summaryrefslogtreecommitdiffstats
path: root/lib/Analysis/Store.cpp
blob: fca69e69cb38530e4e3258c0e3e81179f9e6ffd9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
//== Store.cpp - Interface for maps from Locations to Values ----*- C++ -*--==//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
//  This file defined the types Store and StoreManager.
//
//===----------------------------------------------------------------------===//

#include "clang/Analysis/PathSensitive/Store.h"
#include "clang/Analysis/PathSensitive/GRState.h"

using namespace clang;

StoreManager::StoreManager(GRStateManager &stateMgr)
  : ValMgr(stateMgr.getValueManager()), StateMgr(stateMgr),
    MRMgr(ValMgr.getRegionManager()) {}

StoreManager::CastResult
StoreManager::MakeElementRegion(const GRState *state, const MemRegion *region,
                                QualType pointeeTy, QualType castToTy,
                                uint64_t index) {
  // Create a new ElementRegion.
  SVal idx = ValMgr.makeArrayIndex(index);
  return CastResult(state, MRMgr.getElementRegion(pointeeTy, idx, region,
                                                  ValMgr.getContext()));  
}

// FIXME: Merge with the implementation of the same method in MemRegion.cpp
static bool IsCompleteType(ASTContext &Ctx, QualType Ty) {
  if (const RecordType *RT = Ty->getAs<RecordType>()) {
    const RecordDecl *D = RT->getDecl();
    if (!D->getDefinition(Ctx))
      return false;
  }
  
  return true;
}

StoreManager::CastResult
StoreManager::CastRegion(const GRState *state, const MemRegion* R,
                         QualType CastToTy) {
  
  ASTContext& Ctx = StateMgr.getContext();
  
  // Handle casts to Objective-C objects.
  if (CastToTy->isObjCObjectPointerType())
    return CastResult(state, R->getBaseRegion());

  if (CastToTy->isBlockPointerType()) {
    if (isa<CodeTextRegion>(R))
      return CastResult(state, R);
    
    // FIXME: This may not be the right approach, depending on the symbol
    // involved.  Blocks can be casted to/from 'id', as they can be treated
    // as Objective-C objects.
    if (SymbolRef sym = loc::MemRegionVal(R).getAsSymbol()) {
      R = MRMgr.getCodeTextRegion(sym, CastToTy);
      return CastResult(state, R);
    }

    // We don't know what to make of it.  Return a NULL region, which
    // will be interpretted as UnknownVal.
    return CastResult(state, NULL);
  }

  // Now assume we are casting from pointer to pointer. Other cases should
  // already be handled.
  QualType PointeeTy = CastToTy->getAs<PointerType>()->getPointeeType();
  QualType CanonPointeeTy = Ctx.getCanonicalType(PointeeTy);

  // Handle casts to void*.  We just pass the region through.
  if (CanonPointeeTy.getUnqualifiedType() == Ctx.VoidTy)
    return CastResult(state, R);
  
  // Handle casts from compatible types.
  if (R->isBoundable())
    if (const TypedRegion *TR = dyn_cast<TypedRegion>(R)) {
      QualType ObjTy = Ctx.getCanonicalType(TR->getValueType(Ctx));
      if (CanonPointeeTy == ObjTy)
        return CastResult(state, R);
    }

  // Process region cast according to the kind of the region being cast.
  switch (R->getKind()) {
    case MemRegion::BEG_TYPED_REGIONS:
    case MemRegion::MemSpaceRegionKind:
    case MemRegion::BEG_DECL_REGIONS:
    case MemRegion::END_DECL_REGIONS:
    case MemRegion::END_TYPED_REGIONS: {
      assert(0 && "Invalid region cast");
      break;
    }      
    case MemRegion::CodeTextRegionKind: {
      // CodeTextRegion should be cast to only a function or block pointer type,
      // although they can in practice be casted to anything, e.g, void*,
      // char*, etc.
      // Just pass the region through.
      break;
    }
      
    case MemRegion::StringRegionKind:
    case MemRegion::ObjCObjectRegionKind:
      // FIXME: Need to handle arbitrary downcasts.
    case MemRegion::SymbolicRegionKind:
    case MemRegion::AllocaRegionKind:
    case MemRegion::CompoundLiteralRegionKind:
    case MemRegion::FieldRegionKind:
    case MemRegion::ObjCIvarRegionKind:
    case MemRegion::VarRegionKind:   
      return MakeElementRegion(state, R, PointeeTy, CastToTy);
      
    case MemRegion::ElementRegionKind: {
      // If we are casting from an ElementRegion to another type, the
      // algorithm is as follows:
      //
      // (1) Compute the "raw offset" of the ElementRegion from the
      //     base region.  This is done by calling 'getAsRawOffset()'.
      //
      // (2a) If we get a 'RegionRawOffset' after calling 
      //      'getAsRawOffset()', determine if the absolute offset
      //      can be exactly divided into chunks of the size of the 
      //      casted-pointee type.  If so, create a new ElementRegion with 
      //      the pointee-cast type as the new ElementType and the index
      //      being the offset divded by the chunk size.  If not, create
      //      a new ElementRegion at offset 0 off the raw offset region.
      //
      // (2b) If we don't a get a 'RegionRawOffset' after calling
      //      'getAsRawOffset()', it means that we are at offset 0.
      //      
      // FIXME: Handle symbolic raw offsets.
      
      const ElementRegion *elementR = cast<ElementRegion>(R);
      const RegionRawOffset &rawOff = elementR->getAsRawOffset();
      const MemRegion *baseR = rawOff.getRegion();
      
      // If we cannot compute a raw offset, throw up our hands and return
      // a NULL MemRegion*.
      if (!baseR)
        return CastResult(state, NULL);
      
      int64_t off = rawOff.getByteOffset();
      
      if (off == 0) {
        // Edge case: we are at 0 bytes off the beginning of baseR.  We
        // check to see if type we are casting to is the same as the base
        // region.  If so, just return the base region.        
        if (const TypedRegion *TR = dyn_cast<TypedRegion>(baseR)) {
          QualType ObjTy = Ctx.getCanonicalType(TR->getValueType(Ctx));
          QualType CanonPointeeTy = Ctx.getCanonicalType(PointeeTy);
          if (CanonPointeeTy == ObjTy)
            return CastResult(state, baseR);
        }
        
        // Otherwise, create a new ElementRegion at offset 0.
        return MakeElementRegion(state, baseR, PointeeTy, CastToTy, 0);
      }
      
      // We have a non-zero offset from the base region.  We want to determine
      // if the offset can be evenly divided by sizeof(PointeeTy).  If so,
      // we create an ElementRegion whose index is that value.  Otherwise, we
      // create two ElementRegions, one that reflects a raw offset and the other
      // that reflects the cast.
      
      // Compute the index for the new ElementRegion.
      int64_t newIndex = 0;
      const MemRegion *newSuperR = 0;

      // We can only compute sizeof(PointeeTy) if it is a complete type.
      if (IsCompleteType(Ctx, PointeeTy)) {
        // Compute the size in **bytes**.
        int64_t pointeeTySize = (int64_t) (Ctx.getTypeSize(PointeeTy) / 8);

        // Is the offset a multiple of the size?  If so, we can layer the
        // ElementRegion (with elementType == PointeeTy) directly on top of
        // the base region.
        if (off % pointeeTySize == 0) {
          newIndex = off / pointeeTySize;
          newSuperR = baseR;
        }
      }
      
      if (!newSuperR) {
        // Create an intermediate ElementRegion to represent the raw byte.
        // This will be the super region of the final ElementRegion.
        SVal idx = ValMgr.makeArrayIndex(off);
        newSuperR = MRMgr.getElementRegion(Ctx.CharTy, idx, baseR, Ctx);
      }
            
      return MakeElementRegion(state, newSuperR, PointeeTy, CastToTy, newIndex);
    }
  }
  
  return CastResult(state, R);
}