summaryrefslogtreecommitdiffstats
path: root/lib/Basic/Targets/ARM.cpp
blob: 16644ace108b79e4a475638aa706784a94ebd260 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
//===--- ARM.cpp - Implement ARM target feature support -------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements ARM TargetInfo objects.
//
//===----------------------------------------------------------------------===//

#include "ARM.h"
#include "clang/Basic/Builtins.h"
#include "clang/Basic/Diagnostic.h"
#include "clang/Basic/TargetBuiltins.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/StringSwitch.h"

using namespace clang;
using namespace clang::targets;

void ARMTargetInfo::setABIAAPCS() {
  IsAAPCS = true;

  DoubleAlign = LongLongAlign = LongDoubleAlign = SuitableAlign = 64;
  const llvm::Triple &T = getTriple();

  bool IsNetBSD = T.isOSNetBSD();
  bool IsOpenBSD = T.isOSOpenBSD();
  if (!T.isOSWindows() && !IsNetBSD && !IsOpenBSD)
    WCharType = UnsignedInt;

  UseBitFieldTypeAlignment = true;

  ZeroLengthBitfieldBoundary = 0;

  // Thumb1 add sp, #imm requires the immediate value be multiple of 4,
  // so set preferred for small types to 32.
  if (T.isOSBinFormatMachO()) {
    resetDataLayout(BigEndian
                        ? "E-m:o-p:32:32-i64:64-v128:64:128-a:0:32-n32-S64"
                        : "e-m:o-p:32:32-i64:64-v128:64:128-a:0:32-n32-S64");
  } else if (T.isOSWindows()) {
    assert(!BigEndian && "Windows on ARM does not support big endian");
    resetDataLayout("e"
                    "-m:w"
                    "-p:32:32"
                    "-i64:64"
                    "-v128:64:128"
                    "-a:0:32"
                    "-n32"
                    "-S64");
  } else if (T.isOSNaCl()) {
    assert(!BigEndian && "NaCl on ARM does not support big endian");
    resetDataLayout("e-m:e-p:32:32-i64:64-v128:64:128-a:0:32-n32-S128");
  } else {
    resetDataLayout(BigEndian
                        ? "E-m:e-p:32:32-i64:64-v128:64:128-a:0:32-n32-S64"
                        : "e-m:e-p:32:32-i64:64-v128:64:128-a:0:32-n32-S64");
  }

  // FIXME: Enumerated types are variable width in straight AAPCS.
}

void ARMTargetInfo::setABIAPCS(bool IsAAPCS16) {
  const llvm::Triple &T = getTriple();

  IsAAPCS = false;

  if (IsAAPCS16)
    DoubleAlign = LongLongAlign = LongDoubleAlign = SuitableAlign = 64;
  else
    DoubleAlign = LongLongAlign = LongDoubleAlign = SuitableAlign = 32;

  WCharType = SignedInt;

  // Do not respect the alignment of bit-field types when laying out
  // structures. This corresponds to PCC_BITFIELD_TYPE_MATTERS in gcc.
  UseBitFieldTypeAlignment = false;

  /// gcc forces the alignment to 4 bytes, regardless of the type of the
  /// zero length bitfield.  This corresponds to EMPTY_FIELD_BOUNDARY in
  /// gcc.
  ZeroLengthBitfieldBoundary = 32;

  if (T.isOSBinFormatMachO() && IsAAPCS16) {
    assert(!BigEndian && "AAPCS16 does not support big-endian");
    resetDataLayout("e-m:o-p:32:32-i64:64-a:0:32-n32-S128");
  } else if (T.isOSBinFormatMachO())
    resetDataLayout(
        BigEndian
            ? "E-m:o-p:32:32-f64:32:64-v64:32:64-v128:32:128-a:0:32-n32-S32"
            : "e-m:o-p:32:32-f64:32:64-v64:32:64-v128:32:128-a:0:32-n32-S32");
  else
    resetDataLayout(
        BigEndian
            ? "E-m:e-p:32:32-f64:32:64-v64:32:64-v128:32:128-a:0:32-n32-S32"
            : "e-m:e-p:32:32-f64:32:64-v64:32:64-v128:32:128-a:0:32-n32-S32");

  // FIXME: Override "preferred align" for double and long long.
}

void ARMTargetInfo::setArchInfo() {
  StringRef ArchName = getTriple().getArchName();

  ArchISA = llvm::ARM::parseArchISA(ArchName);
  CPU = llvm::ARM::getDefaultCPU(ArchName);
  llvm::ARM::ArchKind AK = llvm::ARM::parseArch(ArchName);
  if (AK != llvm::ARM::ArchKind::INVALID)
    ArchKind = AK;
  setArchInfo(ArchKind);
}

void ARMTargetInfo::setArchInfo(llvm::ARM::ArchKind Kind) {
  StringRef SubArch;

  // cache TargetParser info
  ArchKind = Kind;
  SubArch = llvm::ARM::getSubArch(ArchKind);
  ArchProfile = llvm::ARM::parseArchProfile(SubArch);
  ArchVersion = llvm::ARM::parseArchVersion(SubArch);

  // cache CPU related strings
  CPUAttr = getCPUAttr();
  CPUProfile = getCPUProfile();
}

void ARMTargetInfo::setAtomic() {
  // when triple does not specify a sub arch,
  // then we are not using inline atomics
  bool ShouldUseInlineAtomic =
      (ArchISA == llvm::ARM::ISAKind::ARM && ArchVersion >= 6) ||
      (ArchISA == llvm::ARM::ISAKind::THUMB && ArchVersion >= 7);
  // Cortex M does not support 8 byte atomics, while general Thumb2 does.
  if (ArchProfile == llvm::ARM::ProfileKind::M) {
    MaxAtomicPromoteWidth = 32;
    if (ShouldUseInlineAtomic)
      MaxAtomicInlineWidth = 32;
  } else {
    MaxAtomicPromoteWidth = 64;
    if (ShouldUseInlineAtomic)
      MaxAtomicInlineWidth = 64;
  }
}

bool ARMTargetInfo::isThumb() const {
  return ArchISA == llvm::ARM::ISAKind::THUMB;
}

bool ARMTargetInfo::supportsThumb() const {
  return CPUAttr.count('T') || ArchVersion >= 6;
}

bool ARMTargetInfo::supportsThumb2() const {
  return CPUAttr.equals("6T2") ||
         (ArchVersion >= 7 && !CPUAttr.equals("8M_BASE"));
}

StringRef ARMTargetInfo::getCPUAttr() const {
  // For most sub-arches, the build attribute CPU name is enough.
  // For Cortex variants, it's slightly different.
  switch (ArchKind) {
  default:
    return llvm::ARM::getCPUAttr(ArchKind);
  case llvm::ARM::ArchKind::ARMV6M:
    return "6M";
  case llvm::ARM::ArchKind::ARMV7S:
    return "7S";
  case llvm::ARM::ArchKind::ARMV7A:
    return "7A";
  case llvm::ARM::ArchKind::ARMV7R:
    return "7R";
  case llvm::ARM::ArchKind::ARMV7M:
    return "7M";
  case llvm::ARM::ArchKind::ARMV7EM:
    return "7EM";
  case llvm::ARM::ArchKind::ARMV7VE:
    return "7VE";
  case llvm::ARM::ArchKind::ARMV8A:
    return "8A";
  case llvm::ARM::ArchKind::ARMV8_1A:
    return "8_1A";
  case llvm::ARM::ArchKind::ARMV8_2A:
    return "8_2A";
  case llvm::ARM::ArchKind::ARMV8_3A:
    return "8_3A";
  case llvm::ARM::ArchKind::ARMV8_4A:
    return "8_4A";
  case llvm::ARM::ArchKind::ARMV8_5A:
    return "8_5A";
  case llvm::ARM::ArchKind::ARMV8MBaseline:
    return "8M_BASE";
  case llvm::ARM::ArchKind::ARMV8MMainline:
    return "8M_MAIN";
  case llvm::ARM::ArchKind::ARMV8R:
    return "8R";
  }
}

StringRef ARMTargetInfo::getCPUProfile() const {
  switch (ArchProfile) {
  case llvm::ARM::ProfileKind::A:
    return "A";
  case llvm::ARM::ProfileKind::R:
    return "R";
  case llvm::ARM::ProfileKind::M:
    return "M";
  default:
    return "";
  }
}

ARMTargetInfo::ARMTargetInfo(const llvm::Triple &Triple,
                             const TargetOptions &Opts)
    : TargetInfo(Triple), FPMath(FP_Default), IsAAPCS(true), LDREX(0),
      HW_FP(0) {
  bool IsOpenBSD = Triple.isOSOpenBSD();
  bool IsNetBSD = Triple.isOSNetBSD();

  // FIXME: the isOSBinFormatMachO is a workaround for identifying a Darwin-like
  // environment where size_t is `unsigned long` rather than `unsigned int`

  PtrDiffType = IntPtrType =
      (Triple.isOSDarwin() || Triple.isOSBinFormatMachO() || IsOpenBSD ||
       IsNetBSD)
          ? SignedLong
          : SignedInt;

  SizeType = (Triple.isOSDarwin() || Triple.isOSBinFormatMachO() || IsOpenBSD ||
              IsNetBSD)
                 ? UnsignedLong
                 : UnsignedInt;

  // ptrdiff_t is inconsistent on Darwin
  if ((Triple.isOSDarwin() || Triple.isOSBinFormatMachO()) &&
      !Triple.isWatchABI())
    PtrDiffType = SignedInt;

  // Cache arch related info.
  setArchInfo();

  // {} in inline assembly are neon specifiers, not assembly variant
  // specifiers.
  NoAsmVariants = true;

  // FIXME: This duplicates code from the driver that sets the -target-abi
  // option - this code is used if -target-abi isn't passed and should
  // be unified in some way.
  if (Triple.isOSBinFormatMachO()) {
    // The backend is hardwired to assume AAPCS for M-class processors, ensure
    // the frontend matches that.
    if (Triple.getEnvironment() == llvm::Triple::EABI ||
        Triple.getOS() == llvm::Triple::UnknownOS ||
        ArchProfile == llvm::ARM::ProfileKind::M) {
      setABI("aapcs");
    } else if (Triple.isWatchABI()) {
      setABI("aapcs16");
    } else {
      setABI("apcs-gnu");
    }
  } else if (Triple.isOSWindows()) {
    // FIXME: this is invalid for WindowsCE
    setABI("aapcs");
  } else {
    // Select the default based on the platform.
    switch (Triple.getEnvironment()) {
    case llvm::Triple::Android:
    case llvm::Triple::GNUEABI:
    case llvm::Triple::GNUEABIHF:
    case llvm::Triple::MuslEABI:
    case llvm::Triple::MuslEABIHF:
      setABI("aapcs-linux");
      break;
    case llvm::Triple::EABIHF:
    case llvm::Triple::EABI:
      setABI("aapcs");
      break;
    case llvm::Triple::GNU:
      setABI("apcs-gnu");
      break;
    default:
      if (IsNetBSD)
        setABI("apcs-gnu");
      else if (IsOpenBSD)
        setABI("aapcs-linux");
      else
        setABI("aapcs");
      break;
    }
  }

  // ARM targets default to using the ARM C++ ABI.
  TheCXXABI.set(TargetCXXABI::GenericARM);

  // ARM has atomics up to 8 bytes
  setAtomic();

  // Maximum alignment for ARM NEON data types should be 64-bits (AAPCS)
  if (IsAAPCS && (Triple.getEnvironment() != llvm::Triple::Android))
    MaxVectorAlign = 64;

  // Do force alignment of members that follow zero length bitfields.  If
  // the alignment of the zero-length bitfield is greater than the member
  // that follows it, `bar', `bar' will be aligned as the  type of the
  // zero length bitfield.
  UseZeroLengthBitfieldAlignment = true;

  if (Triple.getOS() == llvm::Triple::Linux ||
      Triple.getOS() == llvm::Triple::UnknownOS)
    this->MCountName = Opts.EABIVersion == llvm::EABI::GNU
                           ? "\01__gnu_mcount_nc"
                           : "\01mcount";
}

StringRef ARMTargetInfo::getABI() const { return ABI; }

bool ARMTargetInfo::setABI(const std::string &Name) {
  ABI = Name;

  // The defaults (above) are for AAPCS, check if we need to change them.
  //
  // FIXME: We need support for -meabi... we could just mangle it into the
  // name.
  if (Name == "apcs-gnu" || Name == "aapcs16") {
    setABIAPCS(Name == "aapcs16");
    return true;
  }
  if (Name == "aapcs" || Name == "aapcs-vfp" || Name == "aapcs-linux") {
    setABIAAPCS();
    return true;
  }
  return false;
}

// FIXME: This should be based on Arch attributes, not CPU names.
bool ARMTargetInfo::initFeatureMap(
    llvm::StringMap<bool> &Features, DiagnosticsEngine &Diags, StringRef CPU,
    const std::vector<std::string> &FeaturesVec) const {

  std::string ArchFeature;
  std::vector<StringRef> TargetFeatures;
  llvm::ARM::ArchKind Arch = llvm::ARM::parseArch(getTriple().getArchName());

  // Map the base architecture to an appropriate target feature, so we don't
  // rely on the target triple.
  llvm::ARM::ArchKind CPUArch = llvm::ARM::parseCPUArch(CPU);
  if (CPUArch == llvm::ARM::ArchKind::INVALID)
    CPUArch = Arch;
  if (CPUArch != llvm::ARM::ArchKind::INVALID) {
    ArchFeature = ("+" + llvm::ARM::getArchName(CPUArch)).str();
    TargetFeatures.push_back(ArchFeature);
  }

  // get default FPU features
  unsigned FPUKind = llvm::ARM::getDefaultFPU(CPU, Arch);
  llvm::ARM::getFPUFeatures(FPUKind, TargetFeatures);

  // get default Extension features
  unsigned Extensions = llvm::ARM::getDefaultExtensions(CPU, Arch);
  llvm::ARM::getExtensionFeatures(Extensions, TargetFeatures);

  for (auto Feature : TargetFeatures)
    if (Feature[0] == '+')
      Features[Feature.drop_front(1)] = true;

  // Enable or disable thumb-mode explicitly per function to enable mixed
  // ARM and Thumb code generation.
  if (isThumb())
    Features["thumb-mode"] = true;
  else
    Features["thumb-mode"] = false;

  // Convert user-provided arm and thumb GNU target attributes to
  // [-|+]thumb-mode target features respectively.
  std::vector<std::string> UpdatedFeaturesVec(FeaturesVec);
  for (auto &Feature : UpdatedFeaturesVec) {
    if (Feature.compare("+arm") == 0)
      Feature = "-thumb-mode";
    else if (Feature.compare("+thumb") == 0)
      Feature = "+thumb-mode";
  }

  return TargetInfo::initFeatureMap(Features, Diags, CPU, UpdatedFeaturesVec);
}


bool ARMTargetInfo::handleTargetFeatures(std::vector<std::string> &Features,
                                         DiagnosticsEngine &Diags) {
  FPU = 0;
  CRC = 0;
  Crypto = 0;
  DSP = 0;
  Unaligned = 1;
  SoftFloat = SoftFloatABI = false;
  HWDiv = 0;
  DotProd = 0;

  // This does not diagnose illegal cases like having both
  // "+vfpv2" and "+vfpv3" or having "+neon" and "+fp-only-sp".
  uint32_t HW_FP_remove = 0;
  for (const auto &Feature : Features) {
    if (Feature == "+soft-float") {
      SoftFloat = true;
    } else if (Feature == "+soft-float-abi") {
      SoftFloatABI = true;
    } else if (Feature == "+vfp2") {
      FPU |= VFP2FPU;
      HW_FP |= HW_FP_SP | HW_FP_DP;
    } else if (Feature == "+vfp3") {
      FPU |= VFP3FPU;
      HW_FP |= HW_FP_SP | HW_FP_DP;
    } else if (Feature == "+vfp4") {
      FPU |= VFP4FPU;
      HW_FP |= HW_FP_SP | HW_FP_DP | HW_FP_HP;
    } else if (Feature == "+fp-armv8") {
      FPU |= FPARMV8;
      HW_FP |= HW_FP_SP | HW_FP_DP | HW_FP_HP;
    } else if (Feature == "+neon") {
      FPU |= NeonFPU;
      HW_FP |= HW_FP_SP | HW_FP_DP;
    } else if (Feature == "+hwdiv") {
      HWDiv |= HWDivThumb;
    } else if (Feature == "+hwdiv-arm") {
      HWDiv |= HWDivARM;
    } else if (Feature == "+crc") {
      CRC = 1;
    } else if (Feature == "+crypto") {
      Crypto = 1;
    } else if (Feature == "+dsp") {
      DSP = 1;
    } else if (Feature == "+fp-only-sp") {
      HW_FP_remove |= HW_FP_DP;
    } else if (Feature == "+strict-align") {
      Unaligned = 0;
    } else if (Feature == "+fp16") {
      HW_FP |= HW_FP_HP;
    } else if (Feature == "+fullfp16") {
      HasLegalHalfType = true;
    } else if (Feature == "+dotprod") {
      DotProd = true;
    }
  }
  HW_FP &= ~HW_FP_remove;

  switch (ArchVersion) {
  case 6:
    if (ArchProfile == llvm::ARM::ProfileKind::M)
      LDREX = 0;
    else if (ArchKind == llvm::ARM::ArchKind::ARMV6K)
      LDREX = LDREX_D | LDREX_W | LDREX_H | LDREX_B;
    else
      LDREX = LDREX_W;
    break;
  case 7:
    if (ArchProfile == llvm::ARM::ProfileKind::M)
      LDREX = LDREX_W | LDREX_H | LDREX_B;
    else
      LDREX = LDREX_D | LDREX_W | LDREX_H | LDREX_B;
    break;
  case 8:
    LDREX = LDREX_D | LDREX_W | LDREX_H | LDREX_B;
  }

  if (!(FPU & NeonFPU) && FPMath == FP_Neon) {
    Diags.Report(diag::err_target_unsupported_fpmath) << "neon";
    return false;
  }

  if (FPMath == FP_Neon)
    Features.push_back("+neonfp");
  else if (FPMath == FP_VFP)
    Features.push_back("-neonfp");

  // Remove front-end specific options which the backend handles differently.
  auto Feature = std::find(Features.begin(), Features.end(), "+soft-float-abi");
  if (Feature != Features.end())
    Features.erase(Feature);

  return true;
}

bool ARMTargetInfo::hasFeature(StringRef Feature) const {
  return llvm::StringSwitch<bool>(Feature)
      .Case("arm", true)
      .Case("aarch32", true)
      .Case("softfloat", SoftFloat)
      .Case("thumb", isThumb())
      .Case("neon", (FPU & NeonFPU) && !SoftFloat)
      .Case("vfp", FPU && !SoftFloat)
      .Case("hwdiv", HWDiv & HWDivThumb)
      .Case("hwdiv-arm", HWDiv & HWDivARM)
      .Default(false);
}

bool ARMTargetInfo::isValidCPUName(StringRef Name) const {
  return Name == "generic" ||
         llvm::ARM::parseCPUArch(Name) != llvm::ARM::ArchKind::INVALID;
}

void ARMTargetInfo::fillValidCPUList(SmallVectorImpl<StringRef> &Values) const {
  llvm::ARM::fillValidCPUArchList(Values);
}

bool ARMTargetInfo::setCPU(const std::string &Name) {
  if (Name != "generic")
    setArchInfo(llvm::ARM::parseCPUArch(Name));

  if (ArchKind == llvm::ARM::ArchKind::INVALID)
    return false;
  setAtomic();
  CPU = Name;
  return true;
}

bool ARMTargetInfo::setFPMath(StringRef Name) {
  if (Name == "neon") {
    FPMath = FP_Neon;
    return true;
  } else if (Name == "vfp" || Name == "vfp2" || Name == "vfp3" ||
             Name == "vfp4") {
    FPMath = FP_VFP;
    return true;
  }
  return false;
}

void ARMTargetInfo::getTargetDefinesARMV81A(const LangOptions &Opts,
                                            MacroBuilder &Builder) const {
  Builder.defineMacro("__ARM_FEATURE_QRDMX", "1");
}

void ARMTargetInfo::getTargetDefinesARMV82A(const LangOptions &Opts,
                                            MacroBuilder &Builder) const {
  // Also include the ARMv8.1-A defines
  getTargetDefinesARMV81A(Opts, Builder);
}

void ARMTargetInfo::getTargetDefines(const LangOptions &Opts,
                                     MacroBuilder &Builder) const {
  // Target identification.
  Builder.defineMacro("__arm");
  Builder.defineMacro("__arm__");
  // For bare-metal none-eabi.
  if (getTriple().getOS() == llvm::Triple::UnknownOS &&
      (getTriple().getEnvironment() == llvm::Triple::EABI ||
       getTriple().getEnvironment() == llvm::Triple::EABIHF))
    Builder.defineMacro("__ELF__");

  // Target properties.
  Builder.defineMacro("__REGISTER_PREFIX__", "");

  // Unfortunately, __ARM_ARCH_7K__ is now more of an ABI descriptor. The CPU
  // happens to be Cortex-A7 though, so it should still get __ARM_ARCH_7A__.
  if (getTriple().isWatchABI())
    Builder.defineMacro("__ARM_ARCH_7K__", "2");

  if (!CPUAttr.empty())
    Builder.defineMacro("__ARM_ARCH_" + CPUAttr + "__");

  // ACLE 6.4.1 ARM/Thumb instruction set architecture
  // __ARM_ARCH is defined as an integer value indicating the current ARM ISA
  Builder.defineMacro("__ARM_ARCH", Twine(ArchVersion));

  if (ArchVersion >= 8) {
    // ACLE 6.5.7 Crypto Extension
    if (Crypto)
      Builder.defineMacro("__ARM_FEATURE_CRYPTO", "1");
    // ACLE 6.5.8 CRC32 Extension
    if (CRC)
      Builder.defineMacro("__ARM_FEATURE_CRC32", "1");
    // ACLE 6.5.10 Numeric Maximum and Minimum
    Builder.defineMacro("__ARM_FEATURE_NUMERIC_MAXMIN", "1");
    // ACLE 6.5.9 Directed Rounding
    Builder.defineMacro("__ARM_FEATURE_DIRECTED_ROUNDING", "1");
  }

  // __ARM_ARCH_ISA_ARM is defined to 1 if the core supports the ARM ISA.  It
  // is not defined for the M-profile.
  // NOTE that the default profile is assumed to be 'A'
  if (CPUProfile.empty() || ArchProfile != llvm::ARM::ProfileKind::M)
    Builder.defineMacro("__ARM_ARCH_ISA_ARM", "1");

  // __ARM_ARCH_ISA_THUMB is defined to 1 if the core supports the original
  // Thumb ISA (including v6-M and v8-M Baseline).  It is set to 2 if the
  // core supports the Thumb-2 ISA as found in the v6T2 architecture and all
  // v7 and v8 architectures excluding v8-M Baseline.
  if (supportsThumb2())
    Builder.defineMacro("__ARM_ARCH_ISA_THUMB", "2");
  else if (supportsThumb())
    Builder.defineMacro("__ARM_ARCH_ISA_THUMB", "1");

  // __ARM_32BIT_STATE is defined to 1 if code is being generated for a 32-bit
  // instruction set such as ARM or Thumb.
  Builder.defineMacro("__ARM_32BIT_STATE", "1");

  // ACLE 6.4.2 Architectural Profile (A, R, M or pre-Cortex)

  // __ARM_ARCH_PROFILE is defined as 'A', 'R', 'M' or 'S', or unset.
  if (!CPUProfile.empty())
    Builder.defineMacro("__ARM_ARCH_PROFILE", "'" + CPUProfile + "'");

  // ACLE 6.4.3 Unaligned access supported in hardware
  if (Unaligned)
    Builder.defineMacro("__ARM_FEATURE_UNALIGNED", "1");

  // ACLE 6.4.4 LDREX/STREX
  if (LDREX)
    Builder.defineMacro("__ARM_FEATURE_LDREX", "0x" + Twine::utohexstr(LDREX));

  // ACLE 6.4.5 CLZ
  if (ArchVersion == 5 || (ArchVersion == 6 && CPUProfile != "M") ||
      ArchVersion > 6)
    Builder.defineMacro("__ARM_FEATURE_CLZ", "1");

  // ACLE 6.5.1 Hardware Floating Point
  if (HW_FP)
    Builder.defineMacro("__ARM_FP", "0x" + Twine::utohexstr(HW_FP));

  // ACLE predefines.
  Builder.defineMacro("__ARM_ACLE", "200");

  // FP16 support (we currently only support IEEE format).
  Builder.defineMacro("__ARM_FP16_FORMAT_IEEE", "1");
  Builder.defineMacro("__ARM_FP16_ARGS", "1");

  // ACLE 6.5.3 Fused multiply-accumulate (FMA)
  if (ArchVersion >= 7 && (FPU & VFP4FPU))
    Builder.defineMacro("__ARM_FEATURE_FMA", "1");

  // Subtarget options.

  // FIXME: It's more complicated than this and we don't really support
  // interworking.
  // Windows on ARM does not "support" interworking
  if (5 <= ArchVersion && ArchVersion <= 8 && !getTriple().isOSWindows())
    Builder.defineMacro("__THUMB_INTERWORK__");

  if (ABI == "aapcs" || ABI == "aapcs-linux" || ABI == "aapcs-vfp") {
    // Embedded targets on Darwin follow AAPCS, but not EABI.
    // Windows on ARM follows AAPCS VFP, but does not conform to EABI.
    if (!getTriple().isOSBinFormatMachO() && !getTriple().isOSWindows())
      Builder.defineMacro("__ARM_EABI__");
    Builder.defineMacro("__ARM_PCS", "1");
  }

  if ((!SoftFloat && !SoftFloatABI) || ABI == "aapcs-vfp" || ABI == "aapcs16")
    Builder.defineMacro("__ARM_PCS_VFP", "1");

  if (SoftFloat)
    Builder.defineMacro("__SOFTFP__");

  if (ArchKind == llvm::ARM::ArchKind::XSCALE)
    Builder.defineMacro("__XSCALE__");

  if (isThumb()) {
    Builder.defineMacro("__THUMBEL__");
    Builder.defineMacro("__thumb__");
    if (supportsThumb2())
      Builder.defineMacro("__thumb2__");
  }

  // ACLE 6.4.9 32-bit SIMD instructions
  if ((CPUProfile != "M" && ArchVersion >= 6) || (CPUProfile == "M" && DSP))
    Builder.defineMacro("__ARM_FEATURE_SIMD32", "1");

  // ACLE 6.4.10 Hardware Integer Divide
  if (((HWDiv & HWDivThumb) && isThumb()) ||
      ((HWDiv & HWDivARM) && !isThumb())) {
    Builder.defineMacro("__ARM_FEATURE_IDIV", "1");
    Builder.defineMacro("__ARM_ARCH_EXT_IDIV__", "1");
  }

  // Note, this is always on in gcc, even though it doesn't make sense.
  Builder.defineMacro("__APCS_32__");

  if (FPUModeIsVFP((FPUMode)FPU)) {
    Builder.defineMacro("__VFP_FP__");
    if (FPU & VFP2FPU)
      Builder.defineMacro("__ARM_VFPV2__");
    if (FPU & VFP3FPU)
      Builder.defineMacro("__ARM_VFPV3__");
    if (FPU & VFP4FPU)
      Builder.defineMacro("__ARM_VFPV4__");
    if (FPU & FPARMV8)
      Builder.defineMacro("__ARM_FPV5__");
  }

  // This only gets set when Neon instructions are actually available, unlike
  // the VFP define, hence the soft float and arch check. This is subtly
  // different from gcc, we follow the intent which was that it should be set
  // when Neon instructions are actually available.
  if ((FPU & NeonFPU) && !SoftFloat && ArchVersion >= 7) {
    Builder.defineMacro("__ARM_NEON", "1");
    Builder.defineMacro("__ARM_NEON__");
    // current AArch32 NEON implementations do not support double-precision
    // floating-point even when it is present in VFP.
    Builder.defineMacro("__ARM_NEON_FP",
                        "0x" + Twine::utohexstr(HW_FP & ~HW_FP_DP));
  }

  Builder.defineMacro("__ARM_SIZEOF_WCHAR_T",
                      Twine(Opts.WCharSize ? Opts.WCharSize : 4));

  Builder.defineMacro("__ARM_SIZEOF_MINIMAL_ENUM", Opts.ShortEnums ? "1" : "4");

  if (ArchVersion >= 6 && CPUAttr != "6M" && CPUAttr != "8M_BASE") {
    Builder.defineMacro("__GCC_HAVE_SYNC_COMPARE_AND_SWAP_1");
    Builder.defineMacro("__GCC_HAVE_SYNC_COMPARE_AND_SWAP_2");
    Builder.defineMacro("__GCC_HAVE_SYNC_COMPARE_AND_SWAP_4");
    Builder.defineMacro("__GCC_HAVE_SYNC_COMPARE_AND_SWAP_8");
  }

  // ACLE 6.4.7 DSP instructions
  if (DSP) {
    Builder.defineMacro("__ARM_FEATURE_DSP", "1");
  }

  // ACLE 6.4.8 Saturation instructions
  bool SAT = false;
  if ((ArchVersion == 6 && CPUProfile != "M") || ArchVersion > 6) {
    Builder.defineMacro("__ARM_FEATURE_SAT", "1");
    SAT = true;
  }

  // ACLE 6.4.6 Q (saturation) flag
  if (DSP || SAT)
    Builder.defineMacro("__ARM_FEATURE_QBIT", "1");

  if (Opts.UnsafeFPMath)
    Builder.defineMacro("__ARM_FP_FAST", "1");

  // Armv8.2-A FP16 vector intrinsic
  if ((FPU & NeonFPU) && HasLegalHalfType)
    Builder.defineMacro("__ARM_FEATURE_FP16_VECTOR_ARITHMETIC", "1");

  // Armv8.2-A FP16 scalar intrinsics
  if (HasLegalHalfType)
    Builder.defineMacro("__ARM_FEATURE_FP16_SCALAR_ARITHMETIC", "1");

  // Armv8.2-A dot product intrinsics
  if (DotProd)
    Builder.defineMacro("__ARM_FEATURE_DOTPROD", "1");

  switch (ArchKind) {
  default:
    break;
  case llvm::ARM::ArchKind::ARMV8_1A:
    getTargetDefinesARMV81A(Opts, Builder);
    break;
  case llvm::ARM::ArchKind::ARMV8_2A:
    getTargetDefinesARMV82A(Opts, Builder);
    break;
  }
}

const Builtin::Info ARMTargetInfo::BuiltinInfo[] = {
#define BUILTIN(ID, TYPE, ATTRS)                                               \
  {#ID, TYPE, ATTRS, nullptr, ALL_LANGUAGES, nullptr},
#define LIBBUILTIN(ID, TYPE, ATTRS, HEADER)                                    \
  {#ID, TYPE, ATTRS, HEADER, ALL_LANGUAGES, nullptr},
#include "clang/Basic/BuiltinsNEON.def"

#define BUILTIN(ID, TYPE, ATTRS)                                               \
  {#ID, TYPE, ATTRS, nullptr, ALL_LANGUAGES, nullptr},
#define LANGBUILTIN(ID, TYPE, ATTRS, LANG)                                     \
  {#ID, TYPE, ATTRS, nullptr, LANG, nullptr},
#define LIBBUILTIN(ID, TYPE, ATTRS, HEADER)                                    \
  {#ID, TYPE, ATTRS, HEADER, ALL_LANGUAGES, nullptr},
#define TARGET_HEADER_BUILTIN(ID, TYPE, ATTRS, HEADER, LANGS, FEATURE)         \
  {#ID, TYPE, ATTRS, HEADER, LANGS, FEATURE},
#include "clang/Basic/BuiltinsARM.def"
};

ArrayRef<Builtin::Info> ARMTargetInfo::getTargetBuiltins() const {
  return llvm::makeArrayRef(BuiltinInfo, clang::ARM::LastTSBuiltin -
                                             Builtin::FirstTSBuiltin);
}

bool ARMTargetInfo::isCLZForZeroUndef() const { return false; }
TargetInfo::BuiltinVaListKind ARMTargetInfo::getBuiltinVaListKind() const {
  return IsAAPCS
             ? AAPCSABIBuiltinVaList
             : (getTriple().isWatchABI() ? TargetInfo::CharPtrBuiltinVaList
                                         : TargetInfo::VoidPtrBuiltinVaList);
}

const char *const ARMTargetInfo::GCCRegNames[] = {
    // Integer registers
    "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", "r8", "r9", "r10", "r11",
    "r12", "sp", "lr", "pc",

    // Float registers
    "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7", "s8", "s9", "s10", "s11",
    "s12", "s13", "s14", "s15", "s16", "s17", "s18", "s19", "s20", "s21", "s22",
    "s23", "s24", "s25", "s26", "s27", "s28", "s29", "s30", "s31",

    // Double registers
    "d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7", "d8", "d9", "d10", "d11",
    "d12", "d13", "d14", "d15", "d16", "d17", "d18", "d19", "d20", "d21", "d22",
    "d23", "d24", "d25", "d26", "d27", "d28", "d29", "d30", "d31",

    // Quad registers
    "q0", "q1", "q2", "q3", "q4", "q5", "q6", "q7", "q8", "q9", "q10", "q11",
    "q12", "q13", "q14", "q15"};

ArrayRef<const char *> ARMTargetInfo::getGCCRegNames() const {
  return llvm::makeArrayRef(GCCRegNames);
}

const TargetInfo::GCCRegAlias ARMTargetInfo::GCCRegAliases[] = {
    {{"a1"}, "r0"},  {{"a2"}, "r1"},        {{"a3"}, "r2"},  {{"a4"}, "r3"},
    {{"v1"}, "r4"},  {{"v2"}, "r5"},        {{"v3"}, "r6"},  {{"v4"}, "r7"},
    {{"v5"}, "r8"},  {{"v6", "rfp"}, "r9"}, {{"sl"}, "r10"}, {{"fp"}, "r11"},
    {{"ip"}, "r12"}, {{"r13"}, "sp"},       {{"r14"}, "lr"}, {{"r15"}, "pc"},
    // The S, D and Q registers overlap, but aren't really aliases; we
    // don't want to substitute one of these for a different-sized one.
};

ArrayRef<TargetInfo::GCCRegAlias> ARMTargetInfo::getGCCRegAliases() const {
  return llvm::makeArrayRef(GCCRegAliases);
}

bool ARMTargetInfo::validateAsmConstraint(
    const char *&Name, TargetInfo::ConstraintInfo &Info) const {
  switch (*Name) {
  default:
    break;
  case 'l': // r0-r7
  case 'h': // r8-r15
  case 't': // VFP Floating point register single precision
  case 'w': // VFP Floating point register double precision
    Info.setAllowsRegister();
    return true;
  case 'I':
  case 'J':
  case 'K':
  case 'L':
  case 'M':
    // FIXME
    return true;
  case 'Q': // A memory address that is a single base register.
    Info.setAllowsMemory();
    return true;
  case 'U': // a memory reference...
    switch (Name[1]) {
    case 'q': // ...ARMV4 ldrsb
    case 'v': // ...VFP load/store (reg+constant offset)
    case 'y': // ...iWMMXt load/store
    case 't': // address valid for load/store opaque types wider
              // than 128-bits
    case 'n': // valid address for Neon doubleword vector load/store
    case 'm': // valid address for Neon element and structure load/store
    case 's': // valid address for non-offset loads/stores of quad-word
              // values in four ARM registers
      Info.setAllowsMemory();
      Name++;
      return true;
    }
  }
  return false;
}

std::string ARMTargetInfo::convertConstraint(const char *&Constraint) const {
  std::string R;
  switch (*Constraint) {
  case 'U': // Two-character constraint; add "^" hint for later parsing.
    R = std::string("^") + std::string(Constraint, 2);
    Constraint++;
    break;
  case 'p': // 'p' should be translated to 'r' by default.
    R = std::string("r");
    break;
  default:
    return std::string(1, *Constraint);
  }
  return R;
}

bool ARMTargetInfo::validateConstraintModifier(
    StringRef Constraint, char Modifier, unsigned Size,
    std::string &SuggestedModifier) const {
  bool isOutput = (Constraint[0] == '=');
  bool isInOut = (Constraint[0] == '+');

  // Strip off constraint modifiers.
  while (Constraint[0] == '=' || Constraint[0] == '+' || Constraint[0] == '&')
    Constraint = Constraint.substr(1);

  switch (Constraint[0]) {
  default:
    break;
  case 'r': {
    switch (Modifier) {
    default:
      return (isInOut || isOutput || Size <= 64);
    case 'q':
      // A register of size 32 cannot fit a vector type.
      return false;
    }
  }
  }

  return true;
}
const char *ARMTargetInfo::getClobbers() const {
  // FIXME: Is this really right?
  return "";
}

TargetInfo::CallingConvCheckResult
ARMTargetInfo::checkCallingConvention(CallingConv CC) const {
  switch (CC) {
  case CC_AAPCS:
  case CC_AAPCS_VFP:
  case CC_Swift:
  case CC_OpenCLKernel:
    return CCCR_OK;
  default:
    return CCCR_Warning;
  }
}

int ARMTargetInfo::getEHDataRegisterNumber(unsigned RegNo) const {
  if (RegNo == 0)
    return 0;
  if (RegNo == 1)
    return 1;
  return -1;
}

bool ARMTargetInfo::hasSjLjLowering() const { return true; }

ARMleTargetInfo::ARMleTargetInfo(const llvm::Triple &Triple,
                                 const TargetOptions &Opts)
    : ARMTargetInfo(Triple, Opts) {}

void ARMleTargetInfo::getTargetDefines(const LangOptions &Opts,
                                       MacroBuilder &Builder) const {
  Builder.defineMacro("__ARMEL__");
  ARMTargetInfo::getTargetDefines(Opts, Builder);
}

ARMbeTargetInfo::ARMbeTargetInfo(const llvm::Triple &Triple,
                                 const TargetOptions &Opts)
    : ARMTargetInfo(Triple, Opts) {}

void ARMbeTargetInfo::getTargetDefines(const LangOptions &Opts,
                                       MacroBuilder &Builder) const {
  Builder.defineMacro("__ARMEB__");
  Builder.defineMacro("__ARM_BIG_ENDIAN");
  ARMTargetInfo::getTargetDefines(Opts, Builder);
}

WindowsARMTargetInfo::WindowsARMTargetInfo(const llvm::Triple &Triple,
                                           const TargetOptions &Opts)
    : WindowsTargetInfo<ARMleTargetInfo>(Triple, Opts), Triple(Triple) {
}

void WindowsARMTargetInfo::getVisualStudioDefines(const LangOptions &Opts,
                                                  MacroBuilder &Builder) const {
  WindowsTargetInfo<ARMleTargetInfo>::getVisualStudioDefines(Opts, Builder);

  // FIXME: this is invalid for WindowsCE
  Builder.defineMacro("_M_ARM_NT", "1");
  Builder.defineMacro("_M_ARMT", "_M_ARM");
  Builder.defineMacro("_M_THUMB", "_M_ARM");

  assert((Triple.getArch() == llvm::Triple::arm ||
          Triple.getArch() == llvm::Triple::thumb) &&
         "invalid architecture for Windows ARM target info");
  unsigned Offset = Triple.getArch() == llvm::Triple::arm ? 4 : 6;
  Builder.defineMacro("_M_ARM", Triple.getArchName().substr(Offset));

  // TODO map the complete set of values
  // 31: VFPv3 40: VFPv4
  Builder.defineMacro("_M_ARM_FP", "31");
}

TargetInfo::BuiltinVaListKind
WindowsARMTargetInfo::getBuiltinVaListKind() const {
  return TargetInfo::CharPtrBuiltinVaList;
}

TargetInfo::CallingConvCheckResult
WindowsARMTargetInfo::checkCallingConvention(CallingConv CC) const {
  switch (CC) {
  case CC_X86StdCall:
  case CC_X86ThisCall:
  case CC_X86FastCall:
  case CC_X86VectorCall:
    return CCCR_Ignore;
  case CC_C:
  case CC_OpenCLKernel:
  case CC_PreserveMost:
  case CC_PreserveAll:
  case CC_Swift:
    return CCCR_OK;
  default:
    return CCCR_Warning;
  }
}

// Windows ARM + Itanium C++ ABI Target
ItaniumWindowsARMleTargetInfo::ItaniumWindowsARMleTargetInfo(
    const llvm::Triple &Triple, const TargetOptions &Opts)
    : WindowsARMTargetInfo(Triple, Opts) {
  TheCXXABI.set(TargetCXXABI::GenericARM);
}

void ItaniumWindowsARMleTargetInfo::getTargetDefines(
    const LangOptions &Opts, MacroBuilder &Builder) const {
  WindowsARMTargetInfo::getTargetDefines(Opts, Builder);

  if (Opts.MSVCCompat)
    WindowsARMTargetInfo::getVisualStudioDefines(Opts, Builder);
}

// Windows ARM, MS (C++) ABI
MicrosoftARMleTargetInfo::MicrosoftARMleTargetInfo(const llvm::Triple &Triple,
                                                   const TargetOptions &Opts)
    : WindowsARMTargetInfo(Triple, Opts) {
  TheCXXABI.set(TargetCXXABI::Microsoft);
}

void MicrosoftARMleTargetInfo::getTargetDefines(const LangOptions &Opts,
                                                MacroBuilder &Builder) const {
  WindowsARMTargetInfo::getTargetDefines(Opts, Builder);
  WindowsARMTargetInfo::getVisualStudioDefines(Opts, Builder);
}

MinGWARMTargetInfo::MinGWARMTargetInfo(const llvm::Triple &Triple,
                                       const TargetOptions &Opts)
    : WindowsARMTargetInfo(Triple, Opts) {
  TheCXXABI.set(TargetCXXABI::GenericARM);
}

void MinGWARMTargetInfo::getTargetDefines(const LangOptions &Opts,
                                          MacroBuilder &Builder) const {
  WindowsARMTargetInfo::getTargetDefines(Opts, Builder);
  Builder.defineMacro("_ARM_");
}

CygwinARMTargetInfo::CygwinARMTargetInfo(const llvm::Triple &Triple,
                                         const TargetOptions &Opts)
    : ARMleTargetInfo(Triple, Opts) {
  this->WCharType = TargetInfo::UnsignedShort;
  TLSSupported = false;
  DoubleAlign = LongLongAlign = 64;
  resetDataLayout("e-m:e-p:32:32-i64:64-v128:64:128-a:0:32-n32-S64");
}

void CygwinARMTargetInfo::getTargetDefines(const LangOptions &Opts,
                                           MacroBuilder &Builder) const {
  ARMleTargetInfo::getTargetDefines(Opts, Builder);
  Builder.defineMacro("_ARM_");
  Builder.defineMacro("__CYGWIN__");
  Builder.defineMacro("__CYGWIN32__");
  DefineStd(Builder, "unix", Opts);
  if (Opts.CPlusPlus)
    Builder.defineMacro("_GNU_SOURCE");
}

DarwinARMTargetInfo::DarwinARMTargetInfo(const llvm::Triple &Triple,
                                         const TargetOptions &Opts)
    : DarwinTargetInfo<ARMleTargetInfo>(Triple, Opts) {
  HasAlignMac68kSupport = true;
  // iOS always has 64-bit atomic instructions.
  // FIXME: This should be based off of the target features in
  // ARMleTargetInfo.
  MaxAtomicInlineWidth = 64;

  if (Triple.isWatchABI()) {
    // Darwin on iOS uses a variant of the ARM C++ ABI.
    TheCXXABI.set(TargetCXXABI::WatchOS);

    // BOOL should be a real boolean on the new ABI
    UseSignedCharForObjCBool = false;
  } else
    TheCXXABI.set(TargetCXXABI::iOS);
}

void DarwinARMTargetInfo::getOSDefines(const LangOptions &Opts,
                                       const llvm::Triple &Triple,
                                       MacroBuilder &Builder) const {
  getDarwinDefines(Builder, Opts, Triple, PlatformName, PlatformMinVersion);
}

RenderScript32TargetInfo::RenderScript32TargetInfo(const llvm::Triple &Triple,
                                                   const TargetOptions &Opts)
    : ARMleTargetInfo(llvm::Triple("armv7", Triple.getVendorName(),
                                   Triple.getOSName(),
                                   Triple.getEnvironmentName()),
                      Opts) {
  IsRenderScriptTarget = true;
  LongWidth = LongAlign = 64;
}

void RenderScript32TargetInfo::getTargetDefines(const LangOptions &Opts,
                                                MacroBuilder &Builder) const {
  Builder.defineMacro("__RENDERSCRIPT__");
  ARMleTargetInfo::getTargetDefines(Opts, Builder);
}