summaryrefslogtreecommitdiffstats
path: root/include/clang/Basic/FixedPoint.h
blob: a931e21e18f17f90ac99933e38a43a47304ea718 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
//===- FixedPoint.h - Fixed point constant handling -------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file
/// Defines the fixed point number interface.
/// This is a class for abstracting various operations performed on fixed point
/// types described in ISO/IEC JTC1 SC22 WG14 N1169 starting at clause 4.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_CLANG_BASIC_FIXEDPOINT_H
#define LLVM_CLANG_BASIC_FIXEDPOINT_H

#include "llvm/ADT/APSInt.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/Support/raw_ostream.h"

namespace clang {

class ASTContext;
class QualType;

/// The fixed point semantics work similarly to llvm::fltSemantics. The width
/// specifies the whole bit width of the underlying scaled integer (with padding
/// if any). The scale represents the number of fractional bits in this type.
/// When HasUnsignedPadding is true and this type is signed, the first bit
/// in the value this represents is treaded as padding.
class FixedPointSemantics {
public:
  FixedPointSemantics(unsigned Width, unsigned Scale, bool IsSigned,
                      bool IsSaturated, bool HasUnsignedPadding)
      : Width(Width), Scale(Scale), IsSigned(IsSigned),
        IsSaturated(IsSaturated), HasUnsignedPadding(HasUnsignedPadding) {
    assert(Width >= Scale && "Not enough room for the scale");
    assert(!(IsSigned && HasUnsignedPadding) &&
           "Cannot have unsigned padding on a signed type.");
  }

  unsigned getWidth() const { return Width; }
  unsigned getScale() const { return Scale; }
  bool isSigned() const { return IsSigned; }
  bool isSaturated() const { return IsSaturated; }
  bool hasUnsignedPadding() const { return HasUnsignedPadding; }

  void setSaturated(bool Saturated) { IsSaturated = Saturated; }

  /// Return the number of integral bits represented by these semantics. These
  /// are separate from the fractional bits and do not include the sign or
  /// padding bit.
  unsigned getIntegralBits() const {
    if (IsSigned || (!IsSigned && HasUnsignedPadding))
      return Width - Scale - 1;
    else
      return Width - Scale;
  }

  /// Return the FixedPointSemantics that allows for calculating the full
  /// precision semantic that can precisely represent the precision and ranges
  /// of both input values. This does not compute the resulting semantics for a
  /// given binary operation.
  FixedPointSemantics
  getCommonSemantics(const FixedPointSemantics &Other) const;

  /// Return the FixedPointSemantics for an integer type.
  static FixedPointSemantics GetIntegerSemantics(unsigned Width,
                                                 bool IsSigned) {
    return FixedPointSemantics(Width, /*Scale=*/0, IsSigned,
                               /*IsSaturated=*/false,
                               /*HasUnsignedPadding=*/false);
  }

private:
  unsigned Width;
  unsigned Scale;
  bool IsSigned;
  bool IsSaturated;
  bool HasUnsignedPadding;
};

/// The APFixedPoint class works similarly to APInt/APSInt in that it is a
/// functional replacement for a scaled integer. It is meant to replicate the
/// fixed point types proposed in ISO/IEC JTC1 SC22 WG14 N1169. The class carries
/// info about the fixed point type's width, sign, scale, and saturation, and
/// provides different operations that would normally be performed on fixed point
/// types.
///
/// Semantically this does not represent any existing C type other than fixed
/// point types and should eventually be moved to LLVM if fixed point types gain
/// native IR support.
class APFixedPoint {
 public:
   APFixedPoint(const llvm::APInt &Val, const FixedPointSemantics &Sema)
       : Val(Val, !Sema.isSigned()), Sema(Sema) {
     assert(Val.getBitWidth() == Sema.getWidth() &&
            "The value should have a bit width that matches the Sema width");
   }

   APFixedPoint(uint64_t Val, const FixedPointSemantics &Sema)
       : APFixedPoint(llvm::APInt(Sema.getWidth(), Val, Sema.isSigned()),
                      Sema) {}

   // Zero initialization.
   APFixedPoint(const FixedPointSemantics &Sema) : APFixedPoint(0, Sema) {}

   llvm::APSInt getValue() const { return llvm::APSInt(Val, !Sema.isSigned()); }
   inline unsigned getWidth() const { return Sema.getWidth(); }
   inline unsigned getScale() const { return Sema.getScale(); }
   inline bool isSaturated() const { return Sema.isSaturated(); }
   inline bool isSigned() const { return Sema.isSigned(); }
   inline bool hasPadding() const { return Sema.hasUnsignedPadding(); }
   FixedPointSemantics getSemantics() const { return Sema; }

   bool getBoolValue() const { return Val.getBoolValue(); }

   // Convert this number to match the semantics provided. If the overflow
   // parameter is provided, set this value to true or false to indicate if this
   // operation results in an overflow.
   APFixedPoint convert(const FixedPointSemantics &DstSema,
                        bool *Overflow = nullptr) const;

   // Perform binary operations on a fixed point type. The resulting fixed point
   // value will be in the common, full precision semantics that can represent
   // the precision and ranges os both input values. See convert() for an
   // explanation of the Overflow parameter.
   APFixedPoint add(const APFixedPoint &Other, bool *Overflow = nullptr) const;

   /// Perform a unary negation (-X) on this fixed point type, taking into
   /// account saturation if applicable.
   APFixedPoint negate(bool *Overflow = nullptr) const;

   APFixedPoint shr(unsigned Amt) const {
     return APFixedPoint(Val >> Amt, Sema);
   }

  APFixedPoint shl(unsigned Amt) const {
    return APFixedPoint(Val << Amt, Sema);
  }

  /// Return the integral part of this fixed point number, rounded towards
  /// zero. (-2.5k -> -2)
  llvm::APSInt getIntPart() const {
    if (Val < 0 && Val != -Val) // Cover the case when we have the min val
      return -(-Val >> getScale());
    else
      return Val >> getScale();
  }

  /// Return the integral part of this fixed point number, rounded towards
  /// zero. The value is stored into an APSInt with the provided width and sign.
  /// If the overflow parameter is provided, and the integral value is not able
  /// to be fully stored in the provided width and sign, the overflow parameter
  /// is set to true.
  ///
  /// If the overflow parameter is provided, set this value to true or false to
  /// indicate if this operation results in an overflow.
  llvm::APSInt convertToInt(unsigned DstWidth, bool DstSign,
                            bool *Overflow = nullptr) const;

  void toString(llvm::SmallVectorImpl<char> &Str) const;
  std::string toString() const {
    llvm::SmallString<40> S;
    toString(S);
    return S.str();
  }

  // If LHS > RHS, return 1. If LHS == RHS, return 0. If LHS < RHS, return -1.
  int compare(const APFixedPoint &Other) const;
  bool operator==(const APFixedPoint &Other) const {
    return compare(Other) == 0;
  }
  bool operator!=(const APFixedPoint &Other) const {
    return compare(Other) != 0;
  }
  bool operator>(const APFixedPoint &Other) const { return compare(Other) > 0; }
  bool operator<(const APFixedPoint &Other) const { return compare(Other) < 0; }
  bool operator>=(const APFixedPoint &Other) const {
    return compare(Other) >= 0;
  }
  bool operator<=(const APFixedPoint &Other) const {
    return compare(Other) <= 0;
  }

  static APFixedPoint getMax(const FixedPointSemantics &Sema);
  static APFixedPoint getMin(const FixedPointSemantics &Sema);

  /// Create an APFixedPoint with a value equal to that of the provided integer,
  /// and in the same semantics as the provided target semantics. If the value
  /// is not able to fit in the specified fixed point semantics, and the
  /// overflow parameter is provided, it is set to true.
  static APFixedPoint getFromIntValue(const llvm::APSInt &Value,
                                      const FixedPointSemantics &DstFXSema,
                                      bool *Overflow = nullptr);

private:
  llvm::APSInt Val;
  FixedPointSemantics Sema;
};

inline llvm::raw_ostream &operator<<(llvm::raw_ostream &OS,
                                     const APFixedPoint &FX) {
  OS << FX.toString();
  return OS;
}

}  // namespace clang

#endif