summaryrefslogtreecommitdiffstats
path: root/lib/Analysis/SimpleConstraintManager.cpp
blob: 82801eb05d38369c69ddc26a10f834a50609517a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
//== SimpleConstraintManager.cpp --------------------------------*- C++ -*--==//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
//  This file defines SimpleConstraintManager, a class that holds code shared
//  between BasicConstraintManager and RangeConstraintManager.
//
//===----------------------------------------------------------------------===//

#include "SimpleConstraintManager.h"
#include "clang/Analysis/PathSensitive/GRExprEngine.h"
#include "clang/Analysis/PathSensitive/GRState.h"

namespace clang {

SimpleConstraintManager::~SimpleConstraintManager() {}

bool SimpleConstraintManager::canReasonAbout(SVal X) const {
  if (nonloc::SymExprVal *SymVal = dyn_cast<nonloc::SymExprVal>(&X)) {
    const SymExpr *SE = SymVal->getSymbolicExpression();
    
    if (isa<SymbolData>(SE))
      return true;
    
    if (const SymIntExpr *SIE = dyn_cast<SymIntExpr>(SE)) {
      switch (SIE->getOpcode()) {
          // We don't reason yet about bitwise-constraints on symbolic values.
        case BinaryOperator::And:
        case BinaryOperator::Or:
        case BinaryOperator::Xor:
          return false;
        // We don't reason yet about arithmetic constraints on symbolic values.
        case BinaryOperator::Mul:
        case BinaryOperator::Div:
        case BinaryOperator::Rem:
        case BinaryOperator::Add:
        case BinaryOperator::Sub:
        case BinaryOperator::Shl:
        case BinaryOperator::Shr:
          return false;
        // All other cases.
        default:
          return true;
      }      
    }

    return false;
  }

  return true;
}
  
const GRState *SimpleConstraintManager::Assume(const GRState *state,
                                               SVal Cond, bool Assumption) {
  if (Cond.isUnknown()) {
    return state;
  }

  if (isa<NonLoc>(Cond))
    return Assume(state, cast<NonLoc>(Cond), Assumption);
  else
    return Assume(state, cast<Loc>(Cond), Assumption);
}

const GRState *SimpleConstraintManager::Assume(const GRState *state, Loc Cond,
                                               bool Assumption) {

  state = AssumeAux(state, Cond, Assumption);

  // EvalAssume is used to call into the GRTransferFunction object to perform
  // any checker-specific update of the state based on this assumption being
  // true or false.  
  return state ? state->getTransferFuncs().EvalAssume(state, Cond, Assumption)
               : NULL;
}

const GRState *SimpleConstraintManager::AssumeAux(const GRState *state,
                                                  Loc Cond, bool Assumption) {
  
  BasicValueFactory &BasicVals = state->getBasicVals();

  switch (Cond.getSubKind()) {
  default:
    assert (false && "'Assume' not implemented for this Loc.");
    return state;

  case loc::MemRegionKind: {
    // FIXME: Should this go into the storemanager?
    
    const MemRegion *R = cast<loc::MemRegionVal>(Cond).getRegion();
    const SubRegion *SubR = dyn_cast<SubRegion>(R);

    while (SubR) {
      // FIXME: now we only find the first symbolic region.
      if (const SymbolicRegion *SymR = dyn_cast<SymbolicRegion>(SubR)) {
        if (Assumption)
          return AssumeSymNE(state, SymR->getSymbol(), 
                             BasicVals.getZeroWithPtrWidth());
        else
          return AssumeSymEQ(state, SymR->getSymbol(),
                             BasicVals.getZeroWithPtrWidth());
      }
      SubR = dyn_cast<SubRegion>(SubR->getSuperRegion());
    }
    
    // FALL-THROUGH.
  }
      
  case loc::GotoLabelKind:
    return Assumption ? state : NULL;

  case loc::ConcreteIntKind: {
    bool b = cast<loc::ConcreteInt>(Cond).getValue() != 0;    
    bool isFeasible = b ? Assumption : !Assumption;
    return isFeasible ? state : NULL;
  }
  } // end switch
}

const GRState *SimpleConstraintManager::Assume(const GRState *state,
                                               NonLoc Cond,
                                               bool Assumption) {

  state = AssumeAux(state, Cond, Assumption);

  // EvalAssume is used to call into the GRTransferFunction object to perform
  // any checker-specific update of the state based on this assumption being
  // true or false.  
  return state ? state->getTransferFuncs().EvalAssume(state, Cond, Assumption)
               : NULL;
}

const GRState *SimpleConstraintManager::AssumeAux(const GRState *state,
                                                  NonLoc Cond,
                                                  bool Assumption) {
  
  // We cannot reason about SymIntExpr and SymSymExpr.
  if (!canReasonAbout(Cond)) {
    // Just return the current state indicating that the path is feasible.
    // This may be an over-approximation of what is possible.
    return state;
  }  

  BasicValueFactory &BasicVals = state->getBasicVals();
  SymbolManager &SymMgr = state->getSymbolManager();

  switch (Cond.getSubKind()) {
  default:
    assert(false && "'Assume' not implemented for this NonLoc");

  case nonloc::SymbolValKind: {
    nonloc::SymbolVal& SV = cast<nonloc::SymbolVal>(Cond);
    SymbolRef sym = SV.getSymbol();
    QualType T =  SymMgr.getType(sym);    
    const llvm::APSInt &zero = BasicVals.getValue(0, T);

    return Assumption ? AssumeSymNE(state, sym, zero)
                      : AssumeSymEQ(state, sym, zero);
  }

  case nonloc::SymExprValKind: {
    nonloc::SymExprVal V = cast<nonloc::SymExprVal>(Cond);
    if (const SymIntExpr *SE = dyn_cast<SymIntExpr>(V.getSymbolicExpression()))
      return AssumeSymInt(state, Assumption, SE);
    
    // For all other symbolic expressions, over-approximate and consider
    // the constraint feasible.
    return state;
  }

  case nonloc::ConcreteIntKind: {
    bool b = cast<nonloc::ConcreteInt>(Cond).getValue() != 0;
    bool isFeasible = b ? Assumption : !Assumption;
    return isFeasible ? state : NULL;
  }

  case nonloc::LocAsIntegerKind:
    return AssumeAux(state, cast<nonloc::LocAsInteger>(Cond).getLoc(),
                     Assumption);
  } // end switch
}

const GRState *SimpleConstraintManager::AssumeSymInt(const GRState *state,
                                                     bool Assumption,
                                                     const SymIntExpr *SE) {


  // Here we assume that LHS is a symbol.  This is consistent with the
  // rest of the constraint manager logic.
  SymbolRef Sym = cast<SymbolData>(SE->getLHS());
  const llvm::APSInt &Int = SE->getRHS();
  
  switch (SE->getOpcode()) {
  default:
    // No logic yet for other operators.  Assume the constraint is feasible.
    return state;

  case BinaryOperator::EQ:
    return Assumption ? AssumeSymEQ(state, Sym, Int)
                      : AssumeSymNE(state, Sym, Int);

  case BinaryOperator::NE:
    return Assumption ? AssumeSymNE(state, Sym, Int)
                      : AssumeSymEQ(state, Sym, Int);
  case BinaryOperator::GT:
    return Assumption ? AssumeSymGT(state, Sym, Int)
                      : AssumeSymLE(state, Sym, Int);

  case BinaryOperator::GE:
    return Assumption ? AssumeSymGE(state, Sym, Int)
                      : AssumeSymLT(state, Sym, Int);

  case BinaryOperator::LT:
    return Assumption ? AssumeSymLT(state, Sym, Int)
                      : AssumeSymGE(state, Sym, Int);
      
  case BinaryOperator::LE:
    return Assumption ? AssumeSymLE(state, Sym, Int)
                      : AssumeSymGT(state, Sym, Int);
  } // end switch
}

const GRState *SimpleConstraintManager::AssumeInBound(const GRState *state,
                                                      SVal Idx, 
                                                      SVal UpperBound,
                                                      bool Assumption) { 

  // Only support ConcreteInt for now.
  if (!(isa<nonloc::ConcreteInt>(Idx) && isa<nonloc::ConcreteInt>(UpperBound)))
    return state;

  const llvm::APSInt& Zero = state->getBasicVals().getZeroWithPtrWidth(false);
  llvm::APSInt IdxV = cast<nonloc::ConcreteInt>(Idx).getValue();
  // IdxV might be too narrow.
  if (IdxV.getBitWidth() < Zero.getBitWidth())
    IdxV.extend(Zero.getBitWidth());
  // UBV might be too narrow, too.
  llvm::APSInt UBV = cast<nonloc::ConcreteInt>(UpperBound).getValue();
  if (UBV.getBitWidth() < Zero.getBitWidth())
    UBV.extend(Zero.getBitWidth());

  bool InBound = (Zero <= IdxV) && (IdxV < UBV);
  bool isFeasible = Assumption ? InBound : !InBound;
  return isFeasible ? state : NULL;
}

}  // end of namespace clang