summaryrefslogtreecommitdiffstats
path: root/include/clang/Analysis/Analyses/ThreadSafetyTraverse.h
blob: e81c00d3dddbbae5a890266da35e7330a785e285 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
//===- ThreadSafetyTraverse.h -----------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines a framework for doing generic traversals and rewriting
// operations over the Thread Safety TIL.
//
// UNDER CONSTRUCTION.  USE AT YOUR OWN RISK.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_CLANG_ANALYSIS_ANALYSES_THREADSAFETYTRAVERSE_H
#define LLVM_CLANG_ANALYSIS_ANALYSES_THREADSAFETYTRAVERSE_H

#include "clang/AST/Decl.h"
#include "clang/Analysis/Analyses/ThreadSafetyTIL.h"
#include "clang/Analysis/Analyses/ThreadSafetyUtil.h"
#include "clang/Basic/LLVM.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Support/Casting.h"
#include <cstdint>
#include <ostream>

namespace clang {
namespace threadSafety {
namespace til {

// Defines an interface used to traverse SExprs.  Traversals have been made as
// generic as possible, and are intended to handle any kind of pass over the
// AST, e.g. visitors, copying, non-destructive rewriting, destructive
// (in-place) rewriting, hashing, typing, etc.
//
// Traversals implement the functional notion of a "fold" operation on SExprs.
// Each SExpr class provides a traverse method, which does the following:
//   * e->traverse(v):
//       // compute a result r_i for each subexpression e_i
//       for (i = 1..n)  r_i = v.traverse(e_i);
//       // combine results into a result for e,  where X is the class of e
//       return v.reduceX(*e, r_1, .. r_n).
//
// A visitor can control the traversal by overriding the following methods:
//   * v.traverse(e):
//       return v.traverseByCase(e), which returns v.traverseX(e)
//   * v.traverseX(e):   (X is the class of e)
//       return e->traverse(v).
//   * v.reduceX(*e, r_1, .. r_n):
//       compute a result for a node of type X
//
// The reduceX methods control the kind of traversal (visitor, copy, etc.).
// They are defined in derived classes.
//
// Class R defines the basic interface types (R_SExpr).
template <class Self, class R>
class Traversal {
public:
  Self *self() { return static_cast<Self *>(this); }

  // Traverse an expression -- returning a result of type R_SExpr.
  // Override this method to do something for every expression, regardless
  // of which kind it is.
  // E is a reference, so this can be use for in-place updates.
  // The type T must be a subclass of SExpr.
  template <class T>
  typename R::R_SExpr traverse(T* &E, typename R::R_Ctx Ctx) {
    return traverseSExpr(E, Ctx);
  }

  // Override this method to do something for every expression.
  // Does not allow in-place updates.
  typename R::R_SExpr traverseSExpr(SExpr *E, typename R::R_Ctx Ctx) {
    return traverseByCase(E, Ctx);
  }

  // Helper method to call traverseX(e) on the appropriate type.
  typename R::R_SExpr traverseByCase(SExpr *E, typename R::R_Ctx Ctx) {
    switch (E->opcode()) {
#define TIL_OPCODE_DEF(X)                                                   \
    case COP_##X:                                                           \
      return self()->traverse##X(cast<X>(E), Ctx);
#include "ThreadSafetyOps.def"
#undef TIL_OPCODE_DEF
    }
    return self()->reduceNull();
  }

// Traverse e, by static dispatch on the type "X" of e.
// Override these methods to do something for a particular kind of term.
#define TIL_OPCODE_DEF(X)                                                   \
  typename R::R_SExpr traverse##X(X *e, typename R::R_Ctx Ctx) {            \
    return e->traverse(*self(), Ctx);                                       \
  }
#include "ThreadSafetyOps.def"
#undef TIL_OPCODE_DEF
};

// Base class for simple reducers that don't much care about the context.
class SimpleReducerBase {
public:
  enum TraversalKind {
    // Ordinary subexpressions.
    TRV_Normal,

    // Declarations (e.g. function bodies).
    TRV_Decl,

    // Expressions that require lazy evaluation.
    TRV_Lazy,

    // Type expressions.
    TRV_Type
  };

  // R_Ctx defines a "context" for the traversal, which encodes information
  // about where a term appears.  This can be used to encoding the
  // "current continuation" for CPS transforms, or other information.
  using R_Ctx = TraversalKind;

  // Create context for an ordinary subexpression.
  R_Ctx subExprCtx(R_Ctx Ctx) { return TRV_Normal; }

  // Create context for a subexpression that occurs in a declaration position
  // (e.g. function body).
  R_Ctx declCtx(R_Ctx Ctx) { return TRV_Decl; }

  // Create context for a subexpression that occurs in a position that
  // should be reduced lazily.  (e.g. code body).
  R_Ctx lazyCtx(R_Ctx Ctx) { return TRV_Lazy; }

  // Create context for a subexpression that occurs in a type position.
  R_Ctx typeCtx(R_Ctx Ctx) { return TRV_Type; }
};

// Base class for traversals that rewrite an SExpr to another SExpr.
class CopyReducerBase : public SimpleReducerBase {
public:
  // R_SExpr is the result type for a traversal.
  // A copy or non-destructive rewrite returns a newly allocated term.
  using R_SExpr = SExpr *;
  using R_BasicBlock = BasicBlock *;

  // Container is a minimal interface used to store results when traversing
  // SExprs of variable arity, such as Phi, Goto, and SCFG.
  template <class T> class Container {
  public:
    // Allocate a new container with a capacity for n elements.
    Container(CopyReducerBase &S, unsigned N) : Elems(S.Arena, N) {}

    // Push a new element onto the container.
    void push_back(T E) { Elems.push_back(E); }

    SimpleArray<T> Elems;
  };

  CopyReducerBase(MemRegionRef A) : Arena(A) {}

protected:
  MemRegionRef Arena;
};

// Base class for visit traversals.
class VisitReducerBase : public SimpleReducerBase {
public:
  // A visitor returns a bool, representing success or failure.
  using R_SExpr = bool;
  using R_BasicBlock = bool;

  // A visitor "container" is a single bool, which accumulates success.
  template <class T> class Container {
  public:
    bool Success = true;

    Container(VisitReducerBase &S, unsigned N) {}

    void push_back(bool E) { Success = Success && E; }
  };
};

// Implements a traversal that visits each subexpression, and returns either
// true or false.
template <class Self>
class VisitReducer : public Traversal<Self, VisitReducerBase>,
                     public VisitReducerBase {
public:
  VisitReducer() = default;

public:
  R_SExpr reduceNull() { return true; }
  R_SExpr reduceUndefined(Undefined &Orig) { return true; }
  R_SExpr reduceWildcard(Wildcard &Orig) { return true; }

  R_SExpr reduceLiteral(Literal &Orig) { return true; }
  template<class T>
  R_SExpr reduceLiteralT(LiteralT<T> &Orig) { return true; }
  R_SExpr reduceLiteralPtr(Literal &Orig) { return true; }

  R_SExpr reduceFunction(Function &Orig, Variable *Nvd, R_SExpr E0) {
    return Nvd && E0;
  }

  R_SExpr reduceSFunction(SFunction &Orig, Variable *Nvd, R_SExpr E0) {
    return Nvd && E0;
  }

  R_SExpr reduceCode(Code &Orig, R_SExpr E0, R_SExpr E1) {
    return E0 && E1;
  }

  R_SExpr reduceField(Field &Orig, R_SExpr E0, R_SExpr E1) {
    return E0 && E1;
  }

  R_SExpr reduceApply(Apply &Orig, R_SExpr E0, R_SExpr E1) {
    return E0 && E1;
  }

  R_SExpr reduceSApply(SApply &Orig, R_SExpr E0, R_SExpr E1) {
    return E0 && E1;
  }

  R_SExpr reduceProject(Project &Orig, R_SExpr E0) { return E0; }
  R_SExpr reduceCall(Call &Orig, R_SExpr E0) { return E0; }
  R_SExpr reduceAlloc(Alloc &Orig, R_SExpr E0) { return E0; }
  R_SExpr reduceLoad(Load &Orig, R_SExpr E0) { return E0; }
  R_SExpr reduceStore(Store &Orig, R_SExpr E0, R_SExpr E1) { return E0 && E1; }

  R_SExpr reduceArrayIndex(Store &Orig, R_SExpr E0, R_SExpr E1) {
    return E0 && E1;
  }

  R_SExpr reduceArrayAdd(Store &Orig, R_SExpr E0, R_SExpr E1) {
    return E0 && E1;
  }

  R_SExpr reduceUnaryOp(UnaryOp &Orig, R_SExpr E0) { return E0; }

  R_SExpr reduceBinaryOp(BinaryOp &Orig, R_SExpr E0, R_SExpr E1) {
    return E0 && E1;
  }

  R_SExpr reduceCast(Cast &Orig, R_SExpr E0) { return E0; }

  R_SExpr reduceSCFG(SCFG &Orig, Container<BasicBlock *> Bbs) {
    return Bbs.Success;
  }

  R_BasicBlock reduceBasicBlock(BasicBlock &Orig, Container<R_SExpr> &As,
                                Container<R_SExpr> &Is, R_SExpr T) {
    return (As.Success && Is.Success && T);
  }

  R_SExpr reducePhi(Phi &Orig, Container<R_SExpr> &As) {
    return As.Success;
  }

  R_SExpr reduceGoto(Goto &Orig, BasicBlock *B) {
    return true;
  }

  R_SExpr reduceBranch(Branch &O, R_SExpr C, BasicBlock *B0, BasicBlock *B1) {
    return C;
  }

  R_SExpr reduceReturn(Return &O, R_SExpr E) {
    return E;
  }

  R_SExpr reduceIdentifier(Identifier &Orig) {
    return true;
  }

  R_SExpr reduceIfThenElse(IfThenElse &Orig, R_SExpr C, R_SExpr T, R_SExpr E) {
    return C && T && E;
  }

  R_SExpr reduceLet(Let &Orig, Variable *Nvd, R_SExpr B) {
    return Nvd && B;
  }

  Variable *enterScope(Variable &Orig, R_SExpr E0) { return &Orig; }
  void exitScope(const Variable &Orig) {}
  void enterCFG(SCFG &Cfg) {}
  void exitCFG(SCFG &Cfg) {}
  void enterBasicBlock(BasicBlock &BB) {}
  void exitBasicBlock(BasicBlock &BB) {}

  Variable *reduceVariableRef(Variable *Ovd) { return Ovd; }
  BasicBlock *reduceBasicBlockRef(BasicBlock *Obb) { return Obb; }

public:
  bool traverse(SExpr *E, TraversalKind K = TRV_Normal) {
    Success = Success && this->traverseByCase(E);
    return Success;
  }

  static bool visit(SExpr *E) {
    Self Visitor;
    return Visitor.traverse(E, TRV_Normal);
  }

private:
  bool Success;
};

// Basic class for comparison operations over expressions.
template <typename Self>
class Comparator {
protected:
  Self *self() { return reinterpret_cast<Self *>(this); }

public:
  bool compareByCase(const SExpr *E1, const SExpr* E2) {
    switch (E1->opcode()) {
#define TIL_OPCODE_DEF(X)                                                     \
    case COP_##X:                                                             \
      return cast<X>(E1)->compare(cast<X>(E2), *self());
#include "ThreadSafetyOps.def"
#undef TIL_OPCODE_DEF
    }
    return false;
  }
};

class EqualsComparator : public Comparator<EqualsComparator> {
public:
  // Result type for the comparison, e.g. bool for simple equality,
  // or int for lexigraphic comparison (-1, 0, 1).  Must have one value which
  // denotes "true".
  using CType = bool;

  CType trueResult() { return true; }
  bool notTrue(CType ct) { return !ct; }

  bool compareIntegers(unsigned i, unsigned j) { return i == j; }
  bool compareStrings (StringRef s, StringRef r) { return s == r; }
  bool comparePointers(const void* P, const void* Q) { return P == Q; }

  bool compare(const SExpr *E1, const SExpr* E2) {
    if (E1->opcode() != E2->opcode())
      return false;
    return compareByCase(E1, E2);
  }

  // TODO -- handle alpha-renaming of variables
  void enterScope(const Variable *V1, const Variable *V2) {}
  void leaveScope() {}

  bool compareVariableRefs(const Variable *V1, const Variable *V2) {
    return V1 == V2;
  }

  static bool compareExprs(const SExpr *E1, const SExpr* E2) {
    EqualsComparator Eq;
    return Eq.compare(E1, E2);
  }
};

class MatchComparator : public Comparator<MatchComparator> {
public:
  // Result type for the comparison, e.g. bool for simple equality,
  // or int for lexigraphic comparison (-1, 0, 1).  Must have one value which
  // denotes "true".
  using CType = bool;

  CType trueResult() { return true; }
  bool notTrue(CType ct) { return !ct; }

  bool compareIntegers(unsigned i, unsigned j) { return i == j; }
  bool compareStrings (StringRef s, StringRef r) { return s == r; }
  bool comparePointers(const void *P, const void *Q) { return P == Q; }

  bool compare(const SExpr *E1, const SExpr *E2) {
    // Wildcards match anything.
    if (E1->opcode() == COP_Wildcard || E2->opcode() == COP_Wildcard)
      return true;
    // otherwise normal equality.
    if (E1->opcode() != E2->opcode())
      return false;
    return compareByCase(E1, E2);
  }

  // TODO -- handle alpha-renaming of variables
  void enterScope(const Variable* V1, const Variable* V2) {}
  void leaveScope() {}

  bool compareVariableRefs(const Variable* V1, const Variable* V2) {
    return V1 == V2;
  }

  static bool compareExprs(const SExpr *E1, const SExpr* E2) {
    MatchComparator Matcher;
    return Matcher.compare(E1, E2);
  }
};

// inline std::ostream& operator<<(std::ostream& SS, StringRef R) {
//   return SS.write(R.data(), R.size());
// }

// Pretty printer for TIL expressions
template <typename Self, typename StreamType>
class PrettyPrinter {
private:
  // Print out additional information.
  bool Verbose;

  // Omit redundant decls.
  bool Cleanup;

  // Print exprs in C-like syntax.
  bool CStyle;

public:
  PrettyPrinter(bool V = false, bool C = true, bool CS = true)
      : Verbose(V), Cleanup(C), CStyle(CS) {}

  static void print(const SExpr *E, StreamType &SS) {
    Self printer;
    printer.printSExpr(E, SS, Prec_MAX);
  }

protected:
  Self *self() { return reinterpret_cast<Self *>(this); }

  void newline(StreamType &SS) {
    SS << "\n";
  }

  // TODO: further distinguish between binary operations.
  static const unsigned Prec_Atom = 0;
  static const unsigned Prec_Postfix = 1;
  static const unsigned Prec_Unary = 2;
  static const unsigned Prec_Binary = 3;
  static const unsigned Prec_Other = 4;
  static const unsigned Prec_Decl = 5;
  static const unsigned Prec_MAX = 6;

  // Return the precedence of a given node, for use in pretty printing.
  unsigned precedence(const SExpr *E) {
    switch (E->opcode()) {
      case COP_Future:     return Prec_Atom;
      case COP_Undefined:  return Prec_Atom;
      case COP_Wildcard:   return Prec_Atom;

      case COP_Literal:    return Prec_Atom;
      case COP_LiteralPtr: return Prec_Atom;
      case COP_Variable:   return Prec_Atom;
      case COP_Function:   return Prec_Decl;
      case COP_SFunction:  return Prec_Decl;
      case COP_Code:       return Prec_Decl;
      case COP_Field:      return Prec_Decl;

      case COP_Apply:      return Prec_Postfix;
      case COP_SApply:     return Prec_Postfix;
      case COP_Project:    return Prec_Postfix;

      case COP_Call:       return Prec_Postfix;
      case COP_Alloc:      return Prec_Other;
      case COP_Load:       return Prec_Postfix;
      case COP_Store:      return Prec_Other;
      case COP_ArrayIndex: return Prec_Postfix;
      case COP_ArrayAdd:   return Prec_Postfix;

      case COP_UnaryOp:    return Prec_Unary;
      case COP_BinaryOp:   return Prec_Binary;
      case COP_Cast:       return Prec_Atom;

      case COP_SCFG:       return Prec_Decl;
      case COP_BasicBlock: return Prec_MAX;
      case COP_Phi:        return Prec_Atom;
      case COP_Goto:       return Prec_Atom;
      case COP_Branch:     return Prec_Atom;
      case COP_Return:     return Prec_Other;

      case COP_Identifier: return Prec_Atom;
      case COP_IfThenElse: return Prec_Other;
      case COP_Let:        return Prec_Decl;
    }
    return Prec_MAX;
  }

  void printBlockLabel(StreamType & SS, const BasicBlock *BB, int index) {
    if (!BB) {
      SS << "BB_null";
      return;
    }
    SS << "BB_";
    SS << BB->blockID();
    if (index >= 0) {
      SS << ":";
      SS << index;
    }
  }

  void printSExpr(const SExpr *E, StreamType &SS, unsigned P, bool Sub=true) {
    if (!E) {
      self()->printNull(SS);
      return;
    }
    if (Sub && E->block() && E->opcode() != COP_Variable) {
      SS << "_x" << E->id();
      return;
    }
    if (self()->precedence(E) > P) {
      // Wrap expr in () if necessary.
      SS << "(";
      self()->printSExpr(E, SS, Prec_MAX);
      SS << ")";
      return;
    }

    switch (E->opcode()) {
#define TIL_OPCODE_DEF(X)                                                  \
    case COP_##X:                                                          \
      self()->print##X(cast<X>(E), SS);                                    \
      return;
#include "ThreadSafetyOps.def"
#undef TIL_OPCODE_DEF
    }
  }

  void printNull(StreamType &SS) {
    SS << "#null";
  }

  void printFuture(const Future *E, StreamType &SS) {
    self()->printSExpr(E->maybeGetResult(), SS, Prec_Atom);
  }

  void printUndefined(const Undefined *E, StreamType &SS) {
    SS << "#undefined";
  }

  void printWildcard(const Wildcard *E, StreamType &SS) {
    SS << "*";
  }

  template<class T>
  void printLiteralT(const LiteralT<T> *E, StreamType &SS) {
    SS << E->value();
  }

  void printLiteralT(const LiteralT<uint8_t> *E, StreamType &SS) {
    SS << "'" << E->value() << "'";
  }

  void printLiteral(const Literal *E, StreamType &SS) {
    if (E->clangExpr()) {
      SS << getSourceLiteralString(E->clangExpr());
      return;
    }
    else {
      ValueType VT = E->valueType();
      switch (VT.Base) {
      case ValueType::BT_Void:
        SS << "void";
        return;
      case ValueType::BT_Bool:
        if (E->as<bool>().value())
          SS << "true";
        else
          SS << "false";
        return;
      case ValueType::BT_Int:
        switch (VT.Size) {
        case ValueType::ST_8:
          if (VT.Signed)
            printLiteralT(&E->as<int8_t>(), SS);
          else
            printLiteralT(&E->as<uint8_t>(), SS);
          return;
        case ValueType::ST_16:
          if (VT.Signed)
            printLiteralT(&E->as<int16_t>(), SS);
          else
            printLiteralT(&E->as<uint16_t>(), SS);
          return;
        case ValueType::ST_32:
          if (VT.Signed)
            printLiteralT(&E->as<int32_t>(), SS);
          else
            printLiteralT(&E->as<uint32_t>(), SS);
          return;
        case ValueType::ST_64:
          if (VT.Signed)
            printLiteralT(&E->as<int64_t>(), SS);
          else
            printLiteralT(&E->as<uint64_t>(), SS);
          return;
        default:
          break;
        }
        break;
      case ValueType::BT_Float:
        switch (VT.Size) {
        case ValueType::ST_32:
          printLiteralT(&E->as<float>(), SS);
          return;
        case ValueType::ST_64:
          printLiteralT(&E->as<double>(), SS);
          return;
        default:
          break;
        }
        break;
      case ValueType::BT_String:
        SS << "\"";
        printLiteralT(&E->as<StringRef>(), SS);
        SS << "\"";
        return;
      case ValueType::BT_Pointer:
        SS << "#ptr";
        return;
      case ValueType::BT_ValueRef:
        SS << "#vref";
        return;
      }
    }
    SS << "#lit";
  }

  void printLiteralPtr(const LiteralPtr *E, StreamType &SS) {
    SS << E->clangDecl()->getNameAsString();
  }

  void printVariable(const Variable *V, StreamType &SS, bool IsVarDecl=false) {
    if (CStyle && V->kind() == Variable::VK_SFun)
      SS << "this";
    else
      SS << V->name() << V->id();
  }

  void printFunction(const Function *E, StreamType &SS, unsigned sugared = 0) {
    switch (sugared) {
      default:
        SS << "\\(";   // Lambda
        break;
      case 1:
        SS << "(";     // Slot declarations
        break;
      case 2:
        SS << ", ";    // Curried functions
        break;
    }
    self()->printVariable(E->variableDecl(), SS, true);
    SS << ": ";
    self()->printSExpr(E->variableDecl()->definition(), SS, Prec_MAX);

    const SExpr *B = E->body();
    if (B && B->opcode() == COP_Function)
      self()->printFunction(cast<Function>(B), SS, 2);
    else {
      SS << ")";
      self()->printSExpr(B, SS, Prec_Decl);
    }
  }

  void printSFunction(const SFunction *E, StreamType &SS) {
    SS << "@";
    self()->printVariable(E->variableDecl(), SS, true);
    SS << " ";
    self()->printSExpr(E->body(), SS, Prec_Decl);
  }

  void printCode(const Code *E, StreamType &SS) {
    SS << ": ";
    self()->printSExpr(E->returnType(), SS, Prec_Decl-1);
    SS << " -> ";
    self()->printSExpr(E->body(), SS, Prec_Decl);
  }

  void printField(const Field *E, StreamType &SS) {
    SS << ": ";
    self()->printSExpr(E->range(), SS, Prec_Decl-1);
    SS << " = ";
    self()->printSExpr(E->body(), SS, Prec_Decl);
  }

  void printApply(const Apply *E, StreamType &SS, bool sugared = false) {
    const SExpr *F = E->fun();
    if (F->opcode() == COP_Apply) {
      printApply(cast<Apply>(F), SS, true);
      SS << ", ";
    } else {
      self()->printSExpr(F, SS, Prec_Postfix);
      SS << "(";
    }
    self()->printSExpr(E->arg(), SS, Prec_MAX);
    if (!sugared)
      SS << ")$";
  }

  void printSApply(const SApply *E, StreamType &SS) {
    self()->printSExpr(E->sfun(), SS, Prec_Postfix);
    if (E->isDelegation()) {
      SS << "@(";
      self()->printSExpr(E->arg(), SS, Prec_MAX);
      SS << ")";
    }
  }

  void printProject(const Project *E, StreamType &SS) {
    if (CStyle) {
      // Omit the  this->
      if (const auto *SAP = dyn_cast<SApply>(E->record())) {
        if (const auto *V = dyn_cast<Variable>(SAP->sfun())) {
          if (!SAP->isDelegation() && V->kind() == Variable::VK_SFun) {
            SS << E->slotName();
            return;
          }
        }
      }
      if (isa<Wildcard>(E->record())) {
        // handle existentials
        SS << "&";
        SS << E->clangDecl()->getQualifiedNameAsString();
        return;
      }
    }
    self()->printSExpr(E->record(), SS, Prec_Postfix);
    if (CStyle && E->isArrow())
      SS << "->";
    else
      SS << ".";
    SS << E->slotName();
  }

  void printCall(const Call *E, StreamType &SS) {
    const SExpr *T = E->target();
    if (T->opcode() == COP_Apply) {
      self()->printApply(cast<Apply>(T), SS, true);
      SS << ")";
    }
    else {
      self()->printSExpr(T, SS, Prec_Postfix);
      SS << "()";
    }
  }

  void printAlloc(const Alloc *E, StreamType &SS) {
    SS << "new ";
    self()->printSExpr(E->dataType(), SS, Prec_Other-1);
  }

  void printLoad(const Load *E, StreamType &SS) {
    self()->printSExpr(E->pointer(), SS, Prec_Postfix);
    if (!CStyle)
      SS << "^";
  }

  void printStore(const Store *E, StreamType &SS) {
    self()->printSExpr(E->destination(), SS, Prec_Other-1);
    SS << " := ";
    self()->printSExpr(E->source(), SS, Prec_Other-1);
  }

  void printArrayIndex(const ArrayIndex *E, StreamType &SS) {
    self()->printSExpr(E->array(), SS, Prec_Postfix);
    SS << "[";
    self()->printSExpr(E->index(), SS, Prec_MAX);
    SS << "]";
  }

  void printArrayAdd(const ArrayAdd *E, StreamType &SS) {
    self()->printSExpr(E->array(), SS, Prec_Postfix);
    SS << " + ";
    self()->printSExpr(E->index(), SS, Prec_Atom);
  }

  void printUnaryOp(const UnaryOp *E, StreamType &SS) {
    SS << getUnaryOpcodeString(E->unaryOpcode());
    self()->printSExpr(E->expr(), SS, Prec_Unary);
  }

  void printBinaryOp(const BinaryOp *E, StreamType &SS) {
    self()->printSExpr(E->expr0(), SS, Prec_Binary-1);
    SS << " " << getBinaryOpcodeString(E->binaryOpcode()) << " ";
    self()->printSExpr(E->expr1(), SS, Prec_Binary-1);
  }

  void printCast(const Cast *E, StreamType &SS) {
    if (!CStyle) {
      SS << "cast[";
      switch (E->castOpcode()) {
      case CAST_none:
        SS << "none";
        break;
      case CAST_extendNum:
        SS << "extendNum";
        break;
      case CAST_truncNum:
        SS << "truncNum";
        break;
      case CAST_toFloat:
        SS << "toFloat";
        break;
      case CAST_toInt:
        SS << "toInt";
        break;
      case CAST_objToPtr:
        SS << "objToPtr";
        break;
      }
      SS << "](";
      self()->printSExpr(E->expr(), SS, Prec_Unary);
      SS << ")";
      return;
    }
    self()->printSExpr(E->expr(), SS, Prec_Unary);
  }

  void printSCFG(const SCFG *E, StreamType &SS) {
    SS << "CFG {\n";
    for (const auto *BBI : *E)
      printBasicBlock(BBI, SS);
    SS << "}";
    newline(SS);
  }

  void printBBInstr(const SExpr *E, StreamType &SS) {
    bool Sub = false;
    if (E->opcode() == COP_Variable) {
      const auto *V = cast<Variable>(E);
      SS << "let " << V->name() << V->id() << " = ";
      E = V->definition();
      Sub = true;
    }
    else if (E->opcode() != COP_Store) {
      SS << "let _x" << E->id() << " = ";
    }
    self()->printSExpr(E, SS, Prec_MAX, Sub);
    SS << ";";
    newline(SS);
  }

  void printBasicBlock(const BasicBlock *E, StreamType &SS) {
    SS << "BB_" << E->blockID() << ":";
    if (E->parent())
      SS << " BB_" << E->parent()->blockID();
    newline(SS);

    for (const auto *A : E->arguments())
      printBBInstr(A, SS);

    for (const auto *I : E->instructions())
      printBBInstr(I, SS);

    const SExpr *T = E->terminator();
    if (T) {
      self()->printSExpr(T, SS, Prec_MAX, false);
      SS << ";";
      newline(SS);
    }
    newline(SS);
  }

  void printPhi(const Phi *E, StreamType &SS) {
    SS << "phi(";
    if (E->status() == Phi::PH_SingleVal)
      self()->printSExpr(E->values()[0], SS, Prec_MAX);
    else {
      unsigned i = 0;
      for (const auto *V : E->values()) {
        if (i++ > 0)
          SS << ", ";
        self()->printSExpr(V, SS, Prec_MAX);
      }
    }
    SS << ")";
  }

  void printGoto(const Goto *E, StreamType &SS) {
    SS << "goto ";
    printBlockLabel(SS, E->targetBlock(), E->index());
  }

  void printBranch(const Branch *E, StreamType &SS) {
    SS << "branch (";
    self()->printSExpr(E->condition(), SS, Prec_MAX);
    SS << ") ";
    printBlockLabel(SS, E->thenBlock(), -1);
    SS << " ";
    printBlockLabel(SS, E->elseBlock(), -1);
  }

  void printReturn(const Return *E, StreamType &SS) {
    SS << "return ";
    self()->printSExpr(E->returnValue(), SS, Prec_Other);
  }

  void printIdentifier(const Identifier *E, StreamType &SS) {
    SS << E->name();
  }

  void printIfThenElse(const IfThenElse *E, StreamType &SS) {
    if (CStyle) {
      printSExpr(E->condition(), SS, Prec_Unary);
      SS << " ? ";
      printSExpr(E->thenExpr(), SS, Prec_Unary);
      SS << " : ";
      printSExpr(E->elseExpr(), SS, Prec_Unary);
      return;
    }
    SS << "if (";
    printSExpr(E->condition(), SS, Prec_MAX);
    SS << ") then ";
    printSExpr(E->thenExpr(), SS, Prec_Other);
    SS << " else ";
    printSExpr(E->elseExpr(), SS, Prec_Other);
  }

  void printLet(const Let *E, StreamType &SS) {
    SS << "let ";
    printVariable(E->variableDecl(), SS, true);
    SS << " = ";
    printSExpr(E->variableDecl()->definition(), SS, Prec_Decl-1);
    SS << "; ";
    printSExpr(E->body(), SS, Prec_Decl-1);
  }
};

class StdPrinter : public PrettyPrinter<StdPrinter, std::ostream> {};

} // namespace til
} // namespace threadSafety
} // namespace clang

#endif // LLVM_CLANG_ANALYSIS_ANALYSES_THREADSAFETYTRAVERSE_H