summaryrefslogtreecommitdiffstats
path: root/lib/Analysis/ThreadSafetyCommon.cpp
blob: 0c09974cf4e68080f415dc93b37b79ee2fc938a8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
//===- ThreadSafetyCommon.cpp ---------------------------------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Implementation of the interfaces declared in ThreadSafetyCommon.h
//
//===----------------------------------------------------------------------===//

#include "clang/Analysis/Analyses/ThreadSafetyCommon.h"
#include "clang/AST/Attr.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclGroup.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/Expr.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/OperationKinds.h"
#include "clang/AST/Stmt.h"
#include "clang/AST/Type.h"
#include "clang/Analysis/Analyses/ThreadSafetyTIL.h"
#include "clang/Analysis/CFG.h"
#include "clang/Basic/LLVM.h"
#include "clang/Basic/OperatorKinds.h"
#include "clang/Basic/Specifiers.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Support/Casting.h"
#include <algorithm>
#include <cassert>
#include <string>
#include <utility>

using namespace clang;
using namespace threadSafety;

// From ThreadSafetyUtil.h
std::string threadSafety::getSourceLiteralString(const Expr *CE) {
  switch (CE->getStmtClass()) {
    case Stmt::IntegerLiteralClass:
      return cast<IntegerLiteral>(CE)->getValue().toString(10, true);
    case Stmt::StringLiteralClass: {
      std::string ret("\"");
      ret += cast<StringLiteral>(CE)->getString();
      ret += "\"";
      return ret;
    }
    case Stmt::CharacterLiteralClass:
    case Stmt::CXXNullPtrLiteralExprClass:
    case Stmt::GNUNullExprClass:
    case Stmt::CXXBoolLiteralExprClass:
    case Stmt::FloatingLiteralClass:
    case Stmt::ImaginaryLiteralClass:
    case Stmt::ObjCStringLiteralClass:
    default:
      return "#lit";
  }
}

// Return true if E is a variable that points to an incomplete Phi node.
static bool isIncompletePhi(const til::SExpr *E) {
  if (const auto *Ph = dyn_cast<til::Phi>(E))
    return Ph->status() == til::Phi::PH_Incomplete;
  return false;
}

using CallingContext = SExprBuilder::CallingContext;

til::SExpr *SExprBuilder::lookupStmt(const Stmt *S) {
  auto It = SMap.find(S);
  if (It != SMap.end())
    return It->second;
  return nullptr;
}

til::SCFG *SExprBuilder::buildCFG(CFGWalker &Walker) {
  Walker.walk(*this);
  return Scfg;
}

static bool isCalleeArrow(const Expr *E) {
  const auto *ME = dyn_cast<MemberExpr>(E->IgnoreParenCasts());
  return ME ? ME->isArrow() : false;
}

/// Translate a clang expression in an attribute to a til::SExpr.
/// Constructs the context from D, DeclExp, and SelfDecl.
///
/// \param AttrExp The expression to translate.
/// \param D       The declaration to which the attribute is attached.
/// \param DeclExp An expression involving the Decl to which the attribute
///                is attached.  E.g. the call to a function.
CapabilityExpr SExprBuilder::translateAttrExpr(const Expr *AttrExp,
                                               const NamedDecl *D,
                                               const Expr *DeclExp,
                                               VarDecl *SelfDecl) {
  // If we are processing a raw attribute expression, with no substitutions.
  if (!DeclExp)
    return translateAttrExpr(AttrExp, nullptr);

  CallingContext Ctx(nullptr, D);

  // Examine DeclExp to find SelfArg and FunArgs, which are used to substitute
  // for formal parameters when we call buildMutexID later.
  if (const auto *ME = dyn_cast<MemberExpr>(DeclExp)) {
    Ctx.SelfArg   = ME->getBase();
    Ctx.SelfArrow = ME->isArrow();
  } else if (const auto *CE = dyn_cast<CXXMemberCallExpr>(DeclExp)) {
    Ctx.SelfArg   = CE->getImplicitObjectArgument();
    Ctx.SelfArrow = isCalleeArrow(CE->getCallee());
    Ctx.NumArgs   = CE->getNumArgs();
    Ctx.FunArgs   = CE->getArgs();
  } else if (const auto *CE = dyn_cast<CallExpr>(DeclExp)) {
    Ctx.NumArgs = CE->getNumArgs();
    Ctx.FunArgs = CE->getArgs();
  } else if (const auto *CE = dyn_cast<CXXConstructExpr>(DeclExp)) {
    Ctx.SelfArg = nullptr;  // Will be set below
    Ctx.NumArgs = CE->getNumArgs();
    Ctx.FunArgs = CE->getArgs();
  } else if (D && isa<CXXDestructorDecl>(D)) {
    // There's no such thing as a "destructor call" in the AST.
    Ctx.SelfArg = DeclExp;
  }

  // Hack to handle constructors, where self cannot be recovered from
  // the expression.
  if (SelfDecl && !Ctx.SelfArg) {
    DeclRefExpr SelfDRE(SelfDecl, false, SelfDecl->getType(), VK_LValue,
                        SelfDecl->getLocation());
    Ctx.SelfArg = &SelfDRE;

    // If the attribute has no arguments, then assume the argument is "this".
    if (!AttrExp)
      return translateAttrExpr(Ctx.SelfArg, nullptr);
    else  // For most attributes.
      return translateAttrExpr(AttrExp, &Ctx);
  }

  // If the attribute has no arguments, then assume the argument is "this".
  if (!AttrExp)
    return translateAttrExpr(Ctx.SelfArg, nullptr);
  else  // For most attributes.
    return translateAttrExpr(AttrExp, &Ctx);
}

/// Translate a clang expression in an attribute to a til::SExpr.
// This assumes a CallingContext has already been created.
CapabilityExpr SExprBuilder::translateAttrExpr(const Expr *AttrExp,
                                               CallingContext *Ctx) {
  if (!AttrExp)
    return CapabilityExpr(nullptr, false);

  if (const auto* SLit = dyn_cast<StringLiteral>(AttrExp)) {
    if (SLit->getString() == StringRef("*"))
      // The "*" expr is a universal lock, which essentially turns off
      // checks until it is removed from the lockset.
      return CapabilityExpr(new (Arena) til::Wildcard(), false);
    else
      // Ignore other string literals for now.
      return CapabilityExpr(nullptr, false);
  }

  bool Neg = false;
  if (const auto *OE = dyn_cast<CXXOperatorCallExpr>(AttrExp)) {
    if (OE->getOperator() == OO_Exclaim) {
      Neg = true;
      AttrExp = OE->getArg(0);
    }
  }
  else if (const auto *UO = dyn_cast<UnaryOperator>(AttrExp)) {
    if (UO->getOpcode() == UO_LNot) {
      Neg = true;
      AttrExp = UO->getSubExpr();
    }
  }

  til::SExpr *E = translate(AttrExp, Ctx);

  // Trap mutex expressions like nullptr, or 0.
  // Any literal value is nonsense.
  if (!E || isa<til::Literal>(E))
    return CapabilityExpr(nullptr, false);

  // Hack to deal with smart pointers -- strip off top-level pointer casts.
  if (const auto *CE = dyn_cast_or_null<til::Cast>(E)) {
    if (CE->castOpcode() == til::CAST_objToPtr)
      return CapabilityExpr(CE->expr(), Neg);
  }
  return CapabilityExpr(E, Neg);
}

// Translate a clang statement or expression to a TIL expression.
// Also performs substitution of variables; Ctx provides the context.
// Dispatches on the type of S.
til::SExpr *SExprBuilder::translate(const Stmt *S, CallingContext *Ctx) {
  if (!S)
    return nullptr;

  // Check if S has already been translated and cached.
  // This handles the lookup of SSA names for DeclRefExprs here.
  if (til::SExpr *E = lookupStmt(S))
    return E;

  switch (S->getStmtClass()) {
  case Stmt::DeclRefExprClass:
    return translateDeclRefExpr(cast<DeclRefExpr>(S), Ctx);
  case Stmt::CXXThisExprClass:
    return translateCXXThisExpr(cast<CXXThisExpr>(S), Ctx);
  case Stmt::MemberExprClass:
    return translateMemberExpr(cast<MemberExpr>(S), Ctx);
  case Stmt::ObjCIvarRefExprClass:
    return translateObjCIVarRefExpr(cast<ObjCIvarRefExpr>(S), Ctx);
  case Stmt::CallExprClass:
    return translateCallExpr(cast<CallExpr>(S), Ctx);
  case Stmt::CXXMemberCallExprClass:
    return translateCXXMemberCallExpr(cast<CXXMemberCallExpr>(S), Ctx);
  case Stmt::CXXOperatorCallExprClass:
    return translateCXXOperatorCallExpr(cast<CXXOperatorCallExpr>(S), Ctx);
  case Stmt::UnaryOperatorClass:
    return translateUnaryOperator(cast<UnaryOperator>(S), Ctx);
  case Stmt::BinaryOperatorClass:
  case Stmt::CompoundAssignOperatorClass:
    return translateBinaryOperator(cast<BinaryOperator>(S), Ctx);

  case Stmt::ArraySubscriptExprClass:
    return translateArraySubscriptExpr(cast<ArraySubscriptExpr>(S), Ctx);
  case Stmt::ConditionalOperatorClass:
    return translateAbstractConditionalOperator(
             cast<ConditionalOperator>(S), Ctx);
  case Stmt::BinaryConditionalOperatorClass:
    return translateAbstractConditionalOperator(
             cast<BinaryConditionalOperator>(S), Ctx);

  // We treat these as no-ops
  case Stmt::ConstantExprClass:
    return translate(cast<ConstantExpr>(S)->getSubExpr(), Ctx);
  case Stmt::ParenExprClass:
    return translate(cast<ParenExpr>(S)->getSubExpr(), Ctx);
  case Stmt::ExprWithCleanupsClass:
    return translate(cast<ExprWithCleanups>(S)->getSubExpr(), Ctx);
  case Stmt::CXXBindTemporaryExprClass:
    return translate(cast<CXXBindTemporaryExpr>(S)->getSubExpr(), Ctx);
  case Stmt::MaterializeTemporaryExprClass:
    return translate(cast<MaterializeTemporaryExpr>(S)->GetTemporaryExpr(),
                     Ctx);

  // Collect all literals
  case Stmt::CharacterLiteralClass:
  case Stmt::CXXNullPtrLiteralExprClass:
  case Stmt::GNUNullExprClass:
  case Stmt::CXXBoolLiteralExprClass:
  case Stmt::FloatingLiteralClass:
  case Stmt::ImaginaryLiteralClass:
  case Stmt::IntegerLiteralClass:
  case Stmt::StringLiteralClass:
  case Stmt::ObjCStringLiteralClass:
    return new (Arena) til::Literal(cast<Expr>(S));

  case Stmt::DeclStmtClass:
    return translateDeclStmt(cast<DeclStmt>(S), Ctx);
  default:
    break;
  }
  if (const auto *CE = dyn_cast<CastExpr>(S))
    return translateCastExpr(CE, Ctx);

  return new (Arena) til::Undefined(S);
}

til::SExpr *SExprBuilder::translateDeclRefExpr(const DeclRefExpr *DRE,
                                               CallingContext *Ctx) {
  const auto *VD = cast<ValueDecl>(DRE->getDecl()->getCanonicalDecl());

  // Function parameters require substitution and/or renaming.
  if (const auto *PV = dyn_cast_or_null<ParmVarDecl>(VD)) {
    const auto *FD =
        cast<FunctionDecl>(PV->getDeclContext())->getCanonicalDecl();
    unsigned I = PV->getFunctionScopeIndex();

    if (Ctx && Ctx->FunArgs && FD == Ctx->AttrDecl->getCanonicalDecl()) {
      // Substitute call arguments for references to function parameters
      assert(I < Ctx->NumArgs);
      return translate(Ctx->FunArgs[I], Ctx->Prev);
    }
    // Map the param back to the param of the original function declaration
    // for consistent comparisons.
    VD = FD->getParamDecl(I);
  }

  // For non-local variables, treat it as a reference to a named object.
  return new (Arena) til::LiteralPtr(VD);
}

til::SExpr *SExprBuilder::translateCXXThisExpr(const CXXThisExpr *TE,
                                               CallingContext *Ctx) {
  // Substitute for 'this'
  if (Ctx && Ctx->SelfArg)
    return translate(Ctx->SelfArg, Ctx->Prev);
  assert(SelfVar && "We have no variable for 'this'!");
  return SelfVar;
}

static const ValueDecl *getValueDeclFromSExpr(const til::SExpr *E) {
  if (const auto *V = dyn_cast<til::Variable>(E))
    return V->clangDecl();
  if (const auto *Ph = dyn_cast<til::Phi>(E))
    return Ph->clangDecl();
  if (const auto *P = dyn_cast<til::Project>(E))
    return P->clangDecl();
  if (const auto *L = dyn_cast<til::LiteralPtr>(E))
    return L->clangDecl();
  return nullptr;
}

static bool hasAnyPointerType(const til::SExpr *E) {
  auto *VD = getValueDeclFromSExpr(E);
  if (VD && VD->getType()->isAnyPointerType())
    return true;
  if (const auto *C = dyn_cast<til::Cast>(E))
    return C->castOpcode() == til::CAST_objToPtr;

  return false;
}

// Grab the very first declaration of virtual method D
static const CXXMethodDecl *getFirstVirtualDecl(const CXXMethodDecl *D) {
  while (true) {
    D = D->getCanonicalDecl();
    auto OverriddenMethods = D->overridden_methods();
    if (OverriddenMethods.begin() == OverriddenMethods.end())
      return D;  // Method does not override anything
    // FIXME: this does not work with multiple inheritance.
    D = *OverriddenMethods.begin();
  }
  return nullptr;
}

til::SExpr *SExprBuilder::translateMemberExpr(const MemberExpr *ME,
                                              CallingContext *Ctx) {
  til::SExpr *BE = translate(ME->getBase(), Ctx);
  til::SExpr *E  = new (Arena) til::SApply(BE);

  const auto *D = cast<ValueDecl>(ME->getMemberDecl()->getCanonicalDecl());
  if (const auto *VD = dyn_cast<CXXMethodDecl>(D))
    D = getFirstVirtualDecl(VD);

  til::Project *P = new (Arena) til::Project(E, D);
  if (hasAnyPointerType(BE))
    P->setArrow(true);
  return P;
}

til::SExpr *SExprBuilder::translateObjCIVarRefExpr(const ObjCIvarRefExpr *IVRE,
                                                   CallingContext *Ctx) {
  til::SExpr *BE = translate(IVRE->getBase(), Ctx);
  til::SExpr *E = new (Arena) til::SApply(BE);

  const auto *D = cast<ObjCIvarDecl>(IVRE->getDecl()->getCanonicalDecl());

  til::Project *P = new (Arena) til::Project(E, D);
  if (hasAnyPointerType(BE))
    P->setArrow(true);
  return P;
}

til::SExpr *SExprBuilder::translateCallExpr(const CallExpr *CE,
                                            CallingContext *Ctx,
                                            const Expr *SelfE) {
  if (CapabilityExprMode) {
    // Handle LOCK_RETURNED
    if (const FunctionDecl *FD = CE->getDirectCallee()) {
      FD = FD->getMostRecentDecl();
      if (LockReturnedAttr *At = FD->getAttr<LockReturnedAttr>()) {
        CallingContext LRCallCtx(Ctx);
        LRCallCtx.AttrDecl = CE->getDirectCallee();
        LRCallCtx.SelfArg = SelfE;
        LRCallCtx.NumArgs = CE->getNumArgs();
        LRCallCtx.FunArgs = CE->getArgs();
        return const_cast<til::SExpr *>(
            translateAttrExpr(At->getArg(), &LRCallCtx).sexpr());
      }
    }
  }

  til::SExpr *E = translate(CE->getCallee(), Ctx);
  for (const auto *Arg : CE->arguments()) {
    til::SExpr *A = translate(Arg, Ctx);
    E = new (Arena) til::Apply(E, A);
  }
  return new (Arena) til::Call(E, CE);
}

til::SExpr *SExprBuilder::translateCXXMemberCallExpr(
    const CXXMemberCallExpr *ME, CallingContext *Ctx) {
  if (CapabilityExprMode) {
    // Ignore calls to get() on smart pointers.
    if (ME->getMethodDecl()->getNameAsString() == "get" &&
        ME->getNumArgs() == 0) {
      auto *E = translate(ME->getImplicitObjectArgument(), Ctx);
      return new (Arena) til::Cast(til::CAST_objToPtr, E);
      // return E;
    }
  }
  return translateCallExpr(cast<CallExpr>(ME), Ctx,
                           ME->getImplicitObjectArgument());
}

til::SExpr *SExprBuilder::translateCXXOperatorCallExpr(
    const CXXOperatorCallExpr *OCE, CallingContext *Ctx) {
  if (CapabilityExprMode) {
    // Ignore operator * and operator -> on smart pointers.
    OverloadedOperatorKind k = OCE->getOperator();
    if (k == OO_Star || k == OO_Arrow) {
      auto *E = translate(OCE->getArg(0), Ctx);
      return new (Arena) til::Cast(til::CAST_objToPtr, E);
      // return E;
    }
  }
  return translateCallExpr(cast<CallExpr>(OCE), Ctx);
}

til::SExpr *SExprBuilder::translateUnaryOperator(const UnaryOperator *UO,
                                                 CallingContext *Ctx) {
  switch (UO->getOpcode()) {
  case UO_PostInc:
  case UO_PostDec:
  case UO_PreInc:
  case UO_PreDec:
    return new (Arena) til::Undefined(UO);

  case UO_AddrOf:
    if (CapabilityExprMode) {
      // interpret &Graph::mu_ as an existential.
      if (const auto *DRE = dyn_cast<DeclRefExpr>(UO->getSubExpr())) {
        if (DRE->getDecl()->isCXXInstanceMember()) {
          // This is a pointer-to-member expression, e.g. &MyClass::mu_.
          // We interpret this syntax specially, as a wildcard.
          auto *W = new (Arena) til::Wildcard();
          return new (Arena) til::Project(W, DRE->getDecl());
        }
      }
    }
    // otherwise, & is a no-op
    return translate(UO->getSubExpr(), Ctx);

  // We treat these as no-ops
  case UO_Deref:
  case UO_Plus:
    return translate(UO->getSubExpr(), Ctx);

  case UO_Minus:
    return new (Arena)
      til::UnaryOp(til::UOP_Minus, translate(UO->getSubExpr(), Ctx));
  case UO_Not:
    return new (Arena)
      til::UnaryOp(til::UOP_BitNot, translate(UO->getSubExpr(), Ctx));
  case UO_LNot:
    return new (Arena)
      til::UnaryOp(til::UOP_LogicNot, translate(UO->getSubExpr(), Ctx));

  // Currently unsupported
  case UO_Real:
  case UO_Imag:
  case UO_Extension:
  case UO_Coawait:
    return new (Arena) til::Undefined(UO);
  }
  return new (Arena) til::Undefined(UO);
}

til::SExpr *SExprBuilder::translateBinOp(til::TIL_BinaryOpcode Op,
                                         const BinaryOperator *BO,
                                         CallingContext *Ctx, bool Reverse) {
   til::SExpr *E0 = translate(BO->getLHS(), Ctx);
   til::SExpr *E1 = translate(BO->getRHS(), Ctx);
   if (Reverse)
     return new (Arena) til::BinaryOp(Op, E1, E0);
   else
     return new (Arena) til::BinaryOp(Op, E0, E1);
}

til::SExpr *SExprBuilder::translateBinAssign(til::TIL_BinaryOpcode Op,
                                             const BinaryOperator *BO,
                                             CallingContext *Ctx,
                                             bool Assign) {
  const Expr *LHS = BO->getLHS();
  const Expr *RHS = BO->getRHS();
  til::SExpr *E0 = translate(LHS, Ctx);
  til::SExpr *E1 = translate(RHS, Ctx);

  const ValueDecl *VD = nullptr;
  til::SExpr *CV = nullptr;
  if (const auto *DRE = dyn_cast<DeclRefExpr>(LHS)) {
    VD = DRE->getDecl();
    CV = lookupVarDecl(VD);
  }

  if (!Assign) {
    til::SExpr *Arg = CV ? CV : new (Arena) til::Load(E0);
    E1 = new (Arena) til::BinaryOp(Op, Arg, E1);
    E1 = addStatement(E1, nullptr, VD);
  }
  if (VD && CV)
    return updateVarDecl(VD, E1);
  return new (Arena) til::Store(E0, E1);
}

til::SExpr *SExprBuilder::translateBinaryOperator(const BinaryOperator *BO,
                                                  CallingContext *Ctx) {
  switch (BO->getOpcode()) {
  case BO_PtrMemD:
  case BO_PtrMemI:
    return new (Arena) til::Undefined(BO);

  case BO_Mul:  return translateBinOp(til::BOP_Mul, BO, Ctx);
  case BO_Div:  return translateBinOp(til::BOP_Div, BO, Ctx);
  case BO_Rem:  return translateBinOp(til::BOP_Rem, BO, Ctx);
  case BO_Add:  return translateBinOp(til::BOP_Add, BO, Ctx);
  case BO_Sub:  return translateBinOp(til::BOP_Sub, BO, Ctx);
  case BO_Shl:  return translateBinOp(til::BOP_Shl, BO, Ctx);
  case BO_Shr:  return translateBinOp(til::BOP_Shr, BO, Ctx);
  case BO_LT:   return translateBinOp(til::BOP_Lt,  BO, Ctx);
  case BO_GT:   return translateBinOp(til::BOP_Lt,  BO, Ctx, true);
  case BO_LE:   return translateBinOp(til::BOP_Leq, BO, Ctx);
  case BO_GE:   return translateBinOp(til::BOP_Leq, BO, Ctx, true);
  case BO_EQ:   return translateBinOp(til::BOP_Eq,  BO, Ctx);
  case BO_NE:   return translateBinOp(til::BOP_Neq, BO, Ctx);
  case BO_Cmp:  return translateBinOp(til::BOP_Cmp, BO, Ctx);
  case BO_And:  return translateBinOp(til::BOP_BitAnd,   BO, Ctx);
  case BO_Xor:  return translateBinOp(til::BOP_BitXor,   BO, Ctx);
  case BO_Or:   return translateBinOp(til::BOP_BitOr,    BO, Ctx);
  case BO_LAnd: return translateBinOp(til::BOP_LogicAnd, BO, Ctx);
  case BO_LOr:  return translateBinOp(til::BOP_LogicOr,  BO, Ctx);

  case BO_Assign:    return translateBinAssign(til::BOP_Eq,  BO, Ctx, true);
  case BO_MulAssign: return translateBinAssign(til::BOP_Mul, BO, Ctx);
  case BO_DivAssign: return translateBinAssign(til::BOP_Div, BO, Ctx);
  case BO_RemAssign: return translateBinAssign(til::BOP_Rem, BO, Ctx);
  case BO_AddAssign: return translateBinAssign(til::BOP_Add, BO, Ctx);
  case BO_SubAssign: return translateBinAssign(til::BOP_Sub, BO, Ctx);
  case BO_ShlAssign: return translateBinAssign(til::BOP_Shl, BO, Ctx);
  case BO_ShrAssign: return translateBinAssign(til::BOP_Shr, BO, Ctx);
  case BO_AndAssign: return translateBinAssign(til::BOP_BitAnd, BO, Ctx);
  case BO_XorAssign: return translateBinAssign(til::BOP_BitXor, BO, Ctx);
  case BO_OrAssign:  return translateBinAssign(til::BOP_BitOr,  BO, Ctx);

  case BO_Comma:
    // The clang CFG should have already processed both sides.
    return translate(BO->getRHS(), Ctx);
  }
  return new (Arena) til::Undefined(BO);
}

til::SExpr *SExprBuilder::translateCastExpr(const CastExpr *CE,
                                            CallingContext *Ctx) {
  CastKind K = CE->getCastKind();
  switch (K) {
  case CK_LValueToRValue: {
    if (const auto *DRE = dyn_cast<DeclRefExpr>(CE->getSubExpr())) {
      til::SExpr *E0 = lookupVarDecl(DRE->getDecl());
      if (E0)
        return E0;
    }
    til::SExpr *E0 = translate(CE->getSubExpr(), Ctx);
    return E0;
    // FIXME!! -- get Load working properly
    // return new (Arena) til::Load(E0);
  }
  case CK_NoOp:
  case CK_DerivedToBase:
  case CK_UncheckedDerivedToBase:
  case CK_ArrayToPointerDecay:
  case CK_FunctionToPointerDecay: {
    til::SExpr *E0 = translate(CE->getSubExpr(), Ctx);
    return E0;
  }
  default: {
    // FIXME: handle different kinds of casts.
    til::SExpr *E0 = translate(CE->getSubExpr(), Ctx);
    if (CapabilityExprMode)
      return E0;
    return new (Arena) til::Cast(til::CAST_none, E0);
  }
  }
}

til::SExpr *
SExprBuilder::translateArraySubscriptExpr(const ArraySubscriptExpr *E,
                                          CallingContext *Ctx) {
  til::SExpr *E0 = translate(E->getBase(), Ctx);
  til::SExpr *E1 = translate(E->getIdx(), Ctx);
  return new (Arena) til::ArrayIndex(E0, E1);
}

til::SExpr *
SExprBuilder::translateAbstractConditionalOperator(
    const AbstractConditionalOperator *CO, CallingContext *Ctx) {
  auto *C = translate(CO->getCond(), Ctx);
  auto *T = translate(CO->getTrueExpr(), Ctx);
  auto *E = translate(CO->getFalseExpr(), Ctx);
  return new (Arena) til::IfThenElse(C, T, E);
}

til::SExpr *
SExprBuilder::translateDeclStmt(const DeclStmt *S, CallingContext *Ctx) {
  DeclGroupRef DGrp = S->getDeclGroup();
  for (auto I : DGrp) {
    if (auto *VD = dyn_cast_or_null<VarDecl>(I)) {
      Expr *E = VD->getInit();
      til::SExpr* SE = translate(E, Ctx);

      // Add local variables with trivial type to the variable map
      QualType T = VD->getType();
      if (T.isTrivialType(VD->getASTContext()))
        return addVarDecl(VD, SE);
      else {
        // TODO: add alloca
      }
    }
  }
  return nullptr;
}

// If (E) is non-trivial, then add it to the current basic block, and
// update the statement map so that S refers to E.  Returns a new variable
// that refers to E.
// If E is trivial returns E.
til::SExpr *SExprBuilder::addStatement(til::SExpr* E, const Stmt *S,
                                       const ValueDecl *VD) {
  if (!E || !CurrentBB || E->block() || til::ThreadSafetyTIL::isTrivial(E))
    return E;
  if (VD)
    E = new (Arena) til::Variable(E, VD);
  CurrentInstructions.push_back(E);
  if (S)
    insertStmt(S, E);
  return E;
}

// Returns the current value of VD, if known, and nullptr otherwise.
til::SExpr *SExprBuilder::lookupVarDecl(const ValueDecl *VD) {
  auto It = LVarIdxMap.find(VD);
  if (It != LVarIdxMap.end()) {
    assert(CurrentLVarMap[It->second].first == VD);
    return CurrentLVarMap[It->second].second;
  }
  return nullptr;
}

// if E is a til::Variable, update its clangDecl.
static void maybeUpdateVD(til::SExpr *E, const ValueDecl *VD) {
  if (!E)
    return;
  if (auto *V = dyn_cast<til::Variable>(E)) {
    if (!V->clangDecl())
      V->setClangDecl(VD);
  }
}

// Adds a new variable declaration.
til::SExpr *SExprBuilder::addVarDecl(const ValueDecl *VD, til::SExpr *E) {
  maybeUpdateVD(E, VD);
  LVarIdxMap.insert(std::make_pair(VD, CurrentLVarMap.size()));
  CurrentLVarMap.makeWritable();
  CurrentLVarMap.push_back(std::make_pair(VD, E));
  return E;
}

// Updates a current variable declaration.  (E.g. by assignment)
til::SExpr *SExprBuilder::updateVarDecl(const ValueDecl *VD, til::SExpr *E) {
  maybeUpdateVD(E, VD);
  auto It = LVarIdxMap.find(VD);
  if (It == LVarIdxMap.end()) {
    til::SExpr *Ptr = new (Arena) til::LiteralPtr(VD);
    til::SExpr *St  = new (Arena) til::Store(Ptr, E);
    return St;
  }
  CurrentLVarMap.makeWritable();
  CurrentLVarMap.elem(It->second).second = E;
  return E;
}

// Make a Phi node in the current block for the i^th variable in CurrentVarMap.
// If E != null, sets Phi[CurrentBlockInfo->ArgIndex] = E.
// If E == null, this is a backedge and will be set later.
void SExprBuilder::makePhiNodeVar(unsigned i, unsigned NPreds, til::SExpr *E) {
  unsigned ArgIndex = CurrentBlockInfo->ProcessedPredecessors;
  assert(ArgIndex > 0 && ArgIndex < NPreds);

  til::SExpr *CurrE = CurrentLVarMap[i].second;
  if (CurrE->block() == CurrentBB) {
    // We already have a Phi node in the current block,
    // so just add the new variable to the Phi node.
    auto *Ph = dyn_cast<til::Phi>(CurrE);
    assert(Ph && "Expecting Phi node.");
    if (E)
      Ph->values()[ArgIndex] = E;
    return;
  }

  // Make a new phi node: phi(..., E)
  // All phi args up to the current index are set to the current value.
  til::Phi *Ph = new (Arena) til::Phi(Arena, NPreds);
  Ph->values().setValues(NPreds, nullptr);
  for (unsigned PIdx = 0; PIdx < ArgIndex; ++PIdx)
    Ph->values()[PIdx] = CurrE;
  if (E)
    Ph->values()[ArgIndex] = E;
  Ph->setClangDecl(CurrentLVarMap[i].first);
  // If E is from a back-edge, or either E or CurrE are incomplete, then
  // mark this node as incomplete; we may need to remove it later.
  if (!E || isIncompletePhi(E) || isIncompletePhi(CurrE))
    Ph->setStatus(til::Phi::PH_Incomplete);

  // Add Phi node to current block, and update CurrentLVarMap[i]
  CurrentArguments.push_back(Ph);
  if (Ph->status() == til::Phi::PH_Incomplete)
    IncompleteArgs.push_back(Ph);

  CurrentLVarMap.makeWritable();
  CurrentLVarMap.elem(i).second = Ph;
}

// Merge values from Map into the current variable map.
// This will construct Phi nodes in the current basic block as necessary.
void SExprBuilder::mergeEntryMap(LVarDefinitionMap Map) {
  assert(CurrentBlockInfo && "Not processing a block!");

  if (!CurrentLVarMap.valid()) {
    // Steal Map, using copy-on-write.
    CurrentLVarMap = std::move(Map);
    return;
  }
  if (CurrentLVarMap.sameAs(Map))
    return;  // Easy merge: maps from different predecessors are unchanged.

  unsigned NPreds = CurrentBB->numPredecessors();
  unsigned ESz = CurrentLVarMap.size();
  unsigned MSz = Map.size();
  unsigned Sz  = std::min(ESz, MSz);

  for (unsigned i = 0; i < Sz; ++i) {
    if (CurrentLVarMap[i].first != Map[i].first) {
      // We've reached the end of variables in common.
      CurrentLVarMap.makeWritable();
      CurrentLVarMap.downsize(i);
      break;
    }
    if (CurrentLVarMap[i].second != Map[i].second)
      makePhiNodeVar(i, NPreds, Map[i].second);
  }
  if (ESz > MSz) {
    CurrentLVarMap.makeWritable();
    CurrentLVarMap.downsize(Map.size());
  }
}

// Merge a back edge into the current variable map.
// This will create phi nodes for all variables in the variable map.
void SExprBuilder::mergeEntryMapBackEdge() {
  // We don't have definitions for variables on the backedge, because we
  // haven't gotten that far in the CFG.  Thus, when encountering a back edge,
  // we conservatively create Phi nodes for all variables.  Unnecessary Phi
  // nodes will be marked as incomplete, and stripped out at the end.
  //
  // An Phi node is unnecessary if it only refers to itself and one other
  // variable, e.g. x = Phi(y, y, x)  can be reduced to x = y.

  assert(CurrentBlockInfo && "Not processing a block!");

  if (CurrentBlockInfo->HasBackEdges)
    return;
  CurrentBlockInfo->HasBackEdges = true;

  CurrentLVarMap.makeWritable();
  unsigned Sz = CurrentLVarMap.size();
  unsigned NPreds = CurrentBB->numPredecessors();

  for (unsigned i = 0; i < Sz; ++i)
    makePhiNodeVar(i, NPreds, nullptr);
}

// Update the phi nodes that were initially created for a back edge
// once the variable definitions have been computed.
// I.e., merge the current variable map into the phi nodes for Blk.
void SExprBuilder::mergePhiNodesBackEdge(const CFGBlock *Blk) {
  til::BasicBlock *BB = lookupBlock(Blk);
  unsigned ArgIndex = BBInfo[Blk->getBlockID()].ProcessedPredecessors;
  assert(ArgIndex > 0 && ArgIndex < BB->numPredecessors());

  for (til::SExpr *PE : BB->arguments()) {
    auto *Ph = dyn_cast_or_null<til::Phi>(PE);
    assert(Ph && "Expecting Phi Node.");
    assert(Ph->values()[ArgIndex] == nullptr && "Wrong index for back edge.");

    til::SExpr *E = lookupVarDecl(Ph->clangDecl());
    assert(E && "Couldn't find local variable for Phi node.");
    Ph->values()[ArgIndex] = E;
  }
}

void SExprBuilder::enterCFG(CFG *Cfg, const NamedDecl *D,
                            const CFGBlock *First) {
  // Perform initial setup operations.
  unsigned NBlocks = Cfg->getNumBlockIDs();
  Scfg = new (Arena) til::SCFG(Arena, NBlocks);

  // allocate all basic blocks immediately, to handle forward references.
  BBInfo.resize(NBlocks);
  BlockMap.resize(NBlocks, nullptr);
  // create map from clang blockID to til::BasicBlocks
  for (auto *B : *Cfg) {
    auto *BB = new (Arena) til::BasicBlock(Arena);
    BB->reserveInstructions(B->size());
    BlockMap[B->getBlockID()] = BB;
  }

  CurrentBB = lookupBlock(&Cfg->getEntry());
  auto Parms = isa<ObjCMethodDecl>(D) ? cast<ObjCMethodDecl>(D)->parameters()
                                      : cast<FunctionDecl>(D)->parameters();
  for (auto *Pm : Parms) {
    QualType T = Pm->getType();
    if (!T.isTrivialType(Pm->getASTContext()))
      continue;

    // Add parameters to local variable map.
    // FIXME: right now we emulate params with loads; that should be fixed.
    til::SExpr *Lp = new (Arena) til::LiteralPtr(Pm);
    til::SExpr *Ld = new (Arena) til::Load(Lp);
    til::SExpr *V  = addStatement(Ld, nullptr, Pm);
    addVarDecl(Pm, V);
  }
}

void SExprBuilder::enterCFGBlock(const CFGBlock *B) {
  // Initialize TIL basic block and add it to the CFG.
  CurrentBB = lookupBlock(B);
  CurrentBB->reservePredecessors(B->pred_size());
  Scfg->add(CurrentBB);

  CurrentBlockInfo = &BBInfo[B->getBlockID()];

  // CurrentLVarMap is moved to ExitMap on block exit.
  // FIXME: the entry block will hold function parameters.
  // assert(!CurrentLVarMap.valid() && "CurrentLVarMap already initialized.");
}

void SExprBuilder::handlePredecessor(const CFGBlock *Pred) {
  // Compute CurrentLVarMap on entry from ExitMaps of predecessors

  CurrentBB->addPredecessor(BlockMap[Pred->getBlockID()]);
  BlockInfo *PredInfo = &BBInfo[Pred->getBlockID()];
  assert(PredInfo->UnprocessedSuccessors > 0);

  if (--PredInfo->UnprocessedSuccessors == 0)
    mergeEntryMap(std::move(PredInfo->ExitMap));
  else
    mergeEntryMap(PredInfo->ExitMap.clone());

  ++CurrentBlockInfo->ProcessedPredecessors;
}

void SExprBuilder::handlePredecessorBackEdge(const CFGBlock *Pred) {
  mergeEntryMapBackEdge();
}

void SExprBuilder::enterCFGBlockBody(const CFGBlock *B) {
  // The merge*() methods have created arguments.
  // Push those arguments onto the basic block.
  CurrentBB->arguments().reserve(
    static_cast<unsigned>(CurrentArguments.size()), Arena);
  for (auto *A : CurrentArguments)
    CurrentBB->addArgument(A);
}

void SExprBuilder::handleStatement(const Stmt *S) {
  til::SExpr *E = translate(S, nullptr);
  addStatement(E, S);
}

void SExprBuilder::handleDestructorCall(const VarDecl *VD,
                                        const CXXDestructorDecl *DD) {
  til::SExpr *Sf = new (Arena) til::LiteralPtr(VD);
  til::SExpr *Dr = new (Arena) til::LiteralPtr(DD);
  til::SExpr *Ap = new (Arena) til::Apply(Dr, Sf);
  til::SExpr *E = new (Arena) til::Call(Ap);
  addStatement(E, nullptr);
}

void SExprBuilder::exitCFGBlockBody(const CFGBlock *B) {
  CurrentBB->instructions().reserve(
    static_cast<unsigned>(CurrentInstructions.size()), Arena);
  for (auto *V : CurrentInstructions)
    CurrentBB->addInstruction(V);

  // Create an appropriate terminator
  unsigned N = B->succ_size();
  auto It = B->succ_begin();
  if (N == 1) {
    til::BasicBlock *BB = *It ? lookupBlock(*It) : nullptr;
    // TODO: set index
    unsigned Idx = BB ? BB->findPredecessorIndex(CurrentBB) : 0;
    auto *Tm = new (Arena) til::Goto(BB, Idx);
    CurrentBB->setTerminator(Tm);
  }
  else if (N == 2) {
    til::SExpr *C = translate(B->getTerminatorCondition(true), nullptr);
    til::BasicBlock *BB1 = *It ? lookupBlock(*It) : nullptr;
    ++It;
    til::BasicBlock *BB2 = *It ? lookupBlock(*It) : nullptr;
    // FIXME: make sure these aren't critical edges.
    auto *Tm = new (Arena) til::Branch(C, BB1, BB2);
    CurrentBB->setTerminator(Tm);
  }
}

void SExprBuilder::handleSuccessor(const CFGBlock *Succ) {
  ++CurrentBlockInfo->UnprocessedSuccessors;
}

void SExprBuilder::handleSuccessorBackEdge(const CFGBlock *Succ) {
  mergePhiNodesBackEdge(Succ);
  ++BBInfo[Succ->getBlockID()].ProcessedPredecessors;
}

void SExprBuilder::exitCFGBlock(const CFGBlock *B) {
  CurrentArguments.clear();
  CurrentInstructions.clear();
  CurrentBlockInfo->ExitMap = std::move(CurrentLVarMap);
  CurrentBB = nullptr;
  CurrentBlockInfo = nullptr;
}

void SExprBuilder::exitCFG(const CFGBlock *Last) {
  for (auto *Ph : IncompleteArgs) {
    if (Ph->status() == til::Phi::PH_Incomplete)
      simplifyIncompleteArg(Ph);
  }

  CurrentArguments.clear();
  CurrentInstructions.clear();
  IncompleteArgs.clear();
}

/*
namespace {

class TILPrinter :
    public til::PrettyPrinter<TILPrinter, llvm::raw_ostream> {};

} // namespace

namespace clang {
namespace threadSafety {

void printSCFG(CFGWalker &Walker) {
  llvm::BumpPtrAllocator Bpa;
  til::MemRegionRef Arena(&Bpa);
  SExprBuilder SxBuilder(Arena);
  til::SCFG *Scfg = SxBuilder.buildCFG(Walker);
  TILPrinter::print(Scfg, llvm::errs());
}

} // namespace threadSafety
} // namespace clang
*/