//===- CIndex.cpp - Clang-C Source Indexing Library -----------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the main API hooks in the Clang-C Source Indexing // library. // //===----------------------------------------------------------------------===// #include "CIndexer.h" #include "CXCursor.h" #include "CXType.h" #include "CXSourceLocation.h" #include "CIndexDiagnostic.h" #include "clang/Basic/Version.h" #include "clang/AST/DeclVisitor.h" #include "clang/AST/StmtVisitor.h" #include "clang/AST/TypeLocVisitor.h" #include "clang/Basic/Diagnostic.h" #include "clang/Frontend/ASTUnit.h" #include "clang/Frontend/CompilerInstance.h" #include "clang/Frontend/FrontendDiagnostic.h" #include "clang/Lex/Lexer.h" #include "clang/Lex/PreprocessingRecord.h" #include "clang/Lex/Preprocessor.h" #include "llvm/Support/CrashRecoveryContext.h" #include "llvm/Support/MemoryBuffer.h" #include "llvm/Support/Timer.h" #include "llvm/System/Program.h" #include "llvm/System/Signals.h" // Needed to define L_TMPNAM on some systems. #include using namespace clang; using namespace clang::cxcursor; using namespace clang::cxstring; //===----------------------------------------------------------------------===// // Crash Reporting. //===----------------------------------------------------------------------===// #ifdef USE_CRASHTRACER #include "clang/Analysis/Support/SaveAndRestore.h" // Integrate with crash reporter. static const char *__crashreporter_info__ = 0; asm(".desc ___crashreporter_info__, 0x10"); #define NUM_CRASH_STRINGS 32 static unsigned crashtracer_counter = 0; static unsigned crashtracer_counter_id[NUM_CRASH_STRINGS] = { 0 }; static const char *crashtracer_strings[NUM_CRASH_STRINGS] = { 0 }; static const char *agg_crashtracer_strings[NUM_CRASH_STRINGS] = { 0 }; static unsigned SetCrashTracerInfo(const char *str, llvm::SmallString<1024> &AggStr) { unsigned slot = 0; while (crashtracer_strings[slot]) { if (++slot == NUM_CRASH_STRINGS) slot = 0; } crashtracer_strings[slot] = str; crashtracer_counter_id[slot] = ++crashtracer_counter; // We need to create an aggregate string because multiple threads // may be in this method at one time. The crash reporter string // will attempt to overapproximate the set of in-flight invocations // of this function. Race conditions can still cause this goal // to not be achieved. { llvm::raw_svector_ostream Out(AggStr); for (unsigned i = 0; i < NUM_CRASH_STRINGS; ++i) if (crashtracer_strings[i]) Out << crashtracer_strings[i] << '\n'; } __crashreporter_info__ = agg_crashtracer_strings[slot] = AggStr.c_str(); return slot; } static void ResetCrashTracerInfo(unsigned slot) { unsigned max_slot = 0; unsigned max_value = 0; crashtracer_strings[slot] = agg_crashtracer_strings[slot] = 0; for (unsigned i = 0 ; i < NUM_CRASH_STRINGS; ++i) if (agg_crashtracer_strings[i] && crashtracer_counter_id[i] > max_value) { max_slot = i; max_value = crashtracer_counter_id[i]; } __crashreporter_info__ = agg_crashtracer_strings[max_slot]; } namespace { class ArgsCrashTracerInfo { llvm::SmallString<1024> CrashString; llvm::SmallString<1024> AggregateString; unsigned crashtracerSlot; public: ArgsCrashTracerInfo(llvm::SmallVectorImpl &Args) : crashtracerSlot(0) { { llvm::raw_svector_ostream Out(CrashString); Out << "ClangCIndex [" << getClangFullVersion() << "]" << "[createTranslationUnitFromSourceFile]: clang"; for (llvm::SmallVectorImpl::iterator I=Args.begin(), E=Args.end(); I!=E; ++I) Out << ' ' << *I; } crashtracerSlot = SetCrashTracerInfo(CrashString.c_str(), AggregateString); } ~ArgsCrashTracerInfo() { ResetCrashTracerInfo(crashtracerSlot); } }; } #endif /// \brief The result of comparing two source ranges. enum RangeComparisonResult { /// \brief Either the ranges overlap or one of the ranges is invalid. RangeOverlap, /// \brief The first range ends before the second range starts. RangeBefore, /// \brief The first range starts after the second range ends. RangeAfter }; /// \brief Compare two source ranges to determine their relative position in /// the translation unit. static RangeComparisonResult RangeCompare(SourceManager &SM, SourceRange R1, SourceRange R2) { assert(R1.isValid() && "First range is invalid?"); assert(R2.isValid() && "Second range is invalid?"); if (R1.getEnd() != R2.getBegin() && SM.isBeforeInTranslationUnit(R1.getEnd(), R2.getBegin())) return RangeBefore; if (R2.getEnd() != R1.getBegin() && SM.isBeforeInTranslationUnit(R2.getEnd(), R1.getBegin())) return RangeAfter; return RangeOverlap; } /// \brief Determine if a source location falls within, before, or after a /// a given source range. static RangeComparisonResult LocationCompare(SourceManager &SM, SourceLocation L, SourceRange R) { assert(R.isValid() && "First range is invalid?"); assert(L.isValid() && "Second range is invalid?"); if (L == R.getBegin() || L == R.getEnd()) return RangeOverlap; if (SM.isBeforeInTranslationUnit(L, R.getBegin())) return RangeBefore; if (SM.isBeforeInTranslationUnit(R.getEnd(), L)) return RangeAfter; return RangeOverlap; } /// \brief Translate a Clang source range into a CIndex source range. /// /// Clang internally represents ranges where the end location points to the /// start of the token at the end. However, for external clients it is more /// useful to have a CXSourceRange be a proper half-open interval. This routine /// does the appropriate translation. CXSourceRange cxloc::translateSourceRange(const SourceManager &SM, const LangOptions &LangOpts, const CharSourceRange &R) { // We want the last character in this location, so we will adjust the // location accordingly. // FIXME: How do do this with a macro instantiation location? SourceLocation EndLoc = R.getEnd(); if (R.isTokenRange() && !EndLoc.isInvalid() && EndLoc.isFileID()) { unsigned Length = Lexer::MeasureTokenLength(EndLoc, SM, LangOpts); EndLoc = EndLoc.getFileLocWithOffset(Length); } CXSourceRange Result = { { (void *)&SM, (void *)&LangOpts }, R.getBegin().getRawEncoding(), EndLoc.getRawEncoding() }; return Result; } //===----------------------------------------------------------------------===// // Cursor visitor. //===----------------------------------------------------------------------===// namespace { // Cursor visitor. class CursorVisitor : public DeclVisitor, public TypeLocVisitor, public StmtVisitor { /// \brief The translation unit we are traversing. ASTUnit *TU; /// \brief The parent cursor whose children we are traversing. CXCursor Parent; /// \brief The declaration that serves at the parent of any statement or /// expression nodes. Decl *StmtParent; /// \brief The visitor function. CXCursorVisitor Visitor; /// \brief The opaque client data, to be passed along to the visitor. CXClientData ClientData; // MaxPCHLevel - the maximum PCH level of declarations that we will pass on // to the visitor. Declarations with a PCH level greater than this value will // be suppressed. unsigned MaxPCHLevel; /// \brief When valid, a source range to which the cursor should restrict /// its search. SourceRange RegionOfInterest; using DeclVisitor::Visit; using TypeLocVisitor::Visit; using StmtVisitor::Visit; /// \brief Determine whether this particular source range comes before, comes /// after, or overlaps the region of interest. /// /// \param R a half-open source range retrieved from the abstract syntax tree. RangeComparisonResult CompareRegionOfInterest(SourceRange R); class SetParentRAII { CXCursor &Parent; Decl *&StmtParent; CXCursor OldParent; public: SetParentRAII(CXCursor &Parent, Decl *&StmtParent, CXCursor NewParent) : Parent(Parent), StmtParent(StmtParent), OldParent(Parent) { Parent = NewParent; if (clang_isDeclaration(Parent.kind)) StmtParent = getCursorDecl(Parent); } ~SetParentRAII() { Parent = OldParent; if (clang_isDeclaration(Parent.kind)) StmtParent = getCursorDecl(Parent); } }; public: CursorVisitor(ASTUnit *TU, CXCursorVisitor Visitor, CXClientData ClientData, unsigned MaxPCHLevel, SourceRange RegionOfInterest = SourceRange()) : TU(TU), Visitor(Visitor), ClientData(ClientData), MaxPCHLevel(MaxPCHLevel), RegionOfInterest(RegionOfInterest) { Parent.kind = CXCursor_NoDeclFound; Parent.data[0] = 0; Parent.data[1] = 0; Parent.data[2] = 0; StmtParent = 0; } bool Visit(CXCursor Cursor, bool CheckedRegionOfInterest = false); std::pair getPreprocessedEntities(); bool VisitChildren(CXCursor Parent); // Declaration visitors bool VisitAttributes(Decl *D); bool VisitBlockDecl(BlockDecl *B); bool VisitCXXRecordDecl(CXXRecordDecl *D); bool VisitDeclContext(DeclContext *DC); bool VisitTranslationUnitDecl(TranslationUnitDecl *D); bool VisitTypedefDecl(TypedefDecl *D); bool VisitTagDecl(TagDecl *D); bool VisitClassTemplateSpecializationDecl(ClassTemplateSpecializationDecl *D); bool VisitClassTemplatePartialSpecializationDecl( ClassTemplatePartialSpecializationDecl *D); bool VisitTemplateTypeParmDecl(TemplateTypeParmDecl *D); bool VisitEnumConstantDecl(EnumConstantDecl *D); bool VisitDeclaratorDecl(DeclaratorDecl *DD); bool VisitFunctionDecl(FunctionDecl *ND); bool VisitFieldDecl(FieldDecl *D); bool VisitVarDecl(VarDecl *); bool VisitNonTypeTemplateParmDecl(NonTypeTemplateParmDecl *D); bool VisitFunctionTemplateDecl(FunctionTemplateDecl *D); bool VisitClassTemplateDecl(ClassTemplateDecl *D); bool VisitTemplateTemplateParmDecl(TemplateTemplateParmDecl *D); bool VisitObjCMethodDecl(ObjCMethodDecl *ND); bool VisitObjCContainerDecl(ObjCContainerDecl *D); bool VisitObjCCategoryDecl(ObjCCategoryDecl *ND); bool VisitObjCProtocolDecl(ObjCProtocolDecl *PID); bool VisitObjCPropertyDecl(ObjCPropertyDecl *PD); bool VisitObjCInterfaceDecl(ObjCInterfaceDecl *D); bool VisitObjCImplDecl(ObjCImplDecl *D); bool VisitObjCCategoryImplDecl(ObjCCategoryImplDecl *D); bool VisitObjCImplementationDecl(ObjCImplementationDecl *D); // FIXME: ObjCPropertyDecl requires TypeSourceInfo, getter/setter locations, // etc. // FIXME: ObjCCompatibleAliasDecl requires aliased-class locations. bool VisitObjCForwardProtocolDecl(ObjCForwardProtocolDecl *D); bool VisitObjCClassDecl(ObjCClassDecl *D); bool VisitLinkageSpecDecl(LinkageSpecDecl *D); bool VisitNamespaceDecl(NamespaceDecl *D); bool VisitNamespaceAliasDecl(NamespaceAliasDecl *D); bool VisitUsingDirectiveDecl(UsingDirectiveDecl *D); bool VisitUsingDecl(UsingDecl *D); bool VisitUnresolvedUsingValueDecl(UnresolvedUsingValueDecl *D); bool VisitUnresolvedUsingTypenameDecl(UnresolvedUsingTypenameDecl *D); // Name visitor bool VisitDeclarationNameInfo(DeclarationNameInfo Name); bool VisitNestedNameSpecifier(NestedNameSpecifier *NNS, SourceRange Range); // Template visitors bool VisitTemplateParameters(const TemplateParameterList *Params); bool VisitTemplateName(TemplateName Name, SourceLocation Loc); bool VisitTemplateArgumentLoc(const TemplateArgumentLoc &TAL); // Type visitors bool VisitQualifiedTypeLoc(QualifiedTypeLoc TL); bool VisitBuiltinTypeLoc(BuiltinTypeLoc TL); bool VisitTypedefTypeLoc(TypedefTypeLoc TL); bool VisitUnresolvedUsingTypeLoc(UnresolvedUsingTypeLoc TL); bool VisitTagTypeLoc(TagTypeLoc TL); bool VisitTemplateTypeParmTypeLoc(TemplateTypeParmTypeLoc TL); bool VisitObjCInterfaceTypeLoc(ObjCInterfaceTypeLoc TL); bool VisitObjCObjectTypeLoc(ObjCObjectTypeLoc TL); bool VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL); bool VisitPointerTypeLoc(PointerTypeLoc TL); bool VisitBlockPointerTypeLoc(BlockPointerTypeLoc TL); bool VisitMemberPointerTypeLoc(MemberPointerTypeLoc TL); bool VisitLValueReferenceTypeLoc(LValueReferenceTypeLoc TL); bool VisitRValueReferenceTypeLoc(RValueReferenceTypeLoc TL); bool VisitFunctionTypeLoc(FunctionTypeLoc TL, bool SkipResultType = false); bool VisitArrayTypeLoc(ArrayTypeLoc TL); bool VisitTemplateSpecializationTypeLoc(TemplateSpecializationTypeLoc TL); // FIXME: Implement visitors here when the unimplemented TypeLocs get // implemented bool VisitTypeOfExprTypeLoc(TypeOfExprTypeLoc TL); bool VisitTypeOfTypeLoc(TypeOfTypeLoc TL); // Statement visitors bool VisitStmt(Stmt *S); bool VisitDeclStmt(DeclStmt *S); // FIXME: LabelStmt label? bool VisitIfStmt(IfStmt *S); bool VisitSwitchStmt(SwitchStmt *S); bool VisitCaseStmt(CaseStmt *S); bool VisitWhileStmt(WhileStmt *S); bool VisitForStmt(ForStmt *S); // bool VisitSwitchCase(SwitchCase *S); // Expression visitors bool VisitDeclRefExpr(DeclRefExpr *E); bool VisitCXXOperatorCallExpr(CXXOperatorCallExpr *E); bool VisitBlockExpr(BlockExpr *B); bool VisitCompoundLiteralExpr(CompoundLiteralExpr *E); bool VisitExplicitCastExpr(ExplicitCastExpr *E); bool VisitObjCMessageExpr(ObjCMessageExpr *E); bool VisitObjCEncodeExpr(ObjCEncodeExpr *E); bool VisitOffsetOfExpr(OffsetOfExpr *E); bool VisitSizeOfAlignOfExpr(SizeOfAlignOfExpr *E); bool VisitMemberExpr(MemberExpr *E); // FIXME: AddrLabelExpr (once we have cursors for labels) bool VisitTypesCompatibleExpr(TypesCompatibleExpr *E); bool VisitVAArgExpr(VAArgExpr *E); // FIXME: InitListExpr (for the designators) // FIXME: DesignatedInitExpr bool VisitCXXTypeidExpr(CXXTypeidExpr *E); bool VisitCXXDefaultArgExpr(CXXDefaultArgExpr *E) { return false; } // FIXME: CXXTemporaryObjectExpr has poor source-location information. // FIXME: CXXScalarValueInitExpr has poor source-location information. // FIXME: CXXNewExpr has poor source-location information bool VisitCXXPseudoDestructorExpr(CXXPseudoDestructorExpr *E); // FIXME: UnaryTypeTraitExpr has poor source-location information. bool VisitOverloadExpr(OverloadExpr *E); bool VisitDependentScopeDeclRefExpr(DependentScopeDeclRefExpr *E); // FIXME: CXXUnresolvedConstructExpr has poor source-location information. bool VisitCXXDependentScopeMemberExpr(CXXDependentScopeMemberExpr *E); bool VisitUnresolvedMemberExpr(UnresolvedMemberExpr *E); }; } // end anonymous namespace static SourceRange getRawCursorExtent(CXCursor C); RangeComparisonResult CursorVisitor::CompareRegionOfInterest(SourceRange R) { return RangeCompare(TU->getSourceManager(), R, RegionOfInterest); } /// \brief Visit the given cursor and, if requested by the visitor, /// its children. /// /// \param Cursor the cursor to visit. /// /// \param CheckRegionOfInterest if true, then the caller already checked that /// this cursor is within the region of interest. /// /// \returns true if the visitation should be aborted, false if it /// should continue. bool CursorVisitor::Visit(CXCursor Cursor, bool CheckedRegionOfInterest) { if (clang_isInvalid(Cursor.kind)) return false; if (clang_isDeclaration(Cursor.kind)) { Decl *D = getCursorDecl(Cursor); assert(D && "Invalid declaration cursor"); if (D->getPCHLevel() > MaxPCHLevel) return false; if (D->isImplicit()) return false; } // If we have a range of interest, and this cursor doesn't intersect with it, // we're done. if (RegionOfInterest.isValid() && !CheckedRegionOfInterest) { SourceRange Range = getRawCursorExtent(Cursor); if (Range.isInvalid() || CompareRegionOfInterest(Range)) return false; } switch (Visitor(Cursor, Parent, ClientData)) { case CXChildVisit_Break: return true; case CXChildVisit_Continue: return false; case CXChildVisit_Recurse: return VisitChildren(Cursor); } return false; } std::pair CursorVisitor::getPreprocessedEntities() { PreprocessingRecord &PPRec = *TU->getPreprocessor().getPreprocessingRecord(); bool OnlyLocalDecls = !TU->isMainFileAST() && TU->getOnlyLocalDecls(); // There is no region of interest; we have to walk everything. if (RegionOfInterest.isInvalid()) return std::make_pair(PPRec.begin(OnlyLocalDecls), PPRec.end(OnlyLocalDecls)); // Find the file in which the region of interest lands. SourceManager &SM = TU->getSourceManager(); std::pair Begin = SM.getDecomposedInstantiationLoc(RegionOfInterest.getBegin()); std::pair End = SM.getDecomposedInstantiationLoc(RegionOfInterest.getEnd()); // The region of interest spans files; we have to walk everything. if (Begin.first != End.first) return std::make_pair(PPRec.begin(OnlyLocalDecls), PPRec.end(OnlyLocalDecls)); ASTUnit::PreprocessedEntitiesByFileMap &ByFileMap = TU->getPreprocessedEntitiesByFile(); if (ByFileMap.empty()) { // Build the mapping from files to sets of preprocessed entities. for (PreprocessingRecord::iterator E = PPRec.begin(OnlyLocalDecls), EEnd = PPRec.end(OnlyLocalDecls); E != EEnd; ++E) { std::pair P = SM.getDecomposedInstantiationLoc((*E)->getSourceRange().getBegin()); ByFileMap[P.first].push_back(*E); } } return std::make_pair(ByFileMap[Begin.first].begin(), ByFileMap[Begin.first].end()); } /// \brief Visit the children of the given cursor. /// /// \returns true if the visitation should be aborted, false if it /// should continue. bool CursorVisitor::VisitChildren(CXCursor Cursor) { if (clang_isReference(Cursor.kind)) { // By definition, references have no children. return false; } // Set the Parent field to Cursor, then back to its old value once we're // done. SetParentRAII SetParent(Parent, StmtParent, Cursor); if (clang_isDeclaration(Cursor.kind)) { Decl *D = getCursorDecl(Cursor); assert(D && "Invalid declaration cursor"); return VisitAttributes(D) || Visit(D); } if (clang_isStatement(Cursor.kind)) return Visit(getCursorStmt(Cursor)); if (clang_isExpression(Cursor.kind)) return Visit(getCursorExpr(Cursor)); if (clang_isTranslationUnit(Cursor.kind)) { ASTUnit *CXXUnit = getCursorASTUnit(Cursor); if (!CXXUnit->isMainFileAST() && CXXUnit->getOnlyLocalDecls() && RegionOfInterest.isInvalid()) { for (ASTUnit::top_level_iterator TL = CXXUnit->top_level_begin(), TLEnd = CXXUnit->top_level_end(); TL != TLEnd; ++TL) { if (Visit(MakeCXCursor(*TL, CXXUnit), true)) return true; } } else if (VisitDeclContext( CXXUnit->getASTContext().getTranslationUnitDecl())) return true; // Walk the preprocessing record. if (CXXUnit->getPreprocessor().getPreprocessingRecord()) { // FIXME: Once we have the ability to deserialize a preprocessing record, // do so. PreprocessingRecord::iterator E, EEnd; for (llvm::tie(E, EEnd) = getPreprocessedEntities(); E != EEnd; ++E) { if (MacroInstantiation *MI = dyn_cast(*E)) { if (Visit(MakeMacroInstantiationCursor(MI, CXXUnit))) return true; continue; } if (MacroDefinition *MD = dyn_cast(*E)) { if (Visit(MakeMacroDefinitionCursor(MD, CXXUnit))) return true; continue; } } } return false; } // Nothing to visit at the moment. return false; } bool CursorVisitor::VisitBlockDecl(BlockDecl *B) { if (Visit(B->getSignatureAsWritten()->getTypeLoc())) return true; if (Stmt *Body = B->getBody()) return Visit(MakeCXCursor(Body, StmtParent, TU)); return false; } bool CursorVisitor::VisitDeclContext(DeclContext *DC) { for (DeclContext::decl_iterator I = DC->decls_begin(), E = DC->decls_end(); I != E; ++I) { Decl *D = *I; if (D->getLexicalDeclContext() != DC) continue; CXCursor Cursor = MakeCXCursor(D, TU); if (RegionOfInterest.isValid()) { SourceRange Range = getRawCursorExtent(Cursor); if (Range.isInvalid()) continue; switch (CompareRegionOfInterest(Range)) { case RangeBefore: // This declaration comes before the region of interest; skip it. continue; case RangeAfter: // This declaration comes after the region of interest; we're done. return false; case RangeOverlap: // This declaration overlaps the region of interest; visit it. break; } } if (Visit(Cursor, true)) return true; } return false; } bool CursorVisitor::VisitTranslationUnitDecl(TranslationUnitDecl *D) { llvm_unreachable("Translation units are visited directly by Visit()"); return false; } bool CursorVisitor::VisitTypedefDecl(TypedefDecl *D) { if (TypeSourceInfo *TSInfo = D->getTypeSourceInfo()) return Visit(TSInfo->getTypeLoc()); return false; } bool CursorVisitor::VisitTagDecl(TagDecl *D) { return VisitDeclContext(D); } bool CursorVisitor::VisitClassTemplateSpecializationDecl( ClassTemplateSpecializationDecl *D) { bool ShouldVisitBody = false; switch (D->getSpecializationKind()) { case TSK_Undeclared: case TSK_ImplicitInstantiation: // Nothing to visit return false; case TSK_ExplicitInstantiationDeclaration: case TSK_ExplicitInstantiationDefinition: break; case TSK_ExplicitSpecialization: ShouldVisitBody = true; break; } // Visit the template arguments used in the specialization. if (TypeSourceInfo *SpecType = D->getTypeAsWritten()) { TypeLoc TL = SpecType->getTypeLoc(); if (TemplateSpecializationTypeLoc *TSTLoc = dyn_cast(&TL)) { for (unsigned I = 0, N = TSTLoc->getNumArgs(); I != N; ++I) if (VisitTemplateArgumentLoc(TSTLoc->getArgLoc(I))) return true; } } if (ShouldVisitBody && VisitCXXRecordDecl(D)) return true; return false; } bool CursorVisitor::VisitClassTemplatePartialSpecializationDecl( ClassTemplatePartialSpecializationDecl *D) { // FIXME: Visit the "outer" template parameter lists on the TagDecl // before visiting these template parameters. if (VisitTemplateParameters(D->getTemplateParameters())) return true; // Visit the partial specialization arguments. const TemplateArgumentLoc *TemplateArgs = D->getTemplateArgsAsWritten(); for (unsigned I = 0, N = D->getNumTemplateArgsAsWritten(); I != N; ++I) if (VisitTemplateArgumentLoc(TemplateArgs[I])) return true; return VisitCXXRecordDecl(D); } bool CursorVisitor::VisitTemplateTypeParmDecl(TemplateTypeParmDecl *D) { // Visit the default argument. if (D->hasDefaultArgument() && !D->defaultArgumentWasInherited()) if (TypeSourceInfo *DefArg = D->getDefaultArgumentInfo()) if (Visit(DefArg->getTypeLoc())) return true; return false; } bool CursorVisitor::VisitEnumConstantDecl(EnumConstantDecl *D) { if (Expr *Init = D->getInitExpr()) return Visit(MakeCXCursor(Init, StmtParent, TU)); return false; } bool CursorVisitor::VisitDeclaratorDecl(DeclaratorDecl *DD) { if (TypeSourceInfo *TSInfo = DD->getTypeSourceInfo()) if (Visit(TSInfo->getTypeLoc())) return true; return false; } bool CursorVisitor::VisitFunctionDecl(FunctionDecl *ND) { if (TypeSourceInfo *TSInfo = ND->getTypeSourceInfo()) { // Visit the function declaration's syntactic components in the order // written. This requires a bit of work. TypeLoc TL = TSInfo->getTypeLoc(); FunctionTypeLoc *FTL = dyn_cast(&TL); // If we have a function declared directly (without the use of a typedef), // visit just the return type. Otherwise, just visit the function's type // now. if ((FTL && !isa(ND) && Visit(FTL->getResultLoc())) || (!FTL && Visit(TL))) return true; // Visit the nested-name-specifier, if present. if (NestedNameSpecifier *Qualifier = ND->getQualifier()) if (VisitNestedNameSpecifier(Qualifier, ND->getQualifierRange())) return true; // Visit the declaration name. if (VisitDeclarationNameInfo(ND->getNameInfo())) return true; // FIXME: Visit explicitly-specified template arguments! // Visit the function parameters, if we have a function type. if (FTL && VisitFunctionTypeLoc(*FTL, true)) return true; // FIXME: Attributes? } if (ND->isThisDeclarationADefinition() && Visit(MakeCXCursor(ND->getBody(), StmtParent, TU))) return true; return false; } bool CursorVisitor::VisitFieldDecl(FieldDecl *D) { if (VisitDeclaratorDecl(D)) return true; if (Expr *BitWidth = D->getBitWidth()) return Visit(MakeCXCursor(BitWidth, StmtParent, TU)); return false; } bool CursorVisitor::VisitVarDecl(VarDecl *D) { if (VisitDeclaratorDecl(D)) return true; if (Expr *Init = D->getInit()) return Visit(MakeCXCursor(Init, StmtParent, TU)); return false; } bool CursorVisitor::VisitNonTypeTemplateParmDecl(NonTypeTemplateParmDecl *D) { if (VisitDeclaratorDecl(D)) return true; if (D->hasDefaultArgument() && !D->defaultArgumentWasInherited()) if (Expr *DefArg = D->getDefaultArgument()) return Visit(MakeCXCursor(DefArg, StmtParent, TU)); return false; } bool CursorVisitor::VisitFunctionTemplateDecl(FunctionTemplateDecl *D) { // FIXME: Visit the "outer" template parameter lists on the FunctionDecl // before visiting these template parameters. if (VisitTemplateParameters(D->getTemplateParameters())) return true; return VisitFunctionDecl(D->getTemplatedDecl()); } bool CursorVisitor::VisitClassTemplateDecl(ClassTemplateDecl *D) { // FIXME: Visit the "outer" template parameter lists on the TagDecl // before visiting these template parameters. if (VisitTemplateParameters(D->getTemplateParameters())) return true; return VisitCXXRecordDecl(D->getTemplatedDecl()); } bool CursorVisitor::VisitTemplateTemplateParmDecl(TemplateTemplateParmDecl *D) { if (VisitTemplateParameters(D->getTemplateParameters())) return true; if (D->hasDefaultArgument() && !D->defaultArgumentWasInherited() && VisitTemplateArgumentLoc(D->getDefaultArgument())) return true; return false; } bool CursorVisitor::VisitObjCMethodDecl(ObjCMethodDecl *ND) { if (TypeSourceInfo *TSInfo = ND->getResultTypeSourceInfo()) if (Visit(TSInfo->getTypeLoc())) return true; for (ObjCMethodDecl::param_iterator P = ND->param_begin(), PEnd = ND->param_end(); P != PEnd; ++P) { if (Visit(MakeCXCursor(*P, TU))) return true; } if (ND->isThisDeclarationADefinition() && Visit(MakeCXCursor(ND->getBody(), StmtParent, TU))) return true; return false; } bool CursorVisitor::VisitObjCContainerDecl(ObjCContainerDecl *D) { return VisitDeclContext(D); } bool CursorVisitor::VisitObjCCategoryDecl(ObjCCategoryDecl *ND) { if (Visit(MakeCursorObjCClassRef(ND->getClassInterface(), ND->getLocation(), TU))) return true; ObjCCategoryDecl::protocol_loc_iterator PL = ND->protocol_loc_begin(); for (ObjCCategoryDecl::protocol_iterator I = ND->protocol_begin(), E = ND->protocol_end(); I != E; ++I, ++PL) if (Visit(MakeCursorObjCProtocolRef(*I, *PL, TU))) return true; return VisitObjCContainerDecl(ND); } bool CursorVisitor::VisitObjCProtocolDecl(ObjCProtocolDecl *PID) { ObjCProtocolDecl::protocol_loc_iterator PL = PID->protocol_loc_begin(); for (ObjCProtocolDecl::protocol_iterator I = PID->protocol_begin(), E = PID->protocol_end(); I != E; ++I, ++PL) if (Visit(MakeCursorObjCProtocolRef(*I, *PL, TU))) return true; return VisitObjCContainerDecl(PID); } bool CursorVisitor::VisitObjCPropertyDecl(ObjCPropertyDecl *PD) { if (Visit(PD->getTypeSourceInfo()->getTypeLoc())) return true; // FIXME: This implements a workaround with @property declarations also being // installed in the DeclContext for the @interface. Eventually this code // should be removed. ObjCCategoryDecl *CDecl = dyn_cast(PD->getDeclContext()); if (!CDecl || !CDecl->IsClassExtension()) return false; ObjCInterfaceDecl *ID = CDecl->getClassInterface(); if (!ID) return false; IdentifierInfo *PropertyId = PD->getIdentifier(); ObjCPropertyDecl *prevDecl = ObjCPropertyDecl::findPropertyDecl(cast(ID), PropertyId); if (!prevDecl) return false; // Visit synthesized methods since they will be skipped when visiting // the @interface. if (ObjCMethodDecl *MD = prevDecl->getGetterMethodDecl()) if (MD->isSynthesized()) if (Visit(MakeCXCursor(MD, TU))) return true; if (ObjCMethodDecl *MD = prevDecl->getSetterMethodDecl()) if (MD->isSynthesized()) if (Visit(MakeCXCursor(MD, TU))) return true; return false; } bool CursorVisitor::VisitObjCInterfaceDecl(ObjCInterfaceDecl *D) { // Issue callbacks for super class. if (D->getSuperClass() && Visit(MakeCursorObjCSuperClassRef(D->getSuperClass(), D->getSuperClassLoc(), TU))) return true; ObjCInterfaceDecl::protocol_loc_iterator PL = D->protocol_loc_begin(); for (ObjCInterfaceDecl::protocol_iterator I = D->protocol_begin(), E = D->protocol_end(); I != E; ++I, ++PL) if (Visit(MakeCursorObjCProtocolRef(*I, *PL, TU))) return true; return VisitObjCContainerDecl(D); } bool CursorVisitor::VisitObjCImplDecl(ObjCImplDecl *D) { return VisitObjCContainerDecl(D); } bool CursorVisitor::VisitObjCCategoryImplDecl(ObjCCategoryImplDecl *D) { // 'ID' could be null when dealing with invalid code. if (ObjCInterfaceDecl *ID = D->getClassInterface()) if (Visit(MakeCursorObjCClassRef(ID, D->getLocation(), TU))) return true; return VisitObjCImplDecl(D); } bool CursorVisitor::VisitObjCImplementationDecl(ObjCImplementationDecl *D) { #if 0 // Issue callbacks for super class. // FIXME: No source location information! if (D->getSuperClass() && Visit(MakeCursorObjCSuperClassRef(D->getSuperClass(), D->getSuperClassLoc(), TU))) return true; #endif return VisitObjCImplDecl(D); } bool CursorVisitor::VisitObjCForwardProtocolDecl(ObjCForwardProtocolDecl *D) { ObjCForwardProtocolDecl::protocol_loc_iterator PL = D->protocol_loc_begin(); for (ObjCForwardProtocolDecl::protocol_iterator I = D->protocol_begin(), E = D->protocol_end(); I != E; ++I, ++PL) if (Visit(MakeCursorObjCProtocolRef(*I, *PL, TU))) return true; return false; } bool CursorVisitor::VisitObjCClassDecl(ObjCClassDecl *D) { for (ObjCClassDecl::iterator C = D->begin(), CEnd = D->end(); C != CEnd; ++C) if (Visit(MakeCursorObjCClassRef(C->getInterface(), C->getLocation(), TU))) return true; return false; } bool CursorVisitor::VisitNamespaceDecl(NamespaceDecl *D) { return VisitDeclContext(D); } bool CursorVisitor::VisitNamespaceAliasDecl(NamespaceAliasDecl *D) { // Visit nested-name-specifier. if (NestedNameSpecifier *Qualifier = D->getQualifier()) if (VisitNestedNameSpecifier(Qualifier, D->getQualifierRange())) return true; return Visit(MakeCursorNamespaceRef(D->getAliasedNamespace(), D->getTargetNameLoc(), TU)); } bool CursorVisitor::VisitUsingDecl(UsingDecl *D) { // Visit nested-name-specifier. if (NestedNameSpecifier *Qualifier = D->getTargetNestedNameDecl()) if (VisitNestedNameSpecifier(Qualifier, D->getNestedNameRange())) return true; // FIXME: Provide a multi-reference of some kind for all of the declarations // that the using declaration refers to. We don't have this kind of cursor // yet. return VisitDeclarationNameInfo(D->getNameInfo()); } bool CursorVisitor::VisitUsingDirectiveDecl(UsingDirectiveDecl *D) { // Visit nested-name-specifier. if (NestedNameSpecifier *Qualifier = D->getQualifier()) if (VisitNestedNameSpecifier(Qualifier, D->getQualifierRange())) return true; return Visit(MakeCursorNamespaceRef(D->getNominatedNamespaceAsWritten(), D->getIdentLocation(), TU)); } bool CursorVisitor::VisitUnresolvedUsingValueDecl(UnresolvedUsingValueDecl *D) { // Visit nested-name-specifier. if (NestedNameSpecifier *Qualifier = D->getTargetNestedNameSpecifier()) if (VisitNestedNameSpecifier(Qualifier, D->getTargetNestedNameRange())) return true; return VisitDeclarationNameInfo(D->getNameInfo()); } bool CursorVisitor::VisitUnresolvedUsingTypenameDecl( UnresolvedUsingTypenameDecl *D) { // Visit nested-name-specifier. if (NestedNameSpecifier *Qualifier = D->getTargetNestedNameSpecifier()) if (VisitNestedNameSpecifier(Qualifier, D->getTargetNestedNameRange())) return true; return false; } bool CursorVisitor::VisitDeclarationNameInfo(DeclarationNameInfo Name) { switch (Name.getName().getNameKind()) { case clang::DeclarationName::Identifier: case clang::DeclarationName::CXXLiteralOperatorName: case clang::DeclarationName::CXXOperatorName: case clang::DeclarationName::CXXUsingDirective: return false; case clang::DeclarationName::CXXConstructorName: case clang::DeclarationName::CXXDestructorName: case clang::DeclarationName::CXXConversionFunctionName: if (TypeSourceInfo *TSInfo = Name.getNamedTypeInfo()) return Visit(TSInfo->getTypeLoc()); return false; case clang::DeclarationName::ObjCZeroArgSelector: case clang::DeclarationName::ObjCOneArgSelector: case clang::DeclarationName::ObjCMultiArgSelector: // FIXME: Per-identifier location info? return false; } return false; } bool CursorVisitor::VisitNestedNameSpecifier(NestedNameSpecifier *NNS, SourceRange Range) { // FIXME: This whole routine is a hack to work around the lack of proper // source information in nested-name-specifiers (PR5791). Since we do have // a beginning source location, we can visit the first component of the // nested-name-specifier, if it's a single-token component. if (!NNS) return false; // Get the first component in the nested-name-specifier. while (NestedNameSpecifier *Prefix = NNS->getPrefix()) NNS = Prefix; switch (NNS->getKind()) { case NestedNameSpecifier::Namespace: // FIXME: The token at this source location might actually have been a // namespace alias, but we don't model that. Lame! return Visit(MakeCursorNamespaceRef(NNS->getAsNamespace(), Range.getBegin(), TU)); case NestedNameSpecifier::TypeSpec: { // If the type has a form where we know that the beginning of the source // range matches up with a reference cursor. Visit the appropriate reference // cursor. Type *T = NNS->getAsType(); if (const TypedefType *Typedef = dyn_cast(T)) return Visit(MakeCursorTypeRef(Typedef->getDecl(), Range.getBegin(), TU)); if (const TagType *Tag = dyn_cast(T)) return Visit(MakeCursorTypeRef(Tag->getDecl(), Range.getBegin(), TU)); if (const TemplateSpecializationType *TST = dyn_cast(T)) return VisitTemplateName(TST->getTemplateName(), Range.getBegin()); break; } case NestedNameSpecifier::TypeSpecWithTemplate: case NestedNameSpecifier::Global: case NestedNameSpecifier::Identifier: break; } return false; } bool CursorVisitor::VisitTemplateParameters( const TemplateParameterList *Params) { if (!Params) return false; for (TemplateParameterList::const_iterator P = Params->begin(), PEnd = Params->end(); P != PEnd; ++P) { if (Visit(MakeCXCursor(*P, TU))) return true; } return false; } bool CursorVisitor::VisitTemplateName(TemplateName Name, SourceLocation Loc) { switch (Name.getKind()) { case TemplateName::Template: return Visit(MakeCursorTemplateRef(Name.getAsTemplateDecl(), Loc, TU)); case TemplateName::OverloadedTemplate: // FIXME: We need a way to return multiple lookup results in a single // cursor. return false; case TemplateName::DependentTemplate: // FIXME: Visit nested-name-specifier. return false; case TemplateName::QualifiedTemplate: // FIXME: Visit nested-name-specifier. return Visit(MakeCursorTemplateRef( Name.getAsQualifiedTemplateName()->getDecl(), Loc, TU)); } return false; } bool CursorVisitor::VisitTemplateArgumentLoc(const TemplateArgumentLoc &TAL) { switch (TAL.getArgument().getKind()) { case TemplateArgument::Null: case TemplateArgument::Integral: return false; case TemplateArgument::Pack: // FIXME: Implement when variadic templates come along. return false; case TemplateArgument::Type: if (TypeSourceInfo *TSInfo = TAL.getTypeSourceInfo()) return Visit(TSInfo->getTypeLoc()); return false; case TemplateArgument::Declaration: if (Expr *E = TAL.getSourceDeclExpression()) return Visit(MakeCXCursor(E, StmtParent, TU)); return false; case TemplateArgument::Expression: if (Expr *E = TAL.getSourceExpression()) return Visit(MakeCXCursor(E, StmtParent, TU)); return false; case TemplateArgument::Template: return VisitTemplateName(TAL.getArgument().getAsTemplate(), TAL.getTemplateNameLoc()); } return false; } bool CursorVisitor::VisitLinkageSpecDecl(LinkageSpecDecl *D) { return VisitDeclContext(D); } bool CursorVisitor::VisitQualifiedTypeLoc(QualifiedTypeLoc TL) { return Visit(TL.getUnqualifiedLoc()); } bool CursorVisitor::VisitBuiltinTypeLoc(BuiltinTypeLoc TL) { ASTContext &Context = TU->getASTContext(); // Some builtin types (such as Objective-C's "id", "sel", and // "Class") have associated declarations. Create cursors for those. QualType VisitType; switch (TL.getType()->getAs()->getKind()) { case BuiltinType::Void: case BuiltinType::Bool: case BuiltinType::Char_U: case BuiltinType::UChar: case BuiltinType::Char16: case BuiltinType::Char32: case BuiltinType::UShort: case BuiltinType::UInt: case BuiltinType::ULong: case BuiltinType::ULongLong: case BuiltinType::UInt128: case BuiltinType::Char_S: case BuiltinType::SChar: case BuiltinType::WChar: case BuiltinType::Short: case BuiltinType::Int: case BuiltinType::Long: case BuiltinType::LongLong: case BuiltinType::Int128: case BuiltinType::Float: case BuiltinType::Double: case BuiltinType::LongDouble: case BuiltinType::NullPtr: case BuiltinType::Overload: case BuiltinType::Dependent: break; case BuiltinType::UndeducedAuto: // FIXME: Deserves a cursor? break; case BuiltinType::ObjCId: VisitType = Context.getObjCIdType(); break; case BuiltinType::ObjCClass: VisitType = Context.getObjCClassType(); break; case BuiltinType::ObjCSel: VisitType = Context.getObjCSelType(); break; } if (!VisitType.isNull()) { if (const TypedefType *Typedef = VisitType->getAs()) return Visit(MakeCursorTypeRef(Typedef->getDecl(), TL.getBuiltinLoc(), TU)); } return false; } bool CursorVisitor::VisitTypedefTypeLoc(TypedefTypeLoc TL) { return Visit(MakeCursorTypeRef(TL.getTypedefDecl(), TL.getNameLoc(), TU)); } bool CursorVisitor::VisitUnresolvedUsingTypeLoc(UnresolvedUsingTypeLoc TL) { return Visit(MakeCursorTypeRef(TL.getDecl(), TL.getNameLoc(), TU)); } bool CursorVisitor::VisitTagTypeLoc(TagTypeLoc TL) { return Visit(MakeCursorTypeRef(TL.getDecl(), TL.getNameLoc(), TU)); } bool CursorVisitor::VisitTemplateTypeParmTypeLoc(TemplateTypeParmTypeLoc TL) { // FIXME: We can't visit the template template parameter, but there's // no context information with which we can match up the depth/index in the // type to the appropriate return false; } bool CursorVisitor::VisitObjCInterfaceTypeLoc(ObjCInterfaceTypeLoc TL) { if (Visit(MakeCursorObjCClassRef(TL.getIFaceDecl(), TL.getNameLoc(), TU))) return true; return false; } bool CursorVisitor::VisitObjCObjectTypeLoc(ObjCObjectTypeLoc TL) { if (TL.hasBaseTypeAsWritten() && Visit(TL.getBaseLoc())) return true; for (unsigned I = 0, N = TL.getNumProtocols(); I != N; ++I) { if (Visit(MakeCursorObjCProtocolRef(TL.getProtocol(I), TL.getProtocolLoc(I), TU))) return true; } return false; } bool CursorVisitor::VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) { return Visit(TL.getPointeeLoc()); } bool CursorVisitor::VisitPointerTypeLoc(PointerTypeLoc TL) { return Visit(TL.getPointeeLoc()); } bool CursorVisitor::VisitBlockPointerTypeLoc(BlockPointerTypeLoc TL) { return Visit(TL.getPointeeLoc()); } bool CursorVisitor::VisitMemberPointerTypeLoc(MemberPointerTypeLoc TL) { return Visit(TL.getPointeeLoc()); } bool CursorVisitor::VisitLValueReferenceTypeLoc(LValueReferenceTypeLoc TL) { return Visit(TL.getPointeeLoc()); } bool CursorVisitor::VisitRValueReferenceTypeLoc(RValueReferenceTypeLoc TL) { return Visit(TL.getPointeeLoc()); } bool CursorVisitor::VisitFunctionTypeLoc(FunctionTypeLoc TL, bool SkipResultType) { if (!SkipResultType && Visit(TL.getResultLoc())) return true; for (unsigned I = 0, N = TL.getNumArgs(); I != N; ++I) if (Decl *D = TL.getArg(I)) if (Visit(MakeCXCursor(D, TU))) return true; return false; } bool CursorVisitor::VisitArrayTypeLoc(ArrayTypeLoc TL) { if (Visit(TL.getElementLoc())) return true; if (Expr *Size = TL.getSizeExpr()) return Visit(MakeCXCursor(Size, StmtParent, TU)); return false; } bool CursorVisitor::VisitTemplateSpecializationTypeLoc( TemplateSpecializationTypeLoc TL) { // Visit the template name. if (VisitTemplateName(TL.getTypePtr()->getTemplateName(), TL.getTemplateNameLoc())) return true; // Visit the template arguments. for (unsigned I = 0, N = TL.getNumArgs(); I != N; ++I) if (VisitTemplateArgumentLoc(TL.getArgLoc(I))) return true; return false; } bool CursorVisitor::VisitTypeOfExprTypeLoc(TypeOfExprTypeLoc TL) { return Visit(MakeCXCursor(TL.getUnderlyingExpr(), StmtParent, TU)); } bool CursorVisitor::VisitTypeOfTypeLoc(TypeOfTypeLoc TL) { if (TypeSourceInfo *TSInfo = TL.getUnderlyingTInfo()) return Visit(TSInfo->getTypeLoc()); return false; } bool CursorVisitor::VisitStmt(Stmt *S) { for (Stmt::child_iterator Child = S->child_begin(), ChildEnd = S->child_end(); Child != ChildEnd; ++Child) { if (Stmt *C = *Child) if (Visit(MakeCXCursor(C, StmtParent, TU))) return true; } return false; } bool CursorVisitor::VisitCaseStmt(CaseStmt *S) { // Specially handle CaseStmts because they can be nested, e.g.: // // case 1: // case 2: // // In this case the second CaseStmt is the child of the first. Walking // these recursively can blow out the stack. CXCursor Cursor = MakeCXCursor(S, StmtParent, TU); while (true) { // Set the Parent field to Cursor, then back to its old value once we're // done. SetParentRAII SetParent(Parent, StmtParent, Cursor); if (Stmt *LHS = S->getLHS()) if (Visit(MakeCXCursor(LHS, StmtParent, TU))) return true; if (Stmt *RHS = S->getRHS()) if (Visit(MakeCXCursor(RHS, StmtParent, TU))) return true; if (Stmt *SubStmt = S->getSubStmt()) { if (!isa(SubStmt)) return Visit(MakeCXCursor(SubStmt, StmtParent, TU)); // Specially handle 'CaseStmt' so that we don't blow out the stack. CaseStmt *CS = cast(SubStmt); Cursor = MakeCXCursor(CS, StmtParent, TU); if (RegionOfInterest.isValid()) { SourceRange Range = CS->getSourceRange(); if (Range.isInvalid() || CompareRegionOfInterest(Range)) return false; } switch (Visitor(Cursor, Parent, ClientData)) { case CXChildVisit_Break: return true; case CXChildVisit_Continue: return false; case CXChildVisit_Recurse: // Perform tail-recursion manually. S = CS; continue; } } return false; } } bool CursorVisitor::VisitDeclStmt(DeclStmt *S) { for (DeclStmt::decl_iterator D = S->decl_begin(), DEnd = S->decl_end(); D != DEnd; ++D) { if (*D && Visit(MakeCXCursor(*D, TU))) return true; } return false; } bool CursorVisitor::VisitIfStmt(IfStmt *S) { if (VarDecl *Var = S->getConditionVariable()) { if (Visit(MakeCXCursor(Var, TU))) return true; } if (S->getCond() && Visit(MakeCXCursor(S->getCond(), StmtParent, TU))) return true; if (S->getThen() && Visit(MakeCXCursor(S->getThen(), StmtParent, TU))) return true; if (S->getElse() && Visit(MakeCXCursor(S->getElse(), StmtParent, TU))) return true; return false; } bool CursorVisitor::VisitSwitchStmt(SwitchStmt *S) { if (VarDecl *Var = S->getConditionVariable()) { if (Visit(MakeCXCursor(Var, TU))) return true; } if (S->getCond() && Visit(MakeCXCursor(S->getCond(), StmtParent, TU))) return true; if (S->getBody() && Visit(MakeCXCursor(S->getBody(), StmtParent, TU))) return true; return false; } bool CursorVisitor::VisitWhileStmt(WhileStmt *S) { if (VarDecl *Var = S->getConditionVariable()) { if (Visit(MakeCXCursor(Var, TU))) return true; } if (S->getCond() && Visit(MakeCXCursor(S->getCond(), StmtParent, TU))) return true; if (S->getBody() && Visit(MakeCXCursor(S->getBody(), StmtParent, TU))) return true; return false; } bool CursorVisitor::VisitForStmt(ForStmt *S) { if (S->getInit() && Visit(MakeCXCursor(S->getInit(), StmtParent, TU))) return true; if (VarDecl *Var = S->getConditionVariable()) { if (Visit(MakeCXCursor(Var, TU))) return true; } if (S->getCond() && Visit(MakeCXCursor(S->getCond(), StmtParent, TU))) return true; if (S->getInc() && Visit(MakeCXCursor(S->getInc(), StmtParent, TU))) return true; if (S->getBody() && Visit(MakeCXCursor(S->getBody(), StmtParent, TU))) return true; return false; } bool CursorVisitor::VisitDeclRefExpr(DeclRefExpr *E) { // Visit nested-name-specifier, if present. if (NestedNameSpecifier *Qualifier = E->getQualifier()) if (VisitNestedNameSpecifier(Qualifier, E->getQualifierRange())) return true; // Visit declaration name. if (VisitDeclarationNameInfo(E->getNameInfo())) return true; // Visit explicitly-specified template arguments. if (E->hasExplicitTemplateArgs()) { ExplicitTemplateArgumentList &Args = E->getExplicitTemplateArgs(); for (TemplateArgumentLoc *Arg = Args.getTemplateArgs(), *ArgEnd = Arg + Args.NumTemplateArgs; Arg != ArgEnd; ++Arg) if (VisitTemplateArgumentLoc(*Arg)) return true; } return false; } bool CursorVisitor::VisitCXXOperatorCallExpr(CXXOperatorCallExpr *E) { if (Visit(MakeCXCursor(E->getArg(0), StmtParent, TU))) return true; if (Visit(MakeCXCursor(E->getCallee(), StmtParent, TU))) return true; for (unsigned I = 1, N = E->getNumArgs(); I != N; ++I) if (Visit(MakeCXCursor(E->getArg(I), StmtParent, TU))) return true; return false; } bool CursorVisitor::VisitCXXRecordDecl(CXXRecordDecl *D) { if (D->isDefinition()) { for (CXXRecordDecl::base_class_iterator I = D->bases_begin(), E = D->bases_end(); I != E; ++I) { if (Visit(cxcursor::MakeCursorCXXBaseSpecifier(I, TU))) return true; } } return VisitTagDecl(D); } bool CursorVisitor::VisitBlockExpr(BlockExpr *B) { return Visit(B->getBlockDecl()); } bool CursorVisitor::VisitOffsetOfExpr(OffsetOfExpr *E) { // FIXME: Visit fields as well? if (Visit(E->getTypeSourceInfo()->getTypeLoc())) return true; return VisitExpr(E); } bool CursorVisitor::VisitSizeOfAlignOfExpr(SizeOfAlignOfExpr *E) { if (E->isArgumentType()) { if (TypeSourceInfo *TSInfo = E->getArgumentTypeInfo()) return Visit(TSInfo->getTypeLoc()); return false; } return VisitExpr(E); } bool CursorVisitor::VisitMemberExpr(MemberExpr *E) { // Visit the base expression. if (Visit(MakeCXCursor(E->getBase(), StmtParent, TU))) return true; // Visit the nested-name-specifier if (NestedNameSpecifier *Qualifier = E->getQualifier()) if (VisitNestedNameSpecifier(Qualifier, E->getQualifierRange())) return true; // Visit the declaration name. if (VisitDeclarationNameInfo(E->getMemberNameInfo())) return true; // Visit the explicitly-specified template arguments, if any. if (E->hasExplicitTemplateArgs()) { for (const TemplateArgumentLoc *Arg = E->getTemplateArgs(), *ArgEnd = Arg + E->getNumTemplateArgs(); Arg != ArgEnd; ++Arg) { if (VisitTemplateArgumentLoc(*Arg)) return true; } } return false; } bool CursorVisitor::VisitExplicitCastExpr(ExplicitCastExpr *E) { if (TypeSourceInfo *TSInfo = E->getTypeInfoAsWritten()) if (Visit(TSInfo->getTypeLoc())) return true; return VisitCastExpr(E); } bool CursorVisitor::VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { if (TypeSourceInfo *TSInfo = E->getTypeSourceInfo()) if (Visit(TSInfo->getTypeLoc())) return true; return VisitExpr(E); } bool CursorVisitor::VisitTypesCompatibleExpr(TypesCompatibleExpr *E) { return Visit(E->getArgTInfo1()->getTypeLoc()) || Visit(E->getArgTInfo2()->getTypeLoc()); } bool CursorVisitor::VisitVAArgExpr(VAArgExpr *E) { if (Visit(E->getWrittenTypeInfo()->getTypeLoc())) return true; return Visit(MakeCXCursor(E->getSubExpr(), StmtParent, TU)); } bool CursorVisitor::VisitCXXTypeidExpr(CXXTypeidExpr *E) { if (E->isTypeOperand()) { if (TypeSourceInfo *TSInfo = E->getTypeOperandSourceInfo()) return Visit(TSInfo->getTypeLoc()); return false; } return VisitExpr(E); } bool CursorVisitor::VisitCXXPseudoDestructorExpr(CXXPseudoDestructorExpr *E) { // Visit base expression. if (Visit(MakeCXCursor(E->getBase(), StmtParent, TU))) return true; // Visit the nested-name-specifier. if (NestedNameSpecifier *Qualifier = E->getQualifier()) if (VisitNestedNameSpecifier(Qualifier, E->getQualifierRange())) return true; // Visit the scope type that looks disturbingly like the nested-name-specifier // but isn't. if (TypeSourceInfo *TSInfo = E->getScopeTypeInfo()) if (Visit(TSInfo->getTypeLoc())) return true; // Visit the name of the type being destroyed. if (TypeSourceInfo *TSInfo = E->getDestroyedTypeInfo()) if (Visit(TSInfo->getTypeLoc())) return true; return false; } bool CursorVisitor::VisitOverloadExpr(OverloadExpr *E) { // Visit the nested-name-specifier. if (NestedNameSpecifier *Qualifier = E->getQualifier()) if (VisitNestedNameSpecifier(Qualifier, E->getQualifierRange())) return true; // Visit the declaration name. if (VisitDeclarationNameInfo(E->getNameInfo())) return true; // Visit the explicitly-specified template arguments. if (const ExplicitTemplateArgumentList *ArgList = E->getOptionalExplicitTemplateArgs()) { for (const TemplateArgumentLoc *Arg = ArgList->getTemplateArgs(), *ArgEnd = Arg + ArgList->NumTemplateArgs; Arg != ArgEnd; ++Arg) { if (VisitTemplateArgumentLoc(*Arg)) return true; } } // FIXME: We don't have a way to visit all of the declarations referenced // here. return false; } bool CursorVisitor::VisitDependentScopeDeclRefExpr( DependentScopeDeclRefExpr *E) { // Visit the nested-name-specifier. if (NestedNameSpecifier *Qualifier = E->getQualifier()) if (VisitNestedNameSpecifier(Qualifier, E->getQualifierRange())) return true; // Visit the declaration name. if (VisitDeclarationNameInfo(E->getNameInfo())) return true; // Visit the explicitly-specified template arguments. if (const ExplicitTemplateArgumentList *ArgList = E->getOptionalExplicitTemplateArgs()) { for (const TemplateArgumentLoc *Arg = ArgList->getTemplateArgs(), *ArgEnd = Arg + ArgList->NumTemplateArgs; Arg != ArgEnd; ++Arg) { if (VisitTemplateArgumentLoc(*Arg)) return true; } } return false; } bool CursorVisitor::VisitCXXDependentScopeMemberExpr( CXXDependentScopeMemberExpr *E) { // Visit the base expression, if there is one. if (!E->isImplicitAccess() && Visit(MakeCXCursor(E->getBase(), StmtParent, TU))) return true; // Visit the nested-name-specifier. if (NestedNameSpecifier *Qualifier = E->getQualifier()) if (VisitNestedNameSpecifier(Qualifier, E->getQualifierRange())) return true; // Visit the declaration name. if (VisitDeclarationNameInfo(E->getMemberNameInfo())) return true; // Visit the explicitly-specified template arguments. if (const ExplicitTemplateArgumentList *ArgList = E->getOptionalExplicitTemplateArgs()) { for (const TemplateArgumentLoc *Arg = ArgList->getTemplateArgs(), *ArgEnd = Arg + ArgList->NumTemplateArgs; Arg != ArgEnd; ++Arg) { if (VisitTemplateArgumentLoc(*Arg)) return true; } } return false; } bool CursorVisitor::VisitUnresolvedMemberExpr(UnresolvedMemberExpr *E) { // Visit the base expression, if there is one. if (!E->isImplicitAccess() && Visit(MakeCXCursor(E->getBase(), StmtParent, TU))) return true; return VisitOverloadExpr(E); } bool CursorVisitor::VisitObjCMessageExpr(ObjCMessageExpr *E) { if (TypeSourceInfo *TSInfo = E->getClassReceiverTypeInfo()) if (Visit(TSInfo->getTypeLoc())) return true; return VisitExpr(E); } bool CursorVisitor::VisitObjCEncodeExpr(ObjCEncodeExpr *E) { return Visit(E->getEncodedTypeSourceInfo()->getTypeLoc()); } bool CursorVisitor::VisitAttributes(Decl *D) { for (AttrVec::const_iterator i = D->attr_begin(), e = D->attr_end(); i != e; ++i) if (Visit(MakeCXCursor(*i, D, TU))) return true; return false; } extern "C" { CXIndex clang_createIndex(int excludeDeclarationsFromPCH, int displayDiagnostics) { // We use crash recovery to make some of our APIs more reliable, implicitly // enable it. llvm::CrashRecoveryContext::Enable(); CIndexer *CIdxr = new CIndexer(); if (excludeDeclarationsFromPCH) CIdxr->setOnlyLocalDecls(); if (displayDiagnostics) CIdxr->setDisplayDiagnostics(); return CIdxr; } void clang_disposeIndex(CXIndex CIdx) { if (CIdx) delete static_cast(CIdx); if (getenv("LIBCLANG_TIMING")) llvm::TimerGroup::printAll(llvm::errs()); } void clang_setUseExternalASTGeneration(CXIndex CIdx, int value) { if (CIdx) { CIndexer *CXXIdx = static_cast(CIdx); CXXIdx->setUseExternalASTGeneration(value); } } CXTranslationUnit clang_createTranslationUnit(CXIndex CIdx, const char *ast_filename) { if (!CIdx) return 0; CIndexer *CXXIdx = static_cast(CIdx); llvm::IntrusiveRefCntPtr Diags; return ASTUnit::LoadFromASTFile(ast_filename, Diags, CXXIdx->getOnlyLocalDecls(), 0, 0, true); } unsigned clang_defaultEditingTranslationUnitOptions() { return CXTranslationUnit_PrecompiledPreamble; } CXTranslationUnit clang_createTranslationUnitFromSourceFile(CXIndex CIdx, const char *source_filename, int num_command_line_args, const char * const *command_line_args, unsigned num_unsaved_files, struct CXUnsavedFile *unsaved_files) { return clang_parseTranslationUnit(CIdx, source_filename, command_line_args, num_command_line_args, unsaved_files, num_unsaved_files, CXTranslationUnit_DetailedPreprocessingRecord); } struct ParseTranslationUnitInfo { CXIndex CIdx; const char *source_filename; const char *const *command_line_args; int num_command_line_args; struct CXUnsavedFile *unsaved_files; unsigned num_unsaved_files; unsigned options; CXTranslationUnit result; }; static void clang_parseTranslationUnit_Impl(void *UserData) { ParseTranslationUnitInfo *PTUI = static_cast(UserData); CXIndex CIdx = PTUI->CIdx; const char *source_filename = PTUI->source_filename; const char * const *command_line_args = PTUI->command_line_args; int num_command_line_args = PTUI->num_command_line_args; struct CXUnsavedFile *unsaved_files = PTUI->unsaved_files; unsigned num_unsaved_files = PTUI->num_unsaved_files; unsigned options = PTUI->options; PTUI->result = 0; if (!CIdx) return; CIndexer *CXXIdx = static_cast(CIdx); bool PrecompilePreamble = options & CXTranslationUnit_PrecompiledPreamble; bool CompleteTranslationUnit = ((options & CXTranslationUnit_Incomplete) == 0); bool CacheCodeCompetionResults = options & CXTranslationUnit_CacheCompletionResults; // Configure the diagnostics. DiagnosticOptions DiagOpts; llvm::IntrusiveRefCntPtr Diags; Diags = CompilerInstance::createDiagnostics(DiagOpts, 0, 0); llvm::SmallVector RemappedFiles; for (unsigned I = 0; I != num_unsaved_files; ++I) { llvm::StringRef Data(unsaved_files[I].Contents, unsaved_files[I].Length); const llvm::MemoryBuffer *Buffer = llvm::MemoryBuffer::getMemBufferCopy(Data, unsaved_files[I].Filename); RemappedFiles.push_back(std::make_pair(unsaved_files[I].Filename, Buffer)); } if (!CXXIdx->getUseExternalASTGeneration()) { llvm::SmallVector Args; // The 'source_filename' argument is optional. If the caller does not // specify it then it is assumed that the source file is specified // in the actual argument list. if (source_filename) Args.push_back(source_filename); // Since the Clang C library is primarily used by batch tools dealing with // (often very broken) source code, where spell-checking can have a // significant negative impact on performance (particularly when // precompiled headers are involved), we disable it by default. // Note that we place this argument early in the list, so that it can be // overridden by the caller with "-fspell-checking". Args.push_back("-fno-spell-checking"); Args.insert(Args.end(), command_line_args, command_line_args + num_command_line_args); // Do we need the detailed preprocessing record? if (options & CXTranslationUnit_DetailedPreprocessingRecord) { Args.push_back("-Xclang"); Args.push_back("-detailed-preprocessing-record"); } unsigned NumErrors = Diags->getNumErrors(); #ifdef USE_CRASHTRACER ArgsCrashTracerInfo ACTI(Args); #endif llvm::OwningPtr Unit( ASTUnit::LoadFromCommandLine(Args.data(), Args.data() + Args.size(), Diags, CXXIdx->getClangResourcesPath(), CXXIdx->getOnlyLocalDecls(), RemappedFiles.data(), RemappedFiles.size(), /*CaptureDiagnostics=*/true, PrecompilePreamble, CompleteTranslationUnit, CacheCodeCompetionResults)); if (NumErrors != Diags->getNumErrors()) { // Make sure to check that 'Unit' is non-NULL. if (CXXIdx->getDisplayDiagnostics() && Unit.get()) { for (ASTUnit::stored_diag_iterator D = Unit->stored_diag_begin(), DEnd = Unit->stored_diag_end(); D != DEnd; ++D) { CXStoredDiagnostic Diag(*D, Unit->getASTContext().getLangOptions()); CXString Msg = clang_formatDiagnostic(&Diag, clang_defaultDiagnosticDisplayOptions()); fprintf(stderr, "%s\n", clang_getCString(Msg)); clang_disposeString(Msg); } #ifdef LLVM_ON_WIN32 // On Windows, force a flush, since there may be multiple copies of // stderr and stdout in the file system, all with different buffers // but writing to the same device. fflush(stderr); #endif } } PTUI->result = Unit.take(); return; } // Build up the arguments for invoking 'clang'. std::vector argv; // First add the complete path to the 'clang' executable. llvm::sys::Path ClangPath = static_cast(CIdx)->getClangPath(); argv.push_back(ClangPath.c_str()); // Add the '-emit-ast' option as our execution mode for 'clang'. argv.push_back("-emit-ast"); // The 'source_filename' argument is optional. If the caller does not // specify it then it is assumed that the source file is specified // in the actual argument list. if (source_filename) argv.push_back(source_filename); // Generate a temporary name for the AST file. argv.push_back("-o"); char astTmpFile[L_tmpnam]; argv.push_back(tmpnam(astTmpFile)); // Since the Clang C library is primarily used by batch tools dealing with // (often very broken) source code, where spell-checking can have a // significant negative impact on performance (particularly when // precompiled headers are involved), we disable it by default. // Note that we place this argument early in the list, so that it can be // overridden by the caller with "-fspell-checking". argv.push_back("-fno-spell-checking"); // Remap any unsaved files to temporary files. std::vector TemporaryFiles; std::vector RemapArgs; if (RemapFiles(num_unsaved_files, unsaved_files, RemapArgs, TemporaryFiles)) return; // The pointers into the elements of RemapArgs are stable because we // won't be adding anything to RemapArgs after this point. for (unsigned i = 0, e = RemapArgs.size(); i != e; ++i) argv.push_back(RemapArgs[i].c_str()); // Process the compiler options, stripping off '-o', '-c', '-fsyntax-only'. for (int i = 0; i < num_command_line_args; ++i) if (const char *arg = command_line_args[i]) { if (strcmp(arg, "-o") == 0) { ++i; // Also skip the matching argument. continue; } if (strcmp(arg, "-emit-ast") == 0 || strcmp(arg, "-c") == 0 || strcmp(arg, "-fsyntax-only") == 0) { continue; } // Keep the argument. argv.push_back(arg); } // Generate a temporary name for the diagnostics file. char tmpFileResults[L_tmpnam]; char *tmpResultsFileName = tmpnam(tmpFileResults); llvm::sys::Path DiagnosticsFile(tmpResultsFileName); TemporaryFiles.push_back(DiagnosticsFile); argv.push_back("-fdiagnostics-binary"); // Do we need the detailed preprocessing record? if (options & CXTranslationUnit_DetailedPreprocessingRecord) { argv.push_back("-Xclang"); argv.push_back("-detailed-preprocessing-record"); } // Add the null terminator. argv.push_back(NULL); // Invoke 'clang'. llvm::sys::Path DevNull; // leave empty, causes redirection to /dev/null // on Unix or NUL (Windows). std::string ErrMsg; const llvm::sys::Path *Redirects[] = { &DevNull, &DevNull, &DiagnosticsFile, NULL }; llvm::sys::Program::ExecuteAndWait(ClangPath, &argv[0], /* env */ NULL, /* redirects */ &Redirects[0], /* secondsToWait */ 0, /* memoryLimits */ 0, &ErrMsg); if (!ErrMsg.empty()) { std::string AllArgs; for (std::vector::iterator I = argv.begin(), E = argv.end(); I != E; ++I) { AllArgs += ' '; if (*I) AllArgs += *I; } Diags->Report(diag::err_fe_invoking) << AllArgs << ErrMsg; } ASTUnit *ATU = ASTUnit::LoadFromASTFile(astTmpFile, Diags, CXXIdx->getOnlyLocalDecls(), RemappedFiles.data(), RemappedFiles.size(), /*CaptureDiagnostics=*/true); if (ATU) { LoadSerializedDiagnostics(DiagnosticsFile, num_unsaved_files, unsaved_files, ATU->getFileManager(), ATU->getSourceManager(), ATU->getStoredDiagnostics()); } else if (CXXIdx->getDisplayDiagnostics()) { // We failed to load the ASTUnit, but we can still deserialize the // diagnostics and emit them. FileManager FileMgr; Diagnostic Diag; SourceManager SourceMgr(Diag); // FIXME: Faked LangOpts! LangOptions LangOpts; llvm::SmallVector Diags; LoadSerializedDiagnostics(DiagnosticsFile, num_unsaved_files, unsaved_files, FileMgr, SourceMgr, Diags); for (llvm::SmallVector::iterator D = Diags.begin(), DEnd = Diags.end(); D != DEnd; ++D) { CXStoredDiagnostic Diag(*D, LangOpts); CXString Msg = clang_formatDiagnostic(&Diag, clang_defaultDiagnosticDisplayOptions()); fprintf(stderr, "%s\n", clang_getCString(Msg)); clang_disposeString(Msg); } #ifdef LLVM_ON_WIN32 // On Windows, force a flush, since there may be multiple copies of // stderr and stdout in the file system, all with different buffers // but writing to the same device. fflush(stderr); #endif } if (ATU) { // Make the translation unit responsible for destroying all temporary files. for (unsigned i = 0, e = TemporaryFiles.size(); i != e; ++i) ATU->addTemporaryFile(TemporaryFiles[i]); ATU->addTemporaryFile(llvm::sys::Path(ATU->getASTFileName())); } else { // Destroy all of the temporary files now; they can't be referenced any // longer. llvm::sys::Path(astTmpFile).eraseFromDisk(); for (unsigned i = 0, e = TemporaryFiles.size(); i != e; ++i) TemporaryFiles[i].eraseFromDisk(); } PTUI->result = ATU; } CXTranslationUnit clang_parseTranslationUnit(CXIndex CIdx, const char *source_filename, const char * const *command_line_args, int num_command_line_args, struct CXUnsavedFile *unsaved_files, unsigned num_unsaved_files, unsigned options) { ParseTranslationUnitInfo PTUI = { CIdx, source_filename, command_line_args, num_command_line_args, unsaved_files, num_unsaved_files, options, 0 }; llvm::CrashRecoveryContext CRC; if (!CRC.RunSafely(clang_parseTranslationUnit_Impl, &PTUI)) { fprintf(stderr, "libclang: crash detected during parsing: {\n"); fprintf(stderr, " 'source_filename' : '%s'\n", source_filename); fprintf(stderr, " 'command_line_args' : ["); for (int i = 0; i != num_command_line_args; ++i) { if (i) fprintf(stderr, ", "); fprintf(stderr, "'%s'", command_line_args[i]); } fprintf(stderr, "],\n"); fprintf(stderr, " 'unsaved_files' : ["); for (unsigned i = 0; i != num_unsaved_files; ++i) { if (i) fprintf(stderr, ", "); fprintf(stderr, "('%s', '...', %ld)", unsaved_files[i].Filename, unsaved_files[i].Length); } fprintf(stderr, "],\n"); fprintf(stderr, " 'options' : %d,\n", options); fprintf(stderr, "}\n"); return 0; } return PTUI.result; } unsigned clang_defaultSaveOptions(CXTranslationUnit TU) { return CXSaveTranslationUnit_None; } int clang_saveTranslationUnit(CXTranslationUnit TU, const char *FileName, unsigned options) { if (!TU) return 1; return static_cast(TU)->Save(FileName); } void clang_disposeTranslationUnit(CXTranslationUnit CTUnit) { if (CTUnit) { // If the translation unit has been marked as unsafe to free, just discard // it. if (static_cast(CTUnit)->isUnsafeToFree()) return; delete static_cast(CTUnit); } } unsigned clang_defaultReparseOptions(CXTranslationUnit TU) { return CXReparse_None; } struct ReparseTranslationUnitInfo { CXTranslationUnit TU; unsigned num_unsaved_files; struct CXUnsavedFile *unsaved_files; unsigned options; int result; }; static void clang_reparseTranslationUnit_Impl(void *UserData) { ReparseTranslationUnitInfo *RTUI = static_cast(UserData); CXTranslationUnit TU = RTUI->TU; unsigned num_unsaved_files = RTUI->num_unsaved_files; struct CXUnsavedFile *unsaved_files = RTUI->unsaved_files; unsigned options = RTUI->options; (void) options; RTUI->result = 1; if (!TU) return; llvm::SmallVector RemappedFiles; for (unsigned I = 0; I != num_unsaved_files; ++I) { llvm::StringRef Data(unsaved_files[I].Contents, unsaved_files[I].Length); const llvm::MemoryBuffer *Buffer = llvm::MemoryBuffer::getMemBufferCopy(Data, unsaved_files[I].Filename); RemappedFiles.push_back(std::make_pair(unsaved_files[I].Filename, Buffer)); } if (!static_cast(TU)->Reparse(RemappedFiles.data(), RemappedFiles.size())) RTUI->result = 0; } int clang_reparseTranslationUnit(CXTranslationUnit TU, unsigned num_unsaved_files, struct CXUnsavedFile *unsaved_files, unsigned options) { ReparseTranslationUnitInfo RTUI = { TU, num_unsaved_files, unsaved_files, options, 0 }; llvm::CrashRecoveryContext CRC; if (!CRC.RunSafely(clang_reparseTranslationUnit_Impl, &RTUI)) { fprintf(stderr, "libclang: crash detected during reparsing\n"); static_cast(TU)->setUnsafeToFree(true); return 1; } return RTUI.result; } CXString clang_getTranslationUnitSpelling(CXTranslationUnit CTUnit) { if (!CTUnit) return createCXString(""); ASTUnit *CXXUnit = static_cast(CTUnit); return createCXString(CXXUnit->getOriginalSourceFileName(), true); } CXCursor clang_getTranslationUnitCursor(CXTranslationUnit TU) { CXCursor Result = { CXCursor_TranslationUnit, { 0, 0, TU } }; return Result; } } // end: extern "C" //===----------------------------------------------------------------------===// // CXSourceLocation and CXSourceRange Operations. //===----------------------------------------------------------------------===// extern "C" { CXSourceLocation clang_getNullLocation() { CXSourceLocation Result = { { 0, 0 }, 0 }; return Result; } unsigned clang_equalLocations(CXSourceLocation loc1, CXSourceLocation loc2) { return (loc1.ptr_data[0] == loc2.ptr_data[0] && loc1.ptr_data[1] == loc2.ptr_data[1] && loc1.int_data == loc2.int_data); } CXSourceLocation clang_getLocation(CXTranslationUnit tu, CXFile file, unsigned line, unsigned column) { if (!tu || !file) return clang_getNullLocation(); ASTUnit *CXXUnit = static_cast(tu); SourceLocation SLoc = CXXUnit->getSourceManager().getLocation( static_cast(file), line, column); return cxloc::translateSourceLocation(CXXUnit->getASTContext(), SLoc); } CXSourceRange clang_getNullRange() { CXSourceRange Result = { { 0, 0 }, 0, 0 }; return Result; } CXSourceRange clang_getRange(CXSourceLocation begin, CXSourceLocation end) { if (begin.ptr_data[0] != end.ptr_data[0] || begin.ptr_data[1] != end.ptr_data[1]) return clang_getNullRange(); CXSourceRange Result = { { begin.ptr_data[0], begin.ptr_data[1] }, begin.int_data, end.int_data }; return Result; } void clang_getInstantiationLocation(CXSourceLocation location, CXFile *file, unsigned *line, unsigned *column, unsigned *offset) { SourceLocation Loc = SourceLocation::getFromRawEncoding(location.int_data); if (!location.ptr_data[0] || Loc.isInvalid()) { if (file) *file = 0; if (line) *line = 0; if (column) *column = 0; if (offset) *offset = 0; return; } const SourceManager &SM = *static_cast(location.ptr_data[0]); SourceLocation InstLoc = SM.getInstantiationLoc(Loc); if (file) *file = (void *)SM.getFileEntryForID(SM.getFileID(InstLoc)); if (line) *line = SM.getInstantiationLineNumber(InstLoc); if (column) *column = SM.getInstantiationColumnNumber(InstLoc); if (offset) *offset = SM.getDecomposedLoc(InstLoc).second; } CXSourceLocation clang_getRangeStart(CXSourceRange range) { CXSourceLocation Result = { { range.ptr_data[0], range.ptr_data[1] }, range.begin_int_data }; return Result; } CXSourceLocation clang_getRangeEnd(CXSourceRange range) { CXSourceLocation Result = { { range.ptr_data[0], range.ptr_data[1] }, range.end_int_data }; return Result; } } // end: extern "C" //===----------------------------------------------------------------------===// // CXFile Operations. //===----------------------------------------------------------------------===// extern "C" { CXString clang_getFileName(CXFile SFile) { if (!SFile) return createCXString(NULL); FileEntry *FEnt = static_cast(SFile); return createCXString(FEnt->getName()); } time_t clang_getFileTime(CXFile SFile) { if (!SFile) return 0; FileEntry *FEnt = static_cast(SFile); return FEnt->getModificationTime(); } CXFile clang_getFile(CXTranslationUnit tu, const char *file_name) { if (!tu) return 0; ASTUnit *CXXUnit = static_cast(tu); FileManager &FMgr = CXXUnit->getFileManager(); const FileEntry *File = FMgr.getFile(file_name, file_name+strlen(file_name)); return const_cast(File); } } // end: extern "C" //===----------------------------------------------------------------------===// // CXCursor Operations. //===----------------------------------------------------------------------===// static Decl *getDeclFromExpr(Stmt *E) { if (DeclRefExpr *RefExpr = dyn_cast(E)) return RefExpr->getDecl(); if (MemberExpr *ME = dyn_cast(E)) return ME->getMemberDecl(); if (ObjCIvarRefExpr *RE = dyn_cast(E)) return RE->getDecl(); if (CallExpr *CE = dyn_cast(E)) return getDeclFromExpr(CE->getCallee()); if (CastExpr *CE = dyn_cast(E)) return getDeclFromExpr(CE->getSubExpr()); if (ObjCMessageExpr *OME = dyn_cast(E)) return OME->getMethodDecl(); return 0; } static SourceLocation getLocationFromExpr(Expr *E) { if (ObjCMessageExpr *Msg = dyn_cast(E)) return /*FIXME:*/Msg->getLeftLoc(); if (DeclRefExpr *DRE = dyn_cast(E)) return DRE->getLocation(); if (MemberExpr *Member = dyn_cast(E)) return Member->getMemberLoc(); if (ObjCIvarRefExpr *Ivar = dyn_cast(E)) return Ivar->getLocation(); return E->getLocStart(); } extern "C" { unsigned clang_visitChildren(CXCursor parent, CXCursorVisitor visitor, CXClientData client_data) { ASTUnit *CXXUnit = getCursorASTUnit(parent); CursorVisitor CursorVis(CXXUnit, visitor, client_data, CXXUnit->getMaxPCHLevel()); return CursorVis.VisitChildren(parent); } static CXString getDeclSpelling(Decl *D) { NamedDecl *ND = dyn_cast_or_null(D); if (!ND) return createCXString(""); if (ObjCMethodDecl *OMD = dyn_cast(ND)) return createCXString(OMD->getSelector().getAsString()); if (ObjCCategoryImplDecl *CIMP = dyn_cast(ND)) // No, this isn't the same as the code below. getIdentifier() is non-virtual // and returns different names. NamedDecl returns the class name and // ObjCCategoryImplDecl returns the category name. return createCXString(CIMP->getIdentifier()->getNameStart()); if (isa(D)) return createCXString(""); llvm::SmallString<1024> S; llvm::raw_svector_ostream os(S); ND->printName(os); return createCXString(os.str()); } CXString clang_getCursorSpelling(CXCursor C) { if (clang_isTranslationUnit(C.kind)) return clang_getTranslationUnitSpelling(C.data[2]); if (clang_isReference(C.kind)) { switch (C.kind) { case CXCursor_ObjCSuperClassRef: { ObjCInterfaceDecl *Super = getCursorObjCSuperClassRef(C).first; return createCXString(Super->getIdentifier()->getNameStart()); } case CXCursor_ObjCClassRef: { ObjCInterfaceDecl *Class = getCursorObjCClassRef(C).first; return createCXString(Class->getIdentifier()->getNameStart()); } case CXCursor_ObjCProtocolRef: { ObjCProtocolDecl *OID = getCursorObjCProtocolRef(C).first; assert(OID && "getCursorSpelling(): Missing protocol decl"); return createCXString(OID->getIdentifier()->getNameStart()); } case CXCursor_CXXBaseSpecifier: { CXXBaseSpecifier *B = getCursorCXXBaseSpecifier(C); return createCXString(B->getType().getAsString()); } case CXCursor_TypeRef: { TypeDecl *Type = getCursorTypeRef(C).first; assert(Type && "Missing type decl"); return createCXString(getCursorContext(C).getTypeDeclType(Type). getAsString()); } case CXCursor_TemplateRef: { TemplateDecl *Template = getCursorTemplateRef(C).first; assert(Template && "Missing template decl"); return createCXString(Template->getNameAsString()); } case CXCursor_NamespaceRef: { NamedDecl *NS = getCursorNamespaceRef(C).first; assert(NS && "Missing namespace decl"); return createCXString(NS->getNameAsString()); } default: return createCXString(""); } } if (clang_isExpression(C.kind)) { Decl *D = getDeclFromExpr(getCursorExpr(C)); if (D) return getDeclSpelling(D); return createCXString(""); } if (C.kind == CXCursor_MacroInstantiation) return createCXString(getCursorMacroInstantiation(C)->getName() ->getNameStart()); if (C.kind == CXCursor_MacroDefinition) return createCXString(getCursorMacroDefinition(C)->getName() ->getNameStart()); if (clang_isDeclaration(C.kind)) return getDeclSpelling(getCursorDecl(C)); return createCXString(""); } CXString clang_getCursorKindSpelling(enum CXCursorKind Kind) { switch (Kind) { case CXCursor_FunctionDecl: return createCXString("FunctionDecl"); case CXCursor_TypedefDecl: return createCXString("TypedefDecl"); case CXCursor_EnumDecl: return createCXString("EnumDecl"); case CXCursor_EnumConstantDecl: return createCXString("EnumConstantDecl"); case CXCursor_StructDecl: return createCXString("StructDecl"); case CXCursor_UnionDecl: return createCXString("UnionDecl"); case CXCursor_ClassDecl: return createCXString("ClassDecl"); case CXCursor_FieldDecl: return createCXString("FieldDecl"); case CXCursor_VarDecl: return createCXString("VarDecl"); case CXCursor_ParmDecl: return createCXString("ParmDecl"); case CXCursor_ObjCInterfaceDecl: return createCXString("ObjCInterfaceDecl"); case CXCursor_ObjCCategoryDecl: return createCXString("ObjCCategoryDecl"); case CXCursor_ObjCProtocolDecl: return createCXString("ObjCProtocolDecl"); case CXCursor_ObjCPropertyDecl: return createCXString("ObjCPropertyDecl"); case CXCursor_ObjCIvarDecl: return createCXString("ObjCIvarDecl"); case CXCursor_ObjCInstanceMethodDecl: return createCXString("ObjCInstanceMethodDecl"); case CXCursor_ObjCClassMethodDecl: return createCXString("ObjCClassMethodDecl"); case CXCursor_ObjCImplementationDecl: return createCXString("ObjCImplementationDecl"); case CXCursor_ObjCCategoryImplDecl: return createCXString("ObjCCategoryImplDecl"); case CXCursor_CXXMethod: return createCXString("CXXMethod"); case CXCursor_UnexposedDecl: return createCXString("UnexposedDecl"); case CXCursor_ObjCSuperClassRef: return createCXString("ObjCSuperClassRef"); case CXCursor_ObjCProtocolRef: return createCXString("ObjCProtocolRef"); case CXCursor_ObjCClassRef: return createCXString("ObjCClassRef"); case CXCursor_TypeRef: return createCXString("TypeRef"); case CXCursor_TemplateRef: return createCXString("TemplateRef"); case CXCursor_NamespaceRef: return createCXString("NamespaceRef"); case CXCursor_UnexposedExpr: return createCXString("UnexposedExpr"); case CXCursor_BlockExpr: return createCXString("BlockExpr"); case CXCursor_DeclRefExpr: return createCXString("DeclRefExpr"); case CXCursor_MemberRefExpr: return createCXString("MemberRefExpr"); case CXCursor_CallExpr: return createCXString("CallExpr"); case CXCursor_ObjCMessageExpr: return createCXString("ObjCMessageExpr"); case CXCursor_UnexposedStmt: return createCXString("UnexposedStmt"); case CXCursor_InvalidFile: return createCXString("InvalidFile"); case CXCursor_InvalidCode: return createCXString("InvalidCode"); case CXCursor_NoDeclFound: return createCXString("NoDeclFound"); case CXCursor_NotImplemented: return createCXString("NotImplemented"); case CXCursor_TranslationUnit: return createCXString("TranslationUnit"); case CXCursor_UnexposedAttr: return createCXString("UnexposedAttr"); case CXCursor_IBActionAttr: return createCXString("attribute(ibaction)"); case CXCursor_IBOutletAttr: return createCXString("attribute(iboutlet)"); case CXCursor_IBOutletCollectionAttr: return createCXString("attribute(iboutletcollection)"); case CXCursor_PreprocessingDirective: return createCXString("preprocessing directive"); case CXCursor_MacroDefinition: return createCXString("macro definition"); case CXCursor_MacroInstantiation: return createCXString("macro instantiation"); case CXCursor_Namespace: return createCXString("Namespace"); case CXCursor_LinkageSpec: return createCXString("LinkageSpec"); case CXCursor_CXXBaseSpecifier: return createCXString("C++ base class specifier"); case CXCursor_Constructor: return createCXString("CXXConstructor"); case CXCursor_Destructor: return createCXString("CXXDestructor"); case CXCursor_ConversionFunction: return createCXString("CXXConversion"); case CXCursor_TemplateTypeParameter: return createCXString("TemplateTypeParameter"); case CXCursor_NonTypeTemplateParameter: return createCXString("NonTypeTemplateParameter"); case CXCursor_TemplateTemplateParameter: return createCXString("TemplateTemplateParameter"); case CXCursor_FunctionTemplate: return createCXString("FunctionTemplate"); case CXCursor_ClassTemplate: return createCXString("ClassTemplate"); case CXCursor_ClassTemplatePartialSpecialization: return createCXString("ClassTemplatePartialSpecialization"); case CXCursor_NamespaceAlias: return createCXString("NamespaceAlias"); case CXCursor_UsingDirective: return createCXString("UsingDirective"); case CXCursor_UsingDeclaration: return createCXString("UsingDeclaration"); } llvm_unreachable("Unhandled CXCursorKind"); return createCXString(NULL); } enum CXChildVisitResult GetCursorVisitor(CXCursor cursor, CXCursor parent, CXClientData client_data) { CXCursor *BestCursor = static_cast(client_data); *BestCursor = cursor; return CXChildVisit_Recurse; } CXCursor clang_getCursor(CXTranslationUnit TU, CXSourceLocation Loc) { if (!TU) return clang_getNullCursor(); ASTUnit *CXXUnit = static_cast(TU); ASTUnit::ConcurrencyCheck Check(*CXXUnit); // Translate the given source location to make it point at the beginning of // the token under the cursor. SourceLocation SLoc = cxloc::translateSourceLocation(Loc); // Guard against an invalid SourceLocation, or we may assert in one // of the following calls. if (SLoc.isInvalid()) return clang_getNullCursor(); SLoc = Lexer::GetBeginningOfToken(SLoc, CXXUnit->getSourceManager(), CXXUnit->getASTContext().getLangOptions()); CXCursor Result = MakeCXCursorInvalid(CXCursor_NoDeclFound); if (SLoc.isValid()) { // FIXME: Would be great to have a "hint" cursor, then walk from that // hint cursor upward until we find a cursor whose source range encloses // the region of interest, rather than starting from the translation unit. CXCursor Parent = clang_getTranslationUnitCursor(CXXUnit); CursorVisitor CursorVis(CXXUnit, GetCursorVisitor, &Result, Decl::MaxPCHLevel, SourceLocation(SLoc)); CursorVis.VisitChildren(Parent); } return Result; } CXCursor clang_getNullCursor(void) { return MakeCXCursorInvalid(CXCursor_InvalidFile); } unsigned clang_equalCursors(CXCursor X, CXCursor Y) { return X == Y; } unsigned clang_isInvalid(enum CXCursorKind K) { return K >= CXCursor_FirstInvalid && K <= CXCursor_LastInvalid; } unsigned clang_isDeclaration(enum CXCursorKind K) { return K >= CXCursor_FirstDecl && K <= CXCursor_LastDecl; } unsigned clang_isReference(enum CXCursorKind K) { return K >= CXCursor_FirstRef && K <= CXCursor_LastRef; } unsigned clang_isExpression(enum CXCursorKind K) { return K >= CXCursor_FirstExpr && K <= CXCursor_LastExpr; } unsigned clang_isStatement(enum CXCursorKind K) { return K >= CXCursor_FirstStmt && K <= CXCursor_LastStmt; } unsigned clang_isTranslationUnit(enum CXCursorKind K) { return K == CXCursor_TranslationUnit; } unsigned clang_isPreprocessing(enum CXCursorKind K) { return K >= CXCursor_FirstPreprocessing && K <= CXCursor_LastPreprocessing; } unsigned clang_isUnexposed(enum CXCursorKind K) { switch (K) { case CXCursor_UnexposedDecl: case CXCursor_UnexposedExpr: case CXCursor_UnexposedStmt: case CXCursor_UnexposedAttr: return true; default: return false; } } CXCursorKind clang_getCursorKind(CXCursor C) { return C.kind; } CXSourceLocation clang_getCursorLocation(CXCursor C) { if (clang_isReference(C.kind)) { switch (C.kind) { case CXCursor_ObjCSuperClassRef: { std::pair P = getCursorObjCSuperClassRef(C); return cxloc::translateSourceLocation(P.first->getASTContext(), P.second); } case CXCursor_ObjCProtocolRef: { std::pair P = getCursorObjCProtocolRef(C); return cxloc::translateSourceLocation(P.first->getASTContext(), P.second); } case CXCursor_ObjCClassRef: { std::pair P = getCursorObjCClassRef(C); return cxloc::translateSourceLocation(P.first->getASTContext(), P.second); } case CXCursor_TypeRef: { std::pair P = getCursorTypeRef(C); return cxloc::translateSourceLocation(P.first->getASTContext(), P.second); } case CXCursor_TemplateRef: { std::pair P = getCursorTemplateRef(C); return cxloc::translateSourceLocation(P.first->getASTContext(), P.second); } case CXCursor_NamespaceRef: { std::pair P = getCursorNamespaceRef(C); return cxloc::translateSourceLocation(P.first->getASTContext(), P.second); } case CXCursor_CXXBaseSpecifier: { // FIXME: Figure out what location to return for a CXXBaseSpecifier. return clang_getNullLocation(); } default: // FIXME: Need a way to enumerate all non-reference cases. llvm_unreachable("Missed a reference kind"); } } if (clang_isExpression(C.kind)) return cxloc::translateSourceLocation(getCursorContext(C), getLocationFromExpr(getCursorExpr(C))); if (C.kind == CXCursor_PreprocessingDirective) { SourceLocation L = cxcursor::getCursorPreprocessingDirective(C).getBegin(); return cxloc::translateSourceLocation(getCursorContext(C), L); } if (C.kind == CXCursor_MacroInstantiation) { SourceLocation L = cxcursor::getCursorMacroInstantiation(C)->getSourceRange().getBegin(); return cxloc::translateSourceLocation(getCursorContext(C), L); } if (C.kind == CXCursor_MacroDefinition) { SourceLocation L = cxcursor::getCursorMacroDefinition(C)->getLocation(); return cxloc::translateSourceLocation(getCursorContext(C), L); } if (C.kind < CXCursor_FirstDecl || C.kind > CXCursor_LastDecl) return clang_getNullLocation(); Decl *D = getCursorDecl(C); SourceLocation Loc = D->getLocation(); if (ObjCInterfaceDecl *Class = dyn_cast(D)) Loc = Class->getClassLoc(); return cxloc::translateSourceLocation(getCursorContext(C), Loc); } } // end extern "C" static SourceRange getRawCursorExtent(CXCursor C) { if (clang_isReference(C.kind)) { switch (C.kind) { case CXCursor_ObjCSuperClassRef: return getCursorObjCSuperClassRef(C).second; case CXCursor_ObjCProtocolRef: return getCursorObjCProtocolRef(C).second; case CXCursor_ObjCClassRef: return getCursorObjCClassRef(C).second; case CXCursor_TypeRef: return getCursorTypeRef(C).second; case CXCursor_TemplateRef: return getCursorTemplateRef(C).second; case CXCursor_NamespaceRef: return getCursorNamespaceRef(C).second; case CXCursor_CXXBaseSpecifier: // FIXME: Figure out what source range to use for a CXBaseSpecifier. return SourceRange(); default: // FIXME: Need a way to enumerate all non-reference cases. llvm_unreachable("Missed a reference kind"); } } if (clang_isExpression(C.kind)) return getCursorExpr(C)->getSourceRange(); if (clang_isStatement(C.kind)) return getCursorStmt(C)->getSourceRange(); if (C.kind == CXCursor_PreprocessingDirective) return cxcursor::getCursorPreprocessingDirective(C); if (C.kind == CXCursor_MacroInstantiation) return cxcursor::getCursorMacroInstantiation(C)->getSourceRange(); if (C.kind == CXCursor_MacroDefinition) return cxcursor::getCursorMacroDefinition(C)->getSourceRange(); if (C.kind >= CXCursor_FirstDecl && C.kind <= CXCursor_LastDecl) return getCursorDecl(C)->getSourceRange(); return SourceRange(); } extern "C" { CXSourceRange clang_getCursorExtent(CXCursor C) { SourceRange R = getRawCursorExtent(C); if (R.isInvalid()) return clang_getNullRange(); return cxloc::translateSourceRange(getCursorContext(C), R); } CXCursor clang_getCursorReferenced(CXCursor C) { if (clang_isInvalid(C.kind)) return clang_getNullCursor(); ASTUnit *CXXUnit = getCursorASTUnit(C); if (clang_isDeclaration(C.kind)) return C; if (clang_isExpression(C.kind)) { Decl *D = getDeclFromExpr(getCursorExpr(C)); if (D) return MakeCXCursor(D, CXXUnit); return clang_getNullCursor(); } if (C.kind == CXCursor_MacroInstantiation) { if (MacroDefinition *Def = getCursorMacroInstantiation(C)->getDefinition()) return MakeMacroDefinitionCursor(Def, CXXUnit); } if (!clang_isReference(C.kind)) return clang_getNullCursor(); switch (C.kind) { case CXCursor_ObjCSuperClassRef: return MakeCXCursor(getCursorObjCSuperClassRef(C).first, CXXUnit); case CXCursor_ObjCProtocolRef: { return MakeCXCursor(getCursorObjCProtocolRef(C).first, CXXUnit); case CXCursor_ObjCClassRef: return MakeCXCursor(getCursorObjCClassRef(C).first, CXXUnit); case CXCursor_TypeRef: return MakeCXCursor(getCursorTypeRef(C).first, CXXUnit); case CXCursor_TemplateRef: return MakeCXCursor(getCursorTemplateRef(C).first, CXXUnit); case CXCursor_NamespaceRef: return MakeCXCursor(getCursorNamespaceRef(C).first, CXXUnit); case CXCursor_CXXBaseSpecifier: { CXXBaseSpecifier *B = cxcursor::getCursorCXXBaseSpecifier(C); return clang_getTypeDeclaration(cxtype::MakeCXType(B->getType(), CXXUnit)); } default: // We would prefer to enumerate all non-reference cursor kinds here. llvm_unreachable("Unhandled reference cursor kind"); break; } } return clang_getNullCursor(); } CXCursor clang_getCursorDefinition(CXCursor C) { if (clang_isInvalid(C.kind)) return clang_getNullCursor(); ASTUnit *CXXUnit = getCursorASTUnit(C); bool WasReference = false; if (clang_isReference(C.kind) || clang_isExpression(C.kind)) { C = clang_getCursorReferenced(C); WasReference = true; } if (C.kind == CXCursor_MacroInstantiation) return clang_getCursorReferenced(C); if (!clang_isDeclaration(C.kind)) return clang_getNullCursor(); Decl *D = getCursorDecl(C); if (!D) return clang_getNullCursor(); switch (D->getKind()) { // Declaration kinds that don't really separate the notions of // declaration and definition. case Decl::Namespace: case Decl::Typedef: case Decl::TemplateTypeParm: case Decl::EnumConstant: case Decl::Field: case Decl::ObjCIvar: case Decl::ObjCAtDefsField: case Decl::ImplicitParam: case Decl::ParmVar: case Decl::NonTypeTemplateParm: case Decl::TemplateTemplateParm: case Decl::ObjCCategoryImpl: case Decl::ObjCImplementation: case Decl::AccessSpec: case Decl::LinkageSpec: case Decl::ObjCPropertyImpl: case Decl::FileScopeAsm: case Decl::StaticAssert: case Decl::Block: return C; // Declaration kinds that don't make any sense here, but are // nonetheless harmless. case Decl::TranslationUnit: break; // Declaration kinds for which the definition is not resolvable. case Decl::UnresolvedUsingTypename: case Decl::UnresolvedUsingValue: break; case Decl::UsingDirective: return MakeCXCursor(cast(D)->getNominatedNamespace(), CXXUnit); case Decl::NamespaceAlias: return MakeCXCursor(cast(D)->getNamespace(), CXXUnit); case Decl::Enum: case Decl::Record: case Decl::CXXRecord: case Decl::ClassTemplateSpecialization: case Decl::ClassTemplatePartialSpecialization: if (TagDecl *Def = cast(D)->getDefinition()) return MakeCXCursor(Def, CXXUnit); return clang_getNullCursor(); case Decl::Function: case Decl::CXXMethod: case Decl::CXXConstructor: case Decl::CXXDestructor: case Decl::CXXConversion: { const FunctionDecl *Def = 0; if (cast(D)->getBody(Def)) return MakeCXCursor(const_cast(Def), CXXUnit); return clang_getNullCursor(); } case Decl::Var: { // Ask the variable if it has a definition. if (VarDecl *Def = cast(D)->getDefinition()) return MakeCXCursor(Def, CXXUnit); return clang_getNullCursor(); } case Decl::FunctionTemplate: { const FunctionDecl *Def = 0; if (cast(D)->getTemplatedDecl()->getBody(Def)) return MakeCXCursor(Def->getDescribedFunctionTemplate(), CXXUnit); return clang_getNullCursor(); } case Decl::ClassTemplate: { if (RecordDecl *Def = cast(D)->getTemplatedDecl() ->getDefinition()) return MakeCXCursor(cast(Def)->getDescribedClassTemplate(), CXXUnit); return clang_getNullCursor(); } case Decl::Using: { UsingDecl *Using = cast(D); CXCursor Def = clang_getNullCursor(); for (UsingDecl::shadow_iterator S = Using->shadow_begin(), SEnd = Using->shadow_end(); S != SEnd; ++S) { if (Def != clang_getNullCursor()) { // FIXME: We have no way to return multiple results. return clang_getNullCursor(); } Def = clang_getCursorDefinition(MakeCXCursor((*S)->getTargetDecl(), CXXUnit)); } return Def; } case Decl::UsingShadow: return clang_getCursorDefinition( MakeCXCursor(cast(D)->getTargetDecl(), CXXUnit)); case Decl::ObjCMethod: { ObjCMethodDecl *Method = cast(D); if (Method->isThisDeclarationADefinition()) return C; // Dig out the method definition in the associated // @implementation, if we have it. // FIXME: The ASTs should make finding the definition easier. if (ObjCInterfaceDecl *Class = dyn_cast(Method->getDeclContext())) if (ObjCImplementationDecl *ClassImpl = Class->getImplementation()) if (ObjCMethodDecl *Def = ClassImpl->getMethod(Method->getSelector(), Method->isInstanceMethod())) if (Def->isThisDeclarationADefinition()) return MakeCXCursor(Def, CXXUnit); return clang_getNullCursor(); } case Decl::ObjCCategory: if (ObjCCategoryImplDecl *Impl = cast(D)->getImplementation()) return MakeCXCursor(Impl, CXXUnit); return clang_getNullCursor(); case Decl::ObjCProtocol: if (!cast(D)->isForwardDecl()) return C; return clang_getNullCursor(); case Decl::ObjCInterface: // There are two notions of a "definition" for an Objective-C // class: the interface and its implementation. When we resolved a // reference to an Objective-C class, produce the @interface as // the definition; when we were provided with the interface, // produce the @implementation as the definition. if (WasReference) { if (!cast(D)->isForwardDecl()) return C; } else if (ObjCImplementationDecl *Impl = cast(D)->getImplementation()) return MakeCXCursor(Impl, CXXUnit); return clang_getNullCursor(); case Decl::ObjCProperty: // FIXME: We don't really know where to find the // ObjCPropertyImplDecls that implement this property. return clang_getNullCursor(); case Decl::ObjCCompatibleAlias: if (ObjCInterfaceDecl *Class = cast(D)->getClassInterface()) if (!Class->isForwardDecl()) return MakeCXCursor(Class, CXXUnit); return clang_getNullCursor(); case Decl::ObjCForwardProtocol: { ObjCForwardProtocolDecl *Forward = cast(D); if (Forward->protocol_size() == 1) return clang_getCursorDefinition( MakeCXCursor(*Forward->protocol_begin(), CXXUnit)); // FIXME: Cannot return multiple definitions. return clang_getNullCursor(); } case Decl::ObjCClass: { ObjCClassDecl *Class = cast(D); if (Class->size() == 1) { ObjCInterfaceDecl *IFace = Class->begin()->getInterface(); if (!IFace->isForwardDecl()) return MakeCXCursor(IFace, CXXUnit); return clang_getNullCursor(); } // FIXME: Cannot return multiple definitions. return clang_getNullCursor(); } case Decl::Friend: if (NamedDecl *Friend = cast(D)->getFriendDecl()) return clang_getCursorDefinition(MakeCXCursor(Friend, CXXUnit)); return clang_getNullCursor(); case Decl::FriendTemplate: if (NamedDecl *Friend = cast(D)->getFriendDecl()) return clang_getCursorDefinition(MakeCXCursor(Friend, CXXUnit)); return clang_getNullCursor(); } return clang_getNullCursor(); } unsigned clang_isCursorDefinition(CXCursor C) { if (!clang_isDeclaration(C.kind)) return 0; return clang_getCursorDefinition(C) == C; } void clang_getDefinitionSpellingAndExtent(CXCursor C, const char **startBuf, const char **endBuf, unsigned *startLine, unsigned *startColumn, unsigned *endLine, unsigned *endColumn) { assert(getCursorDecl(C) && "CXCursor has null decl"); NamedDecl *ND = static_cast(getCursorDecl(C)); FunctionDecl *FD = dyn_cast(ND); CompoundStmt *Body = dyn_cast(FD->getBody()); SourceManager &SM = FD->getASTContext().getSourceManager(); *startBuf = SM.getCharacterData(Body->getLBracLoc()); *endBuf = SM.getCharacterData(Body->getRBracLoc()); *startLine = SM.getSpellingLineNumber(Body->getLBracLoc()); *startColumn = SM.getSpellingColumnNumber(Body->getLBracLoc()); *endLine = SM.getSpellingLineNumber(Body->getRBracLoc()); *endColumn = SM.getSpellingColumnNumber(Body->getRBracLoc()); } void clang_enableStackTraces(void) { llvm::sys::PrintStackTraceOnErrorSignal(); } } // end: extern "C" //===----------------------------------------------------------------------===// // Token-based Operations. //===----------------------------------------------------------------------===// /* CXToken layout: * int_data[0]: a CXTokenKind * int_data[1]: starting token location * int_data[2]: token length * int_data[3]: reserved * ptr_data: for identifiers and keywords, an IdentifierInfo*. * otherwise unused. */ extern "C" { CXTokenKind clang_getTokenKind(CXToken CXTok) { return static_cast(CXTok.int_data[0]); } CXString clang_getTokenSpelling(CXTranslationUnit TU, CXToken CXTok) { switch (clang_getTokenKind(CXTok)) { case CXToken_Identifier: case CXToken_Keyword: // We know we have an IdentifierInfo*, so use that. return createCXString(static_cast(CXTok.ptr_data) ->getNameStart()); case CXToken_Literal: { // We have stashed the starting pointer in the ptr_data field. Use it. const char *Text = static_cast(CXTok.ptr_data); return createCXString(llvm::StringRef(Text, CXTok.int_data[2])); } case CXToken_Punctuation: case CXToken_Comment: break; } // We have to find the starting buffer pointer the hard way, by // deconstructing the source location. ASTUnit *CXXUnit = static_cast(TU); if (!CXXUnit) return createCXString(""); SourceLocation Loc = SourceLocation::getFromRawEncoding(CXTok.int_data[1]); std::pair LocInfo = CXXUnit->getSourceManager().getDecomposedLoc(Loc); bool Invalid = false; llvm::StringRef Buffer = CXXUnit->getSourceManager().getBufferData(LocInfo.first, &Invalid); if (Invalid) return createCXString(""); return createCXString(Buffer.substr(LocInfo.second, CXTok.int_data[2])); } CXSourceLocation clang_getTokenLocation(CXTranslationUnit TU, CXToken CXTok) { ASTUnit *CXXUnit = static_cast(TU); if (!CXXUnit) return clang_getNullLocation(); return cxloc::translateSourceLocation(CXXUnit->getASTContext(), SourceLocation::getFromRawEncoding(CXTok.int_data[1])); } CXSourceRange clang_getTokenExtent(CXTranslationUnit TU, CXToken CXTok) { ASTUnit *CXXUnit = static_cast(TU); if (!CXXUnit) return clang_getNullRange(); return cxloc::translateSourceRange(CXXUnit->getASTContext(), SourceLocation::getFromRawEncoding(CXTok.int_data[1])); } void clang_tokenize(CXTranslationUnit TU, CXSourceRange Range, CXToken **Tokens, unsigned *NumTokens) { if (Tokens) *Tokens = 0; if (NumTokens) *NumTokens = 0; ASTUnit *CXXUnit = static_cast(TU); if (!CXXUnit || !Tokens || !NumTokens) return; ASTUnit::ConcurrencyCheck Check(*CXXUnit); SourceRange R = cxloc::translateCXSourceRange(Range); if (R.isInvalid()) return; SourceManager &SourceMgr = CXXUnit->getSourceManager(); std::pair BeginLocInfo = SourceMgr.getDecomposedLoc(R.getBegin()); std::pair EndLocInfo = SourceMgr.getDecomposedLoc(R.getEnd()); // Cannot tokenize across files. if (BeginLocInfo.first != EndLocInfo.first) return; // Create a lexer bool Invalid = false; llvm::StringRef Buffer = SourceMgr.getBufferData(BeginLocInfo.first, &Invalid); if (Invalid) return; Lexer Lex(SourceMgr.getLocForStartOfFile(BeginLocInfo.first), CXXUnit->getASTContext().getLangOptions(), Buffer.begin(), Buffer.data() + BeginLocInfo.second, Buffer.end()); Lex.SetCommentRetentionState(true); // Lex tokens until we hit the end of the range. const char *EffectiveBufferEnd = Buffer.data() + EndLocInfo.second; llvm::SmallVector CXTokens; Token Tok; do { // Lex the next token Lex.LexFromRawLexer(Tok); if (Tok.is(tok::eof)) break; // Initialize the CXToken. CXToken CXTok; // - Common fields CXTok.int_data[1] = Tok.getLocation().getRawEncoding(); CXTok.int_data[2] = Tok.getLength(); CXTok.int_data[3] = 0; // - Kind-specific fields if (Tok.isLiteral()) { CXTok.int_data[0] = CXToken_Literal; CXTok.ptr_data = (void *)Tok.getLiteralData(); } else if (Tok.is(tok::identifier)) { // Lookup the identifier to determine whether we have a keyword. std::pair LocInfo = SourceMgr.getDecomposedLoc(Tok.getLocation()); bool Invalid = false; llvm::StringRef Buf = CXXUnit->getSourceManager().getBufferData(LocInfo.first, &Invalid); if (Invalid) return; const char *StartPos = Buf.data() + LocInfo.second; IdentifierInfo *II = CXXUnit->getPreprocessor().LookUpIdentifierInfo(Tok, StartPos); if (II->getObjCKeywordID() != tok::objc_not_keyword) { CXTok.int_data[0] = CXToken_Keyword; } else { CXTok.int_data[0] = II->getTokenID() == tok::identifier? CXToken_Identifier : CXToken_Keyword; } CXTok.ptr_data = II; } else if (Tok.is(tok::comment)) { CXTok.int_data[0] = CXToken_Comment; CXTok.ptr_data = 0; } else { CXTok.int_data[0] = CXToken_Punctuation; CXTok.ptr_data = 0; } CXTokens.push_back(CXTok); } while (Lex.getBufferLocation() <= EffectiveBufferEnd); if (CXTokens.empty()) return; *Tokens = (CXToken *)malloc(sizeof(CXToken) * CXTokens.size()); memmove(*Tokens, CXTokens.data(), sizeof(CXToken) * CXTokens.size()); *NumTokens = CXTokens.size(); } void clang_disposeTokens(CXTranslationUnit TU, CXToken *Tokens, unsigned NumTokens) { free(Tokens); } } // end: extern "C" //===----------------------------------------------------------------------===// // Token annotation APIs. //===----------------------------------------------------------------------===// typedef llvm::DenseMap AnnotateTokensData; static enum CXChildVisitResult AnnotateTokensVisitor(CXCursor cursor, CXCursor parent, CXClientData client_data); namespace { class AnnotateTokensWorker { AnnotateTokensData &Annotated; CXToken *Tokens; CXCursor *Cursors; unsigned NumTokens; unsigned TokIdx; CursorVisitor AnnotateVis; SourceManager &SrcMgr; bool MoreTokens() const { return TokIdx < NumTokens; } unsigned NextToken() const { return TokIdx; } void AdvanceToken() { ++TokIdx; } SourceLocation GetTokenLoc(unsigned tokI) { return SourceLocation::getFromRawEncoding(Tokens[tokI].int_data[1]); } public: AnnotateTokensWorker(AnnotateTokensData &annotated, CXToken *tokens, CXCursor *cursors, unsigned numTokens, ASTUnit *CXXUnit, SourceRange RegionOfInterest) : Annotated(annotated), Tokens(tokens), Cursors(cursors), NumTokens(numTokens), TokIdx(0), AnnotateVis(CXXUnit, AnnotateTokensVisitor, this, Decl::MaxPCHLevel, RegionOfInterest), SrcMgr(CXXUnit->getSourceManager()) {} void VisitChildren(CXCursor C) { AnnotateVis.VisitChildren(C); } enum CXChildVisitResult Visit(CXCursor cursor, CXCursor parent); void AnnotateTokens(CXCursor parent); }; } void AnnotateTokensWorker::AnnotateTokens(CXCursor parent) { // Walk the AST within the region of interest, annotating tokens // along the way. VisitChildren(parent); for (unsigned I = 0 ; I < TokIdx ; ++I) { AnnotateTokensData::iterator Pos = Annotated.find(Tokens[I].int_data[1]); if (Pos != Annotated.end()) Cursors[I] = Pos->second; } // Finish up annotating any tokens left. if (!MoreTokens()) return; const CXCursor &C = clang_getNullCursor(); for (unsigned I = TokIdx ; I < NumTokens ; ++I) { AnnotateTokensData::iterator Pos = Annotated.find(Tokens[I].int_data[1]); Cursors[I] = (Pos == Annotated.end()) ? C : Pos->second; } } enum CXChildVisitResult AnnotateTokensWorker::Visit(CXCursor cursor, CXCursor parent) { CXSourceLocation Loc = clang_getCursorLocation(cursor); // We can always annotate a preprocessing directive/macro instantiation. if (clang_isPreprocessing(cursor.kind)) { Annotated[Loc.int_data] = cursor; return CXChildVisit_Recurse; } SourceRange cursorRange = getRawCursorExtent(cursor); if (cursorRange.isInvalid()) return CXChildVisit_Continue; SourceLocation L = SourceLocation::getFromRawEncoding(Loc.int_data); // Adjust the annotated range based specific declarations. const enum CXCursorKind cursorK = clang_getCursorKind(cursor); if (cursorK >= CXCursor_FirstDecl && cursorK <= CXCursor_LastDecl) { Decl *D = cxcursor::getCursorDecl(cursor); // Don't visit synthesized ObjC methods, since they have no syntatic // representation in the source. if (const ObjCMethodDecl *MD = dyn_cast(D)) { if (MD->isSynthesized()) return CXChildVisit_Continue; } if (const DeclaratorDecl *DD = dyn_cast(D)) { if (TypeSourceInfo *TI = DD->getTypeSourceInfo()) { TypeLoc TL = TI->getTypeLoc(); SourceLocation TLoc = TL.getSourceRange().getBegin(); if (TLoc.isValid() && SrcMgr.isBeforeInTranslationUnit(TLoc, L)) cursorRange.setBegin(TLoc); } } } // If the location of the cursor occurs within a macro instantiation, record // the spelling location of the cursor in our annotation map. We can then // paper over the token labelings during a post-processing step to try and // get cursor mappings for tokens that are the *arguments* of a macro // instantiation. if (L.isMacroID()) { unsigned rawEncoding = SrcMgr.getSpellingLoc(L).getRawEncoding(); // Only invalidate the old annotation if it isn't part of a preprocessing // directive. Here we assume that the default construction of CXCursor // results in CXCursor.kind being an initialized value (i.e., 0). If // this isn't the case, we can fix by doing lookup + insertion. CXCursor &oldC = Annotated[rawEncoding]; if (!clang_isPreprocessing(oldC.kind)) oldC = cursor; } const enum CXCursorKind K = clang_getCursorKind(parent); const CXCursor updateC = (clang_isInvalid(K) || K == CXCursor_TranslationUnit) ? clang_getNullCursor() : parent; while (MoreTokens()) { const unsigned I = NextToken(); SourceLocation TokLoc = GetTokenLoc(I); switch (LocationCompare(SrcMgr, TokLoc, cursorRange)) { case RangeBefore: Cursors[I] = updateC; AdvanceToken(); continue; case RangeAfter: case RangeOverlap: break; } break; } // Visit children to get their cursor information. const unsigned BeforeChildren = NextToken(); VisitChildren(cursor); const unsigned AfterChildren = NextToken(); // Adjust 'Last' to the last token within the extent of the cursor. while (MoreTokens()) { const unsigned I = NextToken(); SourceLocation TokLoc = GetTokenLoc(I); switch (LocationCompare(SrcMgr, TokLoc, cursorRange)) { case RangeBefore: assert(0 && "Infeasible"); case RangeAfter: break; case RangeOverlap: Cursors[I] = updateC; AdvanceToken(); continue; } break; } const unsigned Last = NextToken(); // Scan the tokens that are at the beginning of the cursor, but are not // capture by the child cursors. // For AST elements within macros, rely on a post-annotate pass to // to correctly annotate the tokens with cursors. Otherwise we can // get confusing results of having tokens that map to cursors that really // are expanded by an instantiation. if (L.isMacroID()) cursor = clang_getNullCursor(); for (unsigned I = BeforeChildren; I != AfterChildren; ++I) { if (!clang_isInvalid(clang_getCursorKind(Cursors[I]))) break; Cursors[I] = cursor; } // Scan the tokens that are at the end of the cursor, but are not captured // but the child cursors. for (unsigned I = AfterChildren; I != Last; ++I) Cursors[I] = cursor; TokIdx = Last; return CXChildVisit_Continue; } static enum CXChildVisitResult AnnotateTokensVisitor(CXCursor cursor, CXCursor parent, CXClientData client_data) { return static_cast(client_data)->Visit(cursor, parent); } extern "C" { void clang_annotateTokens(CXTranslationUnit TU, CXToken *Tokens, unsigned NumTokens, CXCursor *Cursors) { if (NumTokens == 0 || !Tokens || !Cursors) return; ASTUnit *CXXUnit = static_cast(TU); if (!CXXUnit) { // Any token we don't specifically annotate will have a NULL cursor. const CXCursor &C = clang_getNullCursor(); for (unsigned I = 0; I != NumTokens; ++I) Cursors[I] = C; return; } ASTUnit::ConcurrencyCheck Check(*CXXUnit); // Determine the region of interest, which contains all of the tokens. SourceRange RegionOfInterest; RegionOfInterest.setBegin(cxloc::translateSourceLocation( clang_getTokenLocation(TU, Tokens[0]))); RegionOfInterest.setEnd(cxloc::translateSourceLocation( clang_getTokenLocation(TU, Tokens[NumTokens - 1]))); // A mapping from the source locations found when re-lexing or traversing the // region of interest to the corresponding cursors. AnnotateTokensData Annotated; // Relex the tokens within the source range to look for preprocessing // directives. SourceManager &SourceMgr = CXXUnit->getSourceManager(); std::pair BeginLocInfo = SourceMgr.getDecomposedLoc(RegionOfInterest.getBegin()); std::pair EndLocInfo = SourceMgr.getDecomposedLoc(RegionOfInterest.getEnd()); llvm::StringRef Buffer; bool Invalid = false; if (BeginLocInfo.first == EndLocInfo.first && ((Buffer = SourceMgr.getBufferData(BeginLocInfo.first, &Invalid)),true) && !Invalid) { Lexer Lex(SourceMgr.getLocForStartOfFile(BeginLocInfo.first), CXXUnit->getASTContext().getLangOptions(), Buffer.begin(), Buffer.data() + BeginLocInfo.second, Buffer.end()); Lex.SetCommentRetentionState(true); // Lex tokens in raw mode until we hit the end of the range, to avoid // entering #includes or expanding macros. while (true) { Token Tok; Lex.LexFromRawLexer(Tok); reprocess: if (Tok.is(tok::hash) && Tok.isAtStartOfLine()) { // We have found a preprocessing directive. Gobble it up so that we // don't see it while preprocessing these tokens later, but keep track of // all of the token locations inside this preprocessing directive so that // we can annotate them appropriately. // // FIXME: Some simple tests here could identify macro definitions and // #undefs, to provide specific cursor kinds for those. std::vector Locations; do { Locations.push_back(Tok.getLocation()); Lex.LexFromRawLexer(Tok); } while (!Tok.isAtStartOfLine() && !Tok.is(tok::eof)); using namespace cxcursor; CXCursor Cursor = MakePreprocessingDirectiveCursor(SourceRange(Locations.front(), Locations.back()), CXXUnit); for (unsigned I = 0, N = Locations.size(); I != N; ++I) { Annotated[Locations[I].getRawEncoding()] = Cursor; } if (Tok.isAtStartOfLine()) goto reprocess; continue; } if (Tok.is(tok::eof)) break; } } // Annotate all of the source locations in the region of interest that map to // a specific cursor. AnnotateTokensWorker W(Annotated, Tokens, Cursors, NumTokens, CXXUnit, RegionOfInterest); W.AnnotateTokens(clang_getTranslationUnitCursor(CXXUnit)); } } // end: extern "C" //===----------------------------------------------------------------------===// // Operations for querying linkage of a cursor. //===----------------------------------------------------------------------===// extern "C" { CXLinkageKind clang_getCursorLinkage(CXCursor cursor) { if (!clang_isDeclaration(cursor.kind)) return CXLinkage_Invalid; Decl *D = cxcursor::getCursorDecl(cursor); if (NamedDecl *ND = dyn_cast_or_null(D)) switch (ND->getLinkage()) { case NoLinkage: return CXLinkage_NoLinkage; case InternalLinkage: return CXLinkage_Internal; case UniqueExternalLinkage: return CXLinkage_UniqueExternal; case ExternalLinkage: return CXLinkage_External; }; return CXLinkage_Invalid; } } // end: extern "C" //===----------------------------------------------------------------------===// // Operations for querying language of a cursor. //===----------------------------------------------------------------------===// static CXLanguageKind getDeclLanguage(const Decl *D) { switch (D->getKind()) { default: break; case Decl::ImplicitParam: case Decl::ObjCAtDefsField: case Decl::ObjCCategory: case Decl::ObjCCategoryImpl: case Decl::ObjCClass: case Decl::ObjCCompatibleAlias: case Decl::ObjCForwardProtocol: case Decl::ObjCImplementation: case Decl::ObjCInterface: case Decl::ObjCIvar: case Decl::ObjCMethod: case Decl::ObjCProperty: case Decl::ObjCPropertyImpl: case Decl::ObjCProtocol: return CXLanguage_ObjC; case Decl::CXXConstructor: case Decl::CXXConversion: case Decl::CXXDestructor: case Decl::CXXMethod: case Decl::CXXRecord: case Decl::ClassTemplate: case Decl::ClassTemplatePartialSpecialization: case Decl::ClassTemplateSpecialization: case Decl::Friend: case Decl::FriendTemplate: case Decl::FunctionTemplate: case Decl::LinkageSpec: case Decl::Namespace: case Decl::NamespaceAlias: case Decl::NonTypeTemplateParm: case Decl::StaticAssert: case Decl::TemplateTemplateParm: case Decl::TemplateTypeParm: case Decl::UnresolvedUsingTypename: case Decl::UnresolvedUsingValue: case Decl::Using: case Decl::UsingDirective: case Decl::UsingShadow: return CXLanguage_CPlusPlus; } return CXLanguage_C; } extern "C" { enum CXAvailabilityKind clang_getCursorAvailability(CXCursor cursor) { if (clang_isDeclaration(cursor.kind)) if (Decl *D = cxcursor::getCursorDecl(cursor)) { if (D->hasAttr() || (isa(D) && cast(D)->isDeleted())) return CXAvailability_Available; if (D->hasAttr()) return CXAvailability_Deprecated; } return CXAvailability_Available; } CXLanguageKind clang_getCursorLanguage(CXCursor cursor) { if (clang_isDeclaration(cursor.kind)) return getDeclLanguage(cxcursor::getCursorDecl(cursor)); return CXLanguage_Invalid; } } // end: extern "C" //===----------------------------------------------------------------------===// // C++ AST instrospection. //===----------------------------------------------------------------------===// extern "C" { unsigned clang_CXXMethod_isStatic(CXCursor C) { if (!clang_isDeclaration(C.kind)) return 0; CXXMethodDecl *Method = 0; Decl *D = cxcursor::getCursorDecl(C); if (FunctionTemplateDecl *FunTmpl = dyn_cast_or_null(D)) Method = dyn_cast(FunTmpl->getTemplatedDecl()); else Method = dyn_cast_or_null(D); return (Method && Method->isStatic()) ? 1 : 0; } } // end: extern "C" //===----------------------------------------------------------------------===// // Attribute introspection. //===----------------------------------------------------------------------===// extern "C" { CXType clang_getIBOutletCollectionType(CXCursor C) { if (C.kind != CXCursor_IBOutletCollectionAttr) return cxtype::MakeCXType(QualType(), cxcursor::getCursorASTUnit(C)); IBOutletCollectionAttr *A = cast(cxcursor::getCursorAttr(C)); return cxtype::MakeCXType(A->getInterface(), cxcursor::getCursorASTUnit(C)); } } // end: extern "C" //===----------------------------------------------------------------------===// // CXString Operations. //===----------------------------------------------------------------------===// extern "C" { const char *clang_getCString(CXString string) { return string.Spelling; } void clang_disposeString(CXString string) { if (string.MustFreeString && string.Spelling) free((void*)string.Spelling); } } // end: extern "C" namespace clang { namespace cxstring { CXString createCXString(const char *String, bool DupString){ CXString Str; if (DupString) { Str.Spelling = strdup(String); Str.MustFreeString = 1; } else { Str.Spelling = String; Str.MustFreeString = 0; } return Str; } CXString createCXString(llvm::StringRef String, bool DupString) { CXString Result; if (DupString || (!String.empty() && String.data()[String.size()] != 0)) { char *Spelling = (char *)malloc(String.size() + 1); memmove(Spelling, String.data(), String.size()); Spelling[String.size()] = 0; Result.Spelling = Spelling; Result.MustFreeString = 1; } else { Result.Spelling = String.data(); Result.MustFreeString = 0; } return Result; } }} //===----------------------------------------------------------------------===// // Misc. utility functions. //===----------------------------------------------------------------------===// extern "C" { CXString clang_getClangVersion() { return createCXString(getClangFullVersion()); } } // end: extern "C"