summaryrefslogtreecommitdiffstats
path: root/include/clang/AST/VTableBuilder.h
blob: 4a779db01ff8b83cd9a4e5d08837043dc8416a46 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
//===--- VTableBuilder.h - C++ vtable layout builder --------------*- C++ -*-=//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This contains code dealing with generation of the layout of virtual tables.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_CLANG_AST_VTABLEBUILDER_H
#define LLVM_CLANG_AST_VTABLEBUILDER_H

#include "clang/AST/BaseSubobject.h"
#include "clang/AST/CXXInheritance.h"
#include "clang/AST/GlobalDecl.h"
#include "clang/AST/RecordLayout.h"
#include "clang/Basic/ABI.h"
#include "llvm/ADT/DenseMap.h"
#include <memory>
#include <utility>

namespace clang {
  class CXXRecordDecl;

/// Represents a single component in a vtable.
class VTableComponent {
public:
  enum Kind {
    CK_VCallOffset,
    CK_VBaseOffset,
    CK_OffsetToTop,
    CK_RTTI,
    CK_FunctionPointer,

    /// A pointer to the complete destructor.
    CK_CompleteDtorPointer,

    /// A pointer to the deleting destructor.
    CK_DeletingDtorPointer,

    /// An entry that is never used.
    ///
    /// In some cases, a vtable function pointer will end up never being
    /// called. Such vtable function pointers are represented as a
    /// CK_UnusedFunctionPointer.
    CK_UnusedFunctionPointer
  };

  VTableComponent() = default;

  static VTableComponent MakeVCallOffset(CharUnits Offset) {
    return VTableComponent(CK_VCallOffset, Offset);
  }

  static VTableComponent MakeVBaseOffset(CharUnits Offset) {
    return VTableComponent(CK_VBaseOffset, Offset);
  }

  static VTableComponent MakeOffsetToTop(CharUnits Offset) {
    return VTableComponent(CK_OffsetToTop, Offset);
  }

  static VTableComponent MakeRTTI(const CXXRecordDecl *RD) {
    return VTableComponent(CK_RTTI, reinterpret_cast<uintptr_t>(RD));
  }

  static VTableComponent MakeFunction(const CXXMethodDecl *MD) {
    assert(!isa<CXXDestructorDecl>(MD) &&
           "Don't use MakeFunction with destructors!");

    return VTableComponent(CK_FunctionPointer,
                           reinterpret_cast<uintptr_t>(MD));
  }

  static VTableComponent MakeCompleteDtor(const CXXDestructorDecl *DD) {
    return VTableComponent(CK_CompleteDtorPointer,
                           reinterpret_cast<uintptr_t>(DD));
  }

  static VTableComponent MakeDeletingDtor(const CXXDestructorDecl *DD) {
    return VTableComponent(CK_DeletingDtorPointer,
                           reinterpret_cast<uintptr_t>(DD));
  }

  static VTableComponent MakeUnusedFunction(const CXXMethodDecl *MD) {
    assert(!isa<CXXDestructorDecl>(MD) &&
           "Don't use MakeUnusedFunction with destructors!");
    return VTableComponent(CK_UnusedFunctionPointer,
                           reinterpret_cast<uintptr_t>(MD));
  }

  /// Get the kind of this vtable component.
  Kind getKind() const {
    return (Kind)(Value & 0x7);
  }

  CharUnits getVCallOffset() const {
    assert(getKind() == CK_VCallOffset && "Invalid component kind!");

    return getOffset();
  }

  CharUnits getVBaseOffset() const {
    assert(getKind() == CK_VBaseOffset && "Invalid component kind!");

    return getOffset();
  }

  CharUnits getOffsetToTop() const {
    assert(getKind() == CK_OffsetToTop && "Invalid component kind!");

    return getOffset();
  }

  const CXXRecordDecl *getRTTIDecl() const {
    assert(isRTTIKind() && "Invalid component kind!");
    return reinterpret_cast<CXXRecordDecl *>(getPointer());
  }

  const CXXMethodDecl *getFunctionDecl() const {
    assert(isFunctionPointerKind() && "Invalid component kind!");
    if (isDestructorKind())
      return getDestructorDecl();
    return reinterpret_cast<CXXMethodDecl *>(getPointer());
  }

  const CXXDestructorDecl *getDestructorDecl() const {
    assert(isDestructorKind() && "Invalid component kind!");
    return reinterpret_cast<CXXDestructorDecl *>(getPointer());
  }

  const CXXMethodDecl *getUnusedFunctionDecl() const {
    assert(getKind() == CK_UnusedFunctionPointer && "Invalid component kind!");
    return reinterpret_cast<CXXMethodDecl *>(getPointer());
  }

  bool isDestructorKind() const { return isDestructorKind(getKind()); }

  bool isUsedFunctionPointerKind() const {
    return isUsedFunctionPointerKind(getKind());
  }

  bool isFunctionPointerKind() const {
    return isFunctionPointerKind(getKind());
  }

  bool isRTTIKind() const { return isRTTIKind(getKind()); }

  GlobalDecl getGlobalDecl() const {
    assert(isUsedFunctionPointerKind() &&
           "GlobalDecl can be created only from virtual function");

    auto *DtorDecl = dyn_cast<CXXDestructorDecl>(getFunctionDecl());
    switch (getKind()) {
    case CK_FunctionPointer:
      return GlobalDecl(getFunctionDecl());
    case CK_CompleteDtorPointer:
      return GlobalDecl(DtorDecl, CXXDtorType::Dtor_Complete);
    case CK_DeletingDtorPointer:
      return GlobalDecl(DtorDecl, CXXDtorType::Dtor_Deleting);
    case CK_VCallOffset:
    case CK_VBaseOffset:
    case CK_OffsetToTop:
    case CK_RTTI:
    case CK_UnusedFunctionPointer:
      llvm_unreachable("Only function pointers kinds");
    }
    llvm_unreachable("Should already return");
  }

private:
  static bool isFunctionPointerKind(Kind ComponentKind) {
    return isUsedFunctionPointerKind(ComponentKind) ||
           ComponentKind == CK_UnusedFunctionPointer;
  }
  static bool isUsedFunctionPointerKind(Kind ComponentKind) {
    return ComponentKind == CK_FunctionPointer ||
           isDestructorKind(ComponentKind);
  }
  static bool isDestructorKind(Kind ComponentKind) {
    return ComponentKind == CK_CompleteDtorPointer ||
           ComponentKind == CK_DeletingDtorPointer;
  }
  static bool isRTTIKind(Kind ComponentKind) {
    return ComponentKind == CK_RTTI;
  }

  VTableComponent(Kind ComponentKind, CharUnits Offset) {
    assert((ComponentKind == CK_VCallOffset ||
            ComponentKind == CK_VBaseOffset ||
            ComponentKind == CK_OffsetToTop) && "Invalid component kind!");
    assert(Offset.getQuantity() < (1LL << 56) && "Offset is too big!");
    assert(Offset.getQuantity() >= -(1LL << 56) && "Offset is too small!");

    Value = (uint64_t(Offset.getQuantity()) << 3) | ComponentKind;
  }

  VTableComponent(Kind ComponentKind, uintptr_t Ptr) {
    assert((isRTTIKind(ComponentKind) || isFunctionPointerKind(ComponentKind)) &&
           "Invalid component kind!");

    assert((Ptr & 7) == 0 && "Pointer not sufficiently aligned!");

    Value = Ptr | ComponentKind;
  }

  CharUnits getOffset() const {
    assert((getKind() == CK_VCallOffset || getKind() == CK_VBaseOffset ||
            getKind() == CK_OffsetToTop) && "Invalid component kind!");

    return CharUnits::fromQuantity(Value >> 3);
  }

  uintptr_t getPointer() const {
    assert((getKind() == CK_RTTI || isFunctionPointerKind()) &&
           "Invalid component kind!");

    return static_cast<uintptr_t>(Value & ~7ULL);
  }

  /// The kind is stored in the lower 3 bits of the value. For offsets, we
  /// make use of the facts that classes can't be larger than 2^55 bytes,
  /// so we store the offset in the lower part of the 61 bits that remain.
  /// (The reason that we're not simply using a PointerIntPair here is that we
  /// need the offsets to be 64-bit, even when on a 32-bit machine).
  int64_t Value;
};

class VTableLayout {
public:
  typedef std::pair<uint64_t, ThunkInfo> VTableThunkTy;
  struct AddressPointLocation {
    unsigned VTableIndex, AddressPointIndex;
  };
  typedef llvm::DenseMap<BaseSubobject, AddressPointLocation>
      AddressPointsMapTy;

private:
  // Stores the component indices of the first component of each virtual table in
  // the virtual table group. To save a little memory in the common case where
  // the vtable group contains a single vtable, an empty vector here represents
  // the vector {0}.
  OwningArrayRef<size_t> VTableIndices;

  OwningArrayRef<VTableComponent> VTableComponents;

  /// Contains thunks needed by vtables, sorted by indices.
  OwningArrayRef<VTableThunkTy> VTableThunks;

  /// Address points for all vtables.
  AddressPointsMapTy AddressPoints;

public:
  VTableLayout(ArrayRef<size_t> VTableIndices,
               ArrayRef<VTableComponent> VTableComponents,
               ArrayRef<VTableThunkTy> VTableThunks,
               const AddressPointsMapTy &AddressPoints);
  ~VTableLayout();

  ArrayRef<VTableComponent> vtable_components() const {
    return VTableComponents;
  }

  ArrayRef<VTableThunkTy> vtable_thunks() const {
    return VTableThunks;
  }

  AddressPointLocation getAddressPoint(BaseSubobject Base) const {
    assert(AddressPoints.count(Base) && "Did not find address point!");
    return AddressPoints.find(Base)->second;
  }

  const AddressPointsMapTy &getAddressPoints() const {
    return AddressPoints;
  }

  size_t getNumVTables() const {
    if (VTableIndices.empty())
      return 1;
    return VTableIndices.size();
  }

  size_t getVTableOffset(size_t i) const {
    if (VTableIndices.empty()) {
      assert(i == 0);
      return 0;
    }
    return VTableIndices[i];
  }

  size_t getVTableSize(size_t i) const {
    if (VTableIndices.empty()) {
      assert(i == 0);
      return vtable_components().size();
    }

    size_t thisIndex = VTableIndices[i];
    size_t nextIndex = (i + 1 == VTableIndices.size())
                           ? vtable_components().size()
                           : VTableIndices[i + 1];
    return nextIndex - thisIndex;
  }
};

class VTableContextBase {
public:
  typedef SmallVector<ThunkInfo, 1> ThunkInfoVectorTy;

  bool isMicrosoft() const { return IsMicrosoftABI; }

  virtual ~VTableContextBase() {}

protected:
  typedef llvm::DenseMap<const CXXMethodDecl *, ThunkInfoVectorTy> ThunksMapTy;

  /// Contains all thunks that a given method decl will need.
  ThunksMapTy Thunks;

  /// Compute and store all vtable related information (vtable layout, vbase
  /// offset offsets, thunks etc) for the given record decl.
  virtual void computeVTableRelatedInformation(const CXXRecordDecl *RD) = 0;

  VTableContextBase(bool MS) : IsMicrosoftABI(MS) {}

public:
  virtual const ThunkInfoVectorTy *getThunkInfo(GlobalDecl GD) {
    const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()->getCanonicalDecl());
    computeVTableRelatedInformation(MD->getParent());

    // This assumes that all the destructors present in the vtable
    // use exactly the same set of thunks.
    ThunksMapTy::const_iterator I = Thunks.find(MD);
    if (I == Thunks.end()) {
      // We did not find a thunk for this method.
      return nullptr;
    }

    return &I->second;
  }

  bool IsMicrosoftABI;
};

class ItaniumVTableContext : public VTableContextBase {
private:

  /// Contains the index (relative to the vtable address point)
  /// where the function pointer for a virtual function is stored.
  typedef llvm::DenseMap<GlobalDecl, int64_t> MethodVTableIndicesTy;
  MethodVTableIndicesTy MethodVTableIndices;

  typedef llvm::DenseMap<const CXXRecordDecl *,
                         std::unique_ptr<const VTableLayout>>
      VTableLayoutMapTy;
  VTableLayoutMapTy VTableLayouts;

  typedef std::pair<const CXXRecordDecl *,
                    const CXXRecordDecl *> ClassPairTy;

  /// vtable offsets for offsets of virtual bases of a class.
  ///
  /// Contains the vtable offset (relative to the address point) in chars
  /// where the offsets for virtual bases of a class are stored.
  typedef llvm::DenseMap<ClassPairTy, CharUnits>
    VirtualBaseClassOffsetOffsetsMapTy;
  VirtualBaseClassOffsetOffsetsMapTy VirtualBaseClassOffsetOffsets;

  void computeVTableRelatedInformation(const CXXRecordDecl *RD) override;

public:
  ItaniumVTableContext(ASTContext &Context);
  ~ItaniumVTableContext() override;

  const VTableLayout &getVTableLayout(const CXXRecordDecl *RD) {
    computeVTableRelatedInformation(RD);
    assert(VTableLayouts.count(RD) && "No layout for this record decl!");

    return *VTableLayouts[RD];
  }

  std::unique_ptr<VTableLayout> createConstructionVTableLayout(
      const CXXRecordDecl *MostDerivedClass, CharUnits MostDerivedClassOffset,
      bool MostDerivedClassIsVirtual, const CXXRecordDecl *LayoutClass);

  /// Locate a virtual function in the vtable.
  ///
  /// Return the index (relative to the vtable address point) where the
  /// function pointer for the given virtual function is stored.
  uint64_t getMethodVTableIndex(GlobalDecl GD);

  /// Return the offset in chars (relative to the vtable address point) where
  /// the offset of the virtual base that contains the given base is stored,
  /// otherwise, if no virtual base contains the given class, return 0.
  ///
  /// Base must be a virtual base class or an unambiguous base.
  CharUnits getVirtualBaseOffsetOffset(const CXXRecordDecl *RD,
                                       const CXXRecordDecl *VBase);

  static bool classof(const VTableContextBase *VT) {
    return !VT->isMicrosoft();
  }
};

/// Holds information about the inheritance path to a virtual base or function
/// table pointer.  A record may contain as many vfptrs or vbptrs as there are
/// base subobjects.
struct VPtrInfo {
  typedef SmallVector<const CXXRecordDecl *, 1> BasePath;

  VPtrInfo(const CXXRecordDecl *RD)
      : ObjectWithVPtr(RD), IntroducingObject(RD), NextBaseToMangle(RD) {}

  /// This is the most derived class that has this vptr at offset zero. When
  /// single inheritance is used, this is always the most derived class. If
  /// multiple inheritance is used, it may be any direct or indirect base.
  const CXXRecordDecl *ObjectWithVPtr;

  /// This is the class that introduced the vptr by declaring new virtual
  /// methods or virtual bases.
  const CXXRecordDecl *IntroducingObject;

  /// IntroducingObject is at this offset from its containing complete object or
  /// virtual base.
  CharUnits NonVirtualOffset;

  /// The bases from the inheritance path that got used to mangle the vbtable
  /// name.  This is not really a full path like a CXXBasePath.  It holds the
  /// subset of records that need to be mangled into the vbtable symbol name in
  /// order to get a unique name.
  BasePath MangledPath;

  /// The next base to push onto the mangled path if this path is ambiguous in a
  /// derived class.  If it's null, then it's already been pushed onto the path.
  const CXXRecordDecl *NextBaseToMangle;

  /// The set of possibly indirect vbases that contain this vbtable.  When a
  /// derived class indirectly inherits from the same vbase twice, we only keep
  /// vtables and their paths from the first instance.
  BasePath ContainingVBases;

  /// This holds the base classes path from the complete type to the first base
  /// with the given vfptr offset, in the base-to-derived order.  Only used for
  /// vftables.
  BasePath PathToIntroducingObject;

  /// Static offset from the top of the most derived class to this vfptr,
  /// including any virtual base offset.  Only used for vftables.
  CharUnits FullOffsetInMDC;

  /// The vptr is stored inside the non-virtual component of this virtual base.
  const CXXRecordDecl *getVBaseWithVPtr() const {
    return ContainingVBases.empty() ? nullptr : ContainingVBases.front();
  }
};

typedef SmallVector<std::unique_ptr<VPtrInfo>, 2> VPtrInfoVector;

/// All virtual base related information about a given record decl.  Includes
/// information on all virtual base tables and the path components that are used
/// to mangle them.
struct VirtualBaseInfo {
  /// A map from virtual base to vbtable index for doing a conversion from the
  /// the derived class to the a base.
  llvm::DenseMap<const CXXRecordDecl *, unsigned> VBTableIndices;

  /// Information on all virtual base tables used when this record is the most
  /// derived class.
  VPtrInfoVector VBPtrPaths;
};

struct MethodVFTableLocation {
  /// If nonzero, holds the vbtable index of the virtual base with the vfptr.
  uint64_t VBTableIndex;

  /// If nonnull, holds the last vbase which contains the vfptr that the
  /// method definition is adjusted to.
  const CXXRecordDecl *VBase;

  /// This is the offset of the vfptr from the start of the last vbase, or the
  /// complete type if there are no virtual bases.
  CharUnits VFPtrOffset;

  /// Method's index in the vftable.
  uint64_t Index;

  MethodVFTableLocation()
      : VBTableIndex(0), VBase(nullptr), VFPtrOffset(CharUnits::Zero()),
        Index(0) {}

  MethodVFTableLocation(uint64_t VBTableIndex, const CXXRecordDecl *VBase,
                        CharUnits VFPtrOffset, uint64_t Index)
      : VBTableIndex(VBTableIndex), VBase(VBase), VFPtrOffset(VFPtrOffset),
        Index(Index) {}

  bool operator<(const MethodVFTableLocation &other) const {
    if (VBTableIndex != other.VBTableIndex) {
      assert(VBase != other.VBase);
      return VBTableIndex < other.VBTableIndex;
    }
    return std::tie(VFPtrOffset, Index) <
           std::tie(other.VFPtrOffset, other.Index);
  }
};

class MicrosoftVTableContext : public VTableContextBase {
public:

private:
  ASTContext &Context;

  typedef llvm::DenseMap<GlobalDecl, MethodVFTableLocation>
    MethodVFTableLocationsTy;
  MethodVFTableLocationsTy MethodVFTableLocations;

  typedef llvm::DenseMap<const CXXRecordDecl *, std::unique_ptr<VPtrInfoVector>>
      VFPtrLocationsMapTy;
  VFPtrLocationsMapTy VFPtrLocations;

  typedef std::pair<const CXXRecordDecl *, CharUnits> VFTableIdTy;
  typedef llvm::DenseMap<VFTableIdTy, std::unique_ptr<const VTableLayout>>
      VFTableLayoutMapTy;
  VFTableLayoutMapTy VFTableLayouts;

  llvm::DenseMap<const CXXRecordDecl *, std::unique_ptr<VirtualBaseInfo>>
      VBaseInfo;

  void enumerateVFPtrs(const CXXRecordDecl *ForClass, VPtrInfoVector &Result);

  void computeVTableRelatedInformation(const CXXRecordDecl *RD) override;

  void dumpMethodLocations(const CXXRecordDecl *RD,
                           const MethodVFTableLocationsTy &NewMethods,
                           raw_ostream &);

  const VirtualBaseInfo &
  computeVBTableRelatedInformation(const CXXRecordDecl *RD);

  void computeVTablePaths(bool ForVBTables, const CXXRecordDecl *RD,
                          VPtrInfoVector &Paths);

public:
  MicrosoftVTableContext(ASTContext &Context)
      : VTableContextBase(/*MS=*/true), Context(Context) {}

  ~MicrosoftVTableContext() override;

  const VPtrInfoVector &getVFPtrOffsets(const CXXRecordDecl *RD);

  const VTableLayout &getVFTableLayout(const CXXRecordDecl *RD,
                                       CharUnits VFPtrOffset);

  MethodVFTableLocation getMethodVFTableLocation(GlobalDecl GD);

  const ThunkInfoVectorTy *getThunkInfo(GlobalDecl GD) override {
    // Complete destructors don't have a slot in a vftable, so no thunks needed.
    if (isa<CXXDestructorDecl>(GD.getDecl()) &&
        GD.getDtorType() == Dtor_Complete)
      return nullptr;
    return VTableContextBase::getThunkInfo(GD);
  }

  /// Returns the index of VBase in the vbtable of Derived.
  /// VBase must be a morally virtual base of Derived.
  /// The vbtable is an array of i32 offsets.  The first entry is a self entry,
  /// and the rest are offsets from the vbptr to virtual bases.
  unsigned getVBTableIndex(const CXXRecordDecl *Derived,
                           const CXXRecordDecl *VBase);

  const VPtrInfoVector &enumerateVBTables(const CXXRecordDecl *RD);

  static bool classof(const VTableContextBase *VT) { return VT->isMicrosoft(); }
};

} // namespace clang

#endif