//=-- ExprEngineCallAndReturn.cpp - Support for call/return -----*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines ExprEngine's support for calls and returns. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "ExprEngine" #include "clang/Analysis/Analyses/LiveVariables.h" #include "clang/StaticAnalyzer/Core/CheckerManager.h" #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h" #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h" #include "clang/AST/CXXInheritance.h" #include "clang/AST/DeclCXX.h" #include "clang/AST/ParentMap.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/Statistic.h" #include "llvm/Support/SaveAndRestore.h" using namespace clang; using namespace ento; STATISTIC(NumOfDynamicDispatchPathSplits, "The # of times we split the path due to imprecise dynamic dispatch info"); STATISTIC(NumInlinedCalls, "The # of times we inlined a call"); void ExprEngine::processCallEnter(CallEnter CE, ExplodedNode *Pred) { // Get the entry block in the CFG of the callee. const StackFrameContext *calleeCtx = CE.getCalleeContext(); const CFG *CalleeCFG = calleeCtx->getCFG(); const CFGBlock *Entry = &(CalleeCFG->getEntry()); // Validate the CFG. assert(Entry->empty()); assert(Entry->succ_size() == 1); // Get the solitary sucessor. const CFGBlock *Succ = *(Entry->succ_begin()); // Construct an edge representing the starting location in the callee. BlockEdge Loc(Entry, Succ, calleeCtx); ProgramStateRef state = Pred->getState(); // Construct a new node and add it to the worklist. bool isNew; ExplodedNode *Node = G.getNode(Loc, state, false, &isNew); Node->addPredecessor(Pred, G); if (isNew) Engine.getWorkList()->enqueue(Node); } // Find the last statement on the path to the exploded node and the // corresponding Block. static std::pair getLastStmt(const ExplodedNode *Node) { const Stmt *S = 0; const StackFrameContext *SF = Node->getLocation().getLocationContext()->getCurrentStackFrame(); // Back up through the ExplodedGraph until we reach a statement node in this // stack frame. while (Node) { const ProgramPoint &PP = Node->getLocation(); if (PP.getLocationContext()->getCurrentStackFrame() == SF) { if (const StmtPoint *SP = dyn_cast(&PP)) { S = SP->getStmt(); break; } else if (const CallExitEnd *CEE = dyn_cast(&PP)) { S = CEE->getCalleeContext()->getCallSite(); if (S) break; // If there is no statement, this is an implicitly-generated call. // We'll walk backwards over it and then continue the loop to find // an actual statement. const CallEnter *CE; do { Node = Node->getFirstPred(); CE = Node->getLocationAs(); } while (!CE || CE->getCalleeContext() != CEE->getCalleeContext()); // Continue searching the graph. } } else if (const CallEnter *CE = dyn_cast(&PP)) { // If we reached the CallEnter for this function, it has no statements. if (CE->getCalleeContext() == SF) break; } if (Node->pred_empty()) return std::pair((Stmt*)0, (CFGBlock*)0); Node = *Node->pred_begin(); } const CFGBlock *Blk = 0; if (S) { // Now, get the enclosing basic block. while (Node) { const ProgramPoint &PP = Node->getLocation(); if (isa(PP) && (PP.getLocationContext()->getCurrentStackFrame() == SF)) { BlockEdge &EPP = cast(PP); Blk = EPP.getDst(); break; } if (Node->pred_empty()) return std::pair(S, (CFGBlock*)0); Node = *Node->pred_begin(); } } return std::pair(S, Blk); } /// Adjusts a return value when the called function's return type does not /// match the caller's expression type. This can happen when a dynamic call /// is devirtualized, and the overridding method has a covariant (more specific) /// return type than the parent's method. For C++ objects, this means we need /// to add base casts. static SVal adjustReturnValue(SVal V, QualType ExpectedTy, QualType ActualTy, StoreManager &StoreMgr) { // For now, the only adjustments we handle apply only to locations. if (!isa(V)) return V; // If the types already match, don't do any unnecessary work. if (ExpectedTy == ActualTy) return V; // No adjustment is needed between Objective-C pointer types. if (ExpectedTy->isObjCObjectPointerType() && ActualTy->isObjCObjectPointerType()) return V; // C++ object pointers may need "derived-to-base" casts. const CXXRecordDecl *ExpectedClass = ExpectedTy->getPointeeCXXRecordDecl(); const CXXRecordDecl *ActualClass = ActualTy->getPointeeCXXRecordDecl(); if (ExpectedClass && ActualClass) { CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, /*DetectVirtual=*/false); if (ActualClass->isDerivedFrom(ExpectedClass, Paths) && !Paths.isAmbiguous(ActualTy->getCanonicalTypeUnqualified())) { return StoreMgr.evalDerivedToBase(V, Paths.front()); } } // Unfortunately, Objective-C does not enforce that overridden methods have // covariant return types, so we can't assert that that never happens. // Be safe and return UnknownVal(). return UnknownVal(); } void ExprEngine::removeDeadOnEndOfFunction(NodeBuilderContext& BC, ExplodedNode *Pred, ExplodedNodeSet &Dst) { NodeBuilder Bldr(Pred, Dst, BC); // Find the last statement in the function and the corresponding basic block. const Stmt *LastSt = 0; const CFGBlock *Blk = 0; llvm::tie(LastSt, Blk) = getLastStmt(Pred); if (!Blk || !LastSt) { return; } // If the last statement is return, everything it references should stay live. if (isa(LastSt)) return; // Here, we call the Symbol Reaper with 0 stack context telling it to clean up // everything on the stack. We use LastStmt as a diagnostic statement, with // which the PreStmtPurgeDead point will be associated. currBldrCtx = &BC; removeDead(Pred, Dst, 0, 0, LastSt, ProgramPoint::PostStmtPurgeDeadSymbolsKind); currBldrCtx = 0; } /// The call exit is simulated with a sequence of nodes, which occur between /// CallExitBegin and CallExitEnd. The following operations occur between the /// two program points: /// 1. CallExitBegin (triggers the start of call exit sequence) /// 2. Bind the return value /// 3. Run Remove dead bindings to clean up the dead symbols from the callee. /// 4. CallExitEnd (switch to the caller context) /// 5. PostStmt void ExprEngine::processCallExit(ExplodedNode *CEBNode) { // Step 1 CEBNode was generated before the call. const StackFrameContext *calleeCtx = CEBNode->getLocationContext()->getCurrentStackFrame(); // The parent context might not be a stack frame, so make sure we // look up the first enclosing stack frame. const StackFrameContext *callerCtx = calleeCtx->getParent()->getCurrentStackFrame(); const Stmt *CE = calleeCtx->getCallSite(); ProgramStateRef state = CEBNode->getState(); // Find the last statement in the function and the corresponding basic block. const Stmt *LastSt = 0; const CFGBlock *Blk = 0; llvm::tie(LastSt, Blk) = getLastStmt(CEBNode); // Generate a CallEvent /before/ cleaning the state, so that we can get the // correct value for 'this' (if necessary). CallEventManager &CEMgr = getStateManager().getCallEventManager(); CallEventRef<> Call = CEMgr.getCaller(calleeCtx, state); // Step 2: generate node with bound return value: CEBNode -> BindedRetNode. // If the callee returns an expression, bind its value to CallExpr. if (CE) { if (const ReturnStmt *RS = dyn_cast_or_null(LastSt)) { const LocationContext *LCtx = CEBNode->getLocationContext(); SVal V = state->getSVal(RS, LCtx); const Decl *Callee = calleeCtx->getDecl(); if (Callee != Call->getDecl()) { QualType ReturnedTy = CallEvent::getDeclaredResultType(Callee); if (!ReturnedTy.isNull()) { if (const Expr *Ex = dyn_cast(CE)) { V = adjustReturnValue(V, Ex->getType(), ReturnedTy, getStoreManager()); } } } state = state->BindExpr(CE, callerCtx, V); } // Bind the constructed object value to CXXConstructExpr. if (const CXXConstructExpr *CCE = dyn_cast(CE)) { loc::MemRegionVal This = svalBuilder.getCXXThis(CCE->getConstructor()->getParent(), calleeCtx); SVal ThisV = state->getSVal(This); // If the constructed object is a prvalue, get its bindings. // Note that we have to be careful here because constructors embedded // in DeclStmts are not marked as lvalues. if (!CCE->isGLValue()) if (const MemRegion *MR = ThisV.getAsRegion()) if (isa(MR)) ThisV = state->getSVal(cast(ThisV)); state = state->BindExpr(CCE, callerCtx, ThisV); } } // Step 3: BindedRetNode -> CleanedNodes // If we can find a statement and a block in the inlined function, run remove // dead bindings before returning from the call. This is important to ensure // that we report the issues such as leaks in the stack contexts in which // they occurred. ExplodedNodeSet CleanedNodes; if (LastSt && Blk && AMgr.options.AnalysisPurgeOpt != PurgeNone) { static SimpleProgramPointTag retValBind("ExprEngine : Bind Return Value"); PostStmt Loc(LastSt, calleeCtx, &retValBind); bool isNew; ExplodedNode *BindedRetNode = G.getNode(Loc, state, false, &isNew); BindedRetNode->addPredecessor(CEBNode, G); if (!isNew) return; NodeBuilderContext Ctx(getCoreEngine(), Blk, BindedRetNode); currBldrCtx = &Ctx; // Here, we call the Symbol Reaper with 0 statement and caller location // context, telling it to clean up everything in the callee's context // (and it's children). We use LastStmt as a diagnostic statement, which // which the PreStmtPurge Dead point will be associated. removeDead(BindedRetNode, CleanedNodes, 0, callerCtx, LastSt, ProgramPoint::PostStmtPurgeDeadSymbolsKind); currBldrCtx = 0; } else { CleanedNodes.Add(CEBNode); } for (ExplodedNodeSet::iterator I = CleanedNodes.begin(), E = CleanedNodes.end(); I != E; ++I) { // Step 4: Generate the CallExit and leave the callee's context. // CleanedNodes -> CEENode CallExitEnd Loc(calleeCtx, callerCtx); bool isNew; ProgramStateRef CEEState = (*I == CEBNode) ? state : (*I)->getState(); ExplodedNode *CEENode = G.getNode(Loc, CEEState, false, &isNew); CEENode->addPredecessor(*I, G); if (!isNew) return; // Step 5: Perform the post-condition check of the CallExpr and enqueue the // result onto the work list. // CEENode -> Dst -> WorkList NodeBuilderContext Ctx(Engine, calleeCtx->getCallSiteBlock(), CEENode); SaveAndRestore NBCSave(currBldrCtx, &Ctx); SaveAndRestore CBISave(currStmtIdx, calleeCtx->getIndex()); CallEventRef<> UpdatedCall = Call.cloneWithState(CEEState); ExplodedNodeSet DstPostCall; getCheckerManager().runCheckersForPostCall(DstPostCall, CEENode, *UpdatedCall, *this, /*WasInlined=*/true); ExplodedNodeSet Dst; if (const ObjCMethodCall *Msg = dyn_cast(Call)) { getCheckerManager().runCheckersForPostObjCMessage(Dst, DstPostCall, *Msg, *this, /*WasInlined=*/true); } else if (CE) { getCheckerManager().runCheckersForPostStmt(Dst, DstPostCall, CE, *this, /*WasInlined=*/true); } else { Dst.insert(DstPostCall); } // Enqueue the next element in the block. for (ExplodedNodeSet::iterator PSI = Dst.begin(), PSE = Dst.end(); PSI != PSE; ++PSI) { Engine.getWorkList()->enqueue(*PSI, calleeCtx->getCallSiteBlock(), calleeCtx->getIndex()+1); } } } void ExprEngine::examineStackFrames(const Decl *D, const LocationContext *LCtx, bool &IsRecursive, unsigned &StackDepth) { IsRecursive = false; StackDepth = 0; while (LCtx) { if (const StackFrameContext *SFC = dyn_cast(LCtx)) { const Decl *DI = SFC->getDecl(); // Mark recursive (and mutually recursive) functions and always count // them when measuring the stack depth. if (DI == D) { IsRecursive = true; ++StackDepth; LCtx = LCtx->getParent(); continue; } // Do not count the small functions when determining the stack depth. AnalysisDeclContext *CalleeADC = AMgr.getAnalysisDeclContext(DI); const CFG *CalleeCFG = CalleeADC->getCFG(); if (CalleeCFG->getNumBlockIDs() > AMgr.options.getAlwaysInlineSize()) ++StackDepth; } LCtx = LCtx->getParent(); } } static bool IsInStdNamespace(const FunctionDecl *FD) { const DeclContext *DC = FD->getEnclosingNamespaceContext(); const NamespaceDecl *ND = dyn_cast(DC); if (!ND) return false; while (const DeclContext *Parent = ND->getParent()) { if (!isa(Parent)) break; ND = cast(Parent); } return ND->getName() == "std"; } // Determine if we should inline the call. bool ExprEngine::shouldInlineDecl(const Decl *D, ExplodedNode *Pred) { AnalysisDeclContext *CalleeADC = AMgr.getAnalysisDeclContext(D); const CFG *CalleeCFG = CalleeADC->getCFG(); // It is possible that the CFG cannot be constructed. // Be safe, and check if the CalleeCFG is valid. if (!CalleeCFG) return false; bool IsRecursive = false; unsigned StackDepth = 0; examineStackFrames(D, Pred->getLocationContext(), IsRecursive, StackDepth); if ((StackDepth >= AMgr.options.InlineMaxStackDepth) && ((CalleeCFG->getNumBlockIDs() > AMgr.options.getAlwaysInlineSize()) || IsRecursive)) return false; if (Engine.FunctionSummaries->hasReachedMaxBlockCount(D)) return false; if (CalleeCFG->getNumBlockIDs() > AMgr.options.InlineMaxFunctionSize) return false; // Do not inline variadic calls (for now). if (const BlockDecl *BD = dyn_cast(D)) { if (BD->isVariadic()) return false; } else if (const FunctionDecl *FD = dyn_cast(D)) { if (FD->isVariadic()) return false; } if (getContext().getLangOpts().CPlusPlus) { if (const FunctionDecl *FD = dyn_cast(D)) { // Conditionally allow the inlining of template functions. if (!getAnalysisManager().options.mayInlineTemplateFunctions()) if (FD->getTemplatedKind() != FunctionDecl::TK_NonTemplate) return false; // Conditionally allow the inlining of C++ standard library functions. if (!getAnalysisManager().options.mayInlineCXXStandardLibrary()) if (getContext().getSourceManager().isInSystemHeader(FD->getLocation())) if (IsInStdNamespace(FD)) return false; } } // It is possible that the live variables analysis cannot be // run. If so, bail out. if (!CalleeADC->getAnalysis()) return false; return true; } // The GDM component containing the dynamic dispatch bifurcation info. When // the exact type of the receiver is not known, we want to explore both paths - // one on which we do inline it and the other one on which we don't. This is // done to ensure we do not drop coverage. // This is the map from the receiver region to a bool, specifying either we // consider this region's information precise or not along the given path. namespace { enum DynamicDispatchMode { DynamicDispatchModeInlined = 1, DynamicDispatchModeConservative }; } REGISTER_TRAIT_WITH_PROGRAMSTATE(DynamicDispatchBifurcationMap, CLANG_ENTO_PROGRAMSTATE_MAP(const MemRegion *, unsigned)) bool ExprEngine::inlineCall(const CallEvent &Call, const Decl *D, NodeBuilder &Bldr, ExplodedNode *Pred, ProgramStateRef State) { assert(D); const LocationContext *CurLC = Pred->getLocationContext(); const StackFrameContext *CallerSFC = CurLC->getCurrentStackFrame(); const LocationContext *ParentOfCallee = 0; AnalyzerOptions &Opts = getAnalysisManager().options; // FIXME: Refactor this check into a hypothetical CallEvent::canInline. switch (Call.getKind()) { case CE_Function: break; case CE_CXXMember: case CE_CXXMemberOperator: if (!Opts.mayInlineCXXMemberFunction(CIMK_MemberFunctions)) return false; break; case CE_CXXConstructor: { if (!Opts.mayInlineCXXMemberFunction(CIMK_Constructors)) return false; const CXXConstructorCall &Ctor = cast(Call); // FIXME: We don't handle constructors or destructors for arrays properly. const MemRegion *Target = Ctor.getCXXThisVal().getAsRegion(); if (Target && isa(Target)) return false; // FIXME: This is a hack. We don't use the correct region for a new // expression, so if we inline the constructor its result will just be // thrown away. This short-term hack is tracked in // and the longer-term possible fix is discussed in PR12014. const CXXConstructExpr *CtorExpr = Ctor.getOriginExpr(); if (const Stmt *Parent = CurLC->getParentMap().getParent(CtorExpr)) if (isa(Parent)) return false; // Inlining constructors requires including initializers in the CFG. const AnalysisDeclContext *ADC = CallerSFC->getAnalysisDeclContext(); assert(ADC->getCFGBuildOptions().AddInitializers && "No CFG initializers"); (void)ADC; // If the destructor is trivial, it's always safe to inline the constructor. if (Ctor.getDecl()->getParent()->hasTrivialDestructor()) break; // For other types, only inline constructors if destructor inlining is // also enabled. if (!Opts.mayInlineCXXMemberFunction(CIMK_Destructors)) return false; // FIXME: This is a hack. We don't handle temporary destructors // right now, so we shouldn't inline their constructors. if (CtorExpr->getConstructionKind() == CXXConstructExpr::CK_Complete) if (!Target || !isa(Target)) return false; break; } case CE_CXXDestructor: { if (!Opts.mayInlineCXXMemberFunction(CIMK_Destructors)) return false; // Inlining destructors requires building the CFG correctly. const AnalysisDeclContext *ADC = CallerSFC->getAnalysisDeclContext(); assert(ADC->getCFGBuildOptions().AddImplicitDtors && "No CFG destructors"); (void)ADC; const CXXDestructorCall &Dtor = cast(Call); // FIXME: We don't handle constructors or destructors for arrays properly. const MemRegion *Target = Dtor.getCXXThisVal().getAsRegion(); if (Target && isa(Target)) return false; break; } case CE_CXXAllocator: // Do not inline allocators until we model deallocators. // This is unfortunate, but basically necessary for smart pointers and such. return false; case CE_Block: { const BlockDataRegion *BR = cast(Call).getBlockRegion(); assert(BR && "If we have the block definition we should have its region"); AnalysisDeclContext *BlockCtx = AMgr.getAnalysisDeclContext(D); ParentOfCallee = BlockCtx->getBlockInvocationContext(CallerSFC, cast(D), BR); break; } case CE_ObjCMessage: if (!Opts.mayInlineObjCMethod()) return false; if (!(getAnalysisManager().options.IPAMode == DynamicDispatch || getAnalysisManager().options.IPAMode == DynamicDispatchBifurcate)) return false; break; } if (!shouldInlineDecl(D, Pred)) return false; if (!ParentOfCallee) ParentOfCallee = CallerSFC; // This may be NULL, but that's fine. const Expr *CallE = Call.getOriginExpr(); // Construct a new stack frame for the callee. AnalysisDeclContext *CalleeADC = AMgr.getAnalysisDeclContext(D); const StackFrameContext *CalleeSFC = CalleeADC->getStackFrame(ParentOfCallee, CallE, currBldrCtx->getBlock(), currStmtIdx); CallEnter Loc(CallE, CalleeSFC, CurLC); // Construct a new state which contains the mapping from actual to // formal arguments. State = State->enterStackFrame(Call, CalleeSFC); bool isNew; if (ExplodedNode *N = G.getNode(Loc, State, false, &isNew)) { N->addPredecessor(Pred, G); if (isNew) Engine.getWorkList()->enqueue(N); } // If we decided to inline the call, the successor has been manually // added onto the work list so remove it from the node builder. Bldr.takeNodes(Pred); NumInlinedCalls++; // Mark the decl as visited. if (VisitedCallees) VisitedCallees->insert(D); return true; } static ProgramStateRef getInlineFailedState(ProgramStateRef State, const Stmt *CallE) { void *ReplayState = State->get(); if (!ReplayState) return 0; assert(ReplayState == (const void*)CallE && "Backtracked to the wrong call."); (void)CallE; return State->remove(); } void ExprEngine::VisitCallExpr(const CallExpr *CE, ExplodedNode *Pred, ExplodedNodeSet &dst) { // Perform the previsit of the CallExpr. ExplodedNodeSet dstPreVisit; getCheckerManager().runCheckersForPreStmt(dstPreVisit, Pred, CE, *this); // Get the call in its initial state. We use this as a template to perform // all the checks. CallEventManager &CEMgr = getStateManager().getCallEventManager(); CallEventRef<> CallTemplate = CEMgr.getSimpleCall(CE, Pred->getState(), Pred->getLocationContext()); // Evaluate the function call. We try each of the checkers // to see if the can evaluate the function call. ExplodedNodeSet dstCallEvaluated; for (ExplodedNodeSet::iterator I = dstPreVisit.begin(), E = dstPreVisit.end(); I != E; ++I) { evalCall(dstCallEvaluated, *I, *CallTemplate); } // Finally, perform the post-condition check of the CallExpr and store // the created nodes in 'Dst'. // Note that if the call was inlined, dstCallEvaluated will be empty. // The post-CallExpr check will occur in processCallExit. getCheckerManager().runCheckersForPostStmt(dst, dstCallEvaluated, CE, *this); } void ExprEngine::evalCall(ExplodedNodeSet &Dst, ExplodedNode *Pred, const CallEvent &Call) { // WARNING: At this time, the state attached to 'Call' may be older than the // state in 'Pred'. This is a minor optimization since CheckerManager will // use an updated CallEvent instance when calling checkers, but if 'Call' is // ever used directly in this function all callers should be updated to pass // the most recent state. (It is probably not worth doing the work here since // for some callers this will not be necessary.) // Run any pre-call checks using the generic call interface. ExplodedNodeSet dstPreVisit; getCheckerManager().runCheckersForPreCall(dstPreVisit, Pred, Call, *this); // Actually evaluate the function call. We try each of the checkers // to see if the can evaluate the function call, and get a callback at // defaultEvalCall if all of them fail. ExplodedNodeSet dstCallEvaluated; getCheckerManager().runCheckersForEvalCall(dstCallEvaluated, dstPreVisit, Call, *this); // Finally, run any post-call checks. getCheckerManager().runCheckersForPostCall(Dst, dstCallEvaluated, Call, *this); } ProgramStateRef ExprEngine::bindReturnValue(const CallEvent &Call, const LocationContext *LCtx, ProgramStateRef State) { const Expr *E = Call.getOriginExpr(); if (!E) return State; // Some method families have known return values. if (const ObjCMethodCall *Msg = dyn_cast(&Call)) { switch (Msg->getMethodFamily()) { default: break; case OMF_autorelease: case OMF_retain: case OMF_self: { // These methods return their receivers. return State->BindExpr(E, LCtx, Msg->getReceiverSVal()); } } } else if (const CXXConstructorCall *C = dyn_cast(&Call)){ return State->BindExpr(E, LCtx, C->getCXXThisVal()); } // Conjure a symbol if the return value is unknown. QualType ResultTy = Call.getResultType(); SValBuilder &SVB = getSValBuilder(); unsigned Count = currBldrCtx->blockCount(); SVal R = SVB.conjureSymbolVal(0, E, LCtx, ResultTy, Count); return State->BindExpr(E, LCtx, R); } // Conservatively evaluate call by invalidating regions and binding // a conjured return value. void ExprEngine::conservativeEvalCall(const CallEvent &Call, NodeBuilder &Bldr, ExplodedNode *Pred, ProgramStateRef State) { State = Call.invalidateRegions(currBldrCtx->blockCount(), State); State = bindReturnValue(Call, Pred->getLocationContext(), State); // And make the result node. Bldr.generateNode(Call.getProgramPoint(), State, Pred); } void ExprEngine::defaultEvalCall(NodeBuilder &Bldr, ExplodedNode *Pred, const CallEvent &CallTemplate) { // Make sure we have the most recent state attached to the call. ProgramStateRef State = Pred->getState(); CallEventRef<> Call = CallTemplate.cloneWithState(State); if (!getAnalysisManager().shouldInlineCall()) { conservativeEvalCall(*Call, Bldr, Pred, State); return; } // Try to inline the call. // The origin expression here is just used as a kind of checksum; // this should still be safe even for CallEvents that don't come from exprs. const Expr *E = Call->getOriginExpr(); ProgramStateRef InlinedFailedState = getInlineFailedState(State, E); if (InlinedFailedState) { // If we already tried once and failed, make sure we don't retry later. State = InlinedFailedState; } else { RuntimeDefinition RD = Call->getRuntimeDefinition(); const Decl *D = RD.getDecl(); if (D) { if (RD.mayHaveOtherDefinitions()) { // Explore with and without inlining the call. if (getAnalysisManager().options.IPAMode == DynamicDispatchBifurcate) { BifurcateCall(RD.getDispatchRegion(), *Call, D, Bldr, Pred); return; } // Don't inline if we're not in any dynamic dispatch mode. if (getAnalysisManager().options.IPAMode != DynamicDispatch) { conservativeEvalCall(*Call, Bldr, Pred, State); return; } } // We are not bifurcating and we do have a Decl, so just inline. if (inlineCall(*Call, D, Bldr, Pred, State)) return; } } // If we can't inline it, handle the return value and invalidate the regions. conservativeEvalCall(*Call, Bldr, Pred, State); } void ExprEngine::BifurcateCall(const MemRegion *BifurReg, const CallEvent &Call, const Decl *D, NodeBuilder &Bldr, ExplodedNode *Pred) { assert(BifurReg); BifurReg = BifurReg->StripCasts(); // Check if we've performed the split already - note, we only want // to split the path once per memory region. ProgramStateRef State = Pred->getState(); const unsigned *BState = State->get(BifurReg); if (BState) { // If we are on "inline path", keep inlining if possible. if (*BState == DynamicDispatchModeInlined) if (inlineCall(Call, D, Bldr, Pred, State)) return; // If inline failed, or we are on the path where we assume we // don't have enough info about the receiver to inline, conjure the // return value and invalidate the regions. conservativeEvalCall(Call, Bldr, Pred, State); return; } // If we got here, this is the first time we process a message to this // region, so split the path. ProgramStateRef IState = State->set(BifurReg, DynamicDispatchModeInlined); inlineCall(Call, D, Bldr, Pred, IState); ProgramStateRef NoIState = State->set(BifurReg, DynamicDispatchModeConservative); conservativeEvalCall(Call, Bldr, Pred, NoIState); NumOfDynamicDispatchPathSplits++; return; } void ExprEngine::VisitReturnStmt(const ReturnStmt *RS, ExplodedNode *Pred, ExplodedNodeSet &Dst) { ExplodedNodeSet dstPreVisit; getCheckerManager().runCheckersForPreStmt(dstPreVisit, Pred, RS, *this); StmtNodeBuilder B(dstPreVisit, Dst, *currBldrCtx); if (RS->getRetValue()) { for (ExplodedNodeSet::iterator it = dstPreVisit.begin(), ei = dstPreVisit.end(); it != ei; ++it) { B.generateNode(RS, *it, (*it)->getState()); } } }