summaryrefslogtreecommitdiffstats
path: root/include/clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h
blob: 29fb413d1ce7099cc36e4a21519776f6b67f702d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
// SValBuilder.h - Construction of SVals from evaluating expressions -*- C++ -*-
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
//  This file defines SValBuilder, a class that defines the interface for
//  "symbolical evaluators" which construct an SVal from an expression.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_CLANG_GR_SVALBUILDER
#define LLVM_CLANG_GR_SVALBUILDER

#include "clang/AST/ASTContext.h"
#include "clang/AST/Expr.h"
#include "clang/AST/ExprObjC.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/BasicValueFactory.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h"

namespace clang {

class CXXBoolLiteralExpr;

namespace ento {

class SValBuilder {
  virtual void anchor();
protected:
  ASTContext &Context;
  
  /// Manager of APSInt values.
  BasicValueFactory BasicVals;

  /// Manages the creation of symbols.
  SymbolManager SymMgr;

  /// Manages the creation of memory regions.
  MemRegionManager MemMgr;

  ProgramStateManager &StateMgr;

  /// The scalar type to use for array indices.
  const QualType ArrayIndexTy;
  
  /// The width of the scalar type used for array indices.
  const unsigned ArrayIndexWidth;

  virtual SVal evalCastFromNonLoc(NonLoc val, QualType castTy) = 0;
  virtual SVal evalCastFromLoc(Loc val, QualType castTy) = 0;

public:
  // FIXME: Make these protected again once RegionStoreManager correctly
  // handles loads from different bound value types.
  virtual SVal dispatchCast(SVal val, QualType castTy) = 0;

public:
  SValBuilder(llvm::BumpPtrAllocator &alloc, ASTContext &context,
              ProgramStateManager &stateMgr)
    : Context(context), BasicVals(context, alloc),
      SymMgr(context, BasicVals, alloc),
      MemMgr(context, alloc),
      StateMgr(stateMgr),
      ArrayIndexTy(context.IntTy),
      ArrayIndexWidth(context.getTypeSize(ArrayIndexTy)) {}

  virtual ~SValBuilder() {}

  bool haveSameType(const SymExpr *Sym1, const SymExpr *Sym2) {
    return haveSameType(Sym1->getType(), Sym2->getType());
  }

  bool haveSameType(QualType Ty1, QualType Ty2) {
    // FIXME: Remove the second disjunct when we support symbolic
    // truncation/extension.
    return (Context.getCanonicalType(Ty1) == Context.getCanonicalType(Ty2) ||
            (Ty1->isIntegralOrEnumerationType() &&
             Ty2->isIntegralOrEnumerationType()));
  }

  SVal evalCast(SVal val, QualType castTy, QualType originalType);
  
  virtual SVal evalMinus(NonLoc val) = 0;

  virtual SVal evalComplement(NonLoc val) = 0;

  /// Create a new value which represents a binary expression with two non-
  /// location operands.
  virtual SVal evalBinOpNN(ProgramStateRef state, BinaryOperator::Opcode op,
                           NonLoc lhs, NonLoc rhs, QualType resultTy) = 0;

  /// Create a new value which represents a binary expression with two memory
  /// location operands.
  virtual SVal evalBinOpLL(ProgramStateRef state, BinaryOperator::Opcode op,
                           Loc lhs, Loc rhs, QualType resultTy) = 0;

  /// Create a new value which represents a binary expression with a memory
  /// location and non-location operands. For example, this would be used to
  /// evaluate a pointer arithmetic operation.
  virtual SVal evalBinOpLN(ProgramStateRef state, BinaryOperator::Opcode op,
                           Loc lhs, NonLoc rhs, QualType resultTy) = 0;

  /// Evaluates a given SVal. If the SVal has only one possible (integer) value,
  /// that value is returned. Otherwise, returns NULL.
  virtual const llvm::APSInt *getKnownValue(ProgramStateRef state, SVal val) = 0;
  
  /// Constructs a symbolic expression for two non-location values.
  SVal makeSymExprValNN(ProgramStateRef state, BinaryOperator::Opcode op,
                      NonLoc lhs, NonLoc rhs, QualType resultTy);

  SVal evalBinOp(ProgramStateRef state, BinaryOperator::Opcode op,
                 SVal lhs, SVal rhs, QualType type);
  
  DefinedOrUnknownSVal evalEQ(ProgramStateRef state, DefinedOrUnknownSVal lhs,
                              DefinedOrUnknownSVal rhs);

  ASTContext &getContext() { return Context; }
  const ASTContext &getContext() const { return Context; }

  ProgramStateManager &getStateManager() { return StateMgr; }
  
  QualType getConditionType() const {
    return Context.getLangOpts().CPlusPlus ? Context.BoolTy : Context.IntTy;
  }
  
  QualType getArrayIndexType() const {
    return ArrayIndexTy;
  }

  BasicValueFactory &getBasicValueFactory() { return BasicVals; }
  const BasicValueFactory &getBasicValueFactory() const { return BasicVals; }

  SymbolManager &getSymbolManager() { return SymMgr; }
  const SymbolManager &getSymbolManager() const { return SymMgr; }

  MemRegionManager &getRegionManager() { return MemMgr; }
  const MemRegionManager &getRegionManager() const { return MemMgr; }

  // Forwarding methods to SymbolManager.

  const SymbolConjured* conjureSymbol(const Stmt *stmt,
                                      const LocationContext *LCtx,
                                      QualType type,
                                      unsigned visitCount,
                                      const void *symbolTag = nullptr) {
    return SymMgr.conjureSymbol(stmt, LCtx, type, visitCount, symbolTag);
  }

  const SymbolConjured* conjureSymbol(const Expr *expr,
                                      const LocationContext *LCtx,
                                      unsigned visitCount,
                                      const void *symbolTag = nullptr) {
    return SymMgr.conjureSymbol(expr, LCtx, visitCount, symbolTag);
  }

  /// Construct an SVal representing '0' for the specified type.
  DefinedOrUnknownSVal makeZeroVal(QualType type);

  /// Make a unique symbol for value of region.
  DefinedOrUnknownSVal getRegionValueSymbolVal(const TypedValueRegion *region);

  /// \brief Create a new symbol with a unique 'name'.
  ///
  /// We resort to conjured symbols when we cannot construct a derived symbol.
  /// The advantage of symbols derived/built from other symbols is that we
  /// preserve the relation between related(or even equivalent) expressions, so
  /// conjured symbols should be used sparingly.
  DefinedOrUnknownSVal conjureSymbolVal(const void *symbolTag,
                                        const Expr *expr,
                                        const LocationContext *LCtx,
                                        unsigned count);
  DefinedOrUnknownSVal conjureSymbolVal(const void *symbolTag,
                                        const Expr *expr,
                                        const LocationContext *LCtx,
                                        QualType type,
                                        unsigned count);
  
  DefinedOrUnknownSVal conjureSymbolVal(const Stmt *stmt,
                                        const LocationContext *LCtx,
                                        QualType type,
                                        unsigned visitCount);
  /// \brief Conjure a symbol representing heap allocated memory region.
  ///
  /// Note, the expression should represent a location.
  DefinedOrUnknownSVal getConjuredHeapSymbolVal(const Expr *E,
                                                const LocationContext *LCtx,
                                                unsigned Count);

  DefinedOrUnknownSVal getDerivedRegionValueSymbolVal(
      SymbolRef parentSymbol, const TypedValueRegion *region);

  DefinedSVal getMetadataSymbolVal(
      const void *symbolTag, const MemRegion *region,
      const Expr *expr, QualType type, unsigned count);

  DefinedSVal getFunctionPointer(const FunctionDecl *func);
  
  DefinedSVal getBlockPointer(const BlockDecl *block, CanQualType locTy,
                              const LocationContext *locContext,
                              unsigned blockCount);

  /// Returns the value of \p E, if it can be determined in a non-path-sensitive
  /// manner.
  ///
  /// If \p E is not a constant or cannot be modeled, returns \c None.
  Optional<SVal> getConstantVal(const Expr *E);

  NonLoc makeCompoundVal(QualType type, llvm::ImmutableList<SVal> vals) {
    return nonloc::CompoundVal(BasicVals.getCompoundValData(type, vals));
  }

  NonLoc makeLazyCompoundVal(const StoreRef &store, 
                             const TypedValueRegion *region) {
    return nonloc::LazyCompoundVal(
        BasicVals.getLazyCompoundValData(store, region));
  }

  NonLoc makeZeroArrayIndex() {
    return nonloc::ConcreteInt(BasicVals.getValue(0, ArrayIndexTy));
  }

  NonLoc makeArrayIndex(uint64_t idx) {
    return nonloc::ConcreteInt(BasicVals.getValue(idx, ArrayIndexTy));
  }

  SVal convertToArrayIndex(SVal val);

  nonloc::ConcreteInt makeIntVal(const IntegerLiteral* integer) {
    return nonloc::ConcreteInt(
        BasicVals.getValue(integer->getValue(),
                     integer->getType()->isUnsignedIntegerOrEnumerationType()));
  }

  nonloc::ConcreteInt makeBoolVal(const ObjCBoolLiteralExpr *boolean) {
    return makeTruthVal(boolean->getValue(), boolean->getType());
  }

  nonloc::ConcreteInt makeBoolVal(const CXXBoolLiteralExpr *boolean);

  nonloc::ConcreteInt makeIntVal(const llvm::APSInt& integer) {
    return nonloc::ConcreteInt(BasicVals.getValue(integer));
  }

  loc::ConcreteInt makeIntLocVal(const llvm::APSInt &integer) {
    return loc::ConcreteInt(BasicVals.getValue(integer));
  }

  NonLoc makeIntVal(const llvm::APInt& integer, bool isUnsigned) {
    return nonloc::ConcreteInt(BasicVals.getValue(integer, isUnsigned));
  }

  DefinedSVal makeIntVal(uint64_t integer, QualType type) {
    if (Loc::isLocType(type))
      return loc::ConcreteInt(BasicVals.getValue(integer, type));

    return nonloc::ConcreteInt(BasicVals.getValue(integer, type));
  }

  NonLoc makeIntVal(uint64_t integer, bool isUnsigned) {
    return nonloc::ConcreteInt(BasicVals.getIntValue(integer, isUnsigned));
  }

  NonLoc makeIntValWithPtrWidth(uint64_t integer, bool isUnsigned) {
    return nonloc::ConcreteInt(
        BasicVals.getIntWithPtrWidth(integer, isUnsigned));
  }

  NonLoc makeLocAsInteger(Loc loc, unsigned bits) {
    return nonloc::LocAsInteger(BasicVals.getPersistentSValWithData(loc, bits));
  }

  NonLoc makeNonLoc(const SymExpr *lhs, BinaryOperator::Opcode op,
                    const llvm::APSInt& rhs, QualType type);

  NonLoc makeNonLoc(const llvm::APSInt& rhs, BinaryOperator::Opcode op,
                    const SymExpr *lhs, QualType type);

  NonLoc makeNonLoc(const SymExpr *lhs, BinaryOperator::Opcode op,
                    const SymExpr *rhs, QualType type);

  /// \brief Create a NonLoc value for cast.
  NonLoc makeNonLoc(const SymExpr *operand, QualType fromTy, QualType toTy);

  nonloc::ConcreteInt makeTruthVal(bool b, QualType type) {
    return nonloc::ConcreteInt(BasicVals.getTruthValue(b, type));
  }

  nonloc::ConcreteInt makeTruthVal(bool b) {
    return nonloc::ConcreteInt(BasicVals.getTruthValue(b));
  }

  Loc makeNull() {
    return loc::ConcreteInt(BasicVals.getZeroWithPtrWidth());
  }

  Loc makeLoc(SymbolRef sym) {
    return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym));
  }

  Loc makeLoc(const MemRegion* region) {
    return loc::MemRegionVal(region);
  }

  Loc makeLoc(const AddrLabelExpr *expr) {
    return loc::GotoLabel(expr->getLabel());
  }

  Loc makeLoc(const llvm::APSInt& integer) {
    return loc::ConcreteInt(BasicVals.getValue(integer));
  }

  /// Return a memory region for the 'this' object reference.
  loc::MemRegionVal getCXXThis(const CXXMethodDecl *D,
                               const StackFrameContext *SFC);

  /// Return a memory region for the 'this' object reference.
  loc::MemRegionVal getCXXThis(const CXXRecordDecl *D,
                               const StackFrameContext *SFC);
};

SValBuilder* createSimpleSValBuilder(llvm::BumpPtrAllocator &alloc,
                                     ASTContext &context,
                                     ProgramStateManager &stateMgr);

} // end GR namespace

} // end clang namespace

#endif