// RUN: %clang_cc1 -fsyntax-only -verify -std=c++11 -Wno-unused %s int f(int, int = 0); struct A { int x, y; }; struct S { S(int, int); int n; }; void test() { int a; int xs[10]; ++a = 0; // ok a + ++a; // expected-warning {{unsequenced modification and access to 'a'}} a = ++a; // ok a + a++; // expected-warning {{unsequenced modification and access to 'a'}} a = a++; // expected-warning {{multiple unsequenced modifications to 'a'}} ++ ++a; // ok (a++, a++); // ok ++a + ++a; // expected-warning {{multiple unsequenced modifications to 'a'}} a++ + a++; // expected-warning {{multiple unsequenced modifications}} (a++, a) = 0; // ok, increment is sequenced before value computation of LHS a = xs[++a]; // ok a = xs[a++]; // expected-warning {{multiple unsequenced modifications}} (a ? xs[0] : xs[1]) = ++a; // expected-warning {{unsequenced modification and access}} a = (++a, ++a); // ok a = (a++, ++a); // ok a = (a++, a++); // expected-warning {{multiple unsequenced modifications}} f(a, a); // ok f(a = 0, a); // expected-warning {{unsequenced modification and access}} f(a, a += 0); // expected-warning {{unsequenced modification and access}} f(a = 0, a = 0); // expected-warning {{multiple unsequenced modifications}} a = f(++a); // ok a = f(a++); // ok a = f(++a, a++); // expected-warning {{multiple unsequenced modifications}} // Compound assignment "A OP= B" is equivalent to "A = A OP B" except that A // is evaluated only once. (++a, a) = 1; // ok (++a, a) += 1; // ok a = ++a; // ok a += ++a; // expected-warning {{unsequenced modification and access}} A agg1 = { a++, a++ }; // ok A agg2 = { a++ + a, a++ }; // expected-warning {{unsequenced modification and access}} S str1(a++, a++); // expected-warning {{multiple unsequenced modifications}} S str2 = { a++, a++ }; // ok S str3 = { a++ + a, a++ }; // expected-warning {{unsequenced modification and access}} struct Z { A a; S s; } z = { { ++a, ++a }, { ++a, ++a } }; // ok a = S { ++a, a++ }.n; // ok A { ++a, a++ }.x; // ok a = A { ++a, a++ }.x; // expected-warning {{unsequenced modifications}} A { ++a, a++ }.x + A { ++a, a++ }.y; // expected-warning {{unsequenced modifications}} (xs[2] && (a = 0)) + a; // ok (0 && (a = 0)) + a; // ok (1 && (a = 0)) + a; // expected-warning {{unsequenced modification and access}} (xs[3] || (a = 0)) + a; // ok (0 || (a = 0)) + a; // expected-warning {{unsequenced modification and access}} (1 || (a = 0)) + a; // ok (xs[4] ? a : ++a) + a; // ok (0 ? a : ++a) + a; // expected-warning {{unsequenced modification and access}} (1 ? a : ++a) + a; // ok (0 ? a : a++) + a; // expected-warning {{unsequenced modification and access}} (1 ? a : a++) + a; // ok (xs[5] ? ++a : ++a) + a; // FIXME: warn here (++a, xs[6] ? ++a : 0) + a; // expected-warning {{unsequenced modification and access}} // Here, the read of the fourth 'a' might happen before or after the write to // the second 'a'. a += (a++, a) + a; // expected-warning {{unsequenced modification and access}} int *p = xs; a = *(a++, p); // ok a = a++ && a; // ok A *q = &agg1; (q = &agg2)->y = q->x; // expected-warning {{unsequenced modification and access to 'q'}} // This has undefined behavior if a == 0; otherwise, the side-effect of the // increment is sequenced before the value computation of 'f(a, a)', which is // sequenced before the value computation of the '&&', which is sequenced // before the assignment. We treat the sequencing in '&&' as being // unconditional. a = a++ && f(a, a); // This has undefined behavior if a != 0. FIXME: We should diagnose this. (a && a++) + a; (xs[7] && ++a) * (!xs[7] && ++a); // ok xs[0] = (a = 1, a); // ok (a -= 128) &= 128; // ok ++a += 1; // ok xs[8] ? ++a + a++ : 0; // expected-warning {{multiple unsequenced modifications}} xs[8] ? 0 : ++a + a++; // expected-warning {{multiple unsequenced modifications}} xs[8] ? ++a : a++; // ok xs[8] && (++a + a++); // expected-warning {{multiple unsequenced modifications}} xs[8] || (++a + a++); // expected-warning {{multiple unsequenced modifications}} (__builtin_classify_type(++a) ? 1 : 0) + ++a; // ok (__builtin_constant_p(++a) ? 1 : 0) + ++a; // ok (__builtin_object_size(&(++a, a), 0) ? 1 : 0) + ++a; // ok (__builtin_expect(++a, 0) ? 1 : 0) + ++a; // expected-warning {{multiple unsequenced modifications}} } namespace templates { template struct Bar { T get() { return 0; } }; template struct Foo { int Run(); Bar bar; }; enum E {e1, e2}; bool operator&&(E, E); void foo(int, int); template int Foo::Run() { char num = 0; // Before instantiation, Clang may consider the builtin operator here as // unresolved function calls, and treat the arguments as unordered when // the builtin operator evaluatation is well-ordered. Waiting until // instantiation to check these expressions will prevent false positives. if ((num = bar.get()) < 5 && num < 10) { } if ((num = bar.get()) < 5 || num < 10) { } if (static_cast((num = bar.get()) < 5) || static_cast(num < 10)) { } if (static_cast((num = bar.get()) < 5) && static_cast(num < 10)) { } // expected-warning@-1 {{unsequenced modification and access to 'num'}} foo(num++, num++); // expected-warning@-1 2{{multiple unsequenced modifications to 'num'}} return 1; } int x = Foo().Run(); // expected-note@-1 {{in instantiation of member function 'templates::Foo::Run'}} template int Run2() { T t = static_cast(0); return (t = static_cast(1)) && t; // expected-warning@-1 {{unsequenced modification and access to 't'}} } int y = Run2(); int z = Run2(); // expected-note@-1{{in instantiation of function template specialization 'templates::Run2' requested here}} }