summaryrefslogtreecommitdiffstats
path: root/lib/CodeGen/CGExprAgg.cpp
blob: 2103026a84f29a4b7ba4e45f43dc1676faabe8c5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
//===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This contains code to emit Aggregate Expr nodes as LLVM code.
//
//===----------------------------------------------------------------------===//

#include "CodeGenFunction.h"
#include "CodeGenModule.h"
#include "CGObjCRuntime.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/StmtVisitor.h"
#include "llvm/Constants.h"
#include "llvm/Function.h"
#include "llvm/GlobalVariable.h"
#include "llvm/Intrinsics.h"
using namespace clang;
using namespace CodeGen;

//===----------------------------------------------------------------------===//
//                        Aggregate Expression Emitter
//===----------------------------------------------------------------------===//

namespace  {
class AggExprEmitter : public StmtVisitor<AggExprEmitter> {
  CodeGenFunction &CGF;
  CGBuilderTy &Builder;
  AggValueSlot Dest;
  bool IgnoreResult;

  /// We want to use 'dest' as the return slot except under two
  /// conditions:
  ///   - The destination slot requires garbage collection, so we
  ///     need to use the GC API.
  ///   - The destination slot is potentially aliased.
  bool shouldUseDestForReturnSlot() const {
    return !(Dest.requiresGCollection() || Dest.isPotentiallyAliased());
  }

  ReturnValueSlot getReturnValueSlot() const {
    if (!shouldUseDestForReturnSlot())
      return ReturnValueSlot();

    return ReturnValueSlot(Dest.getAddr(), Dest.isVolatile());
  }

  AggValueSlot EnsureSlot(QualType T) {
    if (!Dest.isIgnored()) return Dest;
    return CGF.CreateAggTemp(T, "agg.tmp.ensured");
  }

public:
  AggExprEmitter(CodeGenFunction &cgf, AggValueSlot Dest,
                 bool ignore)
    : CGF(cgf), Builder(CGF.Builder), Dest(Dest),
      IgnoreResult(ignore) {
  }

  //===--------------------------------------------------------------------===//
  //                               Utilities
  //===--------------------------------------------------------------------===//

  /// EmitAggLoadOfLValue - Given an expression with aggregate type that
  /// represents a value lvalue, this method emits the address of the lvalue,
  /// then loads the result into DestPtr.
  void EmitAggLoadOfLValue(const Expr *E);

  /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
  void EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore = false);
  void EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore = false,
                         unsigned Alignment = 0);

  void EmitMoveFromReturnSlot(const Expr *E, RValue Src);

  void EmitStdInitializerList(llvm::Value *DestPtr, InitListExpr *InitList);
  void EmitArrayInit(llvm::Value *DestPtr, llvm::ArrayType *AType,
                     QualType elementType, InitListExpr *E);

  AggValueSlot::NeedsGCBarriers_t needsGC(QualType T) {
    if (CGF.getLangOpts().getGC() && TypeRequiresGCollection(T))
      return AggValueSlot::NeedsGCBarriers;
    return AggValueSlot::DoesNotNeedGCBarriers;
  }

  bool TypeRequiresGCollection(QualType T);

  //===--------------------------------------------------------------------===//
  //                            Visitor Methods
  //===--------------------------------------------------------------------===//

  void VisitStmt(Stmt *S) {
    CGF.ErrorUnsupported(S, "aggregate expression");
  }
  void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); }
  void VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
    Visit(GE->getResultExpr());
  }
  void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); }
  void VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
    return Visit(E->getReplacement());
  }

  // l-values.
  void VisitDeclRefExpr(DeclRefExpr *E) {
    // For aggregates, we should always be able to emit the variable
    // as an l-value unless it's a reference.  This is due to the fact
    // that we can't actually ever see a normal l2r conversion on an
    // aggregate in C++, and in C there's no language standard
    // actively preventing us from listing variables in the captures
    // list of a block.
    if (E->getDecl()->getType()->isReferenceType()) {
      if (CodeGenFunction::ConstantEmission result
            = CGF.tryEmitAsConstant(E)) {
        EmitFinalDestCopy(E, result.getReferenceLValue(CGF, E));
        return;
      }
    }

    EmitAggLoadOfLValue(E);
  }

  void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); }
  void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); }
  void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); }
  void VisitCompoundLiteralExpr(CompoundLiteralExpr *E);
  void VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
    EmitAggLoadOfLValue(E);
  }
  void VisitPredefinedExpr(const PredefinedExpr *E) {
    EmitAggLoadOfLValue(E);
  }

  // Operators.
  void VisitCastExpr(CastExpr *E);
  void VisitCallExpr(const CallExpr *E);
  void VisitStmtExpr(const StmtExpr *E);
  void VisitBinaryOperator(const BinaryOperator *BO);
  void VisitPointerToDataMemberBinaryOperator(const BinaryOperator *BO);
  void VisitBinAssign(const BinaryOperator *E);
  void VisitBinComma(const BinaryOperator *E);

  void VisitObjCMessageExpr(ObjCMessageExpr *E);
  void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
    EmitAggLoadOfLValue(E);
  }

  void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO);
  void VisitChooseExpr(const ChooseExpr *CE);
  void VisitInitListExpr(InitListExpr *E);
  void VisitImplicitValueInitExpr(ImplicitValueInitExpr *E);
  void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
    Visit(DAE->getExpr());
  }
  void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E);
  void VisitCXXConstructExpr(const CXXConstructExpr *E);
  void VisitLambdaExpr(LambdaExpr *E);
  void VisitExprWithCleanups(ExprWithCleanups *E);
  void VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E);
  void VisitCXXTypeidExpr(CXXTypeidExpr *E) { EmitAggLoadOfLValue(E); }
  void VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E);
  void VisitOpaqueValueExpr(OpaqueValueExpr *E);

  void VisitPseudoObjectExpr(PseudoObjectExpr *E) {
    if (E->isGLValue()) {
      LValue LV = CGF.EmitPseudoObjectLValue(E);
      return EmitFinalDestCopy(E, LV);
    }

    CGF.EmitPseudoObjectRValue(E, EnsureSlot(E->getType()));
  }

  void VisitVAArgExpr(VAArgExpr *E);

  void EmitInitializationToLValue(Expr *E, LValue Address);
  void EmitNullInitializationToLValue(LValue Address);
  //  case Expr::ChooseExprClass:
  void VisitCXXThrowExpr(const CXXThrowExpr *E) { CGF.EmitCXXThrowExpr(E); }
  void VisitAtomicExpr(AtomicExpr *E) {
    CGF.EmitAtomicExpr(E, EnsureSlot(E->getType()).getAddr());
  }
};
}  // end anonymous namespace.

//===----------------------------------------------------------------------===//
//                                Utilities
//===----------------------------------------------------------------------===//

/// EmitAggLoadOfLValue - Given an expression with aggregate type that
/// represents a value lvalue, this method emits the address of the lvalue,
/// then loads the result into DestPtr.
void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) {
  LValue LV = CGF.EmitLValue(E);
  EmitFinalDestCopy(E, LV);
}

/// \brief True if the given aggregate type requires special GC API calls.
bool AggExprEmitter::TypeRequiresGCollection(QualType T) {
  // Only record types have members that might require garbage collection.
  const RecordType *RecordTy = T->getAs<RecordType>();
  if (!RecordTy) return false;

  // Don't mess with non-trivial C++ types.
  RecordDecl *Record = RecordTy->getDecl();
  if (isa<CXXRecordDecl>(Record) &&
      (!cast<CXXRecordDecl>(Record)->hasTrivialCopyConstructor() ||
       !cast<CXXRecordDecl>(Record)->hasTrivialDestructor()))
    return false;

  // Check whether the type has an object member.
  return Record->hasObjectMember();
}

/// \brief Perform the final move to DestPtr if for some reason
/// getReturnValueSlot() didn't use it directly.
///
/// The idea is that you do something like this:
///   RValue Result = EmitSomething(..., getReturnValueSlot());
///   EmitMoveFromReturnSlot(E, Result);
///
/// If nothing interferes, this will cause the result to be emitted
/// directly into the return value slot.  Otherwise, a final move
/// will be performed.
void AggExprEmitter::EmitMoveFromReturnSlot(const Expr *E, RValue Src) {
  if (shouldUseDestForReturnSlot()) {
    // Logically, Dest.getAddr() should equal Src.getAggregateAddr().
    // The possibility of undef rvalues complicates that a lot,
    // though, so we can't really assert.
    return;
  }

  // Otherwise, do a final copy, 
  assert(Dest.getAddr() != Src.getAggregateAddr());
  EmitFinalDestCopy(E, Src, /*Ignore*/ true);
}

/// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
void AggExprEmitter::EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore,
                                       unsigned Alignment) {
  assert(Src.isAggregate() && "value must be aggregate value!");

  // If Dest is ignored, then we're evaluating an aggregate expression
  // in a context (like an expression statement) that doesn't care
  // about the result.  C says that an lvalue-to-rvalue conversion is
  // performed in these cases; C++ says that it is not.  In either
  // case, we don't actually need to do anything unless the value is
  // volatile.
  if (Dest.isIgnored()) {
    if (!Src.isVolatileQualified() ||
        CGF.CGM.getLangOpts().CPlusPlus ||
        (IgnoreResult && Ignore))
      return;

    // If the source is volatile, we must read from it; to do that, we need
    // some place to put it.
    Dest = CGF.CreateAggTemp(E->getType(), "agg.tmp");
  }

  if (Dest.requiresGCollection()) {
    CharUnits size = CGF.getContext().getTypeSizeInChars(E->getType());
    llvm::Type *SizeTy = CGF.ConvertType(CGF.getContext().getSizeType());
    llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size.getQuantity());
    CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF,
                                                      Dest.getAddr(),
                                                      Src.getAggregateAddr(),
                                                      SizeVal);
    return;
  }
  // If the result of the assignment is used, copy the LHS there also.
  // FIXME: Pass VolatileDest as well.  I think we also need to merge volatile
  // from the source as well, as we can't eliminate it if either operand
  // is volatile, unless copy has volatile for both source and destination..
  CGF.EmitAggregateCopy(Dest.getAddr(), Src.getAggregateAddr(), E->getType(),
                        Dest.isVolatile()|Src.isVolatileQualified(),
                        Alignment);
}

/// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
void AggExprEmitter::EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore) {
  assert(Src.isSimple() && "Can't have aggregate bitfield, vector, etc");

  CharUnits Alignment = std::min(Src.getAlignment(), Dest.getAlignment());
  EmitFinalDestCopy(E, Src.asAggregateRValue(), Ignore, Alignment.getQuantity());
}

static QualType GetStdInitializerListElementType(QualType T) {
  // Just assume that this is really std::initializer_list.
  ClassTemplateSpecializationDecl *specialization =
      cast<ClassTemplateSpecializationDecl>(T->castAs<RecordType>()->getDecl());
  return specialization->getTemplateArgs()[0].getAsType();
}

/// \brief Prepare cleanup for the temporary array.
static void EmitStdInitializerListCleanup(CodeGenFunction &CGF,
                                          QualType arrayType,
                                          llvm::Value *addr,
                                          const InitListExpr *initList) {
  QualType::DestructionKind dtorKind = arrayType.isDestructedType();
  if (!dtorKind)
    return; // Type doesn't need destroying.
  if (dtorKind != QualType::DK_cxx_destructor) {
    CGF.ErrorUnsupported(initList, "ObjC ARC type in initializer_list");
    return;
  }

  CodeGenFunction::Destroyer *destroyer = CGF.getDestroyer(dtorKind);
  CGF.pushDestroy(NormalAndEHCleanup, addr, arrayType, destroyer,
                  /*EHCleanup=*/true);
}

/// \brief Emit the initializer for a std::initializer_list initialized with a
/// real initializer list.
void AggExprEmitter::EmitStdInitializerList(llvm::Value *destPtr,
                                            InitListExpr *initList) {
  // We emit an array containing the elements, then have the init list point
  // at the array.
  ASTContext &ctx = CGF.getContext();
  unsigned numInits = initList->getNumInits();
  QualType element = GetStdInitializerListElementType(initList->getType());
  llvm::APInt size(ctx.getTypeSize(ctx.getSizeType()), numInits);
  QualType array = ctx.getConstantArrayType(element, size, ArrayType::Normal,0);
  llvm::Type *LTy = CGF.ConvertTypeForMem(array);
  llvm::AllocaInst *alloc = CGF.CreateTempAlloca(LTy);
  alloc->setAlignment(ctx.getTypeAlignInChars(array).getQuantity());
  alloc->setName(".initlist.");

  EmitArrayInit(alloc, cast<llvm::ArrayType>(LTy), element, initList);

  // FIXME: The diagnostics are somewhat out of place here.
  RecordDecl *record = initList->getType()->castAs<RecordType>()->getDecl();
  RecordDecl::field_iterator field = record->field_begin();
  if (field == record->field_end()) {
    CGF.ErrorUnsupported(initList, "weird std::initializer_list");
    return;
  }

  QualType elementPtr = ctx.getPointerType(element.withConst());

  // Start pointer.
  if (!ctx.hasSameType(field->getType(), elementPtr)) {
    CGF.ErrorUnsupported(initList, "weird std::initializer_list");
    return;
  }
  LValue DestLV = CGF.MakeNaturalAlignAddrLValue(destPtr, initList->getType());
  LValue start = CGF.EmitLValueForFieldInitialization(DestLV, *field);
  llvm::Value *arrayStart = Builder.CreateStructGEP(alloc, 0, "arraystart");
  CGF.EmitStoreThroughLValue(RValue::get(arrayStart), start);
  ++field;

  if (field == record->field_end()) {
    CGF.ErrorUnsupported(initList, "weird std::initializer_list");
    return;
  }
  LValue endOrLength = CGF.EmitLValueForFieldInitialization(DestLV, *field);
  if (ctx.hasSameType(field->getType(), elementPtr)) {
    // End pointer.
    llvm::Value *arrayEnd = Builder.CreateStructGEP(alloc,numInits, "arrayend");
    CGF.EmitStoreThroughLValue(RValue::get(arrayEnd), endOrLength);
  } else if(ctx.hasSameType(field->getType(), ctx.getSizeType())) {
    // Length.
    CGF.EmitStoreThroughLValue(RValue::get(Builder.getInt(size)), endOrLength);
  } else {
    CGF.ErrorUnsupported(initList, "weird std::initializer_list");
    return;
  }

  if (!Dest.isExternallyDestructed())
    EmitStdInitializerListCleanup(CGF, array, alloc, initList);
}

/// \brief Emit initialization of an array from an initializer list.
void AggExprEmitter::EmitArrayInit(llvm::Value *DestPtr, llvm::ArrayType *AType,
                                   QualType elementType, InitListExpr *E) {
  uint64_t NumInitElements = E->getNumInits();

  uint64_t NumArrayElements = AType->getNumElements();
  assert(NumInitElements <= NumArrayElements);

  // DestPtr is an array*.  Construct an elementType* by drilling
  // down a level.
  llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0);
  llvm::Value *indices[] = { zero, zero };
  llvm::Value *begin =
    Builder.CreateInBoundsGEP(DestPtr, indices, "arrayinit.begin");

  // Exception safety requires us to destroy all the
  // already-constructed members if an initializer throws.
  // For that, we'll need an EH cleanup.
  QualType::DestructionKind dtorKind = elementType.isDestructedType();
  llvm::AllocaInst *endOfInit = 0;
  EHScopeStack::stable_iterator cleanup;
  llvm::Instruction *cleanupDominator = 0;
  if (CGF.needsEHCleanup(dtorKind)) {
    // In principle we could tell the cleanup where we are more
    // directly, but the control flow can get so varied here that it
    // would actually be quite complex.  Therefore we go through an
    // alloca.
    endOfInit = CGF.CreateTempAlloca(begin->getType(),
                                     "arrayinit.endOfInit");
    cleanupDominator = Builder.CreateStore(begin, endOfInit);
    CGF.pushIrregularPartialArrayCleanup(begin, endOfInit, elementType,
                                         CGF.getDestroyer(dtorKind));
    cleanup = CGF.EHStack.stable_begin();

  // Otherwise, remember that we didn't need a cleanup.
  } else {
    dtorKind = QualType::DK_none;
  }

  llvm::Value *one = llvm::ConstantInt::get(CGF.SizeTy, 1);

  // The 'current element to initialize'.  The invariants on this
  // variable are complicated.  Essentially, after each iteration of
  // the loop, it points to the last initialized element, except
  // that it points to the beginning of the array before any
  // elements have been initialized.
  llvm::Value *element = begin;

  // Emit the explicit initializers.
  for (uint64_t i = 0; i != NumInitElements; ++i) {
    // Advance to the next element.
    if (i > 0) {
      element = Builder.CreateInBoundsGEP(element, one, "arrayinit.element");

      // Tell the cleanup that it needs to destroy up to this
      // element.  TODO: some of these stores can be trivially
      // observed to be unnecessary.
      if (endOfInit) Builder.CreateStore(element, endOfInit);
    }

    // If these are nested std::initializer_list inits, do them directly,
    // because they are conceptually the same "location".
    InitListExpr *initList = dyn_cast<InitListExpr>(E->getInit(i));
    if (initList && initList->initializesStdInitializerList()) {
      EmitStdInitializerList(element, initList);
    } else {
      LValue elementLV = CGF.MakeAddrLValue(element, elementType);
      EmitInitializationToLValue(E->getInit(i), elementLV);
    }
  }

  // Check whether there's a non-trivial array-fill expression.
  // Note that this will be a CXXConstructExpr even if the element
  // type is an array (or array of array, etc.) of class type.
  Expr *filler = E->getArrayFiller();
  bool hasTrivialFiller = true;
  if (CXXConstructExpr *cons = dyn_cast_or_null<CXXConstructExpr>(filler)) {
    assert(cons->getConstructor()->isDefaultConstructor());
    hasTrivialFiller = cons->getConstructor()->isTrivial();
  }

  // Any remaining elements need to be zero-initialized, possibly
  // using the filler expression.  We can skip this if the we're
  // emitting to zeroed memory.
  if (NumInitElements != NumArrayElements &&
      !(Dest.isZeroed() && hasTrivialFiller &&
        CGF.getTypes().isZeroInitializable(elementType))) {

    // Use an actual loop.  This is basically
    //   do { *array++ = filler; } while (array != end);

    // Advance to the start of the rest of the array.
    if (NumInitElements) {
      element = Builder.CreateInBoundsGEP(element, one, "arrayinit.start");
      if (endOfInit) Builder.CreateStore(element, endOfInit);
    }

    // Compute the end of the array.
    llvm::Value *end = Builder.CreateInBoundsGEP(begin,
                      llvm::ConstantInt::get(CGF.SizeTy, NumArrayElements),
                                                 "arrayinit.end");

    llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
    llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body");

    // Jump into the body.
    CGF.EmitBlock(bodyBB);
    llvm::PHINode *currentElement =
      Builder.CreatePHI(element->getType(), 2, "arrayinit.cur");
    currentElement->addIncoming(element, entryBB);

    // Emit the actual filler expression.
    LValue elementLV = CGF.MakeAddrLValue(currentElement, elementType);
    if (filler)
      EmitInitializationToLValue(filler, elementLV);
    else
      EmitNullInitializationToLValue(elementLV);

    // Move on to the next element.
    llvm::Value *nextElement =
      Builder.CreateInBoundsGEP(currentElement, one, "arrayinit.next");

    // Tell the EH cleanup that we finished with the last element.
    if (endOfInit) Builder.CreateStore(nextElement, endOfInit);

    // Leave the loop if we're done.
    llvm::Value *done = Builder.CreateICmpEQ(nextElement, end,
                                             "arrayinit.done");
    llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end");
    Builder.CreateCondBr(done, endBB, bodyBB);
    currentElement->addIncoming(nextElement, Builder.GetInsertBlock());

    CGF.EmitBlock(endBB);
  }

  // Leave the partial-array cleanup if we entered one.
  if (dtorKind) CGF.DeactivateCleanupBlock(cleanup, cleanupDominator);
}

//===----------------------------------------------------------------------===//
//                            Visitor Methods
//===----------------------------------------------------------------------===//

void AggExprEmitter::VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E){
  Visit(E->GetTemporaryExpr());
}

void AggExprEmitter::VisitOpaqueValueExpr(OpaqueValueExpr *e) {
  EmitFinalDestCopy(e, CGF.getOpaqueLValueMapping(e));
}

void
AggExprEmitter::VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
  if (E->getType().isPODType(CGF.getContext())) {
    // For a POD type, just emit a load of the lvalue + a copy, because our
    // compound literal might alias the destination.
    // FIXME: This is a band-aid; the real problem appears to be in our handling
    // of assignments, where we store directly into the LHS without checking
    // whether anything in the RHS aliases.
    EmitAggLoadOfLValue(E);
    return;
  }
  
  AggValueSlot Slot = EnsureSlot(E->getType());
  CGF.EmitAggExpr(E->getInitializer(), Slot);
}


void AggExprEmitter::VisitCastExpr(CastExpr *E) {
  switch (E->getCastKind()) {
  case CK_Dynamic: {
    assert(isa<CXXDynamicCastExpr>(E) && "CK_Dynamic without a dynamic_cast?");
    LValue LV = CGF.EmitCheckedLValue(E->getSubExpr());
    // FIXME: Do we also need to handle property references here?
    if (LV.isSimple())
      CGF.EmitDynamicCast(LV.getAddress(), cast<CXXDynamicCastExpr>(E));
    else
      CGF.CGM.ErrorUnsupported(E, "non-simple lvalue dynamic_cast");
    
    if (!Dest.isIgnored())
      CGF.CGM.ErrorUnsupported(E, "lvalue dynamic_cast with a destination");
    break;
  }
      
  case CK_ToUnion: {
    if (Dest.isIgnored()) break;

    // GCC union extension
    QualType Ty = E->getSubExpr()->getType();
    QualType PtrTy = CGF.getContext().getPointerType(Ty);
    llvm::Value *CastPtr = Builder.CreateBitCast(Dest.getAddr(),
                                                 CGF.ConvertType(PtrTy));
    EmitInitializationToLValue(E->getSubExpr(),
                               CGF.MakeAddrLValue(CastPtr, Ty));
    break;
  }

  case CK_DerivedToBase:
  case CK_BaseToDerived:
  case CK_UncheckedDerivedToBase: {
    llvm_unreachable("cannot perform hierarchy conversion in EmitAggExpr: "
                "should have been unpacked before we got here");
  }

  case CK_LValueToRValue: // hope for downstream optimization
  case CK_NoOp:
  case CK_AtomicToNonAtomic:
  case CK_NonAtomicToAtomic:
  case CK_UserDefinedConversion:
  case CK_ConstructorConversion:
    assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(),
                                                   E->getType()) &&
           "Implicit cast types must be compatible");
    Visit(E->getSubExpr());
    break;
      
  case CK_LValueBitCast:
    llvm_unreachable("should not be emitting lvalue bitcast as rvalue");

  case CK_Dependent:
  case CK_BitCast:
  case CK_ArrayToPointerDecay:
  case CK_FunctionToPointerDecay:
  case CK_NullToPointer:
  case CK_NullToMemberPointer:
  case CK_BaseToDerivedMemberPointer:
  case CK_DerivedToBaseMemberPointer:
  case CK_MemberPointerToBoolean:
  case CK_ReinterpretMemberPointer:
  case CK_IntegralToPointer:
  case CK_PointerToIntegral:
  case CK_PointerToBoolean:
  case CK_ToVoid:
  case CK_VectorSplat:
  case CK_IntegralCast:
  case CK_IntegralToBoolean:
  case CK_IntegralToFloating:
  case CK_FloatingToIntegral:
  case CK_FloatingToBoolean:
  case CK_FloatingCast:
  case CK_CPointerToObjCPointerCast:
  case CK_BlockPointerToObjCPointerCast:
  case CK_AnyPointerToBlockPointerCast:
  case CK_ObjCObjectLValueCast:
  case CK_FloatingRealToComplex:
  case CK_FloatingComplexToReal:
  case CK_FloatingComplexToBoolean:
  case CK_FloatingComplexCast:
  case CK_FloatingComplexToIntegralComplex:
  case CK_IntegralRealToComplex:
  case CK_IntegralComplexToReal:
  case CK_IntegralComplexToBoolean:
  case CK_IntegralComplexCast:
  case CK_IntegralComplexToFloatingComplex:
  case CK_ARCProduceObject:
  case CK_ARCConsumeObject:
  case CK_ARCReclaimReturnedObject:
  case CK_ARCExtendBlockObject:
  case CK_CopyAndAutoreleaseBlockObject:
    llvm_unreachable("cast kind invalid for aggregate types");
  }
}

void AggExprEmitter::VisitCallExpr(const CallExpr *E) {
  if (E->getCallReturnType()->isReferenceType()) {
    EmitAggLoadOfLValue(E);
    return;
  }

  RValue RV = CGF.EmitCallExpr(E, getReturnValueSlot());
  EmitMoveFromReturnSlot(E, RV);
}

void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) {
  RValue RV = CGF.EmitObjCMessageExpr(E, getReturnValueSlot());
  EmitMoveFromReturnSlot(E, RV);
}

void AggExprEmitter::VisitBinComma(const BinaryOperator *E) {
  CGF.EmitIgnoredExpr(E->getLHS());
  Visit(E->getRHS());
}

void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) {
  CodeGenFunction::StmtExprEvaluation eval(CGF);
  CGF.EmitCompoundStmt(*E->getSubStmt(), true, Dest);
}

void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) {
  if (E->getOpcode() == BO_PtrMemD || E->getOpcode() == BO_PtrMemI)
    VisitPointerToDataMemberBinaryOperator(E);
  else
    CGF.ErrorUnsupported(E, "aggregate binary expression");
}

void AggExprEmitter::VisitPointerToDataMemberBinaryOperator(
                                                    const BinaryOperator *E) {
  LValue LV = CGF.EmitPointerToDataMemberBinaryExpr(E);
  EmitFinalDestCopy(E, LV);
}

void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) {
  // For an assignment to work, the value on the right has
  // to be compatible with the value on the left.
  assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(),
                                                 E->getRHS()->getType())
         && "Invalid assignment");

  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->getLHS()))
    if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl()))
      if (VD->hasAttr<BlocksAttr>() &&
          E->getRHS()->HasSideEffects(CGF.getContext())) {
        // When __block variable on LHS, the RHS must be evaluated first 
        // as it may change the 'forwarding' field via call to Block_copy.
        LValue RHS = CGF.EmitLValue(E->getRHS());
        LValue LHS = CGF.EmitLValue(E->getLHS());
        Dest = AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed,
                                       needsGC(E->getLHS()->getType()),
                                       AggValueSlot::IsAliased);
        EmitFinalDestCopy(E, RHS, true);
        return;
      }
  
  LValue LHS = CGF.EmitLValue(E->getLHS());

  // Codegen the RHS so that it stores directly into the LHS.
  AggValueSlot LHSSlot =
    AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed, 
                            needsGC(E->getLHS()->getType()),
                            AggValueSlot::IsAliased);
  CGF.EmitAggExpr(E->getRHS(), LHSSlot, false);
  EmitFinalDestCopy(E, LHS, true);
}

void AggExprEmitter::
VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
  llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
  llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");

  // Bind the common expression if necessary.
  CodeGenFunction::OpaqueValueMapping binding(CGF, E);

  CodeGenFunction::ConditionalEvaluation eval(CGF);
  CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock);

  // Save whether the destination's lifetime is externally managed.
  bool isExternallyDestructed = Dest.isExternallyDestructed();

  eval.begin(CGF);
  CGF.EmitBlock(LHSBlock);
  Visit(E->getTrueExpr());
  eval.end(CGF);

  assert(CGF.HaveInsertPoint() && "expression evaluation ended with no IP!");
  CGF.Builder.CreateBr(ContBlock);

  // If the result of an agg expression is unused, then the emission
  // of the LHS might need to create a destination slot.  That's fine
  // with us, and we can safely emit the RHS into the same slot, but
  // we shouldn't claim that it's already being destructed.
  Dest.setExternallyDestructed(isExternallyDestructed);

  eval.begin(CGF);
  CGF.EmitBlock(RHSBlock);
  Visit(E->getFalseExpr());
  eval.end(CGF);

  CGF.EmitBlock(ContBlock);
}

void AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) {
  Visit(CE->getChosenSubExpr(CGF.getContext()));
}

void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
  llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr());
  llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());

  if (!ArgPtr) {
    CGF.ErrorUnsupported(VE, "aggregate va_arg expression");
    return;
  }

  EmitFinalDestCopy(VE, CGF.MakeAddrLValue(ArgPtr, VE->getType()));
}

void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
  // Ensure that we have a slot, but if we already do, remember
  // whether it was externally destructed.
  bool wasExternallyDestructed = Dest.isExternallyDestructed();
  Dest = EnsureSlot(E->getType());

  // We're going to push a destructor if there isn't already one.
  Dest.setExternallyDestructed();

  Visit(E->getSubExpr());

  // Push that destructor we promised.
  if (!wasExternallyDestructed)
    CGF.EmitCXXTemporary(E->getTemporary(), E->getType(), Dest.getAddr());
}

void
AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) {
  AggValueSlot Slot = EnsureSlot(E->getType());
  CGF.EmitCXXConstructExpr(E, Slot);
}

void
AggExprEmitter::VisitLambdaExpr(LambdaExpr *E) {
  AggValueSlot Slot = EnsureSlot(E->getType());
  CGF.EmitLambdaExpr(E, Slot);
}

void AggExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) {
  CGF.enterFullExpression(E);
  CodeGenFunction::RunCleanupsScope cleanups(CGF);
  Visit(E->getSubExpr());
}

void AggExprEmitter::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) {
  QualType T = E->getType();
  AggValueSlot Slot = EnsureSlot(T);
  EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T));
}

void AggExprEmitter::VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) {
  QualType T = E->getType();
  AggValueSlot Slot = EnsureSlot(T);
  EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T));
}

/// isSimpleZero - If emitting this value will obviously just cause a store of
/// zero to memory, return true.  This can return false if uncertain, so it just
/// handles simple cases.
static bool isSimpleZero(const Expr *E, CodeGenFunction &CGF) {
  E = E->IgnoreParens();

  // 0
  if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E))
    return IL->getValue() == 0;
  // +0.0
  if (const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(E))
    return FL->getValue().isPosZero();
  // int()
  if ((isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) &&
      CGF.getTypes().isZeroInitializable(E->getType()))
    return true;
  // (int*)0 - Null pointer expressions.
  if (const CastExpr *ICE = dyn_cast<CastExpr>(E))
    return ICE->getCastKind() == CK_NullToPointer;
  // '\0'
  if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E))
    return CL->getValue() == 0;
  
  // Otherwise, hard case: conservatively return false.
  return false;
}


void 
AggExprEmitter::EmitInitializationToLValue(Expr* E, LValue LV) {
  QualType type = LV.getType();
  // FIXME: Ignore result?
  // FIXME: Are initializers affected by volatile?
  if (Dest.isZeroed() && isSimpleZero(E, CGF)) {
    // Storing "i32 0" to a zero'd memory location is a noop.
  } else if (isa<ImplicitValueInitExpr>(E)) {
    EmitNullInitializationToLValue(LV);
  } else if (type->isReferenceType()) {
    RValue RV = CGF.EmitReferenceBindingToExpr(E, /*InitializedDecl=*/0);
    CGF.EmitStoreThroughLValue(RV, LV);
  } else if (type->isAnyComplexType()) {
    CGF.EmitComplexExprIntoAddr(E, LV.getAddress(), false);
  } else if (CGF.hasAggregateLLVMType(type)) {
    CGF.EmitAggExpr(E, AggValueSlot::forLValue(LV,
                                               AggValueSlot::IsDestructed,
                                      AggValueSlot::DoesNotNeedGCBarriers,
                                               AggValueSlot::IsNotAliased,
                                               Dest.isZeroed()));
  } else if (LV.isSimple()) {
    CGF.EmitScalarInit(E, /*D=*/0, LV, /*Captured=*/false);
  } else {
    CGF.EmitStoreThroughLValue(RValue::get(CGF.EmitScalarExpr(E)), LV);
  }
}

void AggExprEmitter::EmitNullInitializationToLValue(LValue lv) {
  QualType type = lv.getType();

  // If the destination slot is already zeroed out before the aggregate is
  // copied into it, we don't have to emit any zeros here.
  if (Dest.isZeroed() && CGF.getTypes().isZeroInitializable(type))
    return;
  
  if (!CGF.hasAggregateLLVMType(type)) {
    // For non-aggregates, we can store zero.
    llvm::Value *null = llvm::Constant::getNullValue(CGF.ConvertType(type));
    // Note that the following is not equivalent to
    // EmitStoreThroughBitfieldLValue for ARC types.
    if (lv.isBitField()) {
      CGF.EmitStoreThroughBitfieldLValue(RValue::get(null), lv);
    } else {
      assert(lv.isSimple());
      CGF.EmitStoreOfScalar(null, lv, /* isInitialization */ true);
    }
  } else {
    // There's a potential optimization opportunity in combining
    // memsets; that would be easy for arrays, but relatively
    // difficult for structures with the current code.
    CGF.EmitNullInitialization(lv.getAddress(), lv.getType());
  }
}

void AggExprEmitter::VisitInitListExpr(InitListExpr *E) {
#if 0
  // FIXME: Assess perf here?  Figure out what cases are worth optimizing here
  // (Length of globals? Chunks of zeroed-out space?).
  //
  // If we can, prefer a copy from a global; this is a lot less code for long
  // globals, and it's easier for the current optimizers to analyze.
  if (llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, E->getType(), &CGF)) {
    llvm::GlobalVariable* GV =
    new llvm::GlobalVariable(CGF.CGM.getModule(), C->getType(), true,
                             llvm::GlobalValue::InternalLinkage, C, "");
    EmitFinalDestCopy(E, CGF.MakeAddrLValue(GV, E->getType()));
    return;
  }
#endif
  if (E->hadArrayRangeDesignator())
    CGF.ErrorUnsupported(E, "GNU array range designator extension");

  if (E->initializesStdInitializerList()) {
    EmitStdInitializerList(Dest.getAddr(), E);
    return;
  }

  AggValueSlot Dest = EnsureSlot(E->getType());
  LValue DestLV = CGF.MakeAddrLValue(Dest.getAddr(), E->getType(),
                                     Dest.getAlignment());

  // Handle initialization of an array.
  if (E->getType()->isArrayType()) {
    if (E->isStringLiteralInit())
      return Visit(E->getInit(0));

    QualType elementType =
        CGF.getContext().getAsArrayType(E->getType())->getElementType();

    llvm::PointerType *APType =
      cast<llvm::PointerType>(Dest.getAddr()->getType());
    llvm::ArrayType *AType =
      cast<llvm::ArrayType>(APType->getElementType());

    EmitArrayInit(Dest.getAddr(), AType, elementType, E);
    return;
  }

  assert(E->getType()->isRecordType() && "Only support structs/unions here!");

  // Do struct initialization; this code just sets each individual member
  // to the approprate value.  This makes bitfield support automatic;
  // the disadvantage is that the generated code is more difficult for
  // the optimizer, especially with bitfields.
  unsigned NumInitElements = E->getNumInits();
  RecordDecl *record = E->getType()->castAs<RecordType>()->getDecl();
  
  if (record->isUnion()) {
    // Only initialize one field of a union. The field itself is
    // specified by the initializer list.
    if (!E->getInitializedFieldInUnion()) {
      // Empty union; we have nothing to do.

#ifndef NDEBUG
      // Make sure that it's really an empty and not a failure of
      // semantic analysis.
      for (RecordDecl::field_iterator Field = record->field_begin(),
                                   FieldEnd = record->field_end();
           Field != FieldEnd; ++Field)
        assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed");
#endif
      return;
    }

    // FIXME: volatility
    FieldDecl *Field = E->getInitializedFieldInUnion();

    LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestLV, Field);
    if (NumInitElements) {
      // Store the initializer into the field
      EmitInitializationToLValue(E->getInit(0), FieldLoc);
    } else {
      // Default-initialize to null.
      EmitNullInitializationToLValue(FieldLoc);
    }

    return;
  }

  // We'll need to enter cleanup scopes in case any of the member
  // initializers throw an exception.
  SmallVector<EHScopeStack::stable_iterator, 16> cleanups;
  llvm::Instruction *cleanupDominator = 0;

  // Here we iterate over the fields; this makes it simpler to both
  // default-initialize fields and skip over unnamed fields.
  unsigned curInitIndex = 0;
  for (RecordDecl::field_iterator field = record->field_begin(),
                               fieldEnd = record->field_end();
       field != fieldEnd; ++field) {
    // We're done once we hit the flexible array member.
    if (field->getType()->isIncompleteArrayType())
      break;

    // Always skip anonymous bitfields.
    if (field->isUnnamedBitfield())
      continue;

    // We're done if we reach the end of the explicit initializers, we
    // have a zeroed object, and the rest of the fields are
    // zero-initializable.
    if (curInitIndex == NumInitElements && Dest.isZeroed() &&
        CGF.getTypes().isZeroInitializable(E->getType()))
      break;
    

    LValue LV = CGF.EmitLValueForFieldInitialization(DestLV, *field);
    // We never generate write-barries for initialized fields.
    LV.setNonGC(true);
    
    if (curInitIndex < NumInitElements) {
      // Store the initializer into the field.
      EmitInitializationToLValue(E->getInit(curInitIndex++), LV);
    } else {
      // We're out of initalizers; default-initialize to null
      EmitNullInitializationToLValue(LV);
    }

    // Push a destructor if necessary.
    // FIXME: if we have an array of structures, all explicitly
    // initialized, we can end up pushing a linear number of cleanups.
    bool pushedCleanup = false;
    if (QualType::DestructionKind dtorKind
          = field->getType().isDestructedType()) {
      assert(LV.isSimple());
      if (CGF.needsEHCleanup(dtorKind)) {
        if (!cleanupDominator)
          cleanupDominator = CGF.Builder.CreateUnreachable(); // placeholder

        CGF.pushDestroy(EHCleanup, LV.getAddress(), field->getType(),
                        CGF.getDestroyer(dtorKind), false);
        cleanups.push_back(CGF.EHStack.stable_begin());
        pushedCleanup = true;
      }
    }
    
    // If the GEP didn't get used because of a dead zero init or something
    // else, clean it up for -O0 builds and general tidiness.
    if (!pushedCleanup && LV.isSimple()) 
      if (llvm::GetElementPtrInst *GEP =
            dyn_cast<llvm::GetElementPtrInst>(LV.getAddress()))
        if (GEP->use_empty())
          GEP->eraseFromParent();
  }

  // Deactivate all the partial cleanups in reverse order, which
  // generally means popping them.
  for (unsigned i = cleanups.size(); i != 0; --i)
    CGF.DeactivateCleanupBlock(cleanups[i-1], cleanupDominator);

  // Destroy the placeholder if we made one.
  if (cleanupDominator)
    cleanupDominator->eraseFromParent();
}

//===----------------------------------------------------------------------===//
//                        Entry Points into this File
//===----------------------------------------------------------------------===//

/// GetNumNonZeroBytesInInit - Get an approximate count of the number of
/// non-zero bytes that will be stored when outputting the initializer for the
/// specified initializer expression.
static CharUnits GetNumNonZeroBytesInInit(const Expr *E, CodeGenFunction &CGF) {
  E = E->IgnoreParens();

  // 0 and 0.0 won't require any non-zero stores!
  if (isSimpleZero(E, CGF)) return CharUnits::Zero();

  // If this is an initlist expr, sum up the size of sizes of the (present)
  // elements.  If this is something weird, assume the whole thing is non-zero.
  const InitListExpr *ILE = dyn_cast<InitListExpr>(E);
  if (ILE == 0 || !CGF.getTypes().isZeroInitializable(ILE->getType()))
    return CGF.getContext().getTypeSizeInChars(E->getType());
  
  // InitListExprs for structs have to be handled carefully.  If there are
  // reference members, we need to consider the size of the reference, not the
  // referencee.  InitListExprs for unions and arrays can't have references.
  if (const RecordType *RT = E->getType()->getAs<RecordType>()) {
    if (!RT->isUnionType()) {
      RecordDecl *SD = E->getType()->getAs<RecordType>()->getDecl();
      CharUnits NumNonZeroBytes = CharUnits::Zero();
      
      unsigned ILEElement = 0;
      for (RecordDecl::field_iterator Field = SD->field_begin(),
           FieldEnd = SD->field_end(); Field != FieldEnd; ++Field) {
        // We're done once we hit the flexible array member or run out of
        // InitListExpr elements.
        if (Field->getType()->isIncompleteArrayType() ||
            ILEElement == ILE->getNumInits())
          break;
        if (Field->isUnnamedBitfield())
          continue;

        const Expr *E = ILE->getInit(ILEElement++);
        
        // Reference values are always non-null and have the width of a pointer.
        if (Field->getType()->isReferenceType())
          NumNonZeroBytes += CGF.getContext().toCharUnitsFromBits(
              CGF.getContext().getTargetInfo().getPointerWidth(0));
        else
          NumNonZeroBytes += GetNumNonZeroBytesInInit(E, CGF);
      }
      
      return NumNonZeroBytes;
    }
  }
  
  
  CharUnits NumNonZeroBytes = CharUnits::Zero();
  for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i)
    NumNonZeroBytes += GetNumNonZeroBytesInInit(ILE->getInit(i), CGF);
  return NumNonZeroBytes;
}

/// CheckAggExprForMemSetUse - If the initializer is large and has a lot of
/// zeros in it, emit a memset and avoid storing the individual zeros.
///
static void CheckAggExprForMemSetUse(AggValueSlot &Slot, const Expr *E,
                                     CodeGenFunction &CGF) {
  // If the slot is already known to be zeroed, nothing to do.  Don't mess with
  // volatile stores.
  if (Slot.isZeroed() || Slot.isVolatile() || Slot.getAddr() == 0) return;

  // C++ objects with a user-declared constructor don't need zero'ing.
  if (CGF.getContext().getLangOpts().CPlusPlus)
    if (const RecordType *RT = CGF.getContext()
                       .getBaseElementType(E->getType())->getAs<RecordType>()) {
      const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
      if (RD->hasUserDeclaredConstructor())
        return;
    }

  // If the type is 16-bytes or smaller, prefer individual stores over memset.
  std::pair<CharUnits, CharUnits> TypeInfo =
    CGF.getContext().getTypeInfoInChars(E->getType());
  if (TypeInfo.first <= CharUnits::fromQuantity(16))
    return;

  // Check to see if over 3/4 of the initializer are known to be zero.  If so,
  // we prefer to emit memset + individual stores for the rest.
  CharUnits NumNonZeroBytes = GetNumNonZeroBytesInInit(E, CGF);
  if (NumNonZeroBytes*4 > TypeInfo.first)
    return;
  
  // Okay, it seems like a good idea to use an initial memset, emit the call.
  llvm::Constant *SizeVal = CGF.Builder.getInt64(TypeInfo.first.getQuantity());
  CharUnits Align = TypeInfo.second;

  llvm::Value *Loc = Slot.getAddr();
  
  Loc = CGF.Builder.CreateBitCast(Loc, CGF.Int8PtrTy);
  CGF.Builder.CreateMemSet(Loc, CGF.Builder.getInt8(0), SizeVal, 
                           Align.getQuantity(), false);
  
  // Tell the AggExprEmitter that the slot is known zero.
  Slot.setZeroed();
}




/// EmitAggExpr - Emit the computation of the specified expression of aggregate
/// type.  The result is computed into DestPtr.  Note that if DestPtr is null,
/// the value of the aggregate expression is not needed.  If VolatileDest is
/// true, DestPtr cannot be 0.
///
/// \param IsInitializer - true if this evaluation is initializing an
/// object whose lifetime is already being managed.
void CodeGenFunction::EmitAggExpr(const Expr *E, AggValueSlot Slot,
                                  bool IgnoreResult) {
  assert(E && hasAggregateLLVMType(E->getType()) &&
         "Invalid aggregate expression to emit");
  assert((Slot.getAddr() != 0 || Slot.isIgnored()) &&
         "slot has bits but no address");

  // Optimize the slot if possible.
  CheckAggExprForMemSetUse(Slot, E, *this);
 
  AggExprEmitter(*this, Slot, IgnoreResult).Visit(const_cast<Expr*>(E));
}

LValue CodeGenFunction::EmitAggExprToLValue(const Expr *E) {
  assert(hasAggregateLLVMType(E->getType()) && "Invalid argument!");
  llvm::Value *Temp = CreateMemTemp(E->getType());
  LValue LV = MakeAddrLValue(Temp, E->getType());
  EmitAggExpr(E, AggValueSlot::forLValue(LV, AggValueSlot::IsNotDestructed,
                                         AggValueSlot::DoesNotNeedGCBarriers,
                                         AggValueSlot::IsNotAliased));
  return LV;
}

void CodeGenFunction::EmitAggregateCopy(llvm::Value *DestPtr,
                                        llvm::Value *SrcPtr, QualType Ty,
                                        bool isVolatile, unsigned Alignment) {
  assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex");

  if (getContext().getLangOpts().CPlusPlus) {
    if (const RecordType *RT = Ty->getAs<RecordType>()) {
      CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl());
      assert((Record->hasTrivialCopyConstructor() || 
              Record->hasTrivialCopyAssignment() ||
              Record->hasTrivialMoveConstructor() ||
              Record->hasTrivialMoveAssignment()) &&
             "Trying to aggregate-copy a type without a trivial copy "
             "constructor or assignment operator");
      // Ignore empty classes in C++.
      if (Record->isEmpty())
        return;
    }
  }
  
  // Aggregate assignment turns into llvm.memcpy.  This is almost valid per
  // C99 6.5.16.1p3, which states "If the value being stored in an object is
  // read from another object that overlaps in anyway the storage of the first
  // object, then the overlap shall be exact and the two objects shall have
  // qualified or unqualified versions of a compatible type."
  //
  // memcpy is not defined if the source and destination pointers are exactly
  // equal, but other compilers do this optimization, and almost every memcpy
  // implementation handles this case safely.  If there is a libc that does not
  // safely handle this, we can add a target hook.

  // Get size and alignment info for this aggregate.
  std::pair<CharUnits, CharUnits> TypeInfo = 
    getContext().getTypeInfoInChars(Ty);

  if (!Alignment)
    Alignment = TypeInfo.second.getQuantity();

  // FIXME: Handle variable sized types.

  // FIXME: If we have a volatile struct, the optimizer can remove what might
  // appear to be `extra' memory ops:
  //
  // volatile struct { int i; } a, b;
  //
  // int main() {
  //   a = b;
  //   a = b;
  // }
  //
  // we need to use a different call here.  We use isVolatile to indicate when
  // either the source or the destination is volatile.

  llvm::PointerType *DPT = cast<llvm::PointerType>(DestPtr->getType());
  llvm::Type *DBP =
    llvm::Type::getInt8PtrTy(getLLVMContext(), DPT->getAddressSpace());
  DestPtr = Builder.CreateBitCast(DestPtr, DBP);

  llvm::PointerType *SPT = cast<llvm::PointerType>(SrcPtr->getType());
  llvm::Type *SBP =
    llvm::Type::getInt8PtrTy(getLLVMContext(), SPT->getAddressSpace());
  SrcPtr = Builder.CreateBitCast(SrcPtr, SBP);

  // Don't do any of the memmove_collectable tests if GC isn't set.
  if (CGM.getLangOpts().getGC() == LangOptions::NonGC) {
    // fall through
  } else if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
    RecordDecl *Record = RecordTy->getDecl();
    if (Record->hasObjectMember()) {
      CharUnits size = TypeInfo.first;
      llvm::Type *SizeTy = ConvertType(getContext().getSizeType());
      llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size.getQuantity());
      CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr, 
                                                    SizeVal);
      return;
    }
  } else if (Ty->isArrayType()) {
    QualType BaseType = getContext().getBaseElementType(Ty);
    if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) {
      if (RecordTy->getDecl()->hasObjectMember()) {
        CharUnits size = TypeInfo.first;
        llvm::Type *SizeTy = ConvertType(getContext().getSizeType());
        llvm::Value *SizeVal = 
          llvm::ConstantInt::get(SizeTy, size.getQuantity());
        CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr, 
                                                      SizeVal);
        return;
      }
    }
  }
  
  Builder.CreateMemCpy(DestPtr, SrcPtr,
                       llvm::ConstantInt::get(IntPtrTy, 
                                              TypeInfo.first.getQuantity()),
                       Alignment, isVolatile);
}

void CodeGenFunction::MaybeEmitStdInitializerListCleanup(llvm::Value *loc,
                                                         const Expr *init) {
  const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(init);
  if (cleanups)
    init = cleanups->getSubExpr();

  if (isa<InitListExpr>(init) &&
      cast<InitListExpr>(init)->initializesStdInitializerList()) {
    // We initialized this std::initializer_list with an initializer list.
    // A backing array was created. Push a cleanup for it.
    EmitStdInitializerListCleanup(loc, cast<InitListExpr>(init));
  }
}

static void EmitRecursiveStdInitializerListCleanup(CodeGenFunction &CGF,
                                                   llvm::Value *arrayStart,
                                                   const InitListExpr *init) {
  // Check if there are any recursive cleanups to do, i.e. if we have
  //   std::initializer_list<std::initializer_list<obj>> list = {{obj()}};
  // then we need to destroy the inner array as well.
  for (unsigned i = 0, e = init->getNumInits(); i != e; ++i) {
    const InitListExpr *subInit = dyn_cast<InitListExpr>(init->getInit(i));
    if (!subInit || !subInit->initializesStdInitializerList())
      continue;

    // This one needs to be destroyed. Get the address of the std::init_list.
    llvm::Value *offset = llvm::ConstantInt::get(CGF.SizeTy, i);
    llvm::Value *loc = CGF.Builder.CreateInBoundsGEP(arrayStart, offset,
                                                 "std.initlist");
    CGF.EmitStdInitializerListCleanup(loc, subInit);
  }
}

void CodeGenFunction::EmitStdInitializerListCleanup(llvm::Value *loc,
                                                    const InitListExpr *init) {
  ASTContext &ctx = getContext();
  QualType element = GetStdInitializerListElementType(init->getType());
  unsigned numInits = init->getNumInits();
  llvm::APInt size(ctx.getTypeSize(ctx.getSizeType()), numInits);
  QualType array =ctx.getConstantArrayType(element, size, ArrayType::Normal, 0);
  QualType arrayPtr = ctx.getPointerType(array);
  llvm::Type *arrayPtrType = ConvertType(arrayPtr);

  // lvalue is the location of a std::initializer_list, which as its first
  // element has a pointer to the array we want to destroy.
  llvm::Value *startPointer = Builder.CreateStructGEP(loc, 0, "startPointer");
  llvm::Value *startAddress = Builder.CreateLoad(startPointer, "startAddress");

  ::EmitRecursiveStdInitializerListCleanup(*this, startAddress, init);

  llvm::Value *arrayAddress =
      Builder.CreateBitCast(startAddress, arrayPtrType, "arrayAddress");
  ::EmitStdInitializerListCleanup(*this, array, arrayAddress, init);
}