { // Introduce the global -> local mapping for selectors within this // module. GlobalSelectorMap.insert(std::make_pair(getTotalNumSelectors()+1, &F)); // Introduce the local -> global mapping for selectors within this // module. F.SelectorRemap.insertOrReplace( std::make_pair(LocalBaseSelectorID, F.BaseSelectorID - LocalBaseSelectorID)); SelectorsLoaded.resize(SelectorsLoaded.size() + F.LocalNumSelectors); } break; } case METHOD_POOL: F.SelectorLookupTableData = (const unsigned char *)BlobStart; if (Record[0]) F.SelectorLookupTable = ASTSelectorLookupTable::Create( F.SelectorLookupTableData + Record[0], F.SelectorLookupTableData, ASTSelectorLookupTrait(*this, F)); TotalNumMethodPoolEntries += Record[1]; break; case REFERENCED_SELECTOR_POOL: if (!Record.empty()) { for (unsigned Idx = 0, N = Record.size() - 1; Idx < N; /* in loop */) { ReferencedSelectorsData.push_back(getGlobalSelectorID(F, Record[Idx++])); ReferencedSelectorsData.push_back(ReadSourceLocation(F, Record, Idx). getRawEncoding()); } } break; case PP_COUNTER_VALUE: if (!Record.empty() && Listener) Listener->ReadCounter(Record[0]); break; case FILE_SORTED_DECLS: F.FileSortedDecls = (const DeclID *)BlobStart; break; case SOURCE_LOCATION_OFFSETS: { F.SLocEntryOffsets = (const uint32_t *)BlobStart; F.LocalNumSLocEntries = Record[0]; unsigned SLocSpaceSize = Record[1]; llvm::tie(F.SLocEntryBaseID, F.SLocEntryBaseOffset) = SourceMgr.AllocateLoadedSLocEntries(F.LocalNumSLocEntries, SLocSpaceSize); // Make our entry in the range map. BaseID is negative and growing, so // we invert it. Because we invert it, though, we need the other end of // the range. unsigned RangeStart = unsigned(-F.SLocEntryBaseID) - F.LocalNumSLocEntries + 1; GlobalSLocEntryMap.insert(std::make_pair(RangeStart, &F)); F.FirstLoc = SourceLocation::getFromRawEncoding(F.SLocEntryBaseOffset); // SLocEntryBaseOffset is lower than MaxLoadedOffset and decreasing. assert((F.SLocEntryBaseOffset & (1U << 31U)) == 0); GlobalSLocOffsetMap.insert( std::make_pair(SourceManager::MaxLoadedOffset - F.SLocEntryBaseOffset - SLocSpaceSize,&F)); // Initialize the remapping table. // Invalid stays invalid. F.SLocRemap.insert(std::make_pair(0U, 0)); // This module. Base was 2 when being compiled. F.SLocRemap.insert(std::make_pair(2U, static_cast(F.SLocEntryBaseOffset - 2))); TotalNumSLocEntries += F.LocalNumSLocEntries; break; } case MODULE_OFFSET_MAP: { // Additional remapping information. const unsigned char *Data = (const unsigned char*)BlobStart; const unsigned char *DataEnd = Data + BlobLen; // Continuous range maps we may be updating in our module. ContinuousRangeMap::Builder SLocRemap(F.SLocRemap); ContinuousRangeMap::Builder IdentifierRemap(F.IdentifierRemap); ContinuousRangeMap::Builder PreprocessedEntityRemap(F.PreprocessedEntityRemap); ContinuousRangeMap::Builder SubmoduleRemap(F.SubmoduleRemap); ContinuousRangeMap::Builder SelectorRemap(F.SelectorRemap); ContinuousRangeMap::Builder DeclRemap(F.DeclRemap); ContinuousRangeMap::Builder TypeRemap(F.TypeRemap); while(Data < DataEnd) { uint16_t Len = io::ReadUnalignedLE16(Data); StringRef Name = StringRef((const char*)Data, Len); Data += Len; ModuleFile *OM = ModuleMgr.lookup(Name); if (!OM) { Error("SourceLocation remap refers to unknown module"); return Failure; } uint32_t SLocOffset = io::ReadUnalignedLE32(Data); uint32_t IdentifierIDOffset = io::ReadUnalignedLE32(Data); uint32_t PreprocessedEntityIDOffset = io::ReadUnalignedLE32(Data); uint32_t SubmoduleIDOffset = io::ReadUnalignedLE32(Data); uint32_t SelectorIDOffset = io::ReadUnalignedLE32(Data); uint32_t DeclIDOffset = io::ReadUnalignedLE32(Data); uint32_t TypeIndexOffset = io::ReadUnalignedLE32(Data); // Source location offset is mapped to OM->SLocEntryBaseOffset. SLocRemap.insert(std::make_pair(SLocOffset, static_cast(OM->SLocEntryBaseOffset - SLocOffset))); IdentifierRemap.insert( std::make_pair(IdentifierIDOffset, OM->BaseIdentifierID - IdentifierIDOffset)); PreprocessedEntityRemap.insert( std::make_pair(PreprocessedEntityIDOffset, OM->BasePreprocessedEntityID - PreprocessedEntityIDOffset)); SubmoduleRemap.insert(std::make_pair(SubmoduleIDOffset, OM->BaseSubmoduleID - SubmoduleIDOffset)); SelectorRemap.insert(std::make_pair(SelectorIDOffset, OM->BaseSelectorID - SelectorIDOffset)); DeclRemap.insert(std::make_pair(DeclIDOffset, OM->BaseDeclID - DeclIDOffset)); TypeRemap.insert(std::make_pair(TypeIndexOffset, OM->BaseTypeIndex - TypeIndexOffset)); // Global -> local mappings. F.GlobalToLocalDeclIDs[OM] = DeclIDOffset; } break; } case SOURCE_MANAGER_LINE_TABLE: if (ParseLineTable(F, Record)) return Failure; break; case FILE_SOURCE_LOCATION_OFFSETS: F.SLocFileOffsets = (const uint32_t *)BlobStart; F.LocalNumSLocFileEntries = Record[0]; break; case SOURCE_LOCATION_PRELOADS: { // Need to transform from the local view (1-based IDs) to the global view, // which is based off F.SLocEntryBaseID. if (!F.PreloadSLocEntries.empty()) { Error("Multiple SOURCE_LOCATION_PRELOADS records in AST file"); return Failure; } F.PreloadSLocEntries.swap(Record); break; } case STAT_CACHE: { if (!DisableStatCache) { ASTStatCache *MyStatCache = new ASTStatCache((const unsigned char *)BlobStart + Record[0], (const unsigned char *)BlobStart, NumStatHits, NumStatMisses); FileMgr.addStatCache(MyStatCache); F.StatCache = MyStatCache; } break; } case EXT_VECTOR_DECLS: for (unsigned I = 0, N = Record.size(); I != N; ++I) ExtVectorDecls.push_back(getGlobalDeclID(F, Record[I])); break; case VTABLE_USES: if (Record.size() % 3 != 0) { Error("Invalid VTABLE_USES record"); return Failure; } // Later tables overwrite earlier ones. // FIXME: Modules will have some trouble with this. This is clearly not // the right way to do this. VTableUses.clear(); for (unsigned Idx = 0, N = Record.size(); Idx != N; /* In loop */) { VTableUses.push_back(getGlobalDeclID(F, Record[Idx++])); VTableUses.push_back( ReadSourceLocation(F, Record, Idx).getRawEncoding()); VTableUses.push_back(Record[Idx++]); } break; case DYNAMIC_CLASSES: for (unsigned I = 0, N = Record.size(); I != N; ++I) DynamicClasses.push_back(getGlobalDeclID(F, Record[I])); break; case PENDING_IMPLICIT_INSTANTIATIONS: if (PendingInstantiations.size() % 2 != 0) { Error("Invalid PENDING_IMPLICIT_INSTANTIATIONS block"); return Failure; } // Later lists of pending instantiations overwrite earlier ones. // FIXME: This is most certainly wrong for modules. PendingInstantiations.clear(); for (unsigned I = 0, N = Record.size(); I != N; /* in loop */) { PendingInstantiations.push_back(getGlobalDeclID(F, Record[I++])); PendingInstantiations.push_back( ReadSourceLocation(F, Record, I).getRawEncoding()); } break; case SEMA_DECL_REFS: // Later tables overwrite earlier ones. // FIXME: Modules will have some trouble with this. SemaDeclRefs.clear(); for (unsigned I = 0, N = Record.size(); I != N; ++I) SemaDeclRefs.push_back(getGlobalDeclID(F, Record[I])); break; case ORIGINAL_FILE_NAME: // The primary AST will be the last to get here, so it will be the one // that's used. ActualOriginalFileName.assign(BlobStart, BlobLen); OriginalFileName = ActualOriginalFileName; MaybeAddSystemRootToFilename(OriginalFileName); break; case ORIGINAL_FILE_ID: OriginalFileID = FileID::get(Record[0]); break; case ORIGINAL_PCH_DIR: // The primary AST will be the last to get here, so it will be the one // that's used. OriginalDir.assign(BlobStart, BlobLen); break; case VERSION_CONTROL_BRANCH_REVISION: { const std::string &CurBranch = getClangFullRepositoryVersion(); StringRef ASTBranch(BlobStart, BlobLen); if (StringRef(CurBranch) != ASTBranch && !DisableValidation) { Diag(diag::warn_pch_different_branch) << ASTBranch << CurBranch; return IgnorePCH; } break; } case PPD_ENTITIES_OFFSETS: { F.PreprocessedEntityOffsets = (const PPEntityOffset *)BlobStart; assert(BlobLen % sizeof(PPEntityOffset) == 0); F.NumPreprocessedEntities = BlobLen / sizeof(PPEntityOffset); unsigned LocalBasePreprocessedEntityID = Record[0]; unsigned StartingID; if (!PP.getPreprocessingRecord()) PP.createPreprocessingRecord(/*RecordConditionalDirectives=*/false); if (!PP.getPreprocessingRecord()->getExternalSource()) PP.getPreprocessingRecord()->SetExternalSource(*this); StartingID = PP.getPreprocessingRecord() ->allocateLoadedEntities(F.NumPreprocessedEntities); F.BasePreprocessedEntityID = StartingID; if (F.NumPreprocessedEntities > 0) { // Introduce the global -> local mapping for preprocessed entities in // this module. GlobalPreprocessedEntityMap.insert(std::make_pair(StartingID, &F)); // Introduce the local -> global mapping for preprocessed entities in // this module. F.PreprocessedEntityRemap.insertOrReplace( std::make_pair(LocalBasePreprocessedEntityID, F.BasePreprocessedEntityID - LocalBasePreprocessedEntityID)); } break; } case DECL_UPDATE_OFFSETS: { if (Record.size() % 2 != 0) { Error("invalid DECL_UPDATE_OFFSETS block in AST file"); return Failure; } for (unsigned I = 0, N = Record.size(); I != N; I += 2) DeclUpdateOffsets[getGlobalDeclID(F, Record[I])] .push_back(std::make_pair(&F, Record[I+1])); break; } case DECL_REPLACEMENTS: { if (Record.size() % 3 != 0) { Error("invalid DECL_REPLACEMENTS block in AST file"); return Failure; } for (unsigned I = 0, N = Record.size(); I != N; I += 3) ReplacedDecls[getGlobalDeclID(F, Record[I])] = ReplacedDeclInfo(&F, Record[I+1], Record[I+2]); break; } case OBJC_CATEGORIES_MAP: { if (F.LocalNumObjCCategoriesInMap != 0) { Error("duplicate OBJC_CATEGORIES_MAP record in AST file"); return Failure; } F.LocalNumObjCCategoriesInMap = Record[0]; F.ObjCCategoriesMap = (const ObjCCategoriesInfo *)BlobStart; break; } case OBJC_CATEGORIES: F.ObjCCategories.swap(Record); break; case CXX_BASE_SPECIFIER_OFFSETS: { if (F.LocalNumCXXBaseSpecifiers != 0) { Error("duplicate CXX_BASE_SPECIFIER_OFFSETS record in AST file"); return Failure; } F.LocalNumCXXBaseSpecifiers = Record[0]; F.CXXBaseSpecifiersOffsets = (const uint32_t *)BlobStart; NumCXXBaseSpecifiersLoaded += F.LocalNumCXXBaseSpecifiers; break; } case DIAG_PRAGMA_MAPPINGS: if (Record.size() % 2 != 0) { Error("invalid DIAG_USER_MAPPINGS block in AST file"); return Failure; } if (F.PragmaDiagMappings.empty()) F.PragmaDiagMappings.swap(Record); else F.PragmaDiagMappings.insert(F.PragmaDiagMappings.end(), Record.begin(), Record.end()); break; case CUDA_SPECIAL_DECL_REFS: // Later tables overwrite earlier ones. // FIXME: Modules will have trouble with this. CUDASpecialDeclRefs.clear(); for (unsigned I = 0, N = Record.size(); I != N; ++I) CUDASpecialDeclRefs.push_back(getGlobalDeclID(F, Record[I])); break; case HEADER_SEARCH_TABLE: { F.HeaderFileInfoTableData = BlobStart; F.LocalNumHeaderFileInfos = Record[1]; F.HeaderFileFrameworkStrings = BlobStart + Record[2]; if (Record[0]) { F.HeaderFileInfoTable = HeaderFileInfoLookupTable::Create( (const unsigned char *)F.HeaderFileInfoTableData + Record[0], (const unsigned char *)F.HeaderFileInfoTableData, HeaderFileInfoTrait(*this, F, &PP.getHeaderSearchInfo(), BlobStart + Record[2])); PP.getHeaderSearchInfo().SetExternalSource(this); if (!PP.getHeaderSearchInfo().getExternalLookup()) PP.getHeaderSearchInfo().SetExternalLookup(this); } break; } case FP_PRAGMA_OPTIONS: // Later tables overwrite earlier ones. FPPragmaOptions.swap(Record); break; case OPENCL_EXTENSIONS: // Later tables overwrite earlier ones. OpenCLExtensions.swap(Record); break; case TENTATIVE_DEFINITIONS: for (unsigned I = 0, N = Record.size(); I != N; ++I) TentativeDefinitions.push_back(getGlobalDeclID(F, Record[I])); break; case KNOWN_NAMESPACES: for (unsigned I = 0, N = Record.size(); I != N; ++I) KnownNamespaces.push_back(getGlobalDeclID(F, Record[I])); break; case IMPORTED_MODULES: { if (F.Kind != MK_Module) { // If we aren't loading a module (which has its own exports), make // all of the imported modules visible. // FIXME: Deal with macros-only imports. for (unsigned I = 0, N = Record.size(); I != N; ++I) { if (unsigned GlobalID = getGlobalSubmoduleID(F, Record[I])) ImportedModules.push_back(GlobalID); } } break; } case LOCAL_REDECLARATIONS: { F.RedeclarationChains.swap(Record); break; } case LOCAL_REDECLARATIONS_MAP: { if (F.LocalNumRedeclarationsInMap != 0) { Error("duplicate LOCAL_REDECLARATIONS_MAP record in AST file"); return Failure; } F.LocalNumRedeclarationsInMap = Record[0]; F.RedeclarationsMap = (const LocalRedeclarationsInfo *)BlobStart; break; } case MERGED_DECLARATIONS: { for (unsigned Idx = 0; Idx < Record.size(); /* increment in loop */) { GlobalDeclID CanonID = getGlobalDeclID(F, Record[Idx++]); SmallVectorImpl &Decls = StoredMergedDecls[CanonID]; for (unsigned N = Record[Idx++]; N > 0; --N) Decls.push_back(getGlobalDeclID(F, Record[Idx++])); } break; } } } Error("premature end of bitstream in AST file"); return Failure; } ASTReader::ASTReadResult ASTReader::validateFileEntries(ModuleFile &M) { llvm::BitstreamCursor &SLocEntryCursor = M.SLocEntryCursor; for (unsigned i = 0, e = M.LocalNumSLocFileEntries; i != e; ++i) { SLocEntryCursor.JumpToBit(M.SLocFileOffsets[i]); unsigned Code = SLocEntryCursor.ReadCode(); if (Code == llvm::bitc::END_BLOCK || Code == llvm::bitc::ENTER_SUBBLOCK || Code == llvm::bitc::DEFINE_ABBREV) { Error("incorrectly-formatted source location entry in AST file"); return Failure; } RecordData Record; const char *BlobStart; unsigned BlobLen; switch (SLocEntryCursor.ReadRecord(Code, Record, &BlobStart, &BlobLen)) { default: Error("incorrectly-formatted source location entry in AST file"); return Failure; case SM_SLOC_FILE_ENTRY: { // If the buffer was overridden, the file need not exist. if (Record[6]) break; StringRef Filename(BlobStart, BlobLen); const FileEntry *File = getFileEntry(Filename); if (File == 0) { std::string ErrorStr = "could not find file '"; ErrorStr += Filename; ErrorStr += "' referenced by AST file"; Error(ErrorStr.c_str()); return IgnorePCH; } if (Record.size() < 7) { Error("source location entry is incorrect"); return Failure; } // The stat info from the FileEntry came from the cached stat // info of the PCH, so we cannot trust it. struct stat StatBuf; if (::stat(File->getName(), &StatBuf) != 0) { StatBuf.st_size = File->getSize(); StatBuf.st_mtime = File->getModificationTime(); } if (((off_t)Record[4] != StatBuf.st_size #if !defined(LLVM_ON_WIN32) // In our regression testing, the Windows file system seems to // have inconsistent modification times that sometimes // erroneously trigger this error-handling path. || (time_t)Record[5] != StatBuf.st_mtime #endif )) { Error(diag::err_fe_pch_file_modified, Filename); return IgnorePCH; } break; } } } return Success; } void ASTReader::makeNamesVisible(const HiddenNames &Names) { for (unsigned I = 0, N = Names.size(); I != N; ++I) { if (Decl *D = Names[I].dyn_cast()) D->Hidden = false; else { IdentifierInfo *II = Names[I].get(); if (!II->hasMacroDefinition()) { II->setHasMacroDefinition(true); if (DeserializationListener) DeserializationListener->MacroVisible(II); } } } } void ASTReader::makeModuleVisible(Module *Mod, Module::NameVisibilityKind NameVisibility) { llvm::SmallPtrSet Visited; llvm::SmallVector Stack; Stack.push_back(Mod); while (!Stack.empty()) { Mod = Stack.back(); Stack.pop_back(); if (NameVisibility <= Mod->NameVisibility) { // This module already has this level of visibility (or greater), so // there is nothing more to do. continue; } if (!Mod->isAvailable()) { // Modules that aren't available cannot be made visible. continue; } // Update the module's name visibility. Mod->NameVisibility = NameVisibility; // If we've already deserialized any names from this module, // mark them as visible. HiddenNamesMapType::iterator Hidden = HiddenNamesMap.find(Mod); if (Hidden != HiddenNamesMap.end()) { makeNamesVisible(Hidden->second); HiddenNamesMap.erase(Hidden); } // Push any non-explicit submodules onto the stack to be marked as // visible. for (Module::submodule_iterator Sub = Mod->submodule_begin(), SubEnd = Mod->submodule_end(); Sub != SubEnd; ++Sub) { if (!(*Sub)->IsExplicit && Visited.insert(*Sub)) Stack.push_back(*Sub); } // Push any exported modules onto the stack to be marked as visible. bool AnyWildcard = false; bool UnrestrictedWildcard = false; llvm::SmallVector WildcardRestrictions; for (unsigned I = 0, N = Mod->Exports.size(); I != N; ++I) { Module *Exported = Mod->Exports[I].getPointer(); if (!Mod->Exports[I].getInt()) { // Export a named module directly; no wildcards involved. if (Visited.insert(Exported)) Stack.push_back(Exported); continue; } // Wildcard export: export all of the imported modules that match // the given pattern. AnyWildcard = true; if (UnrestrictedWildcard) continue; if (Module *Restriction = Mod->Exports[I].getPointer()) WildcardRestrictions.push_back(Restriction); else { WildcardRestrictions.clear(); UnrestrictedWildcard = true; } } // If there were any wildcards, push any imported modules that were // re-exported by the wildcard restriction. if (!AnyWildcard) continue; for (unsigned I = 0, N = Mod->Imports.size(); I != N; ++I) { Module *Imported = Mod->Imports[I]; if (Visited.count(Imported)) continue; bool Acceptable = UnrestrictedWildcard; if (!Acceptable) { // Check whether this module meets one of the restrictions. for (unsigned R = 0, NR = WildcardRestrictions.size(); R != NR; ++R) { Module *Restriction = WildcardRestrictions[R]; if (Imported == Restriction || Imported->isSubModuleOf(Restriction)) { Acceptable = true; break; } } } if (!Acceptable) continue; Visited.insert(Imported); Stack.push_back(Imported); } } } ASTReader::ASTReadResult ASTReader::ReadAST(const std::string &FileName, ModuleKind Type) { // Bump the generation number. unsigned PreviousGeneration = CurrentGeneration++; switch(ReadASTCore(FileName, Type, /*ImportedBy=*/0)) { case Failure: return Failure; case IgnorePCH: return IgnorePCH; case Success: break; } // Here comes stuff that we only do once the entire chain is loaded. // Check the predefines buffers. if (!DisableValidation && Type == MK_PCH && // FIXME: CheckPredefinesBuffers also sets the SuggestedPredefines; // if DisableValidation is true, defines that were set on command-line // but not in the PCH file will not be added to SuggestedPredefines. CheckPredefinesBuffers()) return IgnorePCH; // Mark all of the identifiers in the identifier table as being out of date, // so that various accessors know to check the loaded modules when the // identifier is used. for (IdentifierTable::iterator Id = PP.getIdentifierTable().begin(), IdEnd = PP.getIdentifierTable().end(); Id != IdEnd; ++Id) Id->second->setOutOfDate(true); // Resolve any unresolved module exports. for (unsigned I = 0, N = UnresolvedModuleImportExports.size(); I != N; ++I) { UnresolvedModuleImportExport &Unresolved = UnresolvedModuleImportExports[I]; SubmoduleID GlobalID = getGlobalSubmoduleID(*Unresolved.File,Unresolved.ID); Module *ResolvedMod = getSubmodule(GlobalID); if (Unresolved.IsImport) { if (ResolvedMod) Unresolved.Mod->Imports.push_back(ResolvedMod); continue; } if (ResolvedMod || Unresolved.IsWildcard) Unresolved.Mod->Exports.push_back( Module::ExportDecl(ResolvedMod, Unresolved.IsWildcard)); } UnresolvedModuleImportExports.clear(); InitializeContext(); if (DeserializationListener) DeserializationListener->ReaderInitialized(this); if (!OriginalFileID.isInvalid()) { OriginalFileID = FileID::get(ModuleMgr.getPrimaryModule().SLocEntryBaseID + OriginalFileID.getOpaqueValue() - 1); // If this AST file is a precompiled preamble, then set the preamble file ID // of the source manager to the file source file from which the preamble was // built. if (Type == MK_Preamble) { SourceMgr.setPreambleFileID(OriginalFileID); } else if (Type == MK_MainFile) { SourceMgr.setMainFileID(OriginalFileID); } } // For any Objective-C class definitions we have already loaded, make sure // that we load any additional categories. for (unsigned I = 0, N = ObjCClassesLoaded.size(); I != N; ++I) { loadObjCCategories(ObjCClassesLoaded[I]->getGlobalID(), ObjCClassesLoaded[I], PreviousGeneration); } return Success; } ASTReader::ASTReadResult ASTReader::ReadASTCore(StringRef FileName, ModuleKind Type, ModuleFile *ImportedBy) { ModuleFile *M; bool NewModule; std::string ErrorStr; llvm::tie(M, NewModule) = ModuleMgr.addModule(FileName, Type, ImportedBy, CurrentGeneration, ErrorStr); if (!M) { // We couldn't load the module. std::string Msg = "Unable to load module \"" + FileName.str() + "\": " + ErrorStr; Error(Msg); return Failure; } if (!NewModule) { // We've already loaded this module. return Success; } // FIXME: This seems rather a hack. Should CurrentDir be part of the // module? if (FileName != "-") { CurrentDir = llvm::sys::path::parent_path(FileName); if (CurrentDir.empty()) CurrentDir = "."; } ModuleFile &F = *M; llvm::BitstreamCursor &Stream = F.Stream; Stream.init(F.StreamFile); F.SizeInBits = F.Buffer->getBufferSize() * 8; // Sniff for the signature. if (Stream.Read(8) != 'C' || Stream.Read(8) != 'P' || Stream.Read(8) != 'C' || Stream.Read(8) != 'H') { Diag(diag::err_not_a_pch_file) << FileName; return Failure; } while (!Stream.AtEndOfStream()) { unsigned Code = Stream.ReadCode(); if (Code != llvm::bitc::ENTER_SUBBLOCK) { Error("invalid record at top-level of AST file"); return Failure; } unsigned BlockID = Stream.ReadSubBlockID(); // We only know the AST subblock ID. switch (BlockID) { case llvm::bitc::BLOCKINFO_BLOCK_ID: if (Stream.ReadBlockInfoBlock()) { Error("malformed BlockInfoBlock in AST file"); return Failure; } break; case AST_BLOCK_ID: switch (ReadASTBlock(F)) { case Success: break; case Failure: return Failure; case IgnorePCH: // FIXME: We could consider reading through to the end of this // AST block, skipping subblocks, to see if there are other // AST blocks elsewhere. // FIXME: We can't clear loaded slocentries anymore. //SourceMgr.ClearPreallocatedSLocEntries(); // Remove the stat cache. if (F.StatCache) FileMgr.removeStatCache((ASTStatCache*)F.StatCache); return IgnorePCH; } break; default: if (Stream.SkipBlock()) { Error("malformed block record in AST file"); return Failure; } break; } } // Once read, set the ModuleFile bit base offset and update the size in // bits of all files we've seen. F.GlobalBitOffset = TotalModulesSizeInBits; TotalModulesSizeInBits += F.SizeInBits; GlobalBitOffsetsMap.insert(std::make_pair(F.GlobalBitOffset, &F)); // Make sure that the files this module was built against are still available. if (!DisableValidation) { switch(validateFileEntries(*M)) { case Failure: return Failure; case IgnorePCH: return IgnorePCH; case Success: break; } } // Preload SLocEntries. for (unsigned I = 0, N = M->PreloadSLocEntries.size(); I != N; ++I) { int Index = int(M->PreloadSLocEntries[I] - 1) + F.SLocEntryBaseID; // Load it through the SourceManager and don't call ReadSLocEntryRecord() // directly because the entry may have already been loaded in which case // calling ReadSLocEntryRecord() directly would trigger an assertion in // SourceManager. SourceMgr.getLoadedSLocEntryByID(Index); } return Success; } void ASTReader::InitializeContext() { // If there's a listener, notify them that we "read" the translation unit. if (DeserializationListener) DeserializationListener->DeclRead(PREDEF_DECL_TRANSLATION_UNIT_ID, Context.getTranslationUnitDecl()); // Make sure we load the declaration update records for the translation unit, // if there are any. loadDeclUpdateRecords(PREDEF_DECL_TRANSLATION_UNIT_ID, Context.getTranslationUnitDecl()); // FIXME: Find a better way to deal with collisions between these // built-in types. Right now, we just ignore the problem. // Load the special types. if (SpecialTypes.size() >= NumSpecialTypeIDs) { if (Context.getBuiltinVaListType().isNull()) { Context.setBuiltinVaListType( GetType(SpecialTypes[SPECIAL_TYPE_BUILTIN_VA_LIST])); } if (unsigned String = SpecialTypes[SPECIAL_TYPE_CF_CONSTANT_STRING]) { if (!Context.CFConstantStringTypeDecl) Context.setCFConstantStringType(GetType(String)); } if (unsigned File = SpecialTypes[SPECIAL_TYPE_FILE]) { QualType FileType = GetType(File); if (FileType.isNull()) { Error("FILE type is NULL"); return; } if (!Context.FILEDecl) { if (const TypedefType *Typedef = FileType->getAs()) Context.setFILEDecl(Typedef->getDecl()); else { const TagType *Tag = FileType->getAs(); if (!Tag) { Error("Invalid FILE type in AST file"); return; } Context.setFILEDecl(Tag->getDecl()); } } } if (unsigned Jmp_buf = SpecialTypes[SPECIAL_TYPE_JMP_BUF]) { QualType Jmp_bufType = GetType(Jmp_buf); if (Jmp_bufType.isNull()) { Error("jmp_buf type is NULL"); return; } if (!Context.jmp_bufDecl) { if (const TypedefType *Typedef = Jmp_bufType->getAs()) Context.setjmp_bufDecl(Typedef->getDecl()); else { const TagType *Tag = Jmp_bufType->getAs(); if (!Tag) { Error("Invalid jmp_buf type in AST file"); return; } Context.setjmp_bufDecl(Tag->getDecl()); } } } if (unsigned Sigjmp_buf = SpecialTypes[SPECIAL_TYPE_SIGJMP_BUF]) { QualType Sigjmp_bufType = GetType(Sigjmp_buf); if (Sigjmp_bufType.isNull()) { Error("sigjmp_buf type is NULL"); return; } if (!Context.sigjmp_bufDecl) { if (const TypedefType *Typedef = Sigjmp_bufType->getAs()) Context.setsigjmp_bufDecl(Typedef->getDecl()); else { const TagType *Tag = Sigjmp_bufType->getAs(); assert(Tag && "Invalid sigjmp_buf type in AST file"); Context.setsigjmp_bufDecl(Tag->getDecl()); } } } if (unsigned ObjCIdRedef = SpecialTypes[SPECIAL_TYPE_OBJC_ID_REDEFINITION]) { if (Context.ObjCIdRedefinitionType.isNull()) Context.ObjCIdRedefinitionType = GetType(ObjCIdRedef); } if (unsigned ObjCClassRedef = SpecialTypes[SPECIAL_TYPE_OBJC_CLASS_REDEFINITION]) { if (Context.ObjCClassRedefinitionType.isNull()) Context.ObjCClassRedefinitionType = GetType(ObjCClassRedef); } if (unsigned ObjCSelRedef = SpecialTypes[SPECIAL_TYPE_OBJC_SEL_REDEFINITION]) { if (Context.ObjCSelRedefinitionType.isNull()) Context.ObjCSelRedefinitionType = GetType(ObjCSelRedef); } if (unsigned Ucontext_t = SpecialTypes[SPECIAL_TYPE_UCONTEXT_T]) { QualType Ucontext_tType = GetType(Ucontext_t); if (Ucontext_tType.isNull()) { Error("ucontext_t type is NULL"); return; } if (!Context.ucontext_tDecl) { if (const TypedefType *Typedef = Ucontext_tType->getAs()) Context.setucontext_tDecl(Typedef->getDecl()); else { const TagType *Tag = Ucontext_tType->getAs(); assert(Tag && "Invalid ucontext_t type in AST file"); Context.setucontext_tDecl(Tag->getDecl()); } } } } ReadPragmaDiagnosticMappings(Context.getDiagnostics()); // If there were any CUDA special declarations, deserialize them. if (!CUDASpecialDeclRefs.empty()) { assert(CUDASpecialDeclRefs.size() == 1 && "More decl refs than expected!"); Context.setcudaConfigureCallDecl( cast(GetDecl(CUDASpecialDeclRefs[0]))); } // Re-export any modules that were imported by a non-module AST file. for (unsigned I = 0, N = ImportedModules.size(); I != N; ++I) { if (Module *Imported = getSubmodule(ImportedModules[I])) makeModuleVisible(Imported, Module::AllVisible); } ImportedModules.clear(); } void ASTReader::finalizeForWriting() { for (HiddenNamesMapType::iterator Hidden = HiddenNamesMap.begin(), HiddenEnd = HiddenNamesMap.end(); Hidden != HiddenEnd; ++Hidden) { makeNamesVisible(Hidden->second); } HiddenNamesMap.clear(); } /// \brief Retrieve the name of the original source file name /// directly from the AST file, without actually loading the AST /// file. std::string ASTReader::getOriginalSourceFile(const std::string &ASTFileName, FileManager &FileMgr, DiagnosticsEngine &Diags) { // Open the AST file. std::string ErrStr; OwningPtr Buffer; Buffer.reset(FileMgr.getBufferForFile(ASTFileName, &ErrStr)); if (!Buffer) { Diags.Report(diag::err_fe_unable_to_read_pch_file) << ErrStr; return std::string(); } // Initialize the stream llvm::BitstreamReader StreamFile; llvm::BitstreamCursor Stream; StreamFile.init((const unsigned char *)Buffer->getBufferStart(), (const unsigned char *)Buffer->getBufferEnd()); Stream.init(StreamFile); // Sniff for the signature. if (Stream.Read(8) != 'C' || Stream.Read(8) != 'P' || Stream.Read(8) != 'C' || Stream.Read(8) != 'H') { Diags.Report(diag::err_fe_not_a_pch_file) << ASTFileName; return std::string(); } RecordData Record; while (!Stream.AtEndOfStream()) { unsigned Code = Stream.ReadCode(); if (Code == llvm::bitc::ENTER_SUBBLOCK) { unsigned BlockID = Stream.ReadSubBlockID(); // We only know the AST subblock ID. switch (BlockID) { case AST_BLOCK_ID: if (Stream.EnterSubBlock(AST_BLOCK_ID)) { Diags.Report(diag::err_fe_pch_malformed_block) << ASTFileName; return std::string(); } break; default: if (Stream.SkipBlock()) { Diags.Report(diag::err_fe_pch_malformed_block) << ASTFileName; return std::string(); } break; } continue; } if (Code == llvm::bitc::END_BLOCK) { if (Stream.ReadBlockEnd()) { Diags.Report(diag::err_fe_pch_error_at_end_block) << ASTFileName; return std::string(); } continue; } if (Code == llvm::bitc::DEFINE_ABBREV) { Stream.ReadAbbrevRecord(); continue; } Record.clear(); const char *BlobStart = 0; unsigned BlobLen = 0; if (Stream.ReadRecord(Code, Record, &BlobStart, &BlobLen) == ORIGINAL_FILE_NAME) return std::string(BlobStart, BlobLen); } return std::string(); } ASTReader::ASTReadResult ASTReader::ReadSubmoduleBlock(ModuleFile &F) { // Enter the submodule block. if (F.Stream.EnterSubBlock(SUBMODULE_BLOCK_ID)) { Error("malformed submodule block record in AST file"); return Failure; } ModuleMap &ModMap = PP.getHeaderSearchInfo().getModuleMap(); bool First = true; Module *CurrentModule = 0; RecordData Record; while (true) { unsigned Code = F.Stream.ReadCode(); if (Code == llvm::bitc::END_BLOCK) { if (F.Stream.ReadBlockEnd()) { Error("error at end of submodule block in AST file"); return Failure; } return Success; } if (Code == llvm::bitc::ENTER_SUBBLOCK) { // No known subblocks, always skip them. F.Stream.ReadSubBlockID(); if (F.Stream.SkipBlock()) { Error("malformed block record in AST file"); return Failure; } continue; } if (Code == llvm::bitc::DEFINE_ABBREV) { F.Stream.ReadAbbrevRecord(); continue; } // Read a record. const char *BlobStart; unsigned BlobLen; Record.clear(); switch (F.Stream.ReadRecord(Code, Record, &BlobStart, &BlobLen)) { default: // Default behavior: ignore. break; case SUBMODULE_DEFINITION: { if (First) { Error("missing submodule metadata record at beginning of block"); return Failure; } if (Record.size() < 7) { Error("malformed module definition"); return Failure; } StringRef Name(BlobStart, BlobLen); SubmoduleID GlobalID = getGlobalSubmoduleID(F, Record[0]); SubmoduleID Parent = getGlobalSubmoduleID(F, Record[1]); bool IsFramework = Record[2]; bool IsExplicit = Record[3]; bool IsSystem = Record[4]; bool InferSubmodules = Record[5]; bool InferExplicitSubmodules = Record[6]; bool InferExportWildcard = Record[7]; Module *ParentModule = 0; if (Parent) ParentModule = getSubmodule(Parent); // Retrieve this (sub)module from the module map, creating it if // necessary. CurrentModule = ModMap.findOrCreateModule(Name, ParentModule, IsFramework, IsExplicit).first; SubmoduleID GlobalIndex = GlobalID - NUM_PREDEF_SUBMODULE_IDS; if (GlobalIndex >= SubmodulesLoaded.size() || SubmodulesLoaded[GlobalIndex]) { Error("too many submodules"); return Failure; } CurrentModule->IsFromModuleFile = true; CurrentModule->IsSystem = IsSystem || CurrentModule->IsSystem; CurrentModule->InferSubmodules = InferSubmodules; CurrentModule->InferExplicitSubmodules = InferExplicitSubmodules; CurrentModule->InferExportWildcard = InferExportWildcard; if (DeserializationListener) DeserializationListener->ModuleRead(GlobalID, CurrentModule); SubmodulesLoaded[GlobalIndex] = CurrentModule; break; } case SUBMODULE_UMBRELLA_HEADER: { if (First) { Error("missing submodule metadata record at beginning of block"); return Failure; } if (!CurrentModule) break; StringRef FileName(BlobStart, BlobLen); if (const FileEntry *Umbrella = PP.getFileManager().getFile(FileName)) { if (!CurrentModule->getUmbrellaHeader()) ModMap.setUmbrellaHeader(CurrentModule, Umbrella); else if (CurrentModule->getUmbrellaHeader() != Umbrella) { Error("mismatched umbrella headers in submodule"); return Failure; } } break; } case SUBMODULE_HEADER: { if (First) { Error("missing submodule metadata record at beginning of block"); return Failure; } if (!CurrentModule) break; // FIXME: Be more lazy about this! StringRef FileName(BlobStart, BlobLen); if (const FileEntry *File = PP.getFileManager().getFile(FileName)) { if (std::find(CurrentModule->Headers.begin(), CurrentModule->Headers.end(), File) == CurrentModule->Headers.end()) ModMap.addHeader(CurrentModule, File); } break; } case SUBMODULE_UMBRELLA_DIR: { if (First) { Error("missing submodule metadata record at beginning of block"); return Failure; } if (!CurrentModule) break; StringRef DirName(BlobStart, BlobLen); if (const DirectoryEntry *Umbrella = PP.getFileManager().getDirectory(DirName)) { if (!CurrentModule->getUmbrellaDir()) ModMap.setUmbrellaDir(CurrentModule, Umbrella); else if (CurrentModule->getUmbrellaDir() != Umbrella) { Error("mismatched umbrella directories in submodule"); return Failure; } } break; } case SUBMODULE_METADATA: { if (!First) { Error("submodule metadata record not at beginning of block"); return Failure; } First = false; F.BaseSubmoduleID = getTotalNumSubmodules(); F.LocalNumSubmodules = Record[0]; unsigned LocalBaseSubmoduleID = Record[1]; if (F.LocalNumSubmodules > 0) { // Introduce the global -> local mapping for submodules within this // module. GlobalSubmoduleMap.insert(std::make_pair(getTotalNumSubmodules()+1,&F)); // Introduce the local -> global mapping for submodules within this // module. F.SubmoduleRemap.insertOrReplace( std::make_pair(LocalBaseSubmoduleID, F.BaseSubmoduleID - LocalBaseSubmoduleID)); SubmodulesLoaded.resize(SubmodulesLoaded.size() + F.LocalNumSubmodules); } break; } case SUBMODULE_IMPORTS: { if (First) { Error("missing submodule metadata record at beginning of block"); return Failure; } if (!CurrentModule) break; for (unsigned Idx = 0; Idx != Record.size(); ++Idx) { UnresolvedModuleImportExport Unresolved; Unresolved.File = &F; Unresolved.Mod = CurrentModule; Unresolved.ID = Record[Idx]; Unresolved.IsImport = true; Unresolved.IsWildcard = false; UnresolvedModuleImportExports.push_back(Unresolved); } break; } case SUBMODULE_EXPORTS: { if (First) { Error("missing submodule metadata record at beginning of block"); return Failure; } if (!CurrentModule) break; for (unsigned Idx = 0; Idx + 1 < Record.size(); Idx += 2) { UnresolvedModuleImportExport Unresolved; Unresolved.File = &F; Unresolved.Mod = CurrentModule; Unresolved.ID = Record[Idx]; Unresolved.IsImport = false; Unresolved.IsWildcard = Record[Idx + 1]; UnresolvedModuleImportExports.push_back(Unresolved); } // Once we've loaded the set of exports, there's no reason to keep // the parsed, unresolved exports around. CurrentModule->UnresolvedExports.clear(); break; } case SUBMODULE_REQUIRES: { if (First) { Error("missing submodule metadata record at beginning of block"); return Failure; } if (!CurrentModule) break; CurrentModule->addRequirement(StringRef(BlobStart, BlobLen), Context.getLangOpts(), Context.getTargetInfo()); break; } } } } /// \brief Parse the record that corresponds to a LangOptions data /// structure. /// /// This routine parses the language options from the AST file and then gives /// them to the AST listener if one is set. /// /// \returns true if the listener deems the file unacceptable, false otherwise. bool ASTReader::ParseLanguageOptions( const SmallVectorImpl &Record) { if (Listener) { LangOptions LangOpts; unsigned Idx = 0; #define LANGOPT(Name, Bits, Default, Description) \ LangOpts.Name = Record[Idx++]; #define ENUM_LANGOPT(Name, Type, Bits, Default, Description) \ LangOpts.set##Name(static_cast(Record[Idx++])); #include "clang/Basic/LangOptions.def" unsigned Length = Record[Idx++]; LangOpts.CurrentModule.assign(Record.begin() + Idx, Record.begin() + Idx + Length); return Listener->ReadLanguageOptions(LangOpts); } return false; } std::pair ASTReader::getModulePreprocessedEntity(unsigned GlobalIndex) { GlobalPreprocessedEntityMapType::iterator I = GlobalPreprocessedEntityMap.find(GlobalIndex); assert(I != GlobalPreprocessedEntityMap.end() && "Corrupted global preprocessed entity map"); ModuleFile *M = I->second; unsigned LocalIndex = GlobalIndex - M->BasePreprocessedEntityID; return std::make_pair(M, LocalIndex); } PreprocessedEntity *ASTReader::ReadPreprocessedEntity(unsigned Index) { PreprocessedEntityID PPID = Index+1; std::pair PPInfo = getModulePreprocessedEntity(Index); ModuleFile &M = *PPInfo.first; unsigned LocalIndex = PPInfo.second; const PPEntityOffset &PPOffs = M.PreprocessedEntityOffsets[LocalIndex]; SavedStreamPosition SavedPosition(M.PreprocessorDetailCursor); M.PreprocessorDetailCursor.JumpToBit(PPOffs.BitOffset); unsigned Code = M.PreprocessorDetailCursor.ReadCode(); switch (Code) { case llvm::bitc::END_BLOCK: return 0; case llvm::bitc::ENTER_SUBBLOCK: Error("unexpected subblock record in preprocessor detail block"); return 0; case llvm::bitc::DEFINE_ABBREV: Error("unexpected abbrevation record in preprocessor detail block"); return 0; default: break; } if (!PP.getPreprocessingRecord()) { Error("no preprocessing record"); return 0; } // Read the record. SourceRange Range(ReadSourceLocation(M, PPOffs.Begin), ReadSourceLocation(M, PPOffs.End)); PreprocessingRecord &PPRec = *PP.getPreprocessingRecord(); const char *BlobStart = 0; unsigned BlobLen = 0; RecordData Record; PreprocessorDetailRecordTypes RecType = (PreprocessorDetailRecordTypes)M.PreprocessorDetailCursor.ReadRecord( Code, Record, BlobStart, BlobLen); switch (RecType) { case PPD_MACRO_EXPANSION: { bool isBuiltin = Record[0]; IdentifierInfo *Name = 0; MacroDefinition *Def = 0; if (isBuiltin) Name = getLocalIdentifier(M, Record[1]); else { PreprocessedEntityID GlobalID = getGlobalPreprocessedEntityID(M, Record[1]); Def =cast(PPRec.getLoadedPreprocessedEntity(GlobalID-1)); } MacroExpansion *ME; if (isBuiltin) ME = new (PPRec) MacroExpansion(Name, Range); else ME = new (PPRec) MacroExpansion(Def, Range); return ME; } case PPD_MACRO_DEFINITION: { // Decode the identifier info and then check again; if the macro is // still defined and associated with the identifier, IdentifierInfo *II = getLocalIdentifier(M, Record[0]); MacroDefinition *MD = new (PPRec) MacroDefinition(II, Range); if (DeserializationListener) DeserializationListener->MacroDefinitionRead(PPID, MD); return MD; } case PPD_INCLUSION_DIRECTIVE: { const char *FullFileNameStart = BlobStart + Record[0]; StringRef FullFileName(FullFileNameStart, BlobLen - Record[0]); const FileEntry *File = 0; if (!FullFileName.empty()) File = PP.getFileManager().getFile(FullFileName); // FIXME: Stable encoding InclusionDirective::InclusionKind Kind = static_cast(Record[2]); InclusionDirective *ID = new (PPRec) InclusionDirective(PPRec, Kind, StringRef(BlobStart, Record[0]), Record[1], File, Range); return ID; } } llvm_unreachable("Invalid PreprocessorDetailRecordTypes"); } /// \brief \arg SLocMapI points at a chunk of a module that contains no /// preprocessed entities or the entities it contains are not the ones we are /// looking for. Find the next module that contains entities and return the ID /// of the first entry. PreprocessedEntityID ASTReader::findNextPreprocessedEntity( GlobalSLocOffsetMapType::const_iterator SLocMapI) const { ++SLocMapI; for (GlobalSLocOffsetMapType::const_iterator EndI = GlobalSLocOffsetMap.end(); SLocMapI != EndI; ++SLocMapI) { ModuleFile &M = *SLocMapI->second; if (M.NumPreprocessedEntities) return getGlobalPreprocessedEntityID(M, M.BasePreprocessedEntityID); } return getTotalNumPreprocessedEntities(); } namespace { template struct PPEntityComp { const ASTReader &Reader; ModuleFile &M; PPEntityComp(const ASTReader &Reader, ModuleFile &M) : Reader(Reader), M(M) { } bool operator()(const PPEntityOffset &L, const PPEntityOffset &R) const { SourceLocation LHS = getLoc(L); SourceLocation RHS = getLoc(R); return Reader.getSourceManager().isBeforeInTranslationUnit(LHS, RHS); } bool operator()(const PPEntityOffset &L, SourceLocation RHS) const { SourceLocation LHS = getLoc(L); return Reader.getSourceManager().isBeforeInTranslationUnit(LHS, RHS); } bool operator()(SourceLocation LHS, const PPEntityOffset &R) const { SourceLocation RHS = getLoc(R); return Reader.getSourceManager().isBeforeInTranslationUnit(LHS, RHS); } SourceLocation getLoc(const PPEntityOffset &PPE) const { return Reader.ReadSourceLocation(M, PPE.*PPLoc); } }; } /// \brief Returns the first preprocessed entity ID that ends after \arg BLoc. PreprocessedEntityID ASTReader::findBeginPreprocessedEntity(SourceLocation BLoc) const { if (SourceMgr.isLocalSourceLocation(BLoc)) return getTotalNumPreprocessedEntities(); GlobalSLocOffsetMapType::const_iterator SLocMapI = GlobalSLocOffsetMap.find(SourceManager::MaxLoadedOffset - BLoc.getOffset()); assert(SLocMapI != GlobalSLocOffsetMap.end() && "Corrupted global sloc offset map"); if (SLocMapI->second->NumPreprocessedEntities == 0) return findNextPreprocessedEntity(SLocMapI); ModuleFile &M = *SLocMapI->second; typedef const PPEntityOffset *pp_iterator; pp_iterator pp_begin = M.PreprocessedEntityOffsets; pp_iterator pp_end = pp_begin + M.NumPreprocessedEntities; size_t Count = M.NumPreprocessedEntities; size_t Half; pp_iterator First = pp_begin; pp_iterator PPI; // Do a binary search manually instead of using std::lower_bound because // The end locations of entities may be unordered (when a macro expansion // is inside another macro argument), but for this case it is not important // whether we get the first macro expansion or its containing macro. while (Count > 0) { Half = Count/2; PPI = First; std::advance(PPI, Half); if (SourceMgr.isBeforeInTranslationUnit(ReadSourceLocation(M, PPI->End), BLoc)){ First = PPI; ++First; Count = Count - Half - 1; } else Count = Half; } if (PPI == pp_end) return findNextPreprocessedEntity(SLocMapI); return getGlobalPreprocessedEntityID(M, M.BasePreprocessedEntityID + (PPI - pp_begin)); } /// \brief Returns the first preprocessed entity ID that begins after \arg ELoc. PreprocessedEntityID ASTReader::findEndPreprocessedEntity(SourceLocation ELoc) const { if (SourceMgr.isLocalSourceLocation(ELoc)) return getTotalNumPreprocessedEntities(); GlobalSLocOffsetMapType::const_iterator SLocMapI = GlobalSLocOffsetMap.find(SourceManager::MaxLoadedOffset - ELoc.getOffset()); assert(SLocMapI != GlobalSLocOffsetMap.end() && "Corrupted global sloc offset map"); if (SLocMapI->second->NumPreprocessedEntities == 0) return findNextPreprocessedEntity(SLocMapI); ModuleFile &M = *SLocMapI->second; typedef const PPEntityOffset *pp_iterator; pp_iterator pp_begin = M.PreprocessedEntityOffsets; pp_iterator pp_end = pp_begin + M.NumPreprocessedEntities; pp_iterator PPI = std::upper_bound(pp_begin, pp_end, ELoc, PPEntityComp<&PPEntityOffset::Begin>(*this, M)); if (PPI == pp_end) return findNextPreprocessedEntity(SLocMapI); return getGlobalPreprocessedEntityID(M, M.BasePreprocessedEntityID + (PPI - pp_begin)); } /// \brief Returns a pair of [Begin, End) indices of preallocated /// preprocessed entities that \arg Range encompasses. std::pair ASTReader::findPreprocessedEntitiesInRange(SourceRange Range) { if (Range.isInvalid()) return std::make_pair(0,0); assert(!SourceMgr.isBeforeInTranslationUnit(Range.getEnd(),Range.getBegin())); PreprocessedEntityID BeginID = findBeginPreprocessedEntity(Range.getBegin()); PreprocessedEntityID EndID = findEndPreprocessedEntity(Range.getEnd()); return std::make_pair(BeginID, EndID); } /// \brief Optionally returns true or false if the preallocated preprocessed /// entity with index \arg Index came from file \arg FID. llvm::Optional ASTReader::isPreprocessedEntityInFileID(unsigned Index, FileID FID) { if (FID.isInvalid()) return false; std::pair PPInfo = getModulePreprocessedEntity(Index); ModuleFile &M = *PPInfo.first; unsigned LocalIndex = PPInfo.second; const PPEntityOffset &PPOffs = M.PreprocessedEntityOffsets[LocalIndex]; SourceLocation Loc = ReadSourceLocation(M, PPOffs.Begin); if (Loc.isInvalid()) return false; if (SourceMgr.isInFileID(SourceMgr.getFileLoc(Loc), FID)) return true; else return false; } namespace { /// \brief Visitor used to search for information about a header file. class HeaderFileInfoVisitor { ASTReader &Reader; const FileEntry *FE; llvm::Optional HFI; public: HeaderFileInfoVisitor(ASTReader &Reader, const FileEntry *FE) : Reader(Reader), FE(FE) { } static bool visit(ModuleFile &M, void *UserData) { HeaderFileInfoVisitor *This = static_cast(UserData); HeaderFileInfoTrait Trait(This->Reader, M, &This->Reader.getPreprocessor().getHeaderSearchInfo(), M.HeaderFileFrameworkStrings, This->FE->getName()); HeaderFileInfoLookupTable *Table = static_cast(M.HeaderFileInfoTable); if (!Table) return false; // Look in the on-disk hash table for an entry for this file name. HeaderFileInfoLookupTable::iterator Pos = Table->find(This->FE->getName(), &Trait); if (Pos == Table->end()) return false; This->HFI = *Pos; return true; } llvm::Optional getHeaderFileInfo() const { return HFI; } }; } HeaderFileInfo ASTReader::GetHeaderFileInfo(const FileEntry *FE) { HeaderFileInfoVisitor Visitor(*this, FE); ModuleMgr.visit(&HeaderFileInfoVisitor::visit, &Visitor); if (llvm::Optional HFI = Visitor.getHeaderFileInfo()) { if (Listener) Listener->ReadHeaderFileInfo(*HFI, FE->getUID()); return *HFI; } return HeaderFileInfo(); } void ASTReader::ReadPragmaDiagnosticMappings(DiagnosticsEngine &Diag) { for (ModuleIterator I = ModuleMgr.begin(), E = ModuleMgr.end(); I != E; ++I) { ModuleFile &F = *(*I); unsigned Idx = 0; while (Idx < F.PragmaDiagMappings.size()) { SourceLocation Loc = ReadSourceLocation(F, F.PragmaDiagMappings[Idx++]); Diag.DiagStates.push_back(*Diag.GetCurDiagState()); Diag.DiagStatePoints.push_back( DiagnosticsEngine::DiagStatePoint(&Diag.DiagStates.back(), FullSourceLoc(Loc, SourceMgr))); while (1) { assert(Idx < F.PragmaDiagMappings.size() && "Invalid data, didn't find '-1' marking end of diag/map pairs"); if (Idx >= F.PragmaDiagMappings.size()) { break; // Something is messed up but at least avoid infinite loop in // release build. } unsigned DiagID = F.PragmaDiagMappings[Idx++]; if (DiagID == (unsigned)-1) { break; // no more diag/map pairs for this location. } diag::Mapping Map = (diag::Mapping)F.PragmaDiagMappings[Idx++]; DiagnosticMappingInfo MappingInfo = Diag.makeMappingInfo(Map, Loc); Diag.GetCurDiagState()->setMappingInfo(DiagID, MappingInfo); } } } } /// \brief Get the correct cursor and offset for loading a type. ASTReader::RecordLocation ASTReader::TypeCursorForIndex(unsigned Index) { GlobalTypeMapType::iterator I = GlobalTypeMap.find(Index); assert(I != GlobalTypeMap.end() && "Corrupted global type map"); ModuleFile *M = I->second; return RecordLocation(M, M->TypeOffsets[Index - M->BaseTypeIndex]); } /// \brief Read and return the type with the given index.. /// /// The index is the type ID, shifted and minus the number of predefs. This /// routine actually reads the record corresponding to the type at the given /// location. It is a helper routine for GetType, which deals with reading type /// IDs. QualType ASTReader::readTypeRecord(unsigned Index) { RecordLocation Loc = TypeCursorForIndex(Index); llvm::BitstreamCursor &DeclsCursor = Loc.F->DeclsCursor; // Keep track of where we are in the stream, then jump back there // after reading this type. SavedStreamPosition SavedPosition(DeclsCursor); ReadingKindTracker ReadingKind(Read_Type, *this); // Note that we are loading a type record. Deserializing AType(this); unsigned Idx = 0; DeclsCursor.JumpToBit(Loc.Offset); RecordData Record; unsigned Code = DeclsCursor.ReadCode(); switch ((TypeCode)DeclsCursor.ReadRecord(Code, Record)) { case TYPE_EXT_QUAL: { if (Record.size() != 2) { Error("Incorrect encoding of extended qualifier type"); return QualType(); } QualType Base = readType(*Loc.F, Record, Idx); Qualifiers Quals = Qualifiers::fromOpaqueValue(Record[Idx++]); return Context.getQualifiedType(Base, Quals); } case TYPE_COMPLEX: { if (Record.size() != 1) { Error("Incorrect encoding of complex type"); return QualType(); } QualType ElemType = readType(*Loc.F, Record, Idx); return Context.getComplexType(ElemType); } case TYPE_POINTER: { if (Record.size() != 1) { Error("Incorrect encoding of pointer type"); return QualType(); } QualType PointeeType = readType(*Loc.F, Record, Idx); return Context.getPointerType(PointeeType); } case TYPE_BLOCK_POINTER: { if (Record.size() != 1) { Error("Incorrect encoding of block pointer type"); return QualType(); } QualType PointeeType = readType(*Loc.F, Record, Idx); return Context.getBlockPointerType(PointeeType); } case TYPE_LVALUE_REFERENCE: { if (Record.size() != 2) { Error("Incorrect encoding of lvalue reference type"); return QualType(); } QualType PointeeType = readType(*Loc.F, Record, Idx); return Context.getLValueReferenceType(PointeeType, Record[1]); } case TYPE_RVALUE_REFERENCE: { if (Record.size() != 1) { Error("Incorrect encoding of rvalue reference type"); return QualType(); } QualType PointeeType = readType(*Loc.F, Record, Idx); return Context.getRValueReferenceType(PointeeType); } case TYPE_MEMBER_POINTER: { if (Record.size() != 2) { Error("Incorrect encoding of member pointer type"); return QualType(); } QualType PointeeType = readType(*Loc.F, Record, Idx); QualType ClassType = readType(*Loc.F, Record, Idx); if (PointeeType.isNull() || ClassType.isNull()) return QualType(); return Context.getMemberPointerType(PointeeType, ClassType.getTypePtr()); } case TYPE_CONSTANT_ARRAY: { QualType ElementType = readType(*Loc.F, Record, Idx); ArrayType::ArraySizeModifier ASM = (ArrayType::ArraySizeModifier)Record[1]; unsigned IndexTypeQuals = Record[2]; unsigned Idx = 3; llvm::APInt Size = ReadAPInt(Record, Idx); return Context.getConstantArrayType(ElementType, Size, ASM, IndexTypeQuals); } case TYPE_INCOMPLETE_ARRAY: { QualType ElementType = readType(*Loc.F, Record, Idx); ArrayType::ArraySizeModifier ASM = (ArrayType::ArraySizeModifier)Record[1]; unsigned IndexTypeQuals = Record[2]; return Context.getIncompleteArrayType(ElementType, ASM, IndexTypeQuals); } case TYPE_VARIABLE_ARRAY: { QualType ElementType = readType(*Loc.F, Record, Idx); ArrayType::ArraySizeModifier ASM = (ArrayType::ArraySizeModifier)Record[1]; unsigned IndexTypeQuals = Record[2]; SourceLocation LBLoc = ReadSourceLocation(*Loc.F, Record[3]); SourceLocation RBLoc = ReadSourceLocation(*Loc.F, Record[4]); return Context.getVariableArrayType(ElementType, ReadExpr(*Loc.F), ASM, IndexTypeQuals, SourceRange(LBLoc, RBLoc)); } case TYPE_VECTOR: { if (Record.size() != 3) { Error("incorrect encoding of vector type in AST file"); return QualType(); } QualType ElementType = readType(*Loc.F, Record, Idx); unsigned NumElements = Record[1]; unsigned VecKind = Record[2]; return Context.getVectorType(ElementType, NumElements, (VectorType::VectorKind)VecKind); } case TYPE_EXT_VECTOR: { if (Record.size() != 3) { Error("incorrect encoding of extended vector type in AST file"); return QualType(); } QualType ElementType = readType(*Loc.F, Record, Idx); unsigned NumElements = Record[1]; return Context.getExtVectorType(ElementType, NumElements); } case TYPE_FUNCTION_NO_PROTO: { if (Record.size() != 6) { Error("incorrect encoding of no-proto function type"); return QualType(); } QualType ResultType = readType(*Loc.F, Record, Idx); FunctionType::ExtInfo Info(Record[1], Record[2], Record[3], (CallingConv)Record[4], Record[5]); return Context.getFunctionNoProtoType(ResultType, Info); } case TYPE_FUNCTION_PROTO: { QualType ResultType = readType(*Loc.F, Record, Idx); FunctionProtoType::ExtProtoInfo EPI; EPI.ExtInfo = FunctionType::ExtInfo(/*noreturn*/ Record[1], /*hasregparm*/ Record[2], /*regparm*/ Record[3], static_cast(Record[4]), /*produces*/ Record[5]); unsigned Idx = 6; unsigned NumParams = Record[Idx++]; SmallVector ParamTypes; for (unsigned I = 0; I != NumParams; ++I) ParamTypes.push_back(readType(*Loc.F, Record, Idx)); EPI.Variadic = Record[Idx++]; EPI.HasTrailingReturn = Record[Idx++]; EPI.TypeQuals = Record[Idx++]; EPI.RefQualifier = static_cast(Record[Idx++]); ExceptionSpecificationType EST = static_cast(Record[Idx++]); EPI.ExceptionSpecType = EST; SmallVector Exceptions; if (EST == EST_Dynamic) { EPI.NumExceptions = Record[Idx++]; for (unsigned I = 0; I != EPI.NumExceptions; ++I) Exceptions.push_back(readType(*Loc.F, Record, Idx)); EPI.Exceptions = Exceptions.data(); } else if (EST == EST_ComputedNoexcept) { EPI.NoexceptExpr = ReadExpr(*Loc.F); } else if (EST == EST_Uninstantiated) { EPI.ExceptionSpecDecl = ReadDeclAs(*Loc.F, Record, Idx); EPI.ExceptionSpecTemplate = ReadDeclAs(*Loc.F, Record, Idx); } return Context.getFunctionType(ResultType, ParamTypes.data(), NumParams, EPI); } case TYPE_UNRESOLVED_USING: { unsigned Idx = 0; return Context.getTypeDeclType( ReadDeclAs(*Loc.F, Record, Idx)); } case TYPE_TYPEDEF: { if (Record.size() != 2) { Error("incorrect encoding of typedef type"); return QualType(); } unsigned Idx = 0; TypedefNameDecl *Decl = ReadDeclAs(*Loc.F, Record, Idx); QualType Canonical = readType(*Loc.F, Record, Idx); if (!Canonical.isNull()) Canonical = Context.getCanonicalType(Canonical); return Context.getTypedefType(Decl, Canonical); } case TYPE_TYPEOF_EXPR: return Context.getTypeOfExprType(ReadExpr(*Loc.F)); case TYPE_TYPEOF: { if (Record.size() != 1) { Error("incorrect encoding of typeof(type) in AST file"); return QualType(); } QualType UnderlyingType = readType(*Loc.F, Record, Idx); return Context.getTypeOfType(UnderlyingType); } case TYPE_DECLTYPE: { QualType UnderlyingType = readType(*Loc.F, Record, Idx); return Context.getDecltypeType(ReadExpr(*Loc.F), UnderlyingType); } case TYPE_UNARY_TRANSFORM: { QualType BaseType = readType(*Loc.F, Record, Idx); QualType UnderlyingType = readType(*Loc.F, Record, Idx); UnaryTransformType::UTTKind UKind = (UnaryTransformType::UTTKind)Record[2]; return Context.getUnaryTransformType(BaseType, UnderlyingType, UKind); } case TYPE_AUTO: return Context.getAutoType(readType(*Loc.F, Record, Idx)); case TYPE_RECORD: { if (Record.size() != 2) { Error("incorrect encoding of record type"); return QualType(); } unsigned Idx = 0; bool IsDependent = Record[Idx++]; RecordDecl *RD = ReadDeclAs(*Loc.F, Record, Idx); RD = cast_or_null(RD->getCanonicalDecl()); QualType T = Context.getRecordType(RD); const_cast(T.getTypePtr())->setDependent(IsDependent); return T; } case TYPE_ENUM: { if (Record.size() != 2) { Error("incorrect encoding of enum type"); return QualType(); } unsigned Idx = 0; bool IsDependent = Record[Idx++]; QualType T = Context.getEnumType(ReadDeclAs(*Loc.F, Record, Idx)); const_cast(T.getTypePtr())->setDependent(IsDependent); return T; } case TYPE_ATTRIBUTED: { if (Record.size() != 3) { Error("incorrect encoding of attributed type"); return QualType(); } QualType modifiedType = readType(*Loc.F, Record, Idx); QualType equivalentType = readType(*Loc.F, Record, Idx); AttributedType::Kind kind = static_cast(Record[2]); return Context.getAttributedType(kind, modifiedType, equivalentType); } case TYPE_PAREN: { if (Record.size() != 1) { Error("incorrect encoding of paren type"); return QualType(); } QualType InnerType = readType(*Loc.F, Record, Idx); return Context.getParenType(InnerType); } case TYPE_PACK_EXPANSION: { if (Record.size() != 2) { Error("incorrect encoding of pack expansion type"); return QualType(); } QualType Pattern = readType(*Loc.F, Record, Idx); if (Pattern.isNull()) return QualType(); llvm::Optional NumExpansions; if (Record[1]) NumExpansions = Record[1] - 1; return Context.getPackExpansionType(Pattern, NumExpansions); } case TYPE_ELABORATED: { unsigned Idx = 0; ElaboratedTypeKeyword Keyword = (ElaboratedTypeKeyword)Record[Idx++]; NestedNameSpecifier *NNS = ReadNestedNameSpecifier(*Loc.F, Record, Idx); QualType NamedType = readType(*Loc.F, Record, Idx); return Context.getElaboratedType(Keyword, NNS, NamedType); } case TYPE_OBJC_INTERFACE: { unsigned Idx = 0; ObjCInterfaceDecl *ItfD = ReadDeclAs(*Loc.F, Record, Idx); return Context.getObjCInterfaceType(ItfD->getCanonicalDecl()); } case TYPE_OBJC_OBJECT: { unsigned Idx = 0; QualType Base = readType(*Loc.F, Record, Idx); unsigned NumProtos = Record[Idx++]; SmallVector Protos; for (unsigned I = 0; I != NumProtos; ++I) Protos.push_back(ReadDeclAs(*Loc.F, Record, Idx)); return Context.getObjCObjectType(Base, Protos.data(), NumProtos); } case TYPE_OBJC_OBJECT_POINTER: { unsigned Idx = 0; QualType Pointee = readType(*Loc.F, Record, Idx); return Context.getObjCObjectPointerType(Pointee); } case TYPE_SUBST_TEMPLATE_TYPE_PARM: { unsigned Idx = 0; QualType Parm = readType(*Loc.F, Record, Idx); QualType Replacement = readType(*Loc.F, Record, Idx); return Context.getSubstTemplateTypeParmType(cast(Parm), Replacement); } case TYPE_SUBST_TEMPLATE_TYPE_PARM_PACK: { unsigned Idx = 0; QualType Parm = readType(*Loc.F, Record, Idx); TemplateArgument ArgPack = ReadTemplateArgument(*Loc.F, Record, Idx); return Context.getSubstTemplateTypeParmPackType( cast(Parm), ArgPack); } case TYPE_INJECTED_CLASS_NAME: { CXXRecordDecl *D = ReadDeclAs(*Loc.F, Record, Idx); QualType TST = readType(*Loc.F, Record, Idx); // probably derivable // FIXME: ASTContext::getInjectedClassNameType is not currently suitable // for AST reading, too much interdependencies. return QualType(new (Context, TypeAlignment) InjectedClassNameType(D, TST), 0); } case TYPE_TEMPLATE_TYPE_PARM: { unsigned Idx = 0; unsigned Depth = Record[Idx++]; unsigned Index = Record[Idx++]; bool Pack = Record[Idx++]; TemplateTypeParmDecl *D = ReadDeclAs(*Loc.F, Record, Idx); return Context.getTemplateTypeParmType(Depth, Index, Pack, D); } case TYPE_DEPENDENT_NAME: { unsigned Idx = 0; ElaboratedTypeKeyword Keyword = (ElaboratedTypeKeyword)Record[Idx++]; NestedNameSpecifier *NNS = ReadNestedNameSpecifier(*Loc.F, Record, Idx); const IdentifierInfo *Name = this->GetIdentifierInfo(*Loc.F, Record, Idx); QualType Canon = readType(*Loc.F, Record, Idx); if (!Canon.isNull()) Canon = Context.getCanonicalType(Canon); return Context.getDependentNameType(Keyword, NNS, Name, Canon); } case TYPE_DEPENDENT_TEMPLATE_SPECIALIZATION: { unsigned Idx = 0; ElaboratedTypeKeyword Keyword = (ElaboratedTypeKeyword)Record[Idx++]; NestedNameSpecifier *NNS = ReadNestedNameSpecifier(*Loc.F, Record, Idx); const IdentifierInfo *Name = this->GetIdentifierInfo(*Loc.F, Record, Idx); unsigned NumArgs = Record[Idx++]; SmallVector Args; Args.reserve(NumArgs); while (NumArgs--) Args.push_back(ReadTemplateArgument(*Loc.F, Record, Idx)); return Context.getDependentTemplateSpecializationType(Keyword, NNS, Name, Args.size(), Args.data()); } case TYPE_DEPENDENT_SIZED_ARRAY: { unsigned Idx = 0; // ArrayType QualType ElementType = readType(*Loc.F, Record, Idx); ArrayType::ArraySizeModifier ASM = (ArrayType::ArraySizeModifier)Record[Idx++]; unsigned IndexTypeQuals = Record[Idx++]; // DependentSizedArrayType Expr *NumElts = ReadExpr(*Loc.F); SourceRange Brackets = ReadSourceRange(*Loc.F, Record, Idx); return Context.getDependentSizedArrayType(ElementType, NumElts, ASM, IndexTypeQuals, Brackets); } case TYPE_TEMPLATE_SPECIALIZATION: { unsigned Idx = 0; bool IsDependent = Record[Idx++]; TemplateName Name = ReadTemplateName(*Loc.F, Record, Idx); SmallVector Args; ReadTemplateArgumentList(Args, *Loc.F, Record, Idx); QualType Underlying = readType(*Loc.F, Record, Idx); QualType T; if (Underlying.isNull()) T = Context.getCanonicalTemplateSpecializationType(Name, Args.data(), Args.size()); else T = Context.getTemplateSpecializationType(Name, Args.data(), Args.size(), Underlying); const_cast(T.getTypePtr())->setDependent(IsDependent); return T; } case TYPE_ATOMIC: { if (Record.size() != 1) { Error("Incorrect encoding of atomic type"); return QualType(); } QualType ValueType = readType(*Loc.F, Record, Idx); return Context.getAtomicType(ValueType); } } llvm_unreachable("Invalid TypeCode!"); } class clang::TypeLocReader : public TypeLocVisitor { ASTReader &Reader; ModuleFile &F; llvm::BitstreamCursor &DeclsCursor; const ASTReader::RecordData &Record; unsigned &Idx; SourceLocation ReadSourceLocation(const ASTReader::RecordData &R, unsigned &I) { return Reader.ReadSourceLocation(F, R, I); } template T *ReadDeclAs(const ASTReader::RecordData &Record, unsigned &Idx) { return Reader.ReadDeclAs(F, Record, Idx); } public: TypeLocReader(ASTReader &Reader, ModuleFile &F, const ASTReader::RecordData &Record, unsigned &Idx) : Reader(Reader), F(F), DeclsCursor(F.DeclsCursor), Record(Record), Idx(Idx) { } // We want compile-time assurance that we've enumerated all of // these, so unfortunately we have to declare them first, then // define them out-of-line. #define ABSTRACT_TYPELOC(CLASS, PARENT) #define TYPELOC(CLASS, PARENT) \ void Visit##CLASS##TypeLoc(CLASS##TypeLoc TyLoc); #include "clang/AST/TypeLocNodes.def" void VisitFunctionTypeLoc(FunctionTypeLoc); void VisitArrayTypeLoc(ArrayTypeLoc); }; void TypeLocReader::VisitQualifiedTypeLoc(QualifiedTypeLoc TL) { // nothing to do } void TypeLocReader::VisitBuiltinTypeLoc(BuiltinTypeLoc TL) { TL.setBuiltinLoc(ReadSourceLocation(Record, Idx)); if (TL.needsExtraLocalData()) { TL.setWrittenTypeSpec(static_cast(Record[Idx++])); TL.setWrittenSignSpec(static_cast(Record[Idx++])); TL.setWrittenWidthSpec(static_cast(Record[Idx++])); TL.setModeAttr(Record[Idx++]); } } void TypeLocReader::VisitComplexTypeLoc(ComplexTypeLoc TL) { TL.setNameLoc(ReadSourceLocation(Record, Idx)); } void TypeLocReader::VisitPointerTypeLoc(PointerTypeLoc TL) { TL.setStarLoc(ReadSourceLocation(Record, Idx)); } void TypeLocReader::VisitBlockPointerTypeLoc(BlockPointerTypeLoc TL) { TL.setCaretLoc(ReadSourceLocation(Record, Idx)); } void TypeLocReader::VisitLValueReferenceTypeLoc(LValueReferenceTypeLoc TL) { TL.setAmpLoc(ReadSourceLocation(Record, Idx)); } void TypeLocReader::VisitRValueReferenceTypeLoc(RValueReferenceTypeLoc TL) { TL.setAmpAmpLoc(ReadSourceLocation(Record, Idx)); } void TypeLocReader::VisitMemberPointerTypeLoc(MemberPointerTypeLoc TL) { TL.setStarLoc(ReadSourceLocation(Record, Idx)); TL.setClassTInfo(Reader.GetTypeSourceInfo(F, Record, Idx)); } void TypeLocReader::VisitArrayTypeLoc(ArrayTypeLoc TL) { TL.setLBracketLoc(ReadSourceLocation(Record, Idx)); TL.setRBracketLoc(ReadSourceLocation(Record, Idx)); if (Record[Idx++]) TL.setSizeExpr(Reader.ReadExpr(F)); else TL.setSizeExpr(0); } void TypeLocReader::VisitConstantArrayTypeLoc(ConstantArrayTypeLoc TL) { VisitArrayTypeLoc(TL); } void TypeLocReader::VisitIncompleteArrayTypeLoc(IncompleteArrayTypeLoc TL) { VisitArrayTypeLoc(TL); } void TypeLocReader::VisitVariableArrayTypeLoc(VariableArrayTypeLoc TL) { VisitArrayTypeLoc(TL); } void TypeLocReader::VisitDependentSizedArrayTypeLoc( DependentSizedArrayTypeLoc TL) { VisitArrayTypeLoc(TL); } void TypeLocReader::VisitDependentSizedExtVectorTypeLoc( DependentSizedExtVectorTypeLoc TL) { TL.setNameLoc(ReadSourceLocation(Record, Idx)); } void TypeLocReader::VisitVectorTypeLoc(VectorTypeLoc TL) { TL.setNameLoc(ReadSourceLocation(Record, Idx)); } void TypeLocReader::VisitExtVectorTypeLoc(ExtVectorTypeLoc TL) { TL.setNameLoc(ReadSourceLocation(Record, Idx)); } void TypeLocReader::VisitFunctionTypeLoc(FunctionTypeLoc TL) { TL.setLocalRangeBegin(ReadSourceLocation(Record, Idx)); TL.setLocalRangeEnd(ReadSourceLocation(Record, Idx)); TL.setTrailingReturn(Record[Idx++]); for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i) { TL.setArg(i, ReadDeclAs(Record, Idx)); } } void TypeLocReader::VisitFunctionProtoTypeLoc(FunctionProtoTypeLoc TL) { VisitFunctionTypeLoc(TL); } void TypeLocReader::VisitFunctionNoProtoTypeLoc(FunctionNoProtoTypeLoc TL) { VisitFunctionTypeLoc(TL); } void TypeLocReader::VisitUnresolvedUsingTypeLoc(UnresolvedUsingTypeLoc TL) { TL.setNameLoc(ReadSourceLocation(Record, Idx)); } void TypeLocReader::VisitTypedefTypeLoc(TypedefTypeLoc TL) { TL.setNameLoc(ReadSourceLocation(Record, Idx)); } void TypeLocReader::VisitTypeOfExprTypeLoc(TypeOfExprTypeLoc TL) { TL.setTypeofLoc(ReadSourceLocation(Record, Idx)); TL.setLParenLoc(ReadSourceLocation(Record, Idx)); TL.setRParenLoc(ReadSourceLocation(Record, Idx)); } void TypeLocReader::VisitTypeOfTypeLoc(TypeOfTypeLoc TL) { TL.setTypeofLoc(ReadSourceLocation(Record, Idx)); TL.setLParenLoc(ReadSourceLocation(Record, Idx)); TL.setRParenLoc(ReadSourceLocation(Record, Idx)); TL.setUnderlyingTInfo(Reader.GetTypeSourceInfo(F, Record, Idx)); } void TypeLocReader::VisitDecltypeTypeLoc(DecltypeTypeLoc TL) { TL.setNameLoc(ReadSourceLocation(Record, Idx)); } void TypeLocReader::VisitUnaryTransformTypeLoc(UnaryTransformTypeLoc TL) { TL.setKWLoc(ReadSourceLocation(Record, Idx)); TL.setLParenLoc(ReadSourceLocation(Record, Idx)); TL.setRParenLoc(ReadSourceLocation(Record, Idx)); TL.setUnderlyingTInfo(Reader.GetTypeSourceInfo(F, Record, Idx)); } void TypeLocReader::VisitAutoTypeLoc(AutoTypeLoc TL) { TL.setNameLoc(ReadSourceLocation(Record, Idx)); } void TypeLocReader::VisitRecordTypeLoc(RecordTypeLoc TL) { TL.setNameLoc(ReadSourceLocation(Record, Idx)); } void TypeLocReader::VisitEnumTypeLoc(EnumTypeLoc TL) { TL.setNameLoc(ReadSourceLocation(Record, Idx)); } void TypeLocReader::VisitAttributedTypeLoc(AttributedTypeLoc TL) { TL.setAttrNameLoc(ReadSourceLocation(Record, Idx)); if (TL.hasAttrOperand()) { SourceRange range; range.setBegin(ReadSourceLocation(Record, Idx)); range.setEnd(ReadSourceLocation(Record, Idx)); TL.setAttrOperandParensRange(range); } if (TL.hasAttrExprOperand()) { if (Record[Idx++]) TL.setAttrExprOperand(Reader.ReadExpr(F)); else TL.setAttrExprOperand(0); } else if (TL.hasAttrEnumOperand()) TL.setAttrEnumOperandLoc(ReadSourceLocation(Record, Idx)); } void TypeLocReader::VisitTemplateTypeParmTypeLoc(TemplateTypeParmTypeLoc TL) { TL.setNameLoc(ReadSourceLocation(Record, Idx)); } void TypeLocReader::VisitSubstTemplateTypeParmTypeLoc( SubstTemplateTypeParmTypeLoc TL) { TL.setNameLoc(ReadSourceLocation(Record, Idx)); } void TypeLocReader::VisitSubstTemplateTypeParmPackTypeLoc( SubstTemplateTypeParmPackTypeLoc TL) { TL.setNameLoc(ReadSourceLocation(Record, Idx)); } void TypeLocReader::VisitTemplateSpecializationTypeLoc( TemplateSpecializationTypeLoc TL) { TL.setTemplateKeywordLoc(ReadSourceLocation(Record, Idx)); TL.setTemplateNameLoc(ReadSourceLocation(Record, Idx)); TL.setLAngleLoc(ReadSourceLocation(Record, Idx)); TL.setRAngleLoc(ReadSourceLocation(Record, Idx)); for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i) TL.setArgLocInfo(i, Reader.GetTemplateArgumentLocInfo(F, TL.getTypePtr()->getArg(i).getKind(), Record, Idx)); } void TypeLocReader::VisitParenTypeLoc(ParenTypeLoc TL) { TL.setLParenLoc(ReadSourceLocation(Record, Idx)); TL.setRParenLoc(ReadSourceLocation(Record, Idx)); } void TypeLocReader::VisitElaboratedTypeLoc(ElaboratedTypeLoc TL) { TL.setElaboratedKeywordLoc(ReadSourceLocation(Record, Idx)); TL.setQualifierLoc(Reader.ReadNestedNameSpecifierLoc(F, Record, Idx)); } void TypeLocReader::VisitInjectedClassNameTypeLoc(InjectedClassNameTypeLoc TL) { TL.setNameLoc(ReadSourceLocation(Record, Idx)); } void TypeLocReader::VisitDependentNameTypeLoc(DependentNameTypeLoc TL) { TL.setElaboratedKeywordLoc(ReadSourceLocation(Record, Idx)); TL.setQualifierLoc(Reader.ReadNestedNameSpecifierLoc(F, Record, Idx)); TL.setNameLoc(ReadSourceLocation(Record, Idx)); } void TypeLocReader::VisitDependentTemplateSpecializationTypeLoc( DependentTemplateSpecializationTypeLoc TL) { TL.setElaboratedKeywordLoc(ReadSourceLocation(Record, Idx)); TL.setQualifierLoc(Reader.ReadNestedNameSpecifierLoc(F, Record, Idx)); TL.setTemplateKeywordLoc(ReadSourceLocation(Record, Idx)); TL.setTemplateNameLoc(ReadSourceLocation(Record, Idx)); TL.setLAngleLoc(ReadSourceLocation(Record, Idx)); TL.setRAngleLoc(ReadSourceLocation(Record, Idx)); for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) TL.setArgLocInfo(I, Reader.GetTemplateArgumentLocInfo(F, TL.getTypePtr()->getArg(I).getKind(), Record, Idx)); } void TypeLocReader::VisitPackExpansionTypeLoc(PackExpansionTypeLoc TL) { TL.setEllipsisLoc(ReadSourceLocation(Record, Idx)); } void TypeLocReader::VisitObjCInterfaceTypeLoc(ObjCInterfaceTypeLoc TL) { TL.setNameLoc(ReadSourceLocation(Record, Idx)); } void TypeLocReader::VisitObjCObjectTypeLoc(ObjCObjectTypeLoc TL) { TL.setHasBaseTypeAsWritten(Record[Idx++]); TL.setLAngleLoc(ReadSourceLocation(Record, Idx)); TL.setRAngleLoc(ReadSourceLocation(Record, Idx)); for (unsigned i = 0, e = TL.getNumProtocols(); i != e; ++i) TL.setProtocolLoc(i, ReadSourceLocation(Record, Idx)); } void TypeLocReader::VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) { TL.setStarLoc(ReadSourceLocation(Record, Idx)); } void TypeLocReader::VisitAtomicTypeLoc(AtomicTypeLoc TL) { TL.setKWLoc(ReadSourceLocation(Record, Idx)); TL.setLParenLoc(ReadSourceLocation(Record, Idx)); TL.setRParenLoc(ReadSourceLocation(Record, Idx)); } TypeSourceInfo *ASTReader::GetTypeSourceInfo(ModuleFile &F, const RecordData &Record, unsigned &Idx) { QualType InfoTy = readType(F, Record, Idx); if (InfoTy.isNull()) return 0; TypeSourceInfo *TInfo = getContext().CreateTypeSourceInfo(InfoTy); TypeLocReader TLR(*this, F, Record, Idx); for (TypeLoc TL = TInfo->getTypeLoc(); !TL.isNull(); TL = TL.getNextTypeLoc()) TLR.Visit(TL); return TInfo; } QualType ASTReader::GetType(TypeID ID) { unsigned FastQuals = ID & Qualifiers::FastMask; unsigned Index = ID >> Qualifiers::FastWidth; if (Index < NUM_PREDEF_TYPE_IDS) { QualType T; switch ((PredefinedTypeIDs)Index) { case PREDEF_TYPE_NULL_ID: return QualType(); case PREDEF_TYPE_VOID_ID: T = Context.VoidTy; break; case PREDEF_TYPE_BOOL_ID: T = Context.BoolTy; break; case PREDEF_TYPE_CHAR_U_ID: case PREDEF_TYPE_CHAR_S_ID: // FIXME: Check that the signedness of CharTy is correct! T = Context.CharTy; break; case PREDEF_TYPE_UCHAR_ID: T = Context.UnsignedCharTy; break; case PREDEF_TYPE_USHORT_ID: T = Context.UnsignedShortTy; break; case PREDEF_TYPE_UINT_ID: T = Context.UnsignedIntTy; break; case PREDEF_TYPE_ULONG_ID: T = Context.UnsignedLongTy; break; case PREDEF_TYPE_ULONGLONG_ID: T = Context.UnsignedLongLongTy; break; case PREDEF_TYPE_UINT128_ID: T = Context.UnsignedInt128Ty; break; case PREDEF_TYPE_SCHAR_ID: T = Context.SignedCharTy; break; case PREDEF_TYPE_WCHAR_ID: T = Context.WCharTy; break; case PREDEF_TYPE_SHORT_ID: T = Context.ShortTy; break; case PREDEF_TYPE_INT_ID: T = Context.IntTy; break; case PREDEF_TYPE_LONG_ID: T = Context.LongTy; break; case PREDEF_TYPE_LONGLONG_ID: T = Context.LongLongTy; break; case PREDEF_TYPE_INT128_ID: T = Context.Int128Ty; break; case PREDEF_TYPE_HALF_ID: T = Context.HalfTy; break; case PREDEF_TYPE_FLOAT_ID: T = Context.FloatTy; break; case PREDEF_TYPE_DOUBLE_ID: T = Context.DoubleTy; break; case PREDEF_TYPE_LONGDOUBLE_ID: T = Context.LongDoubleTy; break; case PREDEF_TYPE_OVERLOAD_ID: T = Context.OverloadTy; break; case PREDEF_TYPE_BOUND_MEMBER: T = Context.BoundMemberTy; break; case PREDEF_TYPE_PSEUDO_OBJECT: T = Context.PseudoObjectTy; break; case PREDEF_TYPE_DEPENDENT_ID: T = Context.DependentTy; break; case PREDEF_TYPE_UNKNOWN_ANY: T = Context.UnknownAnyTy; break; case PREDEF_TYPE_NULLPTR_ID: T = Context.NullPtrTy; break; case PREDEF_TYPE_CHAR16_ID: T = Context.Char16Ty; break; case PREDEF_TYPE_CHAR32_ID: T = Context.Char32Ty; break; case PREDEF_TYPE_OBJC_ID: T = Context.ObjCBuiltinIdTy; break; case PREDEF_TYPE_OBJC_CLASS: T = Context.ObjCBuiltinClassTy; break; case PREDEF_TYPE_OBJC_SEL: T = Context.ObjCBuiltinSelTy; break; case PREDEF_TYPE_AUTO_DEDUCT: T = Context.getAutoDeductType(); break; case PREDEF_TYPE_AUTO_RREF_DEDUCT: T = Context.getAutoRRefDeductType(); break; case PREDEF_TYPE_ARC_UNBRIDGED_CAST: T = Context.ARCUnbridgedCastTy; break; } assert(!T.isNull() && "Unknown predefined type"); return T.withFastQualifiers(FastQuals); } Index -= NUM_PREDEF_TYPE_IDS; assert(Index < TypesLoaded.size() && "Type index out-of-range"); if (TypesLoaded[Index].isNull()) { TypesLoaded[Index] = readTypeRecord(Index); if (TypesLoaded[Index].isNull()) return QualType(); TypesLoaded[Index]->setFromAST(); if (DeserializationListener) DeserializationListener->TypeRead(TypeIdx::fromTypeID(ID), TypesLoaded[Index]); } return TypesLoaded[Index].withFastQualifiers(FastQuals); } QualType ASTReader::getLocalType(ModuleFile &F, unsigned LocalID) { return GetType(getGlobalTypeID(F, LocalID)); } serialization::TypeID ASTReader::getGlobalTypeID(ModuleFile &F, unsigned LocalID) const { unsigned FastQuals = LocalID & Qualifiers::FastMask; unsigned LocalIndex = LocalID >> Qualifiers::FastWidth; if (LocalIndex < NUM_PREDEF_TYPE_IDS) return LocalID; ContinuousRangeMap::iterator I = F.TypeRemap.find(LocalIndex - NUM_PREDEF_TYPE_IDS); assert(I != F.TypeRemap.end() && "Invalid index into type index remap"); unsigned GlobalIndex = LocalIndex + I->second; return (GlobalIndex << Qualifiers::FastWidth) | FastQuals; } TemplateArgumentLocInfo ASTReader::GetTemplateArgumentLocInfo(ModuleFile &F, TemplateArgument::ArgKind Kind, const RecordData &Record, unsigned &Index) { switch (Kind) { case TemplateArgument::Expression: return ReadExpr(F); case TemplateArgument::Type: return GetTypeSourceInfo(F, Record, Index); case TemplateArgument::Template: { NestedNameSpecifierLoc QualifierLoc = ReadNestedNameSpecifierLoc(F, Record, Index); SourceLocation TemplateNameLoc = ReadSourceLocation(F, Record, Index); return TemplateArgumentLocInfo(QualifierLoc, TemplateNameLoc, SourceLocation()); } case TemplateArgument::TemplateExpansion: { NestedNameSpecifierLoc QualifierLoc = ReadNestedNameSpecifierLoc(F, Record, Index); SourceLocation TemplateNameLoc = ReadSourceLocation(F, Record, Index); SourceLocation EllipsisLoc = ReadSourceLocation(F, Record, Index); return TemplateArgumentLocInfo(QualifierLoc, TemplateNameLoc, EllipsisLoc); } case TemplateArgument::Null: case TemplateArgument::Integral: case TemplateArgument::Declaration: case TemplateArgument::Pack: return TemplateArgumentLocInfo(); } llvm_unreachable("unexpected template argument loc"); } TemplateArgumentLoc ASTReader::ReadTemplateArgumentLoc(ModuleFile &F, const RecordData &Record, unsigned &Index) { TemplateArgument Arg = ReadTemplateArgument(F, Record, Index); if (Arg.getKind() == TemplateArgument::Expression) { if (Record[Index++]) // bool InfoHasSameExpr. return TemplateArgumentLoc(Arg, TemplateArgumentLocInfo(Arg.getAsExpr())); } return TemplateArgumentLoc(Arg, GetTemplateArgumentLocInfo(F, Arg.getKind(), Record, Index)); } Decl *ASTReader::GetExternalDecl(uint32_t ID) { return GetDecl(ID); } uint64_t ASTReader::readCXXBaseSpecifiers(ModuleFile &M, const RecordData &Record, unsigned &Idx){ if (Idx >= Record.size()) return 0; unsigned LocalID = Record[Idx++]; return getGlobalBitOffset(M, M.CXXBaseSpecifiersOffsets[LocalID - 1]); } CXXBaseSpecifier *ASTReader::GetExternalCXXBaseSpecifiers(uint64_t Offset) { RecordLocation Loc = getLocalBitOffset(Offset); llvm::BitstreamCursor &Cursor = Loc.F->DeclsCursor; SavedStreamPosition SavedPosition(Cursor); Cursor.JumpToBit(Loc.Offset); ReadingKindTracker ReadingKind(Read_Decl, *this); RecordData Record; unsigned Code = Cursor.ReadCode(); unsigned RecCode = Cursor.ReadRecord(Code, Record); if (RecCode != DECL_CXX_BASE_SPECIFIERS) { Error("Malformed AST file: missing C++ base specifiers"); return 0; } unsigned Idx = 0; unsigned NumBases = Record[Idx++]; void *Mem = Context.Allocate(sizeof(CXXBaseSpecifier) * NumBases); CXXBaseSpecifier *Bases = new (Mem) CXXBaseSpecifier [NumBases]; for (unsigned I = 0; I != NumBases; ++I) Bases[I] = ReadCXXBaseSpecifier(*Loc.F, Record, Idx); return Bases; } serialization::DeclID ASTReader::getGlobalDeclID(ModuleFile &F, unsigned LocalID) const { if (LocalID < NUM_PREDEF_DECL_IDS) return LocalID; ContinuousRangeMap::iterator I = F.DeclRemap.find(LocalID - NUM_PREDEF_DECL_IDS); assert(I != F.DeclRemap.end() && "Invalid index into decl index remap"); return LocalID + I->second; } bool ASTReader::isDeclIDFromModule(serialization::GlobalDeclID ID, ModuleFile &M) const { GlobalDeclMapType::const_iterator I = GlobalDeclMap.find(ID); assert(I != GlobalDeclMap.end() && "Corrupted global declaration map"); return &M == I->second; } ModuleFile *ASTReader::getOwningModuleFile(Decl *D) { if (!D->isFromASTFile()) return 0; GlobalDeclMapType::const_iterator I = GlobalDeclMap.find(D->getGlobalID()); assert(I != GlobalDeclMap.end() && "Corrupted global declaration map"); return I->second; } SourceLocation ASTReader::getSourceLocationForDeclID(GlobalDeclID ID) { if (ID < NUM_PREDEF_DECL_IDS) return SourceLocation(); unsigned Index = ID - NUM_PREDEF_DECL_IDS; if (Index > DeclsLoaded.size()) { Error("declaration ID out-of-range for AST file"); return SourceLocation(); } if (Decl *D = DeclsLoaded[Index]) return D->getLocation(); unsigned RawLocation = 0; RecordLocation Rec = DeclCursorForID(ID, RawLocation); return ReadSourceLocation(*Rec.F, RawLocation); } Decl *ASTReader::GetDecl(DeclID ID) { if (ID < NUM_PREDEF_DECL_IDS) { switch ((PredefinedDeclIDs)ID) { case PREDEF_DECL_NULL_ID: return 0; case PREDEF_DECL_TRANSLATION_UNIT_ID: return Context.getTranslationUnitDecl(); case PREDEF_DECL_OBJC_ID_ID: return Context.getObjCIdDecl(); case PREDEF_DECL_OBJC_SEL_ID: return Context.getObjCSelDecl(); case PREDEF_DECL_OBJC_CLASS_ID: return Context.getObjCClassDecl(); case PREDEF_DECL_OBJC_PROTOCOL_ID: return Context.getObjCProtocolDecl(); case PREDEF_DECL_INT_128_ID: return Context.getInt128Decl(); case PREDEF_DECL_UNSIGNED_INT_128_ID: return Context.getUInt128Decl(); case PREDEF_DECL_OBJC_INSTANCETYPE_ID: return Context.getObjCInstanceTypeDecl(); } } unsigned Index = ID - NUM_PREDEF_DECL_IDS; if (Index >= DeclsLoaded.size()) { Error("declaration ID out-of-range for AST file"); } if (!DeclsLoaded[Index]) { ReadDeclRecord(ID); if (DeserializationListener) DeserializationListener->DeclRead(ID, DeclsLoaded[Index]); } return DeclsLoaded[Index]; } DeclID ASTReader::mapGlobalIDToModuleFileGlobalID(ModuleFile &M, DeclID GlobalID) { if (GlobalID < NUM_PREDEF_DECL_IDS) return GlobalID; GlobalDeclMapType::const_iterator I = GlobalDeclMap.find(GlobalID); assert(I != GlobalDeclMap.end() && "Corrupted global declaration map"); ModuleFile *Owner = I->second; llvm::DenseMap::iterator Pos = M.GlobalToLocalDeclIDs.find(Owner); if (Pos == M.GlobalToLocalDeclIDs.end()) return 0; return GlobalID - Owner->BaseDeclID + Pos->second; } serialization::DeclID ASTReader::ReadDeclID(ModuleFile &F, const RecordData &Record, unsigned &Idx) { if (Idx >= Record.size()) { Error("Corrupted AST file"); return 0; } return getGlobalDeclID(F, Record[Idx++]); } /// \brief Resolve the offset of a statement into a statement. /// /// This operation will read a new statement from the external /// source each time it is called, and is meant to be used via a /// LazyOffsetPtr (which is used by Decls for the body of functions, etc). Stmt *ASTReader::GetExternalDeclStmt(uint64_t Offset) { // Switch case IDs are per Decl. ClearSwitchCaseIDs(); // Offset here is a global offset across the entire chain. RecordLocation Loc = getLocalBitOffset(Offset); Loc.F->DeclsCursor.JumpToBit(Loc.Offset); return ReadStmtFromStream(*Loc.F); } namespace { class FindExternalLexicalDeclsVisitor { ASTReader &Reader; const DeclContext *DC; bool (*isKindWeWant)(Decl::Kind); SmallVectorImpl &Decls; bool PredefsVisited[NUM_PREDEF_DECL_IDS]; public: FindExternalLexicalDeclsVisitor(ASTReader &Reader, const DeclContext *DC, bool (*isKindWeWant)(Decl::Kind), SmallVectorImpl &Decls) : Reader(Reader), DC(DC), isKindWeWant(isKindWeWant), Decls(Decls) { for (unsigned I = 0; I != NUM_PREDEF_DECL_IDS; ++I) PredefsVisited[I] = false; } static bool visit(ModuleFile &M, bool Preorder, void *UserData) { if (Preorder) return false; FindExternalLexicalDeclsVisitor *This = static_cast(UserData); ModuleFile::DeclContextInfosMap::iterator Info = M.DeclContextInfos.find(This->DC); if (Info == M.DeclContextInfos.end() || !Info->second.LexicalDecls) return false; // Load all of the declaration IDs for (const KindDeclIDPair *ID = Info->second.LexicalDecls, *IDE = ID + Info->second.NumLexicalDecls; ID != IDE; ++ID) { if (This->isKindWeWant && !This->isKindWeWant((Decl::Kind)ID->first)) continue; // Don't add predefined declarations to the lexical context more // than once. if (ID->second < NUM_PREDEF_DECL_IDS) { if (This->PredefsVisited[ID->second]) continue; This->PredefsVisited[ID->second] = true; } if (Decl *D = This->Reader.GetLocalDecl(M, ID->second)) { if (!This->DC->isDeclInLexicalTraversal(D)) This->Decls.push_back(D); } } return false; } }; } ExternalLoadResult ASTReader::FindExternalLexicalDecls(const DeclContext *DC, bool (*isKindWeWant)(Decl::Kind), SmallVectorImpl &Decls) { // There might be lexical decls in multiple modules, for the TU at // least. Walk all of the modules in the order they were loaded. FindExternalLexicalDeclsVisitor Visitor(*this, DC, isKindWeWant, Decls); ModuleMgr.visitDepthFirst(&FindExternalLexicalDeclsVisitor::visit, &Visitor); ++NumLexicalDeclContextsRead; return ELR_Success; } namespace { class DeclIDComp { ASTReader &Reader; ModuleFile &Mod; public: DeclIDComp(ASTReader &Reader, ModuleFile &M) : Reader(Reader), Mod(M) {} bool operator()(LocalDeclID L, LocalDeclID R) const { SourceLocation LHS = getLocation(L); SourceLocation RHS = getLocation(R); return Reader.getSourceManager().isBeforeInTranslationUnit(LHS, RHS); } bool operator()(SourceLocation LHS, LocalDeclID R) const { SourceLocation RHS = getLocation(R); return Reader.getSourceManager().isBeforeInTranslationUnit(LHS, RHS); } bool operator()(LocalDeclID L, SourceLocation RHS) const { SourceLocation LHS = getLocation(L); return Reader.getSourceManager().isBeforeInTranslationUnit(LHS, RHS); } SourceLocation getLocation(LocalDeclID ID) const { return Reader.getSourceManager().getFileLoc( Reader.getSourceLocationForDeclID(Reader.getGlobalDeclID(Mod, ID))); } }; } void ASTReader::FindFileRegionDecls(FileID File, unsigned Offset, unsigned Length, SmallVectorImpl &Decls) { SourceManager &SM = getSourceManager(); llvm::DenseMap::iterator I = FileDeclIDs.find(File); if (I == FileDeclIDs.end()) return; FileDeclsInfo &DInfo = I->second; if (DInfo.Decls.empty()) return; SourceLocation BeginLoc = SM.getLocForStartOfFile(File).getLocWithOffset(Offset); SourceLocation EndLoc = BeginLoc.getLocWithOffset(Length); DeclIDComp DIDComp(*this, *DInfo.Mod); ArrayRef::iterator BeginIt = std::lower_bound(DInfo.Decls.begin(), DInfo.Decls.end(), BeginLoc, DIDComp); if (BeginIt != DInfo.Decls.begin()) --BeginIt; // If we are pointing at a top-level decl inside an objc container, we need // to backtrack until we find it otherwise we will fail to report that the // region overlaps with an objc container. while (BeginIt != DInfo.Decls.begin() && GetDecl(getGlobalDeclID(*DInfo.Mod, *BeginIt)) ->isTopLevelDeclInObjCContainer()) --BeginIt; ArrayRef::iterator EndIt = std::upper_bound(DInfo.Decls.begin(), DInfo.Decls.end(), EndLoc, DIDComp); if (EndIt != DInfo.Decls.end()) ++EndIt; for (ArrayRef::iterator DIt = BeginIt; DIt != EndIt; ++DIt) Decls.push_back(GetDecl(getGlobalDeclID(*DInfo.Mod, *DIt))); } namespace { /// \brief ModuleFile visitor used to perform name lookup into a /// declaration context. class DeclContextNameLookupVisitor { ASTReader &Reader; llvm::SmallVectorImpl &Contexts; const DeclContext *DC; DeclarationName Name; SmallVectorImpl &Decls; public: DeclContextNameLookupVisitor(ASTReader &Reader, SmallVectorImpl &Contexts, DeclarationName Name, SmallVectorImpl &Decls) : Reader(Reader), Contexts(Contexts), Name(Name), Decls(Decls) { } static bool visit(ModuleFile &M, void *UserData) { DeclContextNameLookupVisitor *This = static_cast(UserData); // Check whether we have any visible declaration information for // this context in this module. ModuleFile::DeclContextInfosMap::iterator Info; bool FoundInfo = false; for (unsigned I = 0, N = This->Contexts.size(); I != N; ++I) { Info = M.DeclContextInfos.find(This->Contexts[I]); if (Info != M.DeclContextInfos.end() && Info->second.NameLookupTableData) { FoundInfo = true; break; } } if (!FoundInfo) return false; // Look for this name within this module. ASTDeclContextNameLookupTable *LookupTable = Info->second.NameLookupTableData; ASTDeclContextNameLookupTable::iterator Pos = LookupTable->find(This->Name); if (Pos == LookupTable->end()) return false; bool FoundAnything = false; ASTDeclContextNameLookupTrait::data_type Data = *Pos; for (; Data.first != Data.second; ++Data.first) { NamedDecl *ND = This->Reader.GetLocalDeclAs(M, *Data.first); if (!ND) continue; if (ND->getDeclName() != This->Name) { assert(!This->Name.getCXXNameType().isNull() && "Name mismatch without a type"); continue; } // Record this declaration. FoundAnything = true; This->Decls.push_back(ND); } return FoundAnything; } }; } DeclContext::lookup_result ASTReader::FindExternalVisibleDeclsByName(const DeclContext *DC, DeclarationName Name) { assert(DC->hasExternalVisibleStorage() && "DeclContext has no visible decls in storage"); if (!Name) return DeclContext::lookup_result(DeclContext::lookup_iterator(0), DeclContext::lookup_iterator(0)); SmallVector Decls; // Compute the declaration contexts we need to look into. Multiple such // declaration contexts occur when two declaration contexts from disjoint // modules get merged, e.g., when two namespaces with the same name are // independently defined in separate modules. SmallVector Contexts; Contexts.push_back(DC); if (DC->isNamespace()) { MergedDeclsMap::iterator Merged = MergedDecls.find(const_cast(cast(DC))); if (Merged != MergedDecls.end()) { for (unsigned I = 0, N = Merged->second.size(); I != N; ++I) Contexts.push_back(cast(GetDecl(Merged->second[I]))); } } DeclContextNameLookupVisitor Visitor(*this, Contexts, Name, Decls); ModuleMgr.visit(&DeclContextNameLookupVisitor::visit, &Visitor); ++NumVisibleDeclContextsRead; SetExternalVisibleDeclsForName(DC, Name, Decls); return const_cast(DC)->lookup(Name); } namespace { /// \brief ModuleFile visitor used to retrieve all visible names in a /// declaration context. class DeclContextAllNamesVisitor { ASTReader &Reader; llvm::SmallVectorImpl &Contexts; const DeclContext *DC; llvm::DenseMap > &Decls; public: DeclContextAllNamesVisitor(ASTReader &Reader, SmallVectorImpl &Contexts, llvm::DenseMap > &Decls) : Reader(Reader), Contexts(Contexts), Decls(Decls) { } static bool visit(ModuleFile &M, void *UserData) { DeclContextAllNamesVisitor *This = static_cast(UserData); // Check whether we have any visible declaration information for // this context in this module. ModuleFile::DeclContextInfosMap::iterator Info; bool FoundInfo = false; for (unsigned I = 0, N = This->Contexts.size(); I != N; ++I) { Info = M.DeclContextInfos.find(This->Contexts[I]); if (Info != M.DeclContextInfos.end() && Info->second.NameLookupTableData) { FoundInfo = true; break; } } if (!FoundInfo) return false; ASTDeclContextNameLookupTable *LookupTable = Info->second.NameLookupTableData; bool FoundAnything = false; for (ASTDeclContextNameLookupTable::data_iterator I = LookupTable->data_begin(), E = LookupTable->data_end(); I != E; ++I) { ASTDeclContextNameLookupTrait::data_type Data = *I; for (; Data.first != Data.second; ++Data.first) { NamedDecl *ND = This->Reader.GetLocalDeclAs(M, *Data.first); if (!ND) continue; // Record this declaration. FoundAnything = true; This->Decls[ND->getDeclName()].push_back(ND); } } return FoundAnything; } }; } void ASTReader::completeVisibleDeclsMap(const DeclContext *DC) { if (!DC->hasExternalVisibleStorage()) return; llvm::DenseMap > Decls; // Compute the declaration contexts we need to look into. Multiple such // declaration contexts occur when two declaration contexts from disjoint // modules get merged, e.g., when two namespaces with the same name are // independently defined in separate modules. SmallVector Contexts; Contexts.push_back(DC); if (DC->isNamespace()) { MergedDeclsMap::iterator Merged = MergedDecls.find(const_cast(cast(DC))); if (Merged != MergedDecls.end()) { for (unsigned I = 0, N = Merged->second.size(); I != N; ++I) Contexts.push_back(cast(GetDecl(Merged->second[I]))); } } DeclContextAllNamesVisitor Visitor(*this, Contexts, Decls); ModuleMgr.visit(&DeclContextAllNamesVisitor::visit, &Visitor); ++NumVisibleDeclContextsRead; for (llvm::DenseMap >::iterator I = Decls.begin(), E = Decls.end(); I != E; ++I) { SetExternalVisibleDeclsForName(DC, I->first, I->second); } } /// \brief Under non-PCH compilation the consumer receives the objc methods /// before receiving the implementation, and codegen depends on this. /// We simulate this by deserializing and passing to consumer the methods of the /// implementation before passing the deserialized implementation decl. static void PassObjCImplDeclToConsumer(ObjCImplDecl *ImplD, ASTConsumer *Consumer) { assert(ImplD && Consumer); for (ObjCImplDecl::method_iterator I = ImplD->meth_begin(), E = ImplD->meth_end(); I != E; ++I) Consumer->HandleInterestingDecl(DeclGroupRef(*I)); Consumer->HandleInterestingDecl(DeclGroupRef(ImplD)); } void ASTReader::PassInterestingDeclsToConsumer() { assert(Consumer); while (!InterestingDecls.empty()) { Decl *D = InterestingDecls.front(); InterestingDecls.pop_front(); PassInterestingDeclToConsumer(D); } } void ASTReader::PassInterestingDeclToConsumer(Decl *D) { if (ObjCImplDecl *ImplD = dyn_cast(D)) PassObjCImplDeclToConsumer(ImplD, Consumer); else Consumer->HandleInterestingDecl(DeclGroupRef(D)); } void ASTReader::StartTranslationUnit(ASTConsumer *Consumer) { this->Consumer = Consumer; if (!Consumer) return; for (unsigned I = 0, N = ExternalDefinitions.size(); I != N; ++I) { // Force deserialization of this decl, which will cause it to be queued for // passing to the consumer. GetDecl(ExternalDefinitions[I]); } ExternalDefinitions.clear(); PassInterestingDeclsToConsumer(); } void ASTReader::PrintStats() { std::fprintf(stderr, "*** AST File Statistics:\n"); unsigned NumTypesLoaded = TypesLoaded.size() - std::count(TypesLoaded.begin(), TypesLoaded.end(), QualType()); unsigned NumDeclsLoaded = DeclsLoaded.size() - std::count(DeclsLoaded.begin(), DeclsLoaded.end(), (Decl *)0); unsigned NumIdentifiersLoaded = IdentifiersLoaded.size() - std::count(IdentifiersLoaded.begin(), IdentifiersLoaded.end(), (IdentifierInfo *)0); unsigned NumSelectorsLoaded = SelectorsLoaded.size() - std::count(SelectorsLoaded.begin(), SelectorsLoaded.end(), Selector()); std::fprintf(stderr, " %u stat cache hits\n", NumStatHits); std::fprintf(stderr, " %u stat cache misses\n", NumStatMisses); if (unsigned TotalNumSLocEntries = getTotalNumSLocs()) std::fprintf(stderr, " %u/%u source location entries read (%f%%)\n", NumSLocEntriesRead, TotalNumSLocEntries, ((float)NumSLocEntriesRead/TotalNumSLocEntries * 100)); if (!TypesLoaded.empty()) std::fprintf(stderr, " %u/%u types read (%f%%)\n", NumTypesLoaded, (unsigned)TypesLoaded.size(), ((float)NumTypesLoaded/TypesLoaded.size() * 100)); if (!DeclsLoaded.empty()) std::fprintf(stderr, " %u/%u declarations read (%f%%)\n", NumDeclsLoaded, (unsigned)DeclsLoaded.size(), ((float)NumDeclsLoaded/DeclsLoaded.size() * 100)); if (!IdentifiersLoaded.empty()) std::fprintf(stderr, " %u/%u identifiers read (%f%%)\n", NumIdentifiersLoaded, (unsigned)IdentifiersLoaded.size(), ((float)NumIdentifiersLoaded/IdentifiersLoaded.size() * 100)); if (!SelectorsLoaded.empty()) std::fprintf(stderr, " %u/%u selectors read (%f%%)\n", NumSelectorsLoaded, (unsigned)SelectorsLoaded.size(), ((float)NumSelectorsLoaded/SelectorsLoaded.size() * 100)); if (TotalNumStatements) std::fprintf(stderr, " %u/%u statements read (%f%%)\n", NumStatementsRead, TotalNumStatements, ((float)NumStatementsRead/TotalNumStatements * 100)); if (TotalNumMacros) std::fprintf(stderr, " %u/%u macros read (%f%%)\n", NumMacrosRead, TotalNumMacros, ((float)NumMacrosRead/TotalNumMacros * 100)); if (TotalLexicalDeclContexts) std::fprintf(stderr, " %u/%u lexical declcontexts read (%f%%)\n", NumLexicalDeclContextsRead, TotalLexicalDeclContexts, ((float)NumLexicalDeclContextsRead/TotalLexicalDeclContexts * 100)); if (TotalVisibleDeclContexts) std::fprintf(stderr, " %u/%u visible declcontexts read (%f%%)\n", NumVisibleDeclContextsRead, TotalVisibleDeclContexts, ((float)NumVisibleDeclContextsRead/TotalVisibleDeclContexts * 100)); if (TotalNumMethodPoolEntries) { std::fprintf(stderr, " %u/%u method pool entries read (%f%%)\n", NumMethodPoolEntriesRead, TotalNumMethodPoolEntries, ((float)NumMethodPoolEntriesRead/TotalNumMethodPoolEntries * 100)); std::fprintf(stderr, " %u method pool misses\n", NumMethodPoolMisses); } std::fprintf(stderr, "\n"); dump(); std::fprintf(stderr, "\n"); } template static void dumpModuleIDMap(StringRef Name, const ContinuousRangeMap &Map) { if (Map.begin() == Map.end()) return; typedef ContinuousRangeMap MapType; llvm::errs() << Name << ":\n"; for (typename MapType::const_iterator I = Map.begin(), IEnd = Map.end(); I != IEnd; ++I) { llvm::errs() << " " << I->first << " -> " << I->second->FileName << "\n"; } } void ASTReader::dump() { llvm::errs() << "*** PCH/ModuleFile Remappings:\n"; dumpModuleIDMap("Global bit offset map", GlobalBitOffsetsMap); dumpModuleIDMap("Global source location entry map", GlobalSLocEntryMap); dumpModuleIDMap("Global type map", GlobalTypeMap); dumpModuleIDMap("Global declaration map", GlobalDeclMap); dumpModuleIDMap("Global identifier map", GlobalIdentifierMap); dumpModuleIDMap("Global submodule map", GlobalSubmoduleMap); dumpModuleIDMap("Global selector map", GlobalSelectorMap); dumpModuleIDMap("Global preprocessed entity map", GlobalPreprocessedEntityMap); llvm::errs() << "\n*** PCH/Modules Loaded:"; for (ModuleManager::ModuleConstIterator M = ModuleMgr.begin(), MEnd = ModuleMgr.end(); M != MEnd; ++M) (*M)->dump(); } /// Return the amount of memory used by memory buffers, breaking down /// by heap-backed versus mmap'ed memory. void ASTReader::getMemoryBufferSizes(MemoryBufferSizes &sizes) const { for (ModuleConstIterator I = ModuleMgr.begin(), E = ModuleMgr.end(); I != E; ++I) { if (llvm::MemoryBuffer *buf = (*I)->Buffer.get()) { size_t bytes = buf->getBufferSize(); switch (buf->getBufferKind()) { case llvm::MemoryBuffer::MemoryBuffer_Malloc: sizes.malloc_bytes += bytes; break; case llvm::MemoryBuffer::MemoryBuffer_MMap: sizes.mmap_bytes += bytes; break; } } } } void ASTReader::InitializeSema(Sema &S) { SemaObj = &S; S.ExternalSource = this; // Makes sure any declarations that were deserialized "too early" // still get added to the identifier's declaration chains. for (unsigned I = 0, N = PreloadedDecls.size(); I != N; ++I) { SemaObj->pushExternalDeclIntoScope(PreloadedDecls[I], PreloadedDecls[I]->getDeclName()); } PreloadedDecls.clear(); // Load the offsets of the declarations that Sema references. // They will be lazily deserialized when needed. if (!SemaDeclRefs.empty()) { assert(SemaDeclRefs.size() == 2 && "More decl refs than expected!"); if (!SemaObj->StdNamespace) SemaObj->StdNamespace = SemaDeclRefs[0]; if (!SemaObj->StdBadAlloc) SemaObj->StdBadAlloc = SemaDeclRefs[1]; } if (!FPPragmaOptions.empty()) { assert(FPPragmaOptions.size() == 1 && "Wrong number of FP_PRAGMA_OPTIONS"); SemaObj->FPFeatures.fp_contract = FPPragmaOptions[0]; } if (!OpenCLExtensions.empty()) { unsigned I = 0; #define OPENCLEXT(nm) SemaObj->OpenCLFeatures.nm = OpenCLExtensions[I++]; #include "clang/Basic/OpenCLExtensions.def" assert(OpenCLExtensions.size() == I && "Wrong number of OPENCL_EXTENSIONS"); } } IdentifierInfo* ASTReader::get(const char *NameStart, const char *NameEnd) { IdentifierLookupVisitor Visitor(StringRef(NameStart, NameEnd - NameStart), /*PriorGeneration=*/0); ModuleMgr.visit(IdentifierLookupVisitor::visit, &Visitor); IdentifierInfo *II = Visitor.getIdentifierInfo(); markIdentifierUpToDate(II); return II; } namespace clang { /// \brief An identifier-lookup iterator that enumerates all of the /// identifiers stored within a set of AST files. class ASTIdentifierIterator : public IdentifierIterator { /// \brief The AST reader whose identifiers are being enumerated. const ASTReader &Reader; /// \brief The current index into the chain of AST files stored in /// the AST reader. unsigned Index; /// \brief The current position within the identifier lookup table /// of the current AST file. ASTIdentifierLookupTable::key_iterator Current; /// \brief The end position within the identifier lookup table of /// the current AST file. ASTIdentifierLookupTable::key_iterator End; public: explicit ASTIdentifierIterator(const ASTReader &Reader); virtual StringRef Next(); }; } ASTIdentifierIterator::ASTIdentifierIterator(const ASTReader &Reader) : Reader(Reader), Index(Reader.ModuleMgr.size() - 1) { ASTIdentifierLookupTable *IdTable = (ASTIdentifierLookupTable *)Reader.ModuleMgr[Index].IdentifierLookupTable; Current = IdTable->key_begin(); End = IdTable->key_end(); } StringRef ASTIdentifierIterator::Next() { while (Current == End) { // If we have exhausted all of our AST files, we're done. if (Index == 0) return StringRef(); --Index; ASTIdentifierLookupTable *IdTable = (ASTIdentifierLookupTable *)Reader.ModuleMgr[Index]. IdentifierLookupTable; Current = IdTable->key_begin(); End = IdTable->key_end(); } // We have any identifiers remaining in the current AST file; return // the next one. std::pair Key = *Current; ++Current; return StringRef(Key.first, Key.second); } IdentifierIterator *ASTReader::getIdentifiers() const { return new ASTIdentifierIterator(*this); } namespace clang { namespace serialization { class ReadMethodPoolVisitor { ASTReader &Reader; Selector Sel; unsigned PriorGeneration; llvm::SmallVector InstanceMethods; llvm::SmallVector FactoryMethods; public: ReadMethodPoolVisitor(ASTReader &Reader, Selector Sel, unsigned PriorGeneration) : Reader(Reader), Sel(Sel), PriorGeneration(PriorGeneration) { } static bool visit(ModuleFile &M, void *UserData) { ReadMethodPoolVisitor *This = static_cast(UserData); if (!M.SelectorLookupTable) return false; // If we've already searched this module file, skip it now. if (M.Generation <= This->PriorGeneration) return true; ASTSelectorLookupTable *PoolTable = (ASTSelectorLookupTable*)M.SelectorLookupTable; ASTSelectorLookupTable::iterator Pos = PoolTable->find(This->Sel); if (Pos == PoolTable->end()) return false; ++This->Reader.NumSelectorsRead; // FIXME: Not quite happy with the statistics here. We probably should // disable this tracking when called via LoadSelector. // Also, should entries without methods count as misses? ++This->Reader.NumMethodPoolEntriesRead; ASTSelectorLookupTrait::data_type Data = *Pos; if (This->Reader.DeserializationListener) This->Reader.DeserializationListener->SelectorRead(Data.ID, This->Sel); This->InstanceMethods.append(Data.Instance.begin(), Data.Instance.end()); This->FactoryMethods.append(Data.Factory.begin(), Data.Factory.end()); return true; } /// \brief Retrieve the instance methods found by this visitor. ArrayRef getInstanceMethods() const { return InstanceMethods; } /// \brief Retrieve the instance methods found by this visitor. ArrayRef getFactoryMethods() const { return FactoryMethods; } }; } } // end namespace clang::serialization /// \brief Add the given set of methods to the method list. static void addMethodsToPool(Sema &S, ArrayRef Methods, ObjCMethodList &List) { for (unsigned I = 0, N = Methods.size(); I != N; ++I) { S.addMethodToGlobalList(&List, Methods[I]); } } void ASTReader::ReadMethodPool(Selector Sel) { // Get the selector generation and update it to the current generation. unsigned &Generation = SelectorGeneration[Sel]; unsigned PriorGeneration = Generation; Generation = CurrentGeneration; // Search for methods defined with this selector. ReadMethodPoolVisitor Visitor(*this, Sel, PriorGeneration); ModuleMgr.visit(&ReadMethodPoolVisitor::visit, &Visitor); if (Visitor.getInstanceMethods().empty() && Visitor.getFactoryMethods().empty()) { ++NumMethodPoolMisses; return; } if (!getSema()) return; Sema &S = *getSema(); Sema::GlobalMethodPool::iterator Pos = S.MethodPool.insert(std::make_pair(Sel, Sema::GlobalMethods())).first; addMethodsToPool(S, Visitor.getInstanceMethods(), Pos->second.first); addMethodsToPool(S, Visitor.getFactoryMethods(), Pos->second.second); } void ASTReader::ReadKnownNamespaces( SmallVectorImpl &Namespaces) { Namespaces.clear(); for (unsigned I = 0, N = KnownNamespaces.size(); I != N; ++I) { if (NamespaceDecl *Namespace = dyn_cast_or_null(GetDecl(KnownNamespaces[I]))) Namespaces.push_back(Namespace); } } void ASTReader::ReadTentativeDefinitions( SmallVectorImpl &TentativeDefs) { for (unsigned I = 0, N = TentativeDefinitions.size(); I != N; ++I) { VarDecl *Var = dyn_cast_or_null(GetDecl(TentativeDefinitions[I])); if (Var) TentativeDefs.push_back(Var); } TentativeDefinitions.clear(); } void ASTReader::ReadUnusedFileScopedDecls( SmallVectorImpl &Decls) { for (unsigned I = 0, N = UnusedFileScopedDecls.size(); I != N; ++I) { DeclaratorDecl *D = dyn_cast_or_null(GetDecl(UnusedFileScopedDecls[I])); if (D) Decls.push_back(D); } UnusedFileScopedDecls.clear(); } void ASTReader::ReadDelegatingConstructors( SmallVectorImpl &Decls) { for (unsigned I = 0, N = DelegatingCtorDecls.size(); I != N; ++I) { CXXConstructorDecl *D = dyn_cast_or_null(GetDecl(DelegatingCtorDecls[I])); if (D) Decls.push_back(D); } DelegatingCtorDecls.clear(); } void ASTReader::ReadExtVectorDecls(SmallVectorImpl &Decls) { for (unsigned I = 0, N = ExtVectorDecls.size(); I != N; ++I) { TypedefNameDecl *D = dyn_cast_or_null(GetDecl(ExtVectorDecls[I])); if (D) Decls.push_back(D); } ExtVectorDecls.clear(); } void ASTReader::ReadDynamicClasses(SmallVectorImpl &Decls) { for (unsigned I = 0, N = DynamicClasses.size(); I != N; ++I) { CXXRecordDecl *D = dyn_cast_or_null(GetDecl(DynamicClasses[I])); if (D) Decls.push_back(D); } DynamicClasses.clear(); } void ASTReader::ReadLocallyScopedExternalDecls(SmallVectorImpl &Decls) { for (unsigned I = 0, N = LocallyScopedExternalDecls.size(); I != N; ++I) { NamedDecl *D = dyn_cast_or_null(GetDecl(LocallyScopedExternalDecls[I])); if (D) Decls.push_back(D); } LocallyScopedExternalDecls.clear(); } void ASTReader::ReadReferencedSelectors( SmallVectorImpl > &Sels) { if (ReferencedSelectorsData.empty()) return; // If there are @selector references added them to its pool. This is for // implementation of -Wselector. unsigned int DataSize = ReferencedSelectorsData.size()-1; unsigned I = 0; while (I < DataSize) { Selector Sel = DecodeSelector(ReferencedSelectorsData[I++]); SourceLocation SelLoc = SourceLocation::getFromRawEncoding(ReferencedSelectorsData[I++]); Sels.push_back(std::make_pair(Sel, SelLoc)); } ReferencedSelectorsData.clear(); } void ASTReader::ReadWeakUndeclaredIdentifiers( SmallVectorImpl > &WeakIDs) { if (WeakUndeclaredIdentifiers.empty()) return; for (unsigned I = 0, N = WeakUndeclaredIdentifiers.size(); I < N; /*none*/) { IdentifierInfo *WeakId = DecodeIdentifierInfo(WeakUndeclaredIdentifiers[I++]); IdentifierInfo *AliasId = DecodeIdentifierInfo(WeakUndeclaredIdentifiers[I++]); SourceLocation Loc = SourceLocation::getFromRawEncoding(WeakUndeclaredIdentifiers[I++]); bool Used = WeakUndeclaredIdentifiers[I++]; WeakInfo WI(AliasId, Loc); WI.setUsed(Used); WeakIDs.push_back(std::make_pair(WeakId, WI)); } WeakUndeclaredIdentifiers.clear(); } void ASTReader::ReadUsedVTables(SmallVectorImpl &VTables) { for (unsigned Idx = 0, N = VTableUses.size(); Idx < N; /* In loop */) { ExternalVTableUse VT; VT.Record = dyn_cast_or_null(GetDecl(VTableUses[Idx++])); VT.Location = SourceLocation::getFromRawEncoding(VTableUses[Idx++]); VT.DefinitionRequired = VTableUses[Idx++]; VTables.push_back(VT); } VTableUses.clear(); } void ASTReader::ReadPendingInstantiations( SmallVectorImpl > &Pending) { for (unsigned Idx = 0, N = PendingInstantiations.size(); Idx < N;) { ValueDecl *D = cast(GetDecl(PendingInstantiations[Idx++])); SourceLocation Loc = SourceLocation::getFromRawEncoding(PendingInstantiations[Idx++]); Pending.push_back(std::make_pair(D, Loc)); } PendingInstantiations.clear(); } void ASTReader::LoadSelector(Selector Sel) { // It would be complicated to avoid reading the methods anyway. So don't. ReadMethodPool(Sel); } void ASTReader::SetIdentifierInfo(IdentifierID ID, IdentifierInfo *II) { assert(ID && "Non-zero identifier ID required"); assert(ID <= IdentifiersLoaded.size() && "identifier ID out of range"); IdentifiersLoaded[ID - 1] = II; if (DeserializationListener) DeserializationListener->IdentifierRead(ID, II); } /// \brief Set the globally-visible declarations associated with the given /// identifier. /// /// If the AST reader is currently in a state where the given declaration IDs /// cannot safely be resolved, they are queued until it is safe to resolve /// them. /// /// \param II an IdentifierInfo that refers to one or more globally-visible /// declarations. /// /// \param DeclIDs the set of declaration IDs with the name @p II that are /// visible at global scope. /// /// \param Nonrecursive should be true to indicate that the caller knows that /// this call is non-recursive, and therefore the globally-visible declarations /// will not be placed onto the pending queue. void ASTReader::SetGloballyVisibleDecls(IdentifierInfo *II, const SmallVectorImpl &DeclIDs, bool Nonrecursive) { if (NumCurrentElementsDeserializing && !Nonrecursive) { PendingIdentifierInfos.push_back(PendingIdentifierInfo()); PendingIdentifierInfo &PII = PendingIdentifierInfos.back(); PII.II = II; PII.DeclIDs.append(DeclIDs.begin(), DeclIDs.end()); return; } for (unsigned I = 0, N = DeclIDs.size(); I != N; ++I) { NamedDecl *D = cast(GetDecl(DeclIDs[I])); if (SemaObj) { // Introduce this declaration into the translation-unit scope // and add it to the declaration chain for this identifier, so // that (unqualified) name lookup will find it. SemaObj->pushExternalDeclIntoScope(D, II); } else { // Queue this declaration so that it will be added to the // translation unit scope and identifier's declaration chain // once a Sema object is known. PreloadedDecls.push_back(D); } } } IdentifierInfo *ASTReader::DecodeIdentifierInfo(IdentifierID ID) { if (ID == 0) return 0; if (IdentifiersLoaded.empty()) { Error("no identifier table in AST file"); return 0; } ID -= 1; if (!IdentifiersLoaded[ID]) { GlobalIdentifierMapType::iterator I = GlobalIdentifierMap.find(ID + 1); assert(I != GlobalIdentifierMap.end() && "Corrupted global identifier map"); ModuleFile *M = I->second; unsigned Index = ID - M->BaseIdentifierID; const char *Str = M->IdentifierTableData + M->IdentifierOffsets[Index]; // All of the strings in the AST file are preceded by a 16-bit length. // Extract that 16-bit length to avoid having to execute strlen(). // NOTE: 'StrLenPtr' is an 'unsigned char*' so that we load bytes as // unsigned integers. This is important to avoid integer overflow when // we cast them to 'unsigned'. const unsigned char *StrLenPtr = (const unsigned char*) Str - 2; unsigned StrLen = (((unsigned) StrLenPtr[0]) | (((unsigned) StrLenPtr[1]) << 8)) - 1; IdentifiersLoaded[ID] = &PP.getIdentifierTable().get(StringRef(Str, StrLen)); if (DeserializationListener) DeserializationListener->IdentifierRead(ID + 1, IdentifiersLoaded[ID]); } return IdentifiersLoaded[ID]; } IdentifierInfo *ASTReader::getLocalIdentifier(ModuleFile &M, unsigned LocalID) { return DecodeIdentifierInfo(getGlobalIdentifierID(M, LocalID)); } IdentifierID ASTReader::getGlobalIdentifierID(ModuleFile &M, unsigned LocalID) { if (LocalID < NUM_PREDEF_IDENT_IDS) return LocalID; ContinuousRangeMap::iterator I = M.IdentifierRemap.find(LocalID - NUM_PREDEF_IDENT_IDS); assert(I != M.IdentifierRemap.end() && "Invalid index into identifier index remap"); return LocalID + I->second; } bool ASTReader::ReadSLocEntry(int ID) { return ReadSLocEntryRecord(ID) != Success; } serialization::SubmoduleID ASTReader::getGlobalSubmoduleID(ModuleFile &M, unsigned LocalID) { if (LocalID < NUM_PREDEF_SUBMODULE_IDS) return LocalID; ContinuousRangeMap::iterator I = M.SubmoduleRemap.find(LocalID - NUM_PREDEF_SUBMODULE_IDS); assert(I != M.SubmoduleRemap.end() && "Invalid index into identifier index remap"); return LocalID + I->second; } Module *ASTReader::getSubmodule(SubmoduleID GlobalID) { if (GlobalID < NUM_PREDEF_SUBMODULE_IDS) { assert(GlobalID == 0 && "Unhandled global submodule ID"); return 0; } if (GlobalID > SubmodulesLoaded.size()) { Error("submodule ID out of range in AST file"); return 0; } return SubmodulesLoaded[GlobalID - NUM_PREDEF_SUBMODULE_IDS]; } Selector ASTReader::getLocalSelector(ModuleFile &M, unsigned LocalID) { return DecodeSelector(getGlobalSelectorID(M, LocalID)); } Selector ASTReader::DecodeSelector(serialization::SelectorID ID) { if (ID == 0) return Selector(); if (ID > SelectorsLoaded.size()) { Error("selector ID out of range in AST file"); return Selector(); } if (SelectorsLoaded[ID - 1].getAsOpaquePtr() == 0) { // Load this selector from the selector table. GlobalSelectorMapType::iterator I = GlobalSelectorMap.find(ID); assert(I != GlobalSelectorMap.end() && "Corrupted global selector map"); ModuleFile &M = *I->second; ASTSelectorLookupTrait Trait(*this, M); unsigned Idx = ID - M.BaseSelectorID - NUM_PREDEF_SELECTOR_IDS; SelectorsLoaded[ID - 1] = Trait.ReadKey(M.SelectorLookupTableData + M.SelectorOffsets[Idx], 0); if (DeserializationListener) DeserializationListener->SelectorRead(ID, SelectorsLoaded[ID - 1]); } return SelectorsLoaded[ID - 1]; } Selector ASTReader::GetExternalSelector(serialization::SelectorID ID) { return DecodeSelector(ID); } uint32_t ASTReader::GetNumExternalSelectors() { // ID 0 (the null selector) is considered an external selector. return getTotalNumSelectors() + 1; } serialization::SelectorID ASTReader::getGlobalSelectorID(ModuleFile &M, unsigned LocalID) const { if (LocalID < NUM_PREDEF_SELECTOR_IDS) return LocalID; ContinuousRangeMap::iterator I = M.SelectorRemap.find(LocalID - NUM_PREDEF_SELECTOR_IDS); assert(I != M.SelectorRemap.end() && "Invalid index into identifier index remap"); return LocalID + I->second; } DeclarationName ASTReader::ReadDeclarationName(ModuleFile &F, const RecordData &Record, unsigned &Idx) { DeclarationName::NameKind Kind = (DeclarationName::NameKind)Record[Idx++]; switch (Kind) { case DeclarationName::Identifier: return DeclarationName(GetIdentifierInfo(F, Record, Idx)); case DeclarationName::ObjCZeroArgSelector: case DeclarationName::ObjCOneArgSelector: case DeclarationName::ObjCMultiArgSelector: return DeclarationName(ReadSelector(F, Record, Idx)); case DeclarationName::CXXConstructorName: return Context.DeclarationNames.getCXXConstructorName( Context.getCanonicalType(readType(F, Record, Idx))); case DeclarationName::CXXDestructorName: return Context.DeclarationNames.getCXXDestructorName( Context.getCanonicalType(readType(F, Record, Idx))); case DeclarationName::CXXConversionFunctionName: return Context.DeclarationNames.getCXXConversionFunctionName( Context.getCanonicalType(readType(F, Record, Idx))); case DeclarationName::CXXOperatorName: return Context.DeclarationNames.getCXXOperatorName( (OverloadedOperatorKind)Record[Idx++]); case DeclarationName::CXXLiteralOperatorName: return Context.DeclarationNames.getCXXLiteralOperatorName( GetIdentifierInfo(F, Record, Idx)); case DeclarationName::CXXUsingDirective: return DeclarationName::getUsingDirectiveName(); } llvm_unreachable("Invalid NameKind!"); } void ASTReader::ReadDeclarationNameLoc(ModuleFile &F, DeclarationNameLoc &DNLoc, DeclarationName Name, const RecordData &Record, unsigned &Idx) { switch (Name.getNameKind()) { case DeclarationName::CXXConstructorName: case DeclarationName::CXXDestructorName: case DeclarationName::CXXConversionFunctionName: DNLoc.NamedType.TInfo = GetTypeSourceInfo(F, Record, Idx); break; case DeclarationName::CXXOperatorName: DNLoc.CXXOperatorName.BeginOpNameLoc = ReadSourceLocation(F, Record, Idx).getRawEncoding(); DNLoc.CXXOperatorName.EndOpNameLoc = ReadSourceLocation(F, Record, Idx).getRawEncoding(); break; case DeclarationName::CXXLiteralOperatorName: DNLoc.CXXLiteralOperatorName.OpNameLoc = ReadSourceLocation(F, Record, Idx).getRawEncoding(); break; case DeclarationName::Identifier: case DeclarationName::ObjCZeroArgSelector: case DeclarationName::ObjCOneArgSelector: case DeclarationName::ObjCMultiArgSelector: case DeclarationName::CXXUsingDirective: break; } } void ASTReader::ReadDeclarationNameInfo(ModuleFile &F, DeclarationNameInfo &NameInfo, const RecordData &Record, unsigned &Idx) { NameInfo.setName(ReadDeclarationName(F, Record, Idx)); NameInfo.setLoc(ReadSourceLocation(F, Record, Idx)); DeclarationNameLoc DNLoc; ReadDeclarationNameLoc(F, DNLoc, NameInfo.getName(), Record, Idx); NameInfo.setInfo(DNLoc); } void ASTReader::ReadQualifierInfo(ModuleFile &F, QualifierInfo &Info, const RecordData &Record, unsigned &Idx) { Info.QualifierLoc = ReadNestedNameSpecifierLoc(F, Record, Idx); unsigned NumTPLists = Record[Idx++]; Info.NumTemplParamLists = NumTPLists; if (NumTPLists) { Info.TemplParamLists = new (Context) TemplateParameterList*[NumTPLists]; for (unsigned i=0; i != NumTPLists; ++i) Info.TemplParamLists[i] = ReadTemplateParameterList(F, Record, Idx); } } TemplateName ASTReader::ReadTemplateName(ModuleFile &F, const RecordData &Record, unsigned &Idx) { TemplateName::NameKind Kind = (TemplateName::NameKind)Record[Idx++]; switch (Kind) { case TemplateName::Template: return TemplateName(ReadDeclAs(F, Record, Idx)); case TemplateName::OverloadedTemplate: { unsigned size = Record[Idx++]; UnresolvedSet<8> Decls; while (size--) Decls.addDecl(ReadDeclAs(F, Record, Idx)); return Context.getOverloadedTemplateName(Decls.begin(), Decls.end()); } case TemplateName::QualifiedTemplate: { NestedNameSpecifier *NNS = ReadNestedNameSpecifier(F, Record, Idx); bool hasTemplKeyword = Record[Idx++]; TemplateDecl *Template = ReadDeclAs(F, Record, Idx); return Context.getQualifiedTemplateName(NNS, hasTemplKeyword, Template); } case TemplateName::DependentTemplate: { NestedNameSpecifier *NNS = ReadNestedNameSpecifier(F, Record, Idx); if (Record[Idx++]) // isIdentifier return Context.getDependentTemplateName(NNS, GetIdentifierInfo(F, Record, Idx)); return Context.getDependentTemplateName(NNS, (OverloadedOperatorKind)Record[Idx++]); } case TemplateName::SubstTemplateTemplateParm: { TemplateTemplateParmDecl *param = ReadDeclAs(F, Record, Idx); if (!param) return TemplateName(); TemplateName replacement = ReadTemplateName(F, Record, Idx); return Context.getSubstTemplateTemplateParm(param, replacement); } case TemplateName::SubstTemplateTemplateParmPack: { TemplateTemplateParmDecl *Param = ReadDeclAs(F, Record, Idx); if (!Param) return TemplateName(); TemplateArgument ArgPack = ReadTemplateArgument(F, Record, Idx); if (ArgPack.getKind() != TemplateArgument::Pack) return TemplateName(); return Context.getSubstTemplateTemplateParmPack(Param, ArgPack); } } llvm_unreachable("Unhandled template name kind!"); } TemplateArgument ASTReader::ReadTemplateArgument(ModuleFile &F, const RecordData &Record, unsigned &Idx) { TemplateArgument::ArgKind Kind = (TemplateArgument::ArgKind)Record[Idx++]; switch (Kind) { case TemplateArgument::Null: return TemplateArgument(); case TemplateArgument::Type: return TemplateArgument(readType(F, Record, Idx)); case TemplateArgument::Declaration: return TemplateArgument(ReadDecl(F, Record, Idx)); case TemplateArgument::Integral: { llvm::APSInt Value = ReadAPSInt(Record, Idx); QualType T = readType(F, Record, Idx); return TemplateArgument(Value, T); } case TemplateArgument::Template: return TemplateArgument(ReadTemplateName(F, Record, Idx)); case TemplateArgument::TemplateExpansion: { TemplateName Name = ReadTemplateName(F, Record, Idx); llvm::Optional NumTemplateExpansions; if (unsigned NumExpansions = Record[Idx++]) NumTemplateExpansions = NumExpansions - 1; return TemplateArgument(Name, NumTemplateExpansions); } case TemplateArgument::Expression: return TemplateArgument(ReadExpr(F)); case TemplateArgument::Pack: { unsigned NumArgs = Record[Idx++]; TemplateArgument *Args = new (Context) TemplateArgument[NumArgs]; for (unsigned I = 0; I != NumArgs; ++I) Args[I] = ReadTemplateArgument(F, Record, Idx); return TemplateArgument(Args, NumArgs); } } llvm_unreachable("Unhandled template argument kind!"); } TemplateParameterList * ASTReader::ReadTemplateParameterList(ModuleFile &F, const RecordData &Record, unsigned &Idx) { SourceLocation TemplateLoc = ReadSourceLocation(F, Record, Idx); SourceLocation LAngleLoc = ReadSourceLocation(F, Record, Idx); SourceLocation RAngleLoc = ReadSourceLocation(F, Record, Idx); unsigned NumParams = Record[Idx++]; SmallVector Params; Params.reserve(NumParams); while (NumParams--) Params.push_back(ReadDeclAs(F, Record, Idx)); TemplateParameterList* TemplateParams = TemplateParameterList::Create(Context, TemplateLoc, LAngleLoc, Params.data(), Params.size(), RAngleLoc); return TemplateParams; } void ASTReader:: ReadTemplateArgumentList(SmallVector &TemplArgs, ModuleFile &F, const RecordData &Record, unsigned &Idx) { unsigned NumTemplateArgs = Record[Idx++]; TemplArgs.reserve(NumTemplateArgs); while (NumTemplateArgs--) TemplArgs.push_back(ReadTemplateArgument(F, Record, Idx)); } /// \brief Read a UnresolvedSet structure. void ASTReader::ReadUnresolvedSet(ModuleFile &F, UnresolvedSetImpl &Set, const RecordData &Record, unsigned &Idx) { unsigned NumDecls = Record[Idx++]; while (NumDecls--) { NamedDecl *D = ReadDeclAs(F, Record, Idx); AccessSpecifier AS = (AccessSpecifier)Record[Idx++]; Set.addDecl(D, AS); } } CXXBaseSpecifier ASTReader::ReadCXXBaseSpecifier(ModuleFile &F, const RecordData &Record, unsigned &Idx) { bool isVirtual = static_cast(Record[Idx++]); bool isBaseOfClass = static_cast(Record[Idx++]); AccessSpecifier AS = static_cast(Record[Idx++]); bool inheritConstructors = static_cast(Record[Idx++]); TypeSourceInfo *TInfo = GetTypeSourceInfo(F, Record, Idx); SourceRange Range = ReadSourceRange(F, Record, Idx); SourceLocation EllipsisLoc = ReadSourceLocation(F, Record, Idx); CXXBaseSpecifier Result(Range, isVirtual, isBaseOfClass, AS, TInfo, EllipsisLoc); Result.setInheritConstructors(inheritConstructors); return Result; } std::pair ASTReader::ReadCXXCtorInitializers(ModuleFile &F, const RecordData &Record, unsigned &Idx) { CXXCtorInitializer **CtorInitializers = 0; unsigned NumInitializers = Record[Idx++]; if (NumInitializers) { CtorInitializers = new (Context) CXXCtorInitializer*[NumInitializers]; for (unsigned i=0; i != NumInitializers; ++i) { TypeSourceInfo *TInfo = 0; bool IsBaseVirtual = false; FieldDecl *Member = 0; IndirectFieldDecl *IndirectMember = 0; CtorInitializerType Type = (CtorInitializerType)Record[Idx++]; switch (Type) { case CTOR_INITIALIZER_BASE: TInfo = GetTypeSourceInfo(F, Record, Idx); IsBaseVirtual = Record[Idx++]; break; case CTOR_INITIALIZER_DELEGATING: TInfo = GetTypeSourceInfo(F, Record, Idx); break; case CTOR_INITIALIZER_MEMBER: Member = ReadDeclAs(F, Record, Idx); break; case CTOR_INITIALIZER_INDIRECT_MEMBER: IndirectMember = ReadDeclAs(F, Record, Idx); break; } SourceLocation MemberOrEllipsisLoc = ReadSourceLocation(F, Record, Idx); Expr *Init = ReadExpr(F); SourceLocation LParenLoc = ReadSourceLocation(F, Record, Idx); SourceLocation RParenLoc = ReadSourceLocation(F, Record, Idx); bool IsWritten = Record[Idx++]; unsigned SourceOrderOrNumArrayIndices; SmallVector Indices; if (IsWritten) { SourceOrderOrNumArrayIndices = Record[Idx++]; } else { SourceOrderOrNumArrayIndices = Record[Idx++]; Indices.reserve(SourceOrderOrNumArrayIndices); for (unsigned i=0; i != SourceOrderOrNumArrayIndices; ++i) Indices.push_back(ReadDeclAs(F, Record, Idx)); } CXXCtorInitializer *BOMInit; if (Type == CTOR_INITIALIZER_BASE) { BOMInit = new (Context) CXXCtorInitializer(Context, TInfo, IsBaseVirtual, LParenLoc, Init, RParenLoc, MemberOrEllipsisLoc); } else if (Type == CTOR_INITIALIZER_DELEGATING) { BOMInit = new (Context) CXXCtorInitializer(Context, TInfo, LParenLoc, Init, RParenLoc); } else if (IsWritten) { if (Member) BOMInit = new (Context) CXXCtorInitializer(Context, Member, MemberOrEllipsisLoc, LParenLoc, Init, RParenLoc); else BOMInit = new (Context) CXXCtorInitializer(Context, IndirectMember, MemberOrEllipsisLoc, LParenLoc, Init, RParenLoc); } else { BOMInit = CXXCtorInitializer::Create(Context, Member, MemberOrEllipsisLoc, LParenLoc, Init, RParenLoc, Indices.data(), Indices.size()); } if (IsWritten) BOMInit->setSourceOrder(SourceOrderOrNumArrayIndices); CtorInitializers[i] = BOMInit; } } return std::make_pair(CtorInitializers, NumInitializers); } NestedNameSpecifier * ASTReader::ReadNestedNameSpecifier(ModuleFile &F, const RecordData &Record, unsigned &Idx) { unsigned N = Record[Idx++]; NestedNameSpecifier *NNS = 0, *Prev = 0; for (unsigned I = 0; I != N; ++I) { NestedNameSpecifier::SpecifierKind Kind = (NestedNameSpecifier::SpecifierKind)Record[Idx++]; switch (Kind) { case NestedNameSpecifier::Identifier: { IdentifierInfo *II = GetIdentifierInfo(F, Record, Idx); NNS = NestedNameSpecifier::Create(Context, Prev, II); break; } case NestedNameSpecifier::Namespace: { NamespaceDecl *NS = ReadDeclAs(F, Record, Idx); NNS = NestedNameSpecifier::Create(Context, Prev, NS); break; } case NestedNameSpecifier::NamespaceAlias: { NamespaceAliasDecl *Alias =ReadDeclAs(F, Record, Idx); NNS = NestedNameSpecifier::Create(Context, Prev, Alias); break; } case NestedNameSpecifier::TypeSpec: case NestedNameSpecifier::TypeSpecWithTemplate: { const Type *T = readType(F, Record, Idx).getTypePtrOrNull(); if (!T) return 0; bool Template = Record[Idx++]; NNS = NestedNameSpecifier::Create(Context, Prev, Template, T); break; } case NestedNameSpecifier::Global: { NNS = NestedNameSpecifier::GlobalSpecifier(Context); // No associated value, and there can't be a prefix. break; } } Prev = NNS; } return NNS; } NestedNameSpecifierLoc ASTReader::ReadNestedNameSpecifierLoc(ModuleFile &F, const RecordData &Record, unsigned &Idx) { unsigned N = Record[Idx++]; NestedNameSpecifierLocBuilder Builder; for (unsigned I = 0; I != N; ++I) { NestedNameSpecifier::SpecifierKind Kind = (NestedNameSpecifier::SpecifierKind)Record[Idx++]; switch (Kind) { case NestedNameSpecifier::Identifier: { IdentifierInfo *II = GetIdentifierInfo(F, Record, Idx); SourceRange Range = ReadSourceRange(F, Record, Idx); Builder.Extend(Context, II, Range.getBegin(), Range.getEnd()); break; } case NestedNameSpecifier::Namespace: { NamespaceDecl *NS = ReadDeclAs(F, Record, Idx); SourceRange Range = ReadSourceRange(F, Record, Idx); Builder.Extend(Context, NS, Range.getBegin(), Range.getEnd()); break; } case NestedNameSpecifier::NamespaceAlias: { NamespaceAliasDecl *Alias =ReadDeclAs(F, Record, Idx); SourceRange Range = ReadSourceRange(F, Record, Idx); Builder.Extend(Context, Alias, Range.getBegin(), Range.getEnd()); break; } case NestedNameSpecifier::TypeSpec: case NestedNameSpecifier::TypeSpecWithTemplate: { bool Template = Record[Idx++]; TypeSourceInfo *T = GetTypeSourceInfo(F, Record, Idx); if (!T) return NestedNameSpecifierLoc(); SourceLocation ColonColonLoc = ReadSourceLocation(F, Record, Idx); // FIXME: 'template' keyword location not saved anywhere, so we fake it. Builder.Extend(Context, Template? T->getTypeLoc().getBeginLoc() : SourceLocation(), T->getTypeLoc(), ColonColonLoc); break; } case NestedNameSpecifier::Global: { SourceLocation ColonColonLoc = ReadSourceLocation(F, Record, Idx); Builder.MakeGlobal(Context, ColonColonLoc); break; } } } return Builder.getWithLocInContext(Context); } SourceRange ASTReader::ReadSourceRange(ModuleFile &F, const RecordData &Record, unsigned &Idx) { SourceLocation beg = ReadSourceLocation(F, Record, Idx); SourceLocation end = ReadSourceLocation(F, Record, Idx); return SourceRange(beg, end); } /// \brief Read an integral value llvm::APInt ASTReader::ReadAPInt(const RecordData &Record, unsigned &Idx) { unsigned BitWidth = Record[Idx++]; unsigned NumWords = llvm::APInt::getNumWords(BitWidth); llvm::APInt Result(BitWidth, NumWords, &Record[Idx]); Idx += NumWords; return Result; } /// \brief Read a signed integral value llvm::APSInt ASTReader::ReadAPSInt(const RecordData &Record, unsigned &Idx) { bool isUnsigned = Record[Idx++]; return llvm::APSInt(ReadAPInt(Record, Idx), isUnsigned); } /// \brief Read a floating-point value llvm::APFloat ASTReader::ReadAPFloat(const RecordData &Record, unsigned &Idx) { return llvm::APFloat(ReadAPInt(Record, Idx)); } // \brief Read a string std::string ASTReader::ReadString(const RecordData &Record, unsigned &Idx) { unsigned Len = Record[Idx++]; std::string Result(Record.data() + Idx, Record.data() + Idx + Len); Idx += Len; return Result; } VersionTuple ASTReader::ReadVersionTuple(const RecordData &Record, unsigned &Idx) { unsigned Major = Record[Idx++]; unsigned Minor = Record[Idx++]; unsigned Subminor = Record[Idx++]; if (Minor == 0) return VersionTuple(Major); if (Subminor == 0) return VersionTuple(Major, Minor - 1); return VersionTuple(Major, Minor - 1, Subminor - 1); } CXXTemporary *ASTReader::ReadCXXTemporary(ModuleFile &F, const RecordData &Record, unsigned &Idx) { CXXDestructorDecl *Decl = ReadDeclAs(F, Record, Idx); return CXXTemporary::Create(Context, Decl); } DiagnosticBuilder ASTReader::Diag(unsigned DiagID) { return Diag(SourceLocation(), DiagID); } DiagnosticBuilder ASTReader::Diag(SourceLocation Loc, unsigned DiagID) { return Diags.Report(Loc, DiagID); } /// \brief Retrieve the identifier table associated with the /// preprocessor. IdentifierTable &ASTReader::getIdentifierTable() { return PP.getIdentifierTable(); } /// \brief Record that the given ID maps to the given switch-case /// statement. void ASTReader::RecordSwitchCaseID(SwitchCase *SC, unsigned ID) { assert(SwitchCaseStmts[ID] == 0 && "Already have a SwitchCase with this ID"); SwitchCaseStmts[ID] = SC; } /// \brief Retrieve the switch-case statement with the given ID. SwitchCase *ASTReader::getSwitchCaseWithID(unsigned ID) { assert(SwitchCaseStmts[ID] != 0 && "No SwitchCase with this ID"); return SwitchCaseStmts[ID]; } void ASTReader::ClearSwitchCaseIDs() { SwitchCaseStmts.clear(); } void ASTReader::finishPendingActions() { while (!PendingIdentifierInfos.empty() || !PendingDeclChains.empty()) { // If any identifiers with corresponding top-level declarations have // been loaded, load those declarations now. while (!PendingIdentifierInfos.empty()) { SetGloballyVisibleDecls(PendingIdentifierInfos.front().II, PendingIdentifierInfos.front().DeclIDs, true); PendingIdentifierInfos.pop_front(); } // Load pending declaration chains. for (unsigned I = 0; I != PendingDeclChains.size(); ++I) { loadPendingDeclChain(PendingDeclChains[I]); PendingDeclChainsKnown.erase(PendingDeclChains[I]); } PendingDeclChains.clear(); } // If we deserialized any C++ or Objective-C class definitions, any // Objective-C protocol definitions, or any redeclarable templates, make sure // that all redeclarations point to the definitions. Note that this can only // happen now, after the redeclaration chains have been fully wired. for (llvm::SmallPtrSet::iterator D = PendingDefinitions.begin(), DEnd = PendingDefinitions.end(); D != DEnd; ++D) { if (TagDecl *TD = dyn_cast(*D)) { if (const TagType *TagT = dyn_cast(TD->TypeForDecl)) { // Make sure that the TagType points at the definition. const_cast(TagT)->decl = TD; } if (CXXRecordDecl *RD = dyn_cast(*D)) { for (CXXRecordDecl::redecl_iterator R = RD->redecls_begin(), REnd = RD->redecls_end(); R != REnd; ++R) cast(*R)->DefinitionData = RD->DefinitionData; } continue; } if (ObjCInterfaceDecl *ID = dyn_cast(*D)) { // Make sure that the ObjCInterfaceType points at the definition. const_cast(cast(ID->TypeForDecl)) ->Decl = ID; for (ObjCInterfaceDecl::redecl_iterator R = ID->redecls_begin(), REnd = ID->redecls_end(); R != REnd; ++R) R->Data = ID->Data; continue; } if (ObjCProtocolDecl *PD = dyn_cast(*D)) { for (ObjCProtocolDecl::redecl_iterator R = PD->redecls_begin(), REnd = PD->redecls_end(); R != REnd; ++R) R->Data = PD->Data; continue; } RedeclarableTemplateDecl *RTD = cast(*D)->getCanonicalDecl(); for (RedeclarableTemplateDecl::redecl_iterator R = RTD->redecls_begin(), REnd = RTD->redecls_end(); R != REnd; ++R) R->Common = RTD->Common; } PendingDefinitions.clear(); } void ASTReader::FinishedDeserializing() { assert(NumCurrentElementsDeserializing && "FinishedDeserializing not paired with StartedDeserializing"); if (NumCurrentElementsDeserializing == 1) { // We decrease NumCurrentElementsDeserializing only after pending actions // are finished, to avoid recursively re-calling finishPendingActions(). finishPendingActions(); } --NumCurrentElementsDeserializing; if (NumCurrentElementsDeserializing == 0 && Consumer && !PassingDeclsToConsumer) { // Guard variable to avoid recursively redoing the process of passing // decls to consumer. SaveAndRestore GuardPassingDeclsToConsumer(PassingDeclsToConsumer, true); while (!InterestingDecls.empty()) { // We are not in recursive loading, so it's safe to pass the "interesting" // decls to the consumer. Decl *D = InterestingDecls.front(); InterestingDecls.pop_front(); PassInterestingDeclToConsumer(D); } } } ASTReader::ASTReader(Preprocessor &PP, ASTContext &Context, StringRef isysroot, bool DisableValidation, bool DisableStatCache, bool AllowASTWithCompilerErrors) : Listener(new PCHValidator(PP, *this)), DeserializationListener(0), SourceMgr(PP.getSourceManager()), FileMgr(PP.getFileManager()), Diags(PP.getDiagnostics()), SemaObj(0), PP(PP), Context(Context), Consumer(0), ModuleMgr(FileMgr.getFileSystemOptions()), RelocatablePCH(false), isysroot(isysroot), DisableValidation(DisableValidation), DisableStatCache(DisableStatCache), AllowASTWithCompilerErrors(AllowASTWithCompilerErrors), CurrentGeneration(0), NumStatHits(0), NumStatMisses(0), NumSLocEntriesRead(0), TotalNumSLocEntries(0), NumStatementsRead(0), TotalNumStatements(0), NumMacrosRead(0), TotalNumMacros(0), NumSelectorsRead(0), NumMethodPoolEntriesRead(0), NumMethodPoolMisses(0), TotalNumMethodPoolEntries(0), NumLexicalDeclContextsRead(0), TotalLexicalDeclContexts(0), NumVisibleDeclContextsRead(0), TotalVisibleDeclContexts(0), TotalModulesSizeInBits(0), NumCurrentElementsDeserializing(0), PassingDeclsToConsumer(false), NumCXXBaseSpecifiersLoaded(0) { SourceMgr.setExternalSLocEntrySource(this); } ASTReader::~ASTReader() { for (DeclContextVisibleUpdatesPending::iterator I = PendingVisibleUpdates.begin(), E = PendingVisibleUpdates.end(); I != E; ++I) { for (DeclContextVisibleUpdates::iterator J = I->second.begin(), F = I->second.end(); J != F; ++J) delete J->first; } }