summaryrefslogtreecommitdiffstats
path: root/lib/CodeGen/CGOpenMPRuntimeNVPTX.cpp
blob: 7046ab3aa35ca4636fe4e9f4962c24e8513f2199 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
//===---- CGOpenMPRuntimeNVPTX.cpp - Interface to OpenMP NVPTX Runtimes ---===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This provides a class for OpenMP runtime code generation specialized to NVPTX
// targets.
//
//===----------------------------------------------------------------------===//

#include "CGOpenMPRuntimeNVPTX.h"
#include "CodeGenFunction.h"
#include "clang/AST/DeclOpenMP.h"
#include "clang/AST/StmtOpenMP.h"
#include "clang/AST/StmtVisitor.h"
#include "clang/Basic/Cuda.h"
#include "llvm/ADT/SmallPtrSet.h"

using namespace clang;
using namespace CodeGen;

namespace {
enum OpenMPRTLFunctionNVPTX {
  /// Call to void __kmpc_kernel_init(kmp_int32 thread_limit,
  /// int16_t RequiresOMPRuntime);
  OMPRTL_NVPTX__kmpc_kernel_init,
  /// Call to void __kmpc_kernel_deinit(int16_t IsOMPRuntimeInitialized);
  OMPRTL_NVPTX__kmpc_kernel_deinit,
  /// Call to void __kmpc_spmd_kernel_init(kmp_int32 thread_limit,
  /// int16_t RequiresOMPRuntime, int16_t RequiresDataSharing);
  OMPRTL_NVPTX__kmpc_spmd_kernel_init,
  /// Call to void __kmpc_spmd_kernel_deinit_v2(int16_t RequiresOMPRuntime);
  OMPRTL_NVPTX__kmpc_spmd_kernel_deinit_v2,
  /// Call to void __kmpc_kernel_prepare_parallel(void
  /// *outlined_function, int16_t
  /// IsOMPRuntimeInitialized);
  OMPRTL_NVPTX__kmpc_kernel_prepare_parallel,
  /// Call to bool __kmpc_kernel_parallel(void **outlined_function,
  /// int16_t IsOMPRuntimeInitialized);
  OMPRTL_NVPTX__kmpc_kernel_parallel,
  /// Call to void __kmpc_kernel_end_parallel();
  OMPRTL_NVPTX__kmpc_kernel_end_parallel,
  /// Call to void __kmpc_serialized_parallel(ident_t *loc, kmp_int32
  /// global_tid);
  OMPRTL_NVPTX__kmpc_serialized_parallel,
  /// Call to void __kmpc_end_serialized_parallel(ident_t *loc, kmp_int32
  /// global_tid);
  OMPRTL_NVPTX__kmpc_end_serialized_parallel,
  /// Call to int32_t __kmpc_shuffle_int32(int32_t element,
  /// int16_t lane_offset, int16_t warp_size);
  OMPRTL_NVPTX__kmpc_shuffle_int32,
  /// Call to int64_t __kmpc_shuffle_int64(int64_t element,
  /// int16_t lane_offset, int16_t warp_size);
  OMPRTL_NVPTX__kmpc_shuffle_int64,
  /// Call to __kmpc_nvptx_parallel_reduce_nowait_v2(ident_t *loc, kmp_int32
  /// global_tid, kmp_int32 num_vars, size_t reduce_size, void* reduce_data,
  /// void (*kmp_ShuffleReductFctPtr)(void *rhsData, int16_t lane_id, int16_t
  /// lane_offset, int16_t shortCircuit),
  /// void (*kmp_InterWarpCopyFctPtr)(void* src, int32_t warp_num));
  OMPRTL_NVPTX__kmpc_parallel_reduce_nowait_v2,
  /// Call to __kmpc_nvptx_teams_reduce_nowait_simple(ident_t *loc, kmp_int32
  /// global_tid, kmp_critical_name *lck)
  OMPRTL_NVPTX__kmpc_nvptx_teams_reduce_nowait_simple,
  /// Call to __kmpc_nvptx_teams_end_reduce_nowait_simple(ident_t *loc,
  /// kmp_int32 global_tid, kmp_critical_name *lck)
  OMPRTL_NVPTX__kmpc_nvptx_teams_end_reduce_nowait_simple,
  /// Call to __kmpc_nvptx_end_reduce_nowait(int32_t global_tid);
  OMPRTL_NVPTX__kmpc_end_reduce_nowait,
  /// Call to void __kmpc_data_sharing_init_stack();
  OMPRTL_NVPTX__kmpc_data_sharing_init_stack,
  /// Call to void __kmpc_data_sharing_init_stack_spmd();
  OMPRTL_NVPTX__kmpc_data_sharing_init_stack_spmd,
  /// Call to void* __kmpc_data_sharing_coalesced_push_stack(size_t size,
  /// int16_t UseSharedMemory);
  OMPRTL_NVPTX__kmpc_data_sharing_coalesced_push_stack,
  /// Call to void __kmpc_data_sharing_pop_stack(void *a);
  OMPRTL_NVPTX__kmpc_data_sharing_pop_stack,
  /// Call to void __kmpc_begin_sharing_variables(void ***args,
  /// size_t n_args);
  OMPRTL_NVPTX__kmpc_begin_sharing_variables,
  /// Call to void __kmpc_end_sharing_variables();
  OMPRTL_NVPTX__kmpc_end_sharing_variables,
  /// Call to void __kmpc_get_shared_variables(void ***GlobalArgs)
  OMPRTL_NVPTX__kmpc_get_shared_variables,
  /// Call to uint16_t __kmpc_parallel_level(ident_t *loc, kmp_int32
  /// global_tid);
  OMPRTL_NVPTX__kmpc_parallel_level,
  /// Call to int8_t __kmpc_is_spmd_exec_mode();
  OMPRTL_NVPTX__kmpc_is_spmd_exec_mode,
  /// Call to void __kmpc_get_team_static_memory(int16_t isSPMDExecutionMode,
  /// const void *buf, size_t size, int16_t is_shared, const void **res);
  OMPRTL_NVPTX__kmpc_get_team_static_memory,
  /// Call to void __kmpc_restore_team_static_memory(int16_t
  /// isSPMDExecutionMode, int16_t is_shared);
  OMPRTL_NVPTX__kmpc_restore_team_static_memory,
  /// Call to void __kmpc_barrier(ident_t *loc, kmp_int32 global_tid);
  OMPRTL__kmpc_barrier,
  /// Call to void __kmpc_barrier_simple_spmd(ident_t *loc, kmp_int32
  /// global_tid);
  OMPRTL__kmpc_barrier_simple_spmd,
};

/// Pre(post)-action for different OpenMP constructs specialized for NVPTX.
class NVPTXActionTy final : public PrePostActionTy {
  llvm::Value *EnterCallee = nullptr;
  ArrayRef<llvm::Value *> EnterArgs;
  llvm::Value *ExitCallee = nullptr;
  ArrayRef<llvm::Value *> ExitArgs;
  bool Conditional = false;
  llvm::BasicBlock *ContBlock = nullptr;

public:
  NVPTXActionTy(llvm::Value *EnterCallee, ArrayRef<llvm::Value *> EnterArgs,
                llvm::Value *ExitCallee, ArrayRef<llvm::Value *> ExitArgs,
                bool Conditional = false)
      : EnterCallee(EnterCallee), EnterArgs(EnterArgs), ExitCallee(ExitCallee),
        ExitArgs(ExitArgs), Conditional(Conditional) {}
  void Enter(CodeGenFunction &CGF) override {
    llvm::Value *EnterRes = CGF.EmitRuntimeCall(EnterCallee, EnterArgs);
    if (Conditional) {
      llvm::Value *CallBool = CGF.Builder.CreateIsNotNull(EnterRes);
      auto *ThenBlock = CGF.createBasicBlock("omp_if.then");
      ContBlock = CGF.createBasicBlock("omp_if.end");
      // Generate the branch (If-stmt)
      CGF.Builder.CreateCondBr(CallBool, ThenBlock, ContBlock);
      CGF.EmitBlock(ThenBlock);
    }
  }
  void Done(CodeGenFunction &CGF) {
    // Emit the rest of blocks/branches
    CGF.EmitBranch(ContBlock);
    CGF.EmitBlock(ContBlock, true);
  }
  void Exit(CodeGenFunction &CGF) override {
    CGF.EmitRuntimeCall(ExitCallee, ExitArgs);
  }
};

/// A class to track the execution mode when codegening directives within
/// a target region. The appropriate mode (SPMD|NON-SPMD) is set on entry
/// to the target region and used by containing directives such as 'parallel'
/// to emit optimized code.
class ExecutionRuntimeModesRAII {
private:
  CGOpenMPRuntimeNVPTX::ExecutionMode SavedExecMode =
      CGOpenMPRuntimeNVPTX::EM_Unknown;
  CGOpenMPRuntimeNVPTX::ExecutionMode &ExecMode;
  bool SavedRuntimeMode = false;
  bool *RuntimeMode = nullptr;

public:
  /// Constructor for Non-SPMD mode.
  ExecutionRuntimeModesRAII(CGOpenMPRuntimeNVPTX::ExecutionMode &ExecMode)
      : ExecMode(ExecMode) {
    SavedExecMode = ExecMode;
    ExecMode = CGOpenMPRuntimeNVPTX::EM_NonSPMD;
  }
  /// Constructor for SPMD mode.
  ExecutionRuntimeModesRAII(CGOpenMPRuntimeNVPTX::ExecutionMode &ExecMode,
                            bool &RuntimeMode, bool FullRuntimeMode)
      : ExecMode(ExecMode), RuntimeMode(&RuntimeMode) {
    SavedExecMode = ExecMode;
    SavedRuntimeMode = RuntimeMode;
    ExecMode = CGOpenMPRuntimeNVPTX::EM_SPMD;
    RuntimeMode = FullRuntimeMode;
  }
  ~ExecutionRuntimeModesRAII() {
    ExecMode = SavedExecMode;
    if (RuntimeMode)
      *RuntimeMode = SavedRuntimeMode;
  }
};

/// GPU Configuration:  This information can be derived from cuda registers,
/// however, providing compile time constants helps generate more efficient
/// code.  For all practical purposes this is fine because the configuration
/// is the same for all known NVPTX architectures.
enum MachineConfiguration : unsigned {
  WarpSize = 32,
  /// Number of bits required to represent a lane identifier, which is
  /// computed as log_2(WarpSize).
  LaneIDBits = 5,
  LaneIDMask = WarpSize - 1,

  /// Global memory alignment for performance.
  GlobalMemoryAlignment = 128,

  /// Maximal size of the shared memory buffer.
  SharedMemorySize = 128,
};

static const ValueDecl *getPrivateItem(const Expr *RefExpr) {
  RefExpr = RefExpr->IgnoreParens();
  if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(RefExpr)) {
    const Expr *Base = ASE->getBase()->IgnoreParenImpCasts();
    while (const auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base))
      Base = TempASE->getBase()->IgnoreParenImpCasts();
    RefExpr = Base;
  } else if (auto *OASE = dyn_cast<OMPArraySectionExpr>(RefExpr)) {
    const Expr *Base = OASE->getBase()->IgnoreParenImpCasts();
    while (const auto *TempOASE = dyn_cast<OMPArraySectionExpr>(Base))
      Base = TempOASE->getBase()->IgnoreParenImpCasts();
    while (const auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base))
      Base = TempASE->getBase()->IgnoreParenImpCasts();
    RefExpr = Base;
  }
  RefExpr = RefExpr->IgnoreParenImpCasts();
  if (const auto *DE = dyn_cast<DeclRefExpr>(RefExpr))
    return cast<ValueDecl>(DE->getDecl()->getCanonicalDecl());
  const auto *ME = cast<MemberExpr>(RefExpr);
  return cast<ValueDecl>(ME->getMemberDecl()->getCanonicalDecl());
}

typedef std::pair<CharUnits /*Align*/, const ValueDecl *> VarsDataTy;
static bool stable_sort_comparator(const VarsDataTy P1, const VarsDataTy P2) {
  return P1.first > P2.first;
}

static RecordDecl *buildRecordForGlobalizedVars(
    ASTContext &C, ArrayRef<const ValueDecl *> EscapedDecls,
    ArrayRef<const ValueDecl *> EscapedDeclsForTeams,
    llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
        &MappedDeclsFields) {
  if (EscapedDecls.empty() && EscapedDeclsForTeams.empty())
    return nullptr;
  SmallVector<VarsDataTy, 4> GlobalizedVars;
  for (const ValueDecl *D : EscapedDecls)
    GlobalizedVars.emplace_back(
        CharUnits::fromQuantity(std::max(
            C.getDeclAlign(D).getQuantity(),
            static_cast<CharUnits::QuantityType>(GlobalMemoryAlignment))),
        D);
  for (const ValueDecl *D : EscapedDeclsForTeams)
    GlobalizedVars.emplace_back(C.getDeclAlign(D), D);
  std::stable_sort(GlobalizedVars.begin(), GlobalizedVars.end(),
                   stable_sort_comparator);
  // Build struct _globalized_locals_ty {
  //         /*  globalized vars  */[WarSize] align (max(decl_align,
  //         GlobalMemoryAlignment))
  //         /*  globalized vars  */ for EscapedDeclsForTeams
  //       };
  RecordDecl *GlobalizedRD = C.buildImplicitRecord("_globalized_locals_ty");
  GlobalizedRD->startDefinition();
  llvm::SmallPtrSet<const ValueDecl *, 16> SingleEscaped(
      EscapedDeclsForTeams.begin(), EscapedDeclsForTeams.end());
  for (const auto &Pair : GlobalizedVars) {
    const ValueDecl *VD = Pair.second;
    QualType Type = VD->getType();
    if (Type->isLValueReferenceType())
      Type = C.getPointerType(Type.getNonReferenceType());
    else
      Type = Type.getNonReferenceType();
    SourceLocation Loc = VD->getLocation();
    FieldDecl *Field;
    if (SingleEscaped.count(VD)) {
      Field = FieldDecl::Create(
          C, GlobalizedRD, Loc, Loc, VD->getIdentifier(), Type,
          C.getTrivialTypeSourceInfo(Type, SourceLocation()),
          /*BW=*/nullptr, /*Mutable=*/false,
          /*InitStyle=*/ICIS_NoInit);
      Field->setAccess(AS_public);
      if (VD->hasAttrs()) {
        for (specific_attr_iterator<AlignedAttr> I(VD->getAttrs().begin()),
             E(VD->getAttrs().end());
             I != E; ++I)
          Field->addAttr(*I);
      }
    } else {
      llvm::APInt ArraySize(32, WarpSize);
      Type = C.getConstantArrayType(Type, ArraySize, ArrayType::Normal, 0);
      Field = FieldDecl::Create(
          C, GlobalizedRD, Loc, Loc, VD->getIdentifier(), Type,
          C.getTrivialTypeSourceInfo(Type, SourceLocation()),
          /*BW=*/nullptr, /*Mutable=*/false,
          /*InitStyle=*/ICIS_NoInit);
      Field->setAccess(AS_public);
      llvm::APInt Align(32, std::max(C.getDeclAlign(VD).getQuantity(),
                                     static_cast<CharUnits::QuantityType>(
                                         GlobalMemoryAlignment)));
      Field->addAttr(AlignedAttr::CreateImplicit(
          C, AlignedAttr::GNU_aligned, /*IsAlignmentExpr=*/true,
          IntegerLiteral::Create(C, Align,
                                 C.getIntTypeForBitwidth(32, /*Signed=*/0),
                                 SourceLocation())));
    }
    GlobalizedRD->addDecl(Field);
    MappedDeclsFields.try_emplace(VD, Field);
  }
  GlobalizedRD->completeDefinition();
  return GlobalizedRD;
}

/// Get the list of variables that can escape their declaration context.
class CheckVarsEscapingDeclContext final
    : public ConstStmtVisitor<CheckVarsEscapingDeclContext> {
  CodeGenFunction &CGF;
  llvm::SetVector<const ValueDecl *> EscapedDecls;
  llvm::SetVector<const ValueDecl *> EscapedVariableLengthDecls;
  llvm::SmallPtrSet<const Decl *, 4> EscapedParameters;
  RecordDecl *GlobalizedRD = nullptr;
  llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> MappedDeclsFields;
  bool AllEscaped = false;
  bool IsForCombinedParallelRegion = false;

  void markAsEscaped(const ValueDecl *VD) {
    // Do not globalize declare target variables.
    if (!isa<VarDecl>(VD) ||
        OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD))
      return;
    VD = cast<ValueDecl>(VD->getCanonicalDecl());
    // Variables captured by value must be globalized.
    if (auto *CSI = CGF.CapturedStmtInfo) {
      if (const FieldDecl *FD = CSI->lookup(cast<VarDecl>(VD))) {
        // Check if need to capture the variable that was already captured by
        // value in the outer region.
        if (!IsForCombinedParallelRegion) {
          if (!FD->hasAttrs())
            return;
          const auto *Attr = FD->getAttr<OMPCaptureKindAttr>();
          if (!Attr)
            return;
          if (((Attr->getCaptureKind() != OMPC_map) &&
               !isOpenMPPrivate(
                   static_cast<OpenMPClauseKind>(Attr->getCaptureKind()))) ||
              ((Attr->getCaptureKind() == OMPC_map) &&
               !FD->getType()->isAnyPointerType()))
            return;
        }
        if (!FD->getType()->isReferenceType()) {
          assert(!VD->getType()->isVariablyModifiedType() &&
                 "Parameter captured by value with variably modified type");
          EscapedParameters.insert(VD);
        } else if (!IsForCombinedParallelRegion) {
          return;
        }
      }
    }
    if ((!CGF.CapturedStmtInfo ||
         (IsForCombinedParallelRegion && CGF.CapturedStmtInfo)) &&
        VD->getType()->isReferenceType())
      // Do not globalize variables with reference type.
      return;
    if (VD->getType()->isVariablyModifiedType())
      EscapedVariableLengthDecls.insert(VD);
    else
      EscapedDecls.insert(VD);
  }

  void VisitValueDecl(const ValueDecl *VD) {
    if (VD->getType()->isLValueReferenceType())
      markAsEscaped(VD);
    if (const auto *VarD = dyn_cast<VarDecl>(VD)) {
      if (!isa<ParmVarDecl>(VarD) && VarD->hasInit()) {
        const bool SavedAllEscaped = AllEscaped;
        AllEscaped = VD->getType()->isLValueReferenceType();
        Visit(VarD->getInit());
        AllEscaped = SavedAllEscaped;
      }
    }
  }
  void VisitOpenMPCapturedStmt(const CapturedStmt *S,
                               ArrayRef<OMPClause *> Clauses,
                               bool IsCombinedParallelRegion) {
    if (!S)
      return;
    for (const CapturedStmt::Capture &C : S->captures()) {
      if (C.capturesVariable() && !C.capturesVariableByCopy()) {
        const ValueDecl *VD = C.getCapturedVar();
        bool SavedIsForCombinedParallelRegion = IsForCombinedParallelRegion;
        if (IsCombinedParallelRegion) {
          // Check if the variable is privatized in the combined construct and
          // those private copies must be shared in the inner parallel
          // directive.
          IsForCombinedParallelRegion = false;
          for (const OMPClause *C : Clauses) {
            if (!isOpenMPPrivate(C->getClauseKind()) ||
                C->getClauseKind() == OMPC_reduction ||
                C->getClauseKind() == OMPC_linear ||
                C->getClauseKind() == OMPC_private)
              continue;
            ArrayRef<const Expr *> Vars;
            if (const auto *PC = dyn_cast<OMPFirstprivateClause>(C))
              Vars = PC->getVarRefs();
            else if (const auto *PC = dyn_cast<OMPLastprivateClause>(C))
              Vars = PC->getVarRefs();
            else
              llvm_unreachable("Unexpected clause.");
            for (const auto *E : Vars) {
              const Decl *D =
                  cast<DeclRefExpr>(E)->getDecl()->getCanonicalDecl();
              if (D == VD->getCanonicalDecl()) {
                IsForCombinedParallelRegion = true;
                break;
              }
            }
            if (IsForCombinedParallelRegion)
              break;
          }
        }
        markAsEscaped(VD);
        if (isa<OMPCapturedExprDecl>(VD))
          VisitValueDecl(VD);
        IsForCombinedParallelRegion = SavedIsForCombinedParallelRegion;
      }
    }
  }

  void buildRecordForGlobalizedVars(bool IsInTTDRegion) {
    assert(!GlobalizedRD &&
           "Record for globalized variables is built already.");
    ArrayRef<const ValueDecl *> EscapedDeclsForParallel, EscapedDeclsForTeams;
    if (IsInTTDRegion)
      EscapedDeclsForTeams = EscapedDecls.getArrayRef();
    else
      EscapedDeclsForParallel = EscapedDecls.getArrayRef();
    GlobalizedRD = ::buildRecordForGlobalizedVars(
        CGF.getContext(), EscapedDeclsForParallel, EscapedDeclsForTeams,
        MappedDeclsFields);
  }

public:
  CheckVarsEscapingDeclContext(CodeGenFunction &CGF,
                               ArrayRef<const ValueDecl *> TeamsReductions)
      : CGF(CGF), EscapedDecls(TeamsReductions.begin(), TeamsReductions.end()) {
  }
  virtual ~CheckVarsEscapingDeclContext() = default;
  void VisitDeclStmt(const DeclStmt *S) {
    if (!S)
      return;
    for (const Decl *D : S->decls())
      if (const auto *VD = dyn_cast_or_null<ValueDecl>(D))
        VisitValueDecl(VD);
  }
  void VisitOMPExecutableDirective(const OMPExecutableDirective *D) {
    if (!D)
      return;
    if (!D->hasAssociatedStmt())
      return;
    if (const auto *S =
            dyn_cast_or_null<CapturedStmt>(D->getAssociatedStmt())) {
      // Do not analyze directives that do not actually require capturing,
      // like `omp for` or `omp simd` directives.
      llvm::SmallVector<OpenMPDirectiveKind, 4> CaptureRegions;
      getOpenMPCaptureRegions(CaptureRegions, D->getDirectiveKind());
      if (CaptureRegions.size() == 1 && CaptureRegions.back() == OMPD_unknown) {
        VisitStmt(S->getCapturedStmt());
        return;
      }
      VisitOpenMPCapturedStmt(
          S, D->clauses(),
          CaptureRegions.back() == OMPD_parallel &&
              isOpenMPDistributeDirective(D->getDirectiveKind()));
    }
  }
  void VisitCapturedStmt(const CapturedStmt *S) {
    if (!S)
      return;
    for (const CapturedStmt::Capture &C : S->captures()) {
      if (C.capturesVariable() && !C.capturesVariableByCopy()) {
        const ValueDecl *VD = C.getCapturedVar();
        markAsEscaped(VD);
        if (isa<OMPCapturedExprDecl>(VD))
          VisitValueDecl(VD);
      }
    }
  }
  void VisitLambdaExpr(const LambdaExpr *E) {
    if (!E)
      return;
    for (const LambdaCapture &C : E->captures()) {
      if (C.capturesVariable()) {
        if (C.getCaptureKind() == LCK_ByRef) {
          const ValueDecl *VD = C.getCapturedVar();
          markAsEscaped(VD);
          if (E->isInitCapture(&C) || isa<OMPCapturedExprDecl>(VD))
            VisitValueDecl(VD);
        }
      }
    }
  }
  void VisitBlockExpr(const BlockExpr *E) {
    if (!E)
      return;
    for (const BlockDecl::Capture &C : E->getBlockDecl()->captures()) {
      if (C.isByRef()) {
        const VarDecl *VD = C.getVariable();
        markAsEscaped(VD);
        if (isa<OMPCapturedExprDecl>(VD) || VD->isInitCapture())
          VisitValueDecl(VD);
      }
    }
  }
  void VisitCallExpr(const CallExpr *E) {
    if (!E)
      return;
    for (const Expr *Arg : E->arguments()) {
      if (!Arg)
        continue;
      if (Arg->isLValue()) {
        const bool SavedAllEscaped = AllEscaped;
        AllEscaped = true;
        Visit(Arg);
        AllEscaped = SavedAllEscaped;
      } else {
        Visit(Arg);
      }
    }
    Visit(E->getCallee());
  }
  void VisitDeclRefExpr(const DeclRefExpr *E) {
    if (!E)
      return;
    const ValueDecl *VD = E->getDecl();
    if (AllEscaped)
      markAsEscaped(VD);
    if (isa<OMPCapturedExprDecl>(VD))
      VisitValueDecl(VD);
    else if (const auto *VarD = dyn_cast<VarDecl>(VD))
      if (VarD->isInitCapture())
        VisitValueDecl(VD);
  }
  void VisitUnaryOperator(const UnaryOperator *E) {
    if (!E)
      return;
    if (E->getOpcode() == UO_AddrOf) {
      const bool SavedAllEscaped = AllEscaped;
      AllEscaped = true;
      Visit(E->getSubExpr());
      AllEscaped = SavedAllEscaped;
    } else {
      Visit(E->getSubExpr());
    }
  }
  void VisitImplicitCastExpr(const ImplicitCastExpr *E) {
    if (!E)
      return;
    if (E->getCastKind() == CK_ArrayToPointerDecay) {
      const bool SavedAllEscaped = AllEscaped;
      AllEscaped = true;
      Visit(E->getSubExpr());
      AllEscaped = SavedAllEscaped;
    } else {
      Visit(E->getSubExpr());
    }
  }
  void VisitExpr(const Expr *E) {
    if (!E)
      return;
    bool SavedAllEscaped = AllEscaped;
    if (!E->isLValue())
      AllEscaped = false;
    for (const Stmt *Child : E->children())
      if (Child)
        Visit(Child);
    AllEscaped = SavedAllEscaped;
  }
  void VisitStmt(const Stmt *S) {
    if (!S)
      return;
    for (const Stmt *Child : S->children())
      if (Child)
        Visit(Child);
  }

  /// Returns the record that handles all the escaped local variables and used
  /// instead of their original storage.
  const RecordDecl *getGlobalizedRecord(bool IsInTTDRegion) {
    if (!GlobalizedRD)
      buildRecordForGlobalizedVars(IsInTTDRegion);
    return GlobalizedRD;
  }

  /// Returns the field in the globalized record for the escaped variable.
  const FieldDecl *getFieldForGlobalizedVar(const ValueDecl *VD) const {
    assert(GlobalizedRD &&
           "Record for globalized variables must be generated already.");
    auto I = MappedDeclsFields.find(VD);
    if (I == MappedDeclsFields.end())
      return nullptr;
    return I->getSecond();
  }

  /// Returns the list of the escaped local variables/parameters.
  ArrayRef<const ValueDecl *> getEscapedDecls() const {
    return EscapedDecls.getArrayRef();
  }

  /// Checks if the escaped local variable is actually a parameter passed by
  /// value.
  const llvm::SmallPtrSetImpl<const Decl *> &getEscapedParameters() const {
    return EscapedParameters;
  }

  /// Returns the list of the escaped variables with the variably modified
  /// types.
  ArrayRef<const ValueDecl *> getEscapedVariableLengthDecls() const {
    return EscapedVariableLengthDecls.getArrayRef();
  }
};
} // anonymous namespace

/// Get the GPU warp size.
static llvm::Value *getNVPTXWarpSize(CodeGenFunction &CGF) {
  return CGF.EmitRuntimeCall(
      llvm::Intrinsic::getDeclaration(
          &CGF.CGM.getModule(), llvm::Intrinsic::nvvm_read_ptx_sreg_warpsize),
      "nvptx_warp_size");
}

/// Get the id of the current thread on the GPU.
static llvm::Value *getNVPTXThreadID(CodeGenFunction &CGF) {
  return CGF.EmitRuntimeCall(
      llvm::Intrinsic::getDeclaration(
          &CGF.CGM.getModule(), llvm::Intrinsic::nvvm_read_ptx_sreg_tid_x),
      "nvptx_tid");
}

/// Get the id of the warp in the block.
/// We assume that the warp size is 32, which is always the case
/// on the NVPTX device, to generate more efficient code.
static llvm::Value *getNVPTXWarpID(CodeGenFunction &CGF) {
  CGBuilderTy &Bld = CGF.Builder;
  return Bld.CreateAShr(getNVPTXThreadID(CGF), LaneIDBits, "nvptx_warp_id");
}

/// Get the id of the current lane in the Warp.
/// We assume that the warp size is 32, which is always the case
/// on the NVPTX device, to generate more efficient code.
static llvm::Value *getNVPTXLaneID(CodeGenFunction &CGF) {
  CGBuilderTy &Bld = CGF.Builder;
  return Bld.CreateAnd(getNVPTXThreadID(CGF), Bld.getInt32(LaneIDMask),
                       "nvptx_lane_id");
}

/// Get the maximum number of threads in a block of the GPU.
static llvm::Value *getNVPTXNumThreads(CodeGenFunction &CGF) {
  return CGF.EmitRuntimeCall(
      llvm::Intrinsic::getDeclaration(
          &CGF.CGM.getModule(), llvm::Intrinsic::nvvm_read_ptx_sreg_ntid_x),
      "nvptx_num_threads");
}

/// Get the value of the thread_limit clause in the teams directive.
/// For the 'generic' execution mode, the runtime encodes thread_limit in
/// the launch parameters, always starting thread_limit+warpSize threads per
/// CTA. The threads in the last warp are reserved for master execution.
/// For the 'spmd' execution mode, all threads in a CTA are part of the team.
static llvm::Value *getThreadLimit(CodeGenFunction &CGF,
                                   bool IsInSPMDExecutionMode = false) {
  CGBuilderTy &Bld = CGF.Builder;
  return IsInSPMDExecutionMode
             ? getNVPTXNumThreads(CGF)
             : Bld.CreateNUWSub(getNVPTXNumThreads(CGF), getNVPTXWarpSize(CGF),
                                "thread_limit");
}

/// Get the thread id of the OMP master thread.
/// The master thread id is the first thread (lane) of the last warp in the
/// GPU block.  Warp size is assumed to be some power of 2.
/// Thread id is 0 indexed.
/// E.g: If NumThreads is 33, master id is 32.
///      If NumThreads is 64, master id is 32.
///      If NumThreads is 1024, master id is 992.
static llvm::Value *getMasterThreadID(CodeGenFunction &CGF) {
  CGBuilderTy &Bld = CGF.Builder;
  llvm::Value *NumThreads = getNVPTXNumThreads(CGF);

  // We assume that the warp size is a power of 2.
  llvm::Value *Mask = Bld.CreateNUWSub(getNVPTXWarpSize(CGF), Bld.getInt32(1));

  return Bld.CreateAnd(Bld.CreateNUWSub(NumThreads, Bld.getInt32(1)),
                       Bld.CreateNot(Mask), "master_tid");
}

CGOpenMPRuntimeNVPTX::WorkerFunctionState::WorkerFunctionState(
    CodeGenModule &CGM, SourceLocation Loc)
    : WorkerFn(nullptr), CGFI(CGM.getTypes().arrangeNullaryFunction()),
      Loc(Loc) {
  createWorkerFunction(CGM);
}

void CGOpenMPRuntimeNVPTX::WorkerFunctionState::createWorkerFunction(
    CodeGenModule &CGM) {
  // Create an worker function with no arguments.

  WorkerFn = llvm::Function::Create(
      CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
      /*placeholder=*/"_worker", &CGM.getModule());
  CGM.SetInternalFunctionAttributes(GlobalDecl(), WorkerFn, CGFI);
  WorkerFn->setDoesNotRecurse();
}

CGOpenMPRuntimeNVPTX::ExecutionMode
CGOpenMPRuntimeNVPTX::getExecutionMode() const {
  return CurrentExecutionMode;
}

static CGOpenMPRuntimeNVPTX::DataSharingMode
getDataSharingMode(CodeGenModule &CGM) {
  return CGM.getLangOpts().OpenMPCUDAMode ? CGOpenMPRuntimeNVPTX::CUDA
                                          : CGOpenMPRuntimeNVPTX::Generic;
}

/// Checks if the expression is constant or does not have non-trivial function
/// calls.
static bool isTrivial(ASTContext &Ctx, const Expr * E) {
  // We can skip constant expressions.
  // We can skip expressions with trivial calls or simple expressions.
  return (E->isEvaluatable(Ctx, Expr::SE_AllowUndefinedBehavior) ||
          !E->hasNonTrivialCall(Ctx)) &&
         !E->HasSideEffects(Ctx, /*IncludePossibleEffects=*/true);
}

/// Checks if the \p Body is the \a CompoundStmt and returns its child statement
/// iff there is only one that is not evaluatable at the compile time.
static const Stmt *getSingleCompoundChild(ASTContext &Ctx, const Stmt *Body) {
  if (const auto *C = dyn_cast<CompoundStmt>(Body)) {
    const Stmt *Child = nullptr;
    for (const Stmt *S : C->body()) {
      if (const auto *E = dyn_cast<Expr>(S)) {
        if (isTrivial(Ctx, E))
          continue;
      }
      // Some of the statements can be ignored.
      if (isa<AsmStmt>(S) || isa<NullStmt>(S) || isa<OMPFlushDirective>(S) ||
          isa<OMPBarrierDirective>(S) || isa<OMPTaskyieldDirective>(S))
        continue;
      // Analyze declarations.
      if (const auto *DS = dyn_cast<DeclStmt>(S)) {
        if (llvm::all_of(DS->decls(), [&Ctx](const Decl *D) {
              if (isa<EmptyDecl>(D) || isa<DeclContext>(D) ||
                  isa<TypeDecl>(D) || isa<PragmaCommentDecl>(D) ||
                  isa<PragmaDetectMismatchDecl>(D) || isa<UsingDecl>(D) ||
                  isa<UsingDirectiveDecl>(D) ||
                  isa<OMPDeclareReductionDecl>(D) ||
                  isa<OMPThreadPrivateDecl>(D))
                return true;
              const auto *VD = dyn_cast<VarDecl>(D);
              if (!VD)
                return false;
              return VD->isConstexpr() ||
                     ((VD->getType().isTrivialType(Ctx) ||
                       VD->getType()->isReferenceType()) &&
                      (!VD->hasInit() || isTrivial(Ctx, VD->getInit())));
            }))
          continue;
      }
      // Found multiple children - cannot get the one child only.
      if (Child)
        return Body;
      Child = S;
    }
    if (Child)
      return Child;
  }
  return Body;
}

/// Check if the parallel directive has an 'if' clause with non-constant or
/// false condition. Also, check if the number of threads is strictly specified
/// and run those directives in non-SPMD mode.
static bool hasParallelIfNumThreadsClause(ASTContext &Ctx,
                                          const OMPExecutableDirective &D) {
  if (D.hasClausesOfKind<OMPNumThreadsClause>())
    return true;
  for (const auto *C : D.getClausesOfKind<OMPIfClause>()) {
    OpenMPDirectiveKind NameModifier = C->getNameModifier();
    if (NameModifier != OMPD_parallel && NameModifier != OMPD_unknown)
      continue;
    const Expr *Cond = C->getCondition();
    bool Result;
    if (!Cond->EvaluateAsBooleanCondition(Result, Ctx) || !Result)
      return true;
  }
  return false;
}

/// Check for inner (nested) SPMD construct, if any
static bool hasNestedSPMDDirective(ASTContext &Ctx,
                                   const OMPExecutableDirective &D) {
  const auto *CS = D.getInnermostCapturedStmt();
  const auto *Body =
      CS->getCapturedStmt()->IgnoreContainers(/*IgnoreCaptured=*/true);
  const Stmt *ChildStmt = getSingleCompoundChild(Ctx, Body);

  if (const auto *NestedDir = dyn_cast<OMPExecutableDirective>(ChildStmt)) {
    OpenMPDirectiveKind DKind = NestedDir->getDirectiveKind();
    switch (D.getDirectiveKind()) {
    case OMPD_target:
      if (isOpenMPParallelDirective(DKind) &&
          !hasParallelIfNumThreadsClause(Ctx, *NestedDir))
        return true;
      if (DKind == OMPD_teams) {
        Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers(
            /*IgnoreCaptured=*/true);
        if (!Body)
          return false;
        ChildStmt = getSingleCompoundChild(Ctx, Body);
        if (const auto *NND = dyn_cast<OMPExecutableDirective>(ChildStmt)) {
          DKind = NND->getDirectiveKind();
          if (isOpenMPParallelDirective(DKind) &&
              !hasParallelIfNumThreadsClause(Ctx, *NND))
            return true;
        }
      }
      return false;
    case OMPD_target_teams:
      return isOpenMPParallelDirective(DKind) &&
             !hasParallelIfNumThreadsClause(Ctx, *NestedDir);
    case OMPD_target_simd:
    case OMPD_target_parallel:
    case OMPD_target_parallel_for:
    case OMPD_target_parallel_for_simd:
    case OMPD_target_teams_distribute:
    case OMPD_target_teams_distribute_simd:
    case OMPD_target_teams_distribute_parallel_for:
    case OMPD_target_teams_distribute_parallel_for_simd:
    case OMPD_parallel:
    case OMPD_for:
    case OMPD_parallel_for:
    case OMPD_parallel_sections:
    case OMPD_for_simd:
    case OMPD_parallel_for_simd:
    case OMPD_cancel:
    case OMPD_cancellation_point:
    case OMPD_ordered:
    case OMPD_threadprivate:
    case OMPD_task:
    case OMPD_simd:
    case OMPD_sections:
    case OMPD_section:
    case OMPD_single:
    case OMPD_master:
    case OMPD_critical:
    case OMPD_taskyield:
    case OMPD_barrier:
    case OMPD_taskwait:
    case OMPD_taskgroup:
    case OMPD_atomic:
    case OMPD_flush:
    case OMPD_teams:
    case OMPD_target_data:
    case OMPD_target_exit_data:
    case OMPD_target_enter_data:
    case OMPD_distribute:
    case OMPD_distribute_simd:
    case OMPD_distribute_parallel_for:
    case OMPD_distribute_parallel_for_simd:
    case OMPD_teams_distribute:
    case OMPD_teams_distribute_simd:
    case OMPD_teams_distribute_parallel_for:
    case OMPD_teams_distribute_parallel_for_simd:
    case OMPD_target_update:
    case OMPD_declare_simd:
    case OMPD_declare_target:
    case OMPD_end_declare_target:
    case OMPD_declare_reduction:
    case OMPD_taskloop:
    case OMPD_taskloop_simd:
    case OMPD_requires:
    case OMPD_unknown:
      llvm_unreachable("Unexpected directive.");
    }
  }

  return false;
}

static bool supportsSPMDExecutionMode(ASTContext &Ctx,
                                      const OMPExecutableDirective &D) {
  OpenMPDirectiveKind DirectiveKind = D.getDirectiveKind();
  switch (DirectiveKind) {
  case OMPD_target:
  case OMPD_target_teams:
    return hasNestedSPMDDirective(Ctx, D);
  case OMPD_target_parallel:
  case OMPD_target_parallel_for:
  case OMPD_target_parallel_for_simd:
  case OMPD_target_teams_distribute_parallel_for:
  case OMPD_target_teams_distribute_parallel_for_simd:
    return !hasParallelIfNumThreadsClause(Ctx, D);
  case OMPD_target_simd:
  case OMPD_target_teams_distribute:
  case OMPD_target_teams_distribute_simd:
    return false;
  case OMPD_parallel:
  case OMPD_for:
  case OMPD_parallel_for:
  case OMPD_parallel_sections:
  case OMPD_for_simd:
  case OMPD_parallel_for_simd:
  case OMPD_cancel:
  case OMPD_cancellation_point:
  case OMPD_ordered:
  case OMPD_threadprivate:
  case OMPD_task:
  case OMPD_simd:
  case OMPD_sections:
  case OMPD_section:
  case OMPD_single:
  case OMPD_master:
  case OMPD_critical:
  case OMPD_taskyield:
  case OMPD_barrier:
  case OMPD_taskwait:
  case OMPD_taskgroup:
  case OMPD_atomic:
  case OMPD_flush:
  case OMPD_teams:
  case OMPD_target_data:
  case OMPD_target_exit_data:
  case OMPD_target_enter_data:
  case OMPD_distribute:
  case OMPD_distribute_simd:
  case OMPD_distribute_parallel_for:
  case OMPD_distribute_parallel_for_simd:
  case OMPD_teams_distribute:
  case OMPD_teams_distribute_simd:
  case OMPD_teams_distribute_parallel_for:
  case OMPD_teams_distribute_parallel_for_simd:
  case OMPD_target_update:
  case OMPD_declare_simd:
  case OMPD_declare_target:
  case OMPD_end_declare_target:
  case OMPD_declare_reduction:
  case OMPD_taskloop:
  case OMPD_taskloop_simd:
  case OMPD_requires:
  case OMPD_unknown:
    break;
  }
  llvm_unreachable(
      "Unknown programming model for OpenMP directive on NVPTX target.");
}

/// Check if the directive is loops based and has schedule clause at all or has
/// static scheduling.
static bool hasStaticScheduling(const OMPExecutableDirective &D) {
  assert(isOpenMPWorksharingDirective(D.getDirectiveKind()) &&
         isOpenMPLoopDirective(D.getDirectiveKind()) &&
         "Expected loop-based directive.");
  return !D.hasClausesOfKind<OMPOrderedClause>() &&
         (!D.hasClausesOfKind<OMPScheduleClause>() ||
          llvm::any_of(D.getClausesOfKind<OMPScheduleClause>(),
                       [](const OMPScheduleClause *C) {
                         return C->getScheduleKind() == OMPC_SCHEDULE_static;
                       }));
}

/// Check for inner (nested) lightweight runtime construct, if any
static bool hasNestedLightweightDirective(ASTContext &Ctx,
                                          const OMPExecutableDirective &D) {
  assert(supportsSPMDExecutionMode(Ctx, D) && "Expected SPMD mode directive.");
  const auto *CS = D.getInnermostCapturedStmt();
  const auto *Body =
      CS->getCapturedStmt()->IgnoreContainers(/*IgnoreCaptured=*/true);
  const Stmt *ChildStmt = getSingleCompoundChild(Ctx, Body);

  if (const auto *NestedDir = dyn_cast<OMPExecutableDirective>(ChildStmt)) {
    OpenMPDirectiveKind DKind = NestedDir->getDirectiveKind();
    switch (D.getDirectiveKind()) {
    case OMPD_target:
      if (isOpenMPParallelDirective(DKind) &&
          isOpenMPWorksharingDirective(DKind) && isOpenMPLoopDirective(DKind) &&
          hasStaticScheduling(*NestedDir))
        return true;
      if (DKind == OMPD_parallel) {
        Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers(
            /*IgnoreCaptured=*/true);
        if (!Body)
          return false;
        ChildStmt = getSingleCompoundChild(Ctx, Body);
        if (const auto *NND = dyn_cast<OMPExecutableDirective>(ChildStmt)) {
          DKind = NND->getDirectiveKind();
          if (isOpenMPWorksharingDirective(DKind) &&
              isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NND))
            return true;
        }
      } else if (DKind == OMPD_teams) {
        Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers(
            /*IgnoreCaptured=*/true);
        if (!Body)
          return false;
        ChildStmt = getSingleCompoundChild(Ctx, Body);
        if (const auto *NND = dyn_cast<OMPExecutableDirective>(ChildStmt)) {
          DKind = NND->getDirectiveKind();
          if (isOpenMPParallelDirective(DKind) &&
              isOpenMPWorksharingDirective(DKind) &&
              isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NND))
            return true;
          if (DKind == OMPD_parallel) {
            Body = NND->getInnermostCapturedStmt()->IgnoreContainers(
                /*IgnoreCaptured=*/true);
            if (!Body)
              return false;
            ChildStmt = getSingleCompoundChild(Ctx, Body);
            if (const auto *NND = dyn_cast<OMPExecutableDirective>(ChildStmt)) {
              DKind = NND->getDirectiveKind();
              if (isOpenMPWorksharingDirective(DKind) &&
                  isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NND))
                return true;
            }
          }
        }
      }
      return false;
    case OMPD_target_teams:
      if (isOpenMPParallelDirective(DKind) &&
          isOpenMPWorksharingDirective(DKind) && isOpenMPLoopDirective(DKind) &&
          hasStaticScheduling(*NestedDir))
        return true;
      if (DKind == OMPD_parallel) {
        Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers(
            /*IgnoreCaptured=*/true);
        if (!Body)
          return false;
        ChildStmt = getSingleCompoundChild(Ctx, Body);
        if (const auto *NND = dyn_cast<OMPExecutableDirective>(ChildStmt)) {
          DKind = NND->getDirectiveKind();
          if (isOpenMPWorksharingDirective(DKind) &&
              isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NND))
            return true;
        }
      }
      return false;
    case OMPD_target_parallel:
      return isOpenMPWorksharingDirective(DKind) &&
             isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NestedDir);
    case OMPD_target_teams_distribute:
    case OMPD_target_simd:
    case OMPD_target_parallel_for:
    case OMPD_target_parallel_for_simd:
    case OMPD_target_teams_distribute_simd:
    case OMPD_target_teams_distribute_parallel_for:
    case OMPD_target_teams_distribute_parallel_for_simd:
    case OMPD_parallel:
    case OMPD_for:
    case OMPD_parallel_for:
    case OMPD_parallel_sections:
    case OMPD_for_simd:
    case OMPD_parallel_for_simd:
    case OMPD_cancel:
    case OMPD_cancellation_point:
    case OMPD_ordered:
    case OMPD_threadprivate:
    case OMPD_task:
    case OMPD_simd:
    case OMPD_sections:
    case OMPD_section:
    case OMPD_single:
    case OMPD_master:
    case OMPD_critical:
    case OMPD_taskyield:
    case OMPD_barrier:
    case OMPD_taskwait:
    case OMPD_taskgroup:
    case OMPD_atomic:
    case OMPD_flush:
    case OMPD_teams:
    case OMPD_target_data:
    case OMPD_target_exit_data:
    case OMPD_target_enter_data:
    case OMPD_distribute:
    case OMPD_distribute_simd:
    case OMPD_distribute_parallel_for:
    case OMPD_distribute_parallel_for_simd:
    case OMPD_teams_distribute:
    case OMPD_teams_distribute_simd:
    case OMPD_teams_distribute_parallel_for:
    case OMPD_teams_distribute_parallel_for_simd:
    case OMPD_target_update:
    case OMPD_declare_simd:
    case OMPD_declare_target:
    case OMPD_end_declare_target:
    case OMPD_declare_reduction:
    case OMPD_taskloop:
    case OMPD_taskloop_simd:
    case OMPD_requires:
    case OMPD_unknown:
      llvm_unreachable("Unexpected directive.");
    }
  }

  return false;
}

/// Checks if the construct supports lightweight runtime. It must be SPMD
/// construct + inner loop-based construct with static scheduling.
static bool supportsLightweightRuntime(ASTContext &Ctx,
                                       const OMPExecutableDirective &D) {
  if (!supportsSPMDExecutionMode(Ctx, D))
    return false;
  OpenMPDirectiveKind DirectiveKind = D.getDirectiveKind();
  switch (DirectiveKind) {
  case OMPD_target:
  case OMPD_target_teams:
  case OMPD_target_parallel:
    return hasNestedLightweightDirective(Ctx, D);
  case OMPD_target_parallel_for:
  case OMPD_target_parallel_for_simd:
  case OMPD_target_teams_distribute_parallel_for:
  case OMPD_target_teams_distribute_parallel_for_simd:
    // (Last|First)-privates must be shared in parallel region.
    return hasStaticScheduling(D);
  case OMPD_target_simd:
  case OMPD_target_teams_distribute:
  case OMPD_target_teams_distribute_simd:
    return false;
  case OMPD_parallel:
  case OMPD_for:
  case OMPD_parallel_for:
  case OMPD_parallel_sections:
  case OMPD_for_simd:
  case OMPD_parallel_for_simd:
  case OMPD_cancel:
  case OMPD_cancellation_point:
  case OMPD_ordered:
  case OMPD_threadprivate:
  case OMPD_task:
  case OMPD_simd:
  case OMPD_sections:
  case OMPD_section:
  case OMPD_single:
  case OMPD_master:
  case OMPD_critical:
  case OMPD_taskyield:
  case OMPD_barrier:
  case OMPD_taskwait:
  case OMPD_taskgroup:
  case OMPD_atomic:
  case OMPD_flush:
  case OMPD_teams:
  case OMPD_target_data:
  case OMPD_target_exit_data:
  case OMPD_target_enter_data:
  case OMPD_distribute:
  case OMPD_distribute_simd:
  case OMPD_distribute_parallel_for:
  case OMPD_distribute_parallel_for_simd:
  case OMPD_teams_distribute:
  case OMPD_teams_distribute_simd:
  case OMPD_teams_distribute_parallel_for:
  case OMPD_teams_distribute_parallel_for_simd:
  case OMPD_target_update:
  case OMPD_declare_simd:
  case OMPD_declare_target:
  case OMPD_end_declare_target:
  case OMPD_declare_reduction:
  case OMPD_taskloop:
  case OMPD_taskloop_simd:
  case OMPD_requires:
  case OMPD_unknown:
    break;
  }
  llvm_unreachable(
      "Unknown programming model for OpenMP directive on NVPTX target.");
}

void CGOpenMPRuntimeNVPTX::emitNonSPMDKernel(const OMPExecutableDirective &D,
                                             StringRef ParentName,
                                             llvm::Function *&OutlinedFn,
                                             llvm::Constant *&OutlinedFnID,
                                             bool IsOffloadEntry,
                                             const RegionCodeGenTy &CodeGen) {
  ExecutionRuntimeModesRAII ModeRAII(CurrentExecutionMode);
  EntryFunctionState EST;
  WorkerFunctionState WST(CGM, D.getBeginLoc());
  Work.clear();
  WrapperFunctionsMap.clear();

  // Emit target region as a standalone region.
  class NVPTXPrePostActionTy : public PrePostActionTy {
    CGOpenMPRuntimeNVPTX::EntryFunctionState &EST;
    CGOpenMPRuntimeNVPTX::WorkerFunctionState &WST;

  public:
    NVPTXPrePostActionTy(CGOpenMPRuntimeNVPTX::EntryFunctionState &EST,
                         CGOpenMPRuntimeNVPTX::WorkerFunctionState &WST)
        : EST(EST), WST(WST) {}
    void Enter(CodeGenFunction &CGF) override {
      auto &RT =
          static_cast<CGOpenMPRuntimeNVPTX &>(CGF.CGM.getOpenMPRuntime());
      RT.emitNonSPMDEntryHeader(CGF, EST, WST);
      // Skip target region initialization.
      RT.setLocThreadIdInsertPt(CGF, /*AtCurrentPoint=*/true);
    }
    void Exit(CodeGenFunction &CGF) override {
      auto &RT =
          static_cast<CGOpenMPRuntimeNVPTX &>(CGF.CGM.getOpenMPRuntime());
      RT.clearLocThreadIdInsertPt(CGF);
      RT.emitNonSPMDEntryFooter(CGF, EST);
    }
  } Action(EST, WST);
  CodeGen.setAction(Action);
  IsInTTDRegion = true;
  // Reserve place for the globalized memory.
  GlobalizedRecords.emplace_back();
  if (!KernelStaticGlobalized) {
    KernelStaticGlobalized = new llvm::GlobalVariable(
        CGM.getModule(), CGM.VoidPtrTy, /*isConstant=*/false,
        llvm::GlobalValue::InternalLinkage,
        llvm::ConstantPointerNull::get(CGM.VoidPtrTy),
        "_openmp_kernel_static_glob_rd$ptr", /*InsertBefore=*/nullptr,
        llvm::GlobalValue::NotThreadLocal,
        CGM.getContext().getTargetAddressSpace(LangAS::cuda_shared));
  }
  emitTargetOutlinedFunctionHelper(D, ParentName, OutlinedFn, OutlinedFnID,
                                   IsOffloadEntry, CodeGen);
  IsInTTDRegion = false;

  // Now change the name of the worker function to correspond to this target
  // region's entry function.
  WST.WorkerFn->setName(Twine(OutlinedFn->getName(), "_worker"));

  // Create the worker function
  emitWorkerFunction(WST);
}

// Setup NVPTX threads for master-worker OpenMP scheme.
void CGOpenMPRuntimeNVPTX::emitNonSPMDEntryHeader(CodeGenFunction &CGF,
                                                  EntryFunctionState &EST,
                                                  WorkerFunctionState &WST) {
  CGBuilderTy &Bld = CGF.Builder;

  llvm::BasicBlock *WorkerBB = CGF.createBasicBlock(".worker");
  llvm::BasicBlock *MasterCheckBB = CGF.createBasicBlock(".mastercheck");
  llvm::BasicBlock *MasterBB = CGF.createBasicBlock(".master");
  EST.ExitBB = CGF.createBasicBlock(".exit");

  llvm::Value *IsWorker =
      Bld.CreateICmpULT(getNVPTXThreadID(CGF), getThreadLimit(CGF));
  Bld.CreateCondBr(IsWorker, WorkerBB, MasterCheckBB);

  CGF.EmitBlock(WorkerBB);
  emitCall(CGF, WST.Loc, WST.WorkerFn);
  CGF.EmitBranch(EST.ExitBB);

  CGF.EmitBlock(MasterCheckBB);
  llvm::Value *IsMaster =
      Bld.CreateICmpEQ(getNVPTXThreadID(CGF), getMasterThreadID(CGF));
  Bld.CreateCondBr(IsMaster, MasterBB, EST.ExitBB);

  CGF.EmitBlock(MasterBB);
  IsInTargetMasterThreadRegion = true;
  // SEQUENTIAL (MASTER) REGION START
  // First action in sequential region:
  // Initialize the state of the OpenMP runtime library on the GPU.
  // TODO: Optimize runtime initialization and pass in correct value.
  llvm::Value *Args[] = {getThreadLimit(CGF),
                         Bld.getInt16(/*RequiresOMPRuntime=*/1)};
  CGF.EmitRuntimeCall(
      createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_kernel_init), Args);

  // For data sharing, we need to initialize the stack.
  CGF.EmitRuntimeCall(
      createNVPTXRuntimeFunction(
          OMPRTL_NVPTX__kmpc_data_sharing_init_stack));

  emitGenericVarsProlog(CGF, WST.Loc);
}

void CGOpenMPRuntimeNVPTX::emitNonSPMDEntryFooter(CodeGenFunction &CGF,
                                                  EntryFunctionState &EST) {
  IsInTargetMasterThreadRegion = false;
  if (!CGF.HaveInsertPoint())
    return;

  emitGenericVarsEpilog(CGF);

  if (!EST.ExitBB)
    EST.ExitBB = CGF.createBasicBlock(".exit");

  llvm::BasicBlock *TerminateBB = CGF.createBasicBlock(".termination.notifier");
  CGF.EmitBranch(TerminateBB);

  CGF.EmitBlock(TerminateBB);
  // Signal termination condition.
  // TODO: Optimize runtime initialization and pass in correct value.
  llvm::Value *Args[] = {CGF.Builder.getInt16(/*IsOMPRuntimeInitialized=*/1)};
  CGF.EmitRuntimeCall(
      createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_kernel_deinit), Args);
  // Barrier to terminate worker threads.
  syncCTAThreads(CGF);
  // Master thread jumps to exit point.
  CGF.EmitBranch(EST.ExitBB);

  CGF.EmitBlock(EST.ExitBB);
  EST.ExitBB = nullptr;
}

void CGOpenMPRuntimeNVPTX::emitSPMDKernel(const OMPExecutableDirective &D,
                                          StringRef ParentName,
                                          llvm::Function *&OutlinedFn,
                                          llvm::Constant *&OutlinedFnID,
                                          bool IsOffloadEntry,
                                          const RegionCodeGenTy &CodeGen) {
  ExecutionRuntimeModesRAII ModeRAII(
      CurrentExecutionMode, RequiresFullRuntime,
      CGM.getLangOpts().OpenMPCUDAForceFullRuntime ||
          !supportsLightweightRuntime(CGM.getContext(), D));
  EntryFunctionState EST;

  // Emit target region as a standalone region.
  class NVPTXPrePostActionTy : public PrePostActionTy {
    CGOpenMPRuntimeNVPTX &RT;
    CGOpenMPRuntimeNVPTX::EntryFunctionState &EST;
    const OMPExecutableDirective &D;

  public:
    NVPTXPrePostActionTy(CGOpenMPRuntimeNVPTX &RT,
                         CGOpenMPRuntimeNVPTX::EntryFunctionState &EST,
                         const OMPExecutableDirective &D)
        : RT(RT), EST(EST), D(D) {}
    void Enter(CodeGenFunction &CGF) override {
      RT.emitSPMDEntryHeader(CGF, EST, D);
      // Skip target region initialization.
      RT.setLocThreadIdInsertPt(CGF, /*AtCurrentPoint=*/true);
    }
    void Exit(CodeGenFunction &CGF) override {
      RT.clearLocThreadIdInsertPt(CGF);
      RT.emitSPMDEntryFooter(CGF, EST);
    }
  } Action(*this, EST, D);
  CodeGen.setAction(Action);
  IsInTTDRegion = true;
  // Reserve place for the globalized memory.
  GlobalizedRecords.emplace_back();
  if (!KernelStaticGlobalized) {
    KernelStaticGlobalized = new llvm::GlobalVariable(
        CGM.getModule(), CGM.VoidPtrTy, /*isConstant=*/false,
        llvm::GlobalValue::InternalLinkage,
        llvm::ConstantPointerNull::get(CGM.VoidPtrTy),
        "_openmp_kernel_static_glob_rd$ptr", /*InsertBefore=*/nullptr,
        llvm::GlobalValue::NotThreadLocal,
        CGM.getContext().getTargetAddressSpace(LangAS::cuda_shared));
  }
  emitTargetOutlinedFunctionHelper(D, ParentName, OutlinedFn, OutlinedFnID,
                                   IsOffloadEntry, CodeGen);
  IsInTTDRegion = false;
}

void CGOpenMPRuntimeNVPTX::emitSPMDEntryHeader(
    CodeGenFunction &CGF, EntryFunctionState &EST,
    const OMPExecutableDirective &D) {
  CGBuilderTy &Bld = CGF.Builder;

  // Setup BBs in entry function.
  llvm::BasicBlock *ExecuteBB = CGF.createBasicBlock(".execute");
  EST.ExitBB = CGF.createBasicBlock(".exit");

  llvm::Value *Args[] = {getThreadLimit(CGF, /*IsInSPMDExecutionMode=*/true),
                         /*RequiresOMPRuntime=*/
                         Bld.getInt16(RequiresFullRuntime ? 1 : 0),
                         /*RequiresDataSharing=*/Bld.getInt16(0)};
  CGF.EmitRuntimeCall(
      createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_spmd_kernel_init), Args);

  if (RequiresFullRuntime) {
    // For data sharing, we need to initialize the stack.
    CGF.EmitRuntimeCall(createNVPTXRuntimeFunction(
        OMPRTL_NVPTX__kmpc_data_sharing_init_stack_spmd));
  }

  CGF.EmitBranch(ExecuteBB);

  CGF.EmitBlock(ExecuteBB);

  IsInTargetMasterThreadRegion = true;
}

void CGOpenMPRuntimeNVPTX::emitSPMDEntryFooter(CodeGenFunction &CGF,
                                               EntryFunctionState &EST) {
  IsInTargetMasterThreadRegion = false;
  if (!CGF.HaveInsertPoint())
    return;

  if (!EST.ExitBB)
    EST.ExitBB = CGF.createBasicBlock(".exit");

  llvm::BasicBlock *OMPDeInitBB = CGF.createBasicBlock(".omp.deinit");
  CGF.EmitBranch(OMPDeInitBB);

  CGF.EmitBlock(OMPDeInitBB);
  // DeInitialize the OMP state in the runtime; called by all active threads.
  llvm::Value *Args[] = {/*RequiresOMPRuntime=*/
                         CGF.Builder.getInt16(RequiresFullRuntime ? 1 : 0)};
  CGF.EmitRuntimeCall(
      createNVPTXRuntimeFunction(
          OMPRTL_NVPTX__kmpc_spmd_kernel_deinit_v2), Args);
  CGF.EmitBranch(EST.ExitBB);

  CGF.EmitBlock(EST.ExitBB);
  EST.ExitBB = nullptr;
}

// Create a unique global variable to indicate the execution mode of this target
// region. The execution mode is either 'generic', or 'spmd' depending on the
// target directive. This variable is picked up by the offload library to setup
// the device appropriately before kernel launch. If the execution mode is
// 'generic', the runtime reserves one warp for the master, otherwise, all
// warps participate in parallel work.
static void setPropertyExecutionMode(CodeGenModule &CGM, StringRef Name,
                                     bool Mode) {
  auto *GVMode =
      new llvm::GlobalVariable(CGM.getModule(), CGM.Int8Ty, /*isConstant=*/true,
                               llvm::GlobalValue::WeakAnyLinkage,
                               llvm::ConstantInt::get(CGM.Int8Ty, Mode ? 0 : 1),
                               Twine(Name, "_exec_mode"));
  CGM.addCompilerUsedGlobal(GVMode);
}

void CGOpenMPRuntimeNVPTX::emitWorkerFunction(WorkerFunctionState &WST) {
  ASTContext &Ctx = CGM.getContext();

  CodeGenFunction CGF(CGM, /*suppressNewContext=*/true);
  CGF.StartFunction(GlobalDecl(), Ctx.VoidTy, WST.WorkerFn, WST.CGFI, {},
                    WST.Loc, WST.Loc);
  emitWorkerLoop(CGF, WST);
  CGF.FinishFunction();
}

void CGOpenMPRuntimeNVPTX::emitWorkerLoop(CodeGenFunction &CGF,
                                          WorkerFunctionState &WST) {
  //
  // The workers enter this loop and wait for parallel work from the master.
  // When the master encounters a parallel region it sets up the work + variable
  // arguments, and wakes up the workers.  The workers first check to see if
  // they are required for the parallel region, i.e., within the # of requested
  // parallel threads.  The activated workers load the variable arguments and
  // execute the parallel work.
  //

  CGBuilderTy &Bld = CGF.Builder;

  llvm::BasicBlock *AwaitBB = CGF.createBasicBlock(".await.work");
  llvm::BasicBlock *SelectWorkersBB = CGF.createBasicBlock(".select.workers");
  llvm::BasicBlock *ExecuteBB = CGF.createBasicBlock(".execute.parallel");
  llvm::BasicBlock *TerminateBB = CGF.createBasicBlock(".terminate.parallel");
  llvm::BasicBlock *BarrierBB = CGF.createBasicBlock(".barrier.parallel");
  llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".exit");

  CGF.EmitBranch(AwaitBB);

  // Workers wait for work from master.
  CGF.EmitBlock(AwaitBB);
  // Wait for parallel work
  syncCTAThreads(CGF);

  Address WorkFn =
      CGF.CreateDefaultAlignTempAlloca(CGF.Int8PtrTy, /*Name=*/"work_fn");
  Address ExecStatus =
      CGF.CreateDefaultAlignTempAlloca(CGF.Int8Ty, /*Name=*/"exec_status");
  CGF.InitTempAlloca(ExecStatus, Bld.getInt8(/*C=*/0));
  CGF.InitTempAlloca(WorkFn, llvm::Constant::getNullValue(CGF.Int8PtrTy));

  // TODO: Optimize runtime initialization and pass in correct value.
  llvm::Value *Args[] = {WorkFn.getPointer(),
                         /*RequiresOMPRuntime=*/Bld.getInt16(1)};
  llvm::Value *Ret = CGF.EmitRuntimeCall(
      createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_kernel_parallel), Args);
  Bld.CreateStore(Bld.CreateZExt(Ret, CGF.Int8Ty), ExecStatus);

  // On termination condition (workid == 0), exit loop.
  llvm::Value *WorkID = Bld.CreateLoad(WorkFn);
  llvm::Value *ShouldTerminate = Bld.CreateIsNull(WorkID, "should_terminate");
  Bld.CreateCondBr(ShouldTerminate, ExitBB, SelectWorkersBB);

  // Activate requested workers.
  CGF.EmitBlock(SelectWorkersBB);
  llvm::Value *IsActive =
      Bld.CreateIsNotNull(Bld.CreateLoad(ExecStatus), "is_active");
  Bld.CreateCondBr(IsActive, ExecuteBB, BarrierBB);

  // Signal start of parallel region.
  CGF.EmitBlock(ExecuteBB);
  // Skip initialization.
  setLocThreadIdInsertPt(CGF, /*AtCurrentPoint=*/true);

  // Process work items: outlined parallel functions.
  for (llvm::Function *W : Work) {
    // Try to match this outlined function.
    llvm::Value *ID = Bld.CreatePointerBitCastOrAddrSpaceCast(W, CGM.Int8PtrTy);

    llvm::Value *WorkFnMatch =
        Bld.CreateICmpEQ(Bld.CreateLoad(WorkFn), ID, "work_match");

    llvm::BasicBlock *ExecuteFNBB = CGF.createBasicBlock(".execute.fn");
    llvm::BasicBlock *CheckNextBB = CGF.createBasicBlock(".check.next");
    Bld.CreateCondBr(WorkFnMatch, ExecuteFNBB, CheckNextBB);

    // Execute this outlined function.
    CGF.EmitBlock(ExecuteFNBB);

    // Insert call to work function via shared wrapper. The shared
    // wrapper takes two arguments:
    //   - the parallelism level;
    //   - the thread ID;
    emitCall(CGF, WST.Loc, W,
             {Bld.getInt16(/*ParallelLevel=*/0), getThreadID(CGF, WST.Loc)});

    // Go to end of parallel region.
    CGF.EmitBranch(TerminateBB);

    CGF.EmitBlock(CheckNextBB);
  }
  // Default case: call to outlined function through pointer if the target
  // region makes a declare target call that may contain an orphaned parallel
  // directive.
  auto *ParallelFnTy =
      llvm::FunctionType::get(CGM.VoidTy, {CGM.Int16Ty, CGM.Int32Ty},
                              /*isVarArg=*/false)
          ->getPointerTo();
  llvm::Value *WorkFnCast = Bld.CreateBitCast(WorkID, ParallelFnTy);
  // Insert call to work function via shared wrapper. The shared
  // wrapper takes two arguments:
  //   - the parallelism level;
  //   - the thread ID;
  emitCall(CGF, WST.Loc, WorkFnCast,
           {Bld.getInt16(/*ParallelLevel=*/0), getThreadID(CGF, WST.Loc)});
  // Go to end of parallel region.
  CGF.EmitBranch(TerminateBB);

  // Signal end of parallel region.
  CGF.EmitBlock(TerminateBB);
  CGF.EmitRuntimeCall(
      createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_kernel_end_parallel),
      llvm::None);
  CGF.EmitBranch(BarrierBB);

  // All active and inactive workers wait at a barrier after parallel region.
  CGF.EmitBlock(BarrierBB);
  // Barrier after parallel region.
  syncCTAThreads(CGF);
  CGF.EmitBranch(AwaitBB);

  // Exit target region.
  CGF.EmitBlock(ExitBB);
  // Skip initialization.
  clearLocThreadIdInsertPt(CGF);
}

/// Returns specified OpenMP runtime function for the current OpenMP
/// implementation.  Specialized for the NVPTX device.
/// \param Function OpenMP runtime function.
/// \return Specified function.
llvm::Constant *
CGOpenMPRuntimeNVPTX::createNVPTXRuntimeFunction(unsigned Function) {
  llvm::Constant *RTLFn = nullptr;
  switch (static_cast<OpenMPRTLFunctionNVPTX>(Function)) {
  case OMPRTL_NVPTX__kmpc_kernel_init: {
    // Build void __kmpc_kernel_init(kmp_int32 thread_limit, int16_t
    // RequiresOMPRuntime);
    llvm::Type *TypeParams[] = {CGM.Int32Ty, CGM.Int16Ty};
    auto *FnTy =
        llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
    RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_kernel_init");
    break;
  }
  case OMPRTL_NVPTX__kmpc_kernel_deinit: {
    // Build void __kmpc_kernel_deinit(int16_t IsOMPRuntimeInitialized);
    llvm::Type *TypeParams[] = {CGM.Int16Ty};
    auto *FnTy =
        llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
    RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_kernel_deinit");
    break;
  }
  case OMPRTL_NVPTX__kmpc_spmd_kernel_init: {
    // Build void __kmpc_spmd_kernel_init(kmp_int32 thread_limit,
    // int16_t RequiresOMPRuntime, int16_t RequiresDataSharing);
    llvm::Type *TypeParams[] = {CGM.Int32Ty, CGM.Int16Ty, CGM.Int16Ty};
    auto *FnTy =
        llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
    RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_spmd_kernel_init");
    break;
  }
  case OMPRTL_NVPTX__kmpc_spmd_kernel_deinit_v2: {
    // Build void __kmpc_spmd_kernel_deinit_v2(int16_t RequiresOMPRuntime);
    llvm::Type *TypeParams[] = {CGM.Int16Ty};
    auto *FnTy =
        llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
    RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_spmd_kernel_deinit_v2");
    break;
  }
  case OMPRTL_NVPTX__kmpc_kernel_prepare_parallel: {
    /// Build void __kmpc_kernel_prepare_parallel(
    /// void *outlined_function, int16_t IsOMPRuntimeInitialized);
    llvm::Type *TypeParams[] = {CGM.Int8PtrTy, CGM.Int16Ty};
    auto *FnTy =
        llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
    RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_kernel_prepare_parallel");
    break;
  }
  case OMPRTL_NVPTX__kmpc_kernel_parallel: {
    /// Build bool __kmpc_kernel_parallel(void **outlined_function,
    /// int16_t IsOMPRuntimeInitialized);
    llvm::Type *TypeParams[] = {CGM.Int8PtrPtrTy, CGM.Int16Ty};
    llvm::Type *RetTy = CGM.getTypes().ConvertType(CGM.getContext().BoolTy);
    auto *FnTy =
        llvm::FunctionType::get(RetTy, TypeParams, /*isVarArg*/ false);
    RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_kernel_parallel");
    break;
  }
  case OMPRTL_NVPTX__kmpc_kernel_end_parallel: {
    /// Build void __kmpc_kernel_end_parallel();
    auto *FnTy =
        llvm::FunctionType::get(CGM.VoidTy, llvm::None, /*isVarArg*/ false);
    RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_kernel_end_parallel");
    break;
  }
  case OMPRTL_NVPTX__kmpc_serialized_parallel: {
    // Build void __kmpc_serialized_parallel(ident_t *loc, kmp_int32
    // global_tid);
    llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
    auto *FnTy =
        llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
    RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_serialized_parallel");
    break;
  }
  case OMPRTL_NVPTX__kmpc_end_serialized_parallel: {
    // Build void __kmpc_end_serialized_parallel(ident_t *loc, kmp_int32
    // global_tid);
    llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
    auto *FnTy =
        llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
    RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_end_serialized_parallel");
    break;
  }
  case OMPRTL_NVPTX__kmpc_shuffle_int32: {
    // Build int32_t __kmpc_shuffle_int32(int32_t element,
    // int16_t lane_offset, int16_t warp_size);
    llvm::Type *TypeParams[] = {CGM.Int32Ty, CGM.Int16Ty, CGM.Int16Ty};
    auto *FnTy =
        llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false);
    RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_shuffle_int32");
    break;
  }
  case OMPRTL_NVPTX__kmpc_shuffle_int64: {
    // Build int64_t __kmpc_shuffle_int64(int64_t element,
    // int16_t lane_offset, int16_t warp_size);
    llvm::Type *TypeParams[] = {CGM.Int64Ty, CGM.Int16Ty, CGM.Int16Ty};
    auto *FnTy =
        llvm::FunctionType::get(CGM.Int64Ty, TypeParams, /*isVarArg*/ false);
    RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_shuffle_int64");
    break;
  }
  case OMPRTL_NVPTX__kmpc_parallel_reduce_nowait_v2: {
    // Build int32_t kmpc_nvptx_parallel_reduce_nowait_v2(ident_t *loc,
    // kmp_int32 global_tid, kmp_int32 num_vars, size_t reduce_size, void*
    // reduce_data, void (*kmp_ShuffleReductFctPtr)(void *rhsData, int16_t
    // lane_id, int16_t lane_offset, int16_t Algorithm Version), void
    // (*kmp_InterWarpCopyFctPtr)(void* src, int warp_num));
    llvm::Type *ShuffleReduceTypeParams[] = {CGM.VoidPtrTy, CGM.Int16Ty,
                                             CGM.Int16Ty, CGM.Int16Ty};
    auto *ShuffleReduceFnTy =
        llvm::FunctionType::get(CGM.VoidTy, ShuffleReduceTypeParams,
                                /*isVarArg=*/false);
    llvm::Type *InterWarpCopyTypeParams[] = {CGM.VoidPtrTy, CGM.Int32Ty};
    auto *InterWarpCopyFnTy =
        llvm::FunctionType::get(CGM.VoidTy, InterWarpCopyTypeParams,
                                /*isVarArg=*/false);
    llvm::Type *TypeParams[] = {getIdentTyPointerTy(),
                                CGM.Int32Ty,
                                CGM.Int32Ty,
                                CGM.SizeTy,
                                CGM.VoidPtrTy,
                                ShuffleReduceFnTy->getPointerTo(),
                                InterWarpCopyFnTy->getPointerTo()};
    auto *FnTy =
        llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false);
    RTLFn = CGM.CreateRuntimeFunction(
        FnTy, /*Name=*/"__kmpc_nvptx_parallel_reduce_nowait_v2");
    break;
  }
  case OMPRTL_NVPTX__kmpc_end_reduce_nowait: {
    // Build __kmpc_end_reduce_nowait(kmp_int32 global_tid);
    llvm::Type *TypeParams[] = {CGM.Int32Ty};
    auto *FnTy =
        llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
    RTLFn = CGM.CreateRuntimeFunction(
        FnTy, /*Name=*/"__kmpc_nvptx_end_reduce_nowait");
    break;
  }
  case OMPRTL_NVPTX__kmpc_nvptx_teams_reduce_nowait_simple: {
    // Build __kmpc_nvptx_teams_reduce_nowait_simple(ident_t *loc, kmp_int32
    // global_tid, kmp_critical_name *lck)
    llvm::Type *TypeParams[] = {
        getIdentTyPointerTy(), CGM.Int32Ty,
        llvm::PointerType::getUnqual(getKmpCriticalNameTy())};
    auto *FnTy =
        llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false);
    RTLFn = CGM.CreateRuntimeFunction(
        FnTy, /*Name=*/"__kmpc_nvptx_teams_reduce_nowait_simple");
    break;
  }
  case OMPRTL_NVPTX__kmpc_nvptx_teams_end_reduce_nowait_simple: {
    // Build __kmpc_nvptx_teams_end_reduce_nowait_simple(ident_t *loc, kmp_int32
    // global_tid, kmp_critical_name *lck)
    llvm::Type *TypeParams[] = {
        getIdentTyPointerTy(), CGM.Int32Ty,
        llvm::PointerType::getUnqual(getKmpCriticalNameTy())};
    auto *FnTy =
        llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
    RTLFn = CGM.CreateRuntimeFunction(
        FnTy, /*Name=*/"__kmpc_nvptx_teams_end_reduce_nowait_simple");
    break;
  }
  case OMPRTL_NVPTX__kmpc_data_sharing_init_stack: {
    /// Build void __kmpc_data_sharing_init_stack();
    auto *FnTy =
        llvm::FunctionType::get(CGM.VoidTy, llvm::None, /*isVarArg*/ false);
    RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_data_sharing_init_stack");
    break;
  }
  case OMPRTL_NVPTX__kmpc_data_sharing_init_stack_spmd: {
    /// Build void __kmpc_data_sharing_init_stack_spmd();
    auto *FnTy =
        llvm::FunctionType::get(CGM.VoidTy, llvm::None, /*isVarArg*/ false);
    RTLFn =
        CGM.CreateRuntimeFunction(FnTy, "__kmpc_data_sharing_init_stack_spmd");
    break;
  }
  case OMPRTL_NVPTX__kmpc_data_sharing_coalesced_push_stack: {
    // Build void *__kmpc_data_sharing_coalesced_push_stack(size_t size,
    // int16_t UseSharedMemory);
    llvm::Type *TypeParams[] = {CGM.SizeTy, CGM.Int16Ty};
    auto *FnTy =
        llvm::FunctionType::get(CGM.VoidPtrTy, TypeParams, /*isVarArg=*/false);
    RTLFn = CGM.CreateRuntimeFunction(
        FnTy, /*Name=*/"__kmpc_data_sharing_coalesced_push_stack");
    break;
  }
  case OMPRTL_NVPTX__kmpc_data_sharing_pop_stack: {
    // Build void __kmpc_data_sharing_pop_stack(void *a);
    llvm::Type *TypeParams[] = {CGM.VoidPtrTy};
    auto *FnTy =
        llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
    RTLFn = CGM.CreateRuntimeFunction(FnTy,
                                      /*Name=*/"__kmpc_data_sharing_pop_stack");
    break;
  }
  case OMPRTL_NVPTX__kmpc_begin_sharing_variables: {
    /// Build void __kmpc_begin_sharing_variables(void ***args,
    /// size_t n_args);
    llvm::Type *TypeParams[] = {CGM.Int8PtrPtrTy->getPointerTo(), CGM.SizeTy};
    auto *FnTy =
        llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
    RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_begin_sharing_variables");
    break;
  }
  case OMPRTL_NVPTX__kmpc_end_sharing_variables: {
    /// Build void __kmpc_end_sharing_variables();
    auto *FnTy =
        llvm::FunctionType::get(CGM.VoidTy, llvm::None, /*isVarArg*/ false);
    RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_end_sharing_variables");
    break;
  }
  case OMPRTL_NVPTX__kmpc_get_shared_variables: {
    /// Build void __kmpc_get_shared_variables(void ***GlobalArgs);
    llvm::Type *TypeParams[] = {CGM.Int8PtrPtrTy->getPointerTo()};
    auto *FnTy =
        llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
    RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_get_shared_variables");
    break;
  }
  case OMPRTL_NVPTX__kmpc_parallel_level: {
    // Build uint16_t __kmpc_parallel_level(ident_t *loc, kmp_int32 global_tid);
    llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
    auto *FnTy =
        llvm::FunctionType::get(CGM.Int16Ty, TypeParams, /*isVarArg*/ false);
    RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_parallel_level");
    break;
  }
  case OMPRTL_NVPTX__kmpc_is_spmd_exec_mode: {
    // Build int8_t __kmpc_is_spmd_exec_mode();
    auto *FnTy = llvm::FunctionType::get(CGM.Int8Ty, /*isVarArg=*/false);
    RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_is_spmd_exec_mode");
    break;
  }
  case OMPRTL_NVPTX__kmpc_get_team_static_memory: {
    // Build void __kmpc_get_team_static_memory(int16_t isSPMDExecutionMode,
    // const void *buf, size_t size, int16_t is_shared, const void **res);
    llvm::Type *TypeParams[] = {CGM.Int16Ty, CGM.VoidPtrTy, CGM.SizeTy,
                                CGM.Int16Ty, CGM.VoidPtrPtrTy};
    auto *FnTy =
        llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
    RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_get_team_static_memory");
    break;
  }
  case OMPRTL_NVPTX__kmpc_restore_team_static_memory: {
    // Build void __kmpc_restore_team_static_memory(int16_t isSPMDExecutionMode,
    // int16_t is_shared);
    llvm::Type *TypeParams[] = {CGM.Int16Ty, CGM.Int16Ty};
    auto *FnTy =
        llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
    RTLFn =
        CGM.CreateRuntimeFunction(FnTy, "__kmpc_restore_team_static_memory");
    break;
  }
  case OMPRTL__kmpc_barrier: {
    // Build void __kmpc_barrier(ident_t *loc, kmp_int32 global_tid);
    llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
    auto *FnTy =
        llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
    RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name*/ "__kmpc_barrier");
    cast<llvm::Function>(RTLFn)->addFnAttr(llvm::Attribute::Convergent);
    break;
  }
  case OMPRTL__kmpc_barrier_simple_spmd: {
    // Build void __kmpc_barrier_simple_spmd(ident_t *loc, kmp_int32
    // global_tid);
    llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
    auto *FnTy =
        llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
    RTLFn =
        CGM.CreateRuntimeFunction(FnTy, /*Name*/ "__kmpc_barrier_simple_spmd");
    cast<llvm::Function>(RTLFn)->addFnAttr(llvm::Attribute::Convergent);
    break;
  }
  }
  return RTLFn;
}

void CGOpenMPRuntimeNVPTX::createOffloadEntry(llvm::Constant *ID,
                                              llvm::Constant *Addr,
                                              uint64_t Size, int32_t,
                                              llvm::GlobalValue::LinkageTypes) {
  // TODO: Add support for global variables on the device after declare target
  // support.
  if (!isa<llvm::Function>(Addr))
    return;
  llvm::Module &M = CGM.getModule();
  llvm::LLVMContext &Ctx = CGM.getLLVMContext();

  // Get "nvvm.annotations" metadata node
  llvm::NamedMDNode *MD = M.getOrInsertNamedMetadata("nvvm.annotations");

  llvm::Metadata *MDVals[] = {
      llvm::ConstantAsMetadata::get(Addr), llvm::MDString::get(Ctx, "kernel"),
      llvm::ConstantAsMetadata::get(
          llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), 1))};
  // Append metadata to nvvm.annotations
  MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
}

void CGOpenMPRuntimeNVPTX::emitTargetOutlinedFunction(
    const OMPExecutableDirective &D, StringRef ParentName,
    llvm::Function *&OutlinedFn, llvm::Constant *&OutlinedFnID,
    bool IsOffloadEntry, const RegionCodeGenTy &CodeGen) {
  if (!IsOffloadEntry) // Nothing to do.
    return;

  assert(!ParentName.empty() && "Invalid target region parent name!");

  bool Mode = supportsSPMDExecutionMode(CGM.getContext(), D);
  if (Mode)
    emitSPMDKernel(D, ParentName, OutlinedFn, OutlinedFnID, IsOffloadEntry,
                   CodeGen);
  else
    emitNonSPMDKernel(D, ParentName, OutlinedFn, OutlinedFnID, IsOffloadEntry,
                      CodeGen);

  setPropertyExecutionMode(CGM, OutlinedFn->getName(), Mode);
}

namespace {
LLVM_ENABLE_BITMASK_ENUMS_IN_NAMESPACE();
/// Enum for accesseing the reserved_2 field of the ident_t struct.
enum ModeFlagsTy : unsigned {
  /// Bit set to 1 when in SPMD mode.
  KMP_IDENT_SPMD_MODE = 0x01,
  /// Bit set to 1 when a simplified runtime is used.
  KMP_IDENT_SIMPLE_RT_MODE = 0x02,
  LLVM_MARK_AS_BITMASK_ENUM(/*LargestValue=*/KMP_IDENT_SIMPLE_RT_MODE)
};

/// Special mode Undefined. Is the combination of Non-SPMD mode + SimpleRuntime.
static const ModeFlagsTy UndefinedMode =
    (~KMP_IDENT_SPMD_MODE) & KMP_IDENT_SIMPLE_RT_MODE;
} // anonymous namespace

unsigned CGOpenMPRuntimeNVPTX::getDefaultLocationReserved2Flags() const {
  switch (getExecutionMode()) {
  case EM_SPMD:
    if (requiresFullRuntime())
      return KMP_IDENT_SPMD_MODE & (~KMP_IDENT_SIMPLE_RT_MODE);
    return KMP_IDENT_SPMD_MODE | KMP_IDENT_SIMPLE_RT_MODE;
  case EM_NonSPMD:
    assert(requiresFullRuntime() && "Expected full runtime.");
    return (~KMP_IDENT_SPMD_MODE) & (~KMP_IDENT_SIMPLE_RT_MODE);
  case EM_Unknown:
    return UndefinedMode;
  }
  llvm_unreachable("Unknown flags are requested.");
}

CGOpenMPRuntimeNVPTX::CGOpenMPRuntimeNVPTX(CodeGenModule &CGM)
    : CGOpenMPRuntime(CGM, "_", "$") {
  if (!CGM.getLangOpts().OpenMPIsDevice)
    llvm_unreachable("OpenMP NVPTX can only handle device code.");
}

void CGOpenMPRuntimeNVPTX::emitProcBindClause(CodeGenFunction &CGF,
                                              OpenMPProcBindClauseKind ProcBind,
                                              SourceLocation Loc) {
  // Do nothing in case of SPMD mode and L0 parallel.
  if (getExecutionMode() == CGOpenMPRuntimeNVPTX::EM_SPMD)
    return;

  CGOpenMPRuntime::emitProcBindClause(CGF, ProcBind, Loc);
}

void CGOpenMPRuntimeNVPTX::emitNumThreadsClause(CodeGenFunction &CGF,
                                                llvm::Value *NumThreads,
                                                SourceLocation Loc) {
  // Do nothing in case of SPMD mode and L0 parallel.
  if (getExecutionMode() == CGOpenMPRuntimeNVPTX::EM_SPMD)
    return;

  CGOpenMPRuntime::emitNumThreadsClause(CGF, NumThreads, Loc);
}

void CGOpenMPRuntimeNVPTX::emitNumTeamsClause(CodeGenFunction &CGF,
                                              const Expr *NumTeams,
                                              const Expr *ThreadLimit,
                                              SourceLocation Loc) {}

llvm::Value *CGOpenMPRuntimeNVPTX::emitParallelOutlinedFunction(
    const OMPExecutableDirective &D, const VarDecl *ThreadIDVar,
    OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) {
  // Emit target region as a standalone region.
  class NVPTXPrePostActionTy : public PrePostActionTy {
    bool &IsInParallelRegion;
    bool PrevIsInParallelRegion;

  public:
    NVPTXPrePostActionTy(bool &IsInParallelRegion)
        : IsInParallelRegion(IsInParallelRegion) {}
    void Enter(CodeGenFunction &CGF) override {
      PrevIsInParallelRegion = IsInParallelRegion;
      IsInParallelRegion = true;
    }
    void Exit(CodeGenFunction &CGF) override {
      IsInParallelRegion = PrevIsInParallelRegion;
    }
  } Action(IsInParallelRegion);
  CodeGen.setAction(Action);
  bool PrevIsInTTDRegion = IsInTTDRegion;
  IsInTTDRegion = false;
  bool PrevIsInTargetMasterThreadRegion = IsInTargetMasterThreadRegion;
  IsInTargetMasterThreadRegion = false;
  auto *OutlinedFun =
      cast<llvm::Function>(CGOpenMPRuntime::emitParallelOutlinedFunction(
          D, ThreadIDVar, InnermostKind, CodeGen));
  IsInTargetMasterThreadRegion = PrevIsInTargetMasterThreadRegion;
  IsInTTDRegion = PrevIsInTTDRegion;
  if (getExecutionMode() != CGOpenMPRuntimeNVPTX::EM_SPMD &&
      !IsInParallelRegion) {
    llvm::Function *WrapperFun =
        createParallelDataSharingWrapper(OutlinedFun, D);
    WrapperFunctionsMap[OutlinedFun] = WrapperFun;
  }

  return OutlinedFun;
}

/// Get list of lastprivate variables from the teams distribute ... or
/// teams {distribute ...} directives.
static void
getDistributeLastprivateVars(ASTContext &Ctx, const OMPExecutableDirective &D,
                             llvm::SmallVectorImpl<const ValueDecl *> &Vars) {
  assert(isOpenMPTeamsDirective(D.getDirectiveKind()) &&
         "expected teams directive.");
  const OMPExecutableDirective *Dir = &D;
  if (!isOpenMPDistributeDirective(D.getDirectiveKind())) {
    if (const Stmt *S = getSingleCompoundChild(
            Ctx,
            D.getInnermostCapturedStmt()->getCapturedStmt()->IgnoreContainers(
                /*IgnoreCaptured=*/true))) {
      Dir = dyn_cast<OMPExecutableDirective>(S);
      if (Dir && !isOpenMPDistributeDirective(Dir->getDirectiveKind()))
        Dir = nullptr;
    }
  }
  if (!Dir)
    return;
  for (const auto *C : Dir->getClausesOfKind<OMPLastprivateClause>()) {
    for (const Expr *E : C->getVarRefs())
      Vars.push_back(getPrivateItem(E));
  }
}

/// Get list of reduction variables from the teams ... directives.
static void
getTeamsReductionVars(ASTContext &Ctx, const OMPExecutableDirective &D,
                      llvm::SmallVectorImpl<const ValueDecl *> &Vars) {
  assert(isOpenMPTeamsDirective(D.getDirectiveKind()) &&
         "expected teams directive.");
  for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) {
    for (const Expr *E : C->privates())
      Vars.push_back(getPrivateItem(E));
  }
}

llvm::Value *CGOpenMPRuntimeNVPTX::emitTeamsOutlinedFunction(
    const OMPExecutableDirective &D, const VarDecl *ThreadIDVar,
    OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) {
  SourceLocation Loc = D.getBeginLoc();

  const RecordDecl *GlobalizedRD = nullptr;
  llvm::SmallVector<const ValueDecl *, 4> LastPrivatesReductions;
  llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> MappedDeclsFields;
  // Globalize team reductions variable unconditionally in all modes.
  getTeamsReductionVars(CGM.getContext(), D, LastPrivatesReductions);
  if (getExecutionMode() == CGOpenMPRuntimeNVPTX::EM_SPMD) {
    getDistributeLastprivateVars(CGM.getContext(), D, LastPrivatesReductions);
    if (!LastPrivatesReductions.empty()) {
      GlobalizedRD = ::buildRecordForGlobalizedVars(
          CGM.getContext(), llvm::None, LastPrivatesReductions,
          MappedDeclsFields);
    }
  } else if (!LastPrivatesReductions.empty()) {
    assert(!TeamAndReductions.first &&
           "Previous team declaration is not expected.");
    TeamAndReductions.first = D.getCapturedStmt(OMPD_teams)->getCapturedDecl();
    std::swap(TeamAndReductions.second, LastPrivatesReductions);
  }

  // Emit target region as a standalone region.
  class NVPTXPrePostActionTy : public PrePostActionTy {
    SourceLocation &Loc;
    const RecordDecl *GlobalizedRD;
    llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
        &MappedDeclsFields;

  public:
    NVPTXPrePostActionTy(
        SourceLocation &Loc, const RecordDecl *GlobalizedRD,
        llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
            &MappedDeclsFields)
        : Loc(Loc), GlobalizedRD(GlobalizedRD),
          MappedDeclsFields(MappedDeclsFields) {}
    void Enter(CodeGenFunction &CGF) override {
      auto &Rt =
          static_cast<CGOpenMPRuntimeNVPTX &>(CGF.CGM.getOpenMPRuntime());
      if (GlobalizedRD) {
        auto I = Rt.FunctionGlobalizedDecls.try_emplace(CGF.CurFn).first;
        I->getSecond().GlobalRecord = GlobalizedRD;
        I->getSecond().MappedParams =
            llvm::make_unique<CodeGenFunction::OMPMapVars>();
        DeclToAddrMapTy &Data = I->getSecond().LocalVarData;
        for (const auto &Pair : MappedDeclsFields) {
          assert(Pair.getFirst()->isCanonicalDecl() &&
                 "Expected canonical declaration");
          Data.insert(std::make_pair(Pair.getFirst(),
                                     MappedVarData(Pair.getSecond(),
                                                   /*IsOnePerTeam=*/true)));
        }
      }
      Rt.emitGenericVarsProlog(CGF, Loc);
    }
    void Exit(CodeGenFunction &CGF) override {
      static_cast<CGOpenMPRuntimeNVPTX &>(CGF.CGM.getOpenMPRuntime())
          .emitGenericVarsEpilog(CGF);
    }
  } Action(Loc, GlobalizedRD, MappedDeclsFields);
  CodeGen.setAction(Action);
  llvm::Value *OutlinedFunVal = CGOpenMPRuntime::emitTeamsOutlinedFunction(
      D, ThreadIDVar, InnermostKind, CodeGen);
  llvm::Function *OutlinedFun = cast<llvm::Function>(OutlinedFunVal);
  OutlinedFun->removeFnAttr(llvm::Attribute::NoInline);
  OutlinedFun->removeFnAttr(llvm::Attribute::OptimizeNone);
  OutlinedFun->addFnAttr(llvm::Attribute::AlwaysInline);

  return OutlinedFun;
}

void CGOpenMPRuntimeNVPTX::emitGenericVarsProlog(CodeGenFunction &CGF,
                                                 SourceLocation Loc,
                                                 bool WithSPMDCheck) {
  if (getDataSharingMode(CGM) != CGOpenMPRuntimeNVPTX::Generic &&
      getExecutionMode() != CGOpenMPRuntimeNVPTX::EM_SPMD)
    return;

  CGBuilderTy &Bld = CGF.Builder;

  const auto I = FunctionGlobalizedDecls.find(CGF.CurFn);
  if (I == FunctionGlobalizedDecls.end())
    return;
  if (const RecordDecl *GlobalizedVarsRecord = I->getSecond().GlobalRecord) {
    QualType GlobalRecTy = CGM.getContext().getRecordType(GlobalizedVarsRecord);
    QualType SecGlobalRecTy;

    // Recover pointer to this function's global record. The runtime will
    // handle the specifics of the allocation of the memory.
    // Use actual memory size of the record including the padding
    // for alignment purposes.
    unsigned Alignment =
        CGM.getContext().getTypeAlignInChars(GlobalRecTy).getQuantity();
    unsigned GlobalRecordSize =
        CGM.getContext().getTypeSizeInChars(GlobalRecTy).getQuantity();
    GlobalRecordSize = llvm::alignTo(GlobalRecordSize, Alignment);

    llvm::PointerType *GlobalRecPtrTy =
        CGF.ConvertTypeForMem(GlobalRecTy)->getPointerTo();
    llvm::Value *GlobalRecCastAddr;
    llvm::Value *IsTTD = nullptr;
    if (!IsInTTDRegion &&
        (WithSPMDCheck ||
         getExecutionMode() == CGOpenMPRuntimeNVPTX::EM_Unknown)) {
      llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".exit");
      llvm::BasicBlock *SPMDBB = CGF.createBasicBlock(".spmd");
      llvm::BasicBlock *NonSPMDBB = CGF.createBasicBlock(".non-spmd");
      if (I->getSecond().SecondaryGlobalRecord.hasValue()) {
        llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc);
        llvm::Value *ThreadID = getThreadID(CGF, Loc);
        llvm::Value *PL = CGF.EmitRuntimeCall(
            createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_parallel_level),
            {RTLoc, ThreadID});
        IsTTD = Bld.CreateIsNull(PL);
      }
      llvm::Value *IsSPMD = Bld.CreateIsNotNull(CGF.EmitNounwindRuntimeCall(
          createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_is_spmd_exec_mode)));
      Bld.CreateCondBr(IsSPMD, SPMDBB, NonSPMDBB);
      // There is no need to emit line number for unconditional branch.
      (void)ApplyDebugLocation::CreateEmpty(CGF);
      CGF.EmitBlock(SPMDBB);
      Address RecPtr = Address(llvm::ConstantPointerNull::get(GlobalRecPtrTy),
                               CharUnits::fromQuantity(Alignment));
      CGF.EmitBranch(ExitBB);
      // There is no need to emit line number for unconditional branch.
      (void)ApplyDebugLocation::CreateEmpty(CGF);
      CGF.EmitBlock(NonSPMDBB);
      llvm::Value *Size = llvm::ConstantInt::get(CGM.SizeTy, GlobalRecordSize);
      if (const RecordDecl *SecGlobalizedVarsRecord =
              I->getSecond().SecondaryGlobalRecord.getValueOr(nullptr)) {
        SecGlobalRecTy =
            CGM.getContext().getRecordType(SecGlobalizedVarsRecord);

        // Recover pointer to this function's global record. The runtime will
        // handle the specifics of the allocation of the memory.
        // Use actual memory size of the record including the padding
        // for alignment purposes.
        unsigned Alignment =
            CGM.getContext().getTypeAlignInChars(SecGlobalRecTy).getQuantity();
        unsigned GlobalRecordSize =
            CGM.getContext().getTypeSizeInChars(SecGlobalRecTy).getQuantity();
        GlobalRecordSize = llvm::alignTo(GlobalRecordSize, Alignment);
        Size = Bld.CreateSelect(
            IsTTD, llvm::ConstantInt::get(CGM.SizeTy, GlobalRecordSize), Size);
      }
      // TODO: allow the usage of shared memory to be controlled by
      // the user, for now, default to global.
      llvm::Value *GlobalRecordSizeArg[] = {
          Size, CGF.Builder.getInt16(/*UseSharedMemory=*/0)};
      llvm::Value *GlobalRecValue = CGF.EmitRuntimeCall(
          createNVPTXRuntimeFunction(
              OMPRTL_NVPTX__kmpc_data_sharing_coalesced_push_stack),
          GlobalRecordSizeArg);
      GlobalRecCastAddr = Bld.CreatePointerBitCastOrAddrSpaceCast(
          GlobalRecValue, GlobalRecPtrTy);
      CGF.EmitBlock(ExitBB);
      auto *Phi = Bld.CreatePHI(GlobalRecPtrTy,
                                /*NumReservedValues=*/2, "_select_stack");
      Phi->addIncoming(RecPtr.getPointer(), SPMDBB);
      Phi->addIncoming(GlobalRecCastAddr, NonSPMDBB);
      GlobalRecCastAddr = Phi;
      I->getSecond().GlobalRecordAddr = Phi;
      I->getSecond().IsInSPMDModeFlag = IsSPMD;
    } else if (IsInTTDRegion) {
      assert(GlobalizedRecords.back().Records.size() < 2 &&
             "Expected less than 2 globalized records: one for target and one "
             "for teams.");
      unsigned Offset = 0;
      for (const RecordDecl *RD : GlobalizedRecords.back().Records) {
        QualType RDTy = CGM.getContext().getRecordType(RD);
        unsigned Alignment =
            CGM.getContext().getTypeAlignInChars(RDTy).getQuantity();
        unsigned Size = CGM.getContext().getTypeSizeInChars(RDTy).getQuantity();
        Offset =
            llvm::alignTo(llvm::alignTo(Offset, Alignment) + Size, Alignment);
      }
      unsigned Alignment =
          CGM.getContext().getTypeAlignInChars(GlobalRecTy).getQuantity();
      Offset = llvm::alignTo(Offset, Alignment);
      GlobalizedRecords.back().Records.push_back(GlobalizedVarsRecord);
      ++GlobalizedRecords.back().RegionCounter;
      if (GlobalizedRecords.back().Records.size() == 1) {
        assert(KernelStaticGlobalized &&
               "Kernel static pointer must be initialized already.");
        auto *UseSharedMemory = new llvm::GlobalVariable(
            CGM.getModule(), CGM.Int16Ty, /*isConstant=*/true,
            llvm::GlobalValue::InternalLinkage, nullptr,
            "_openmp_static_kernel$is_shared");
        UseSharedMemory->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
        QualType Int16Ty = CGM.getContext().getIntTypeForBitwidth(
            /*DestWidth=*/16, /*Signed=*/0);
        llvm::Value *IsInSharedMemory = CGF.EmitLoadOfScalar(
            Address(UseSharedMemory,
                    CGM.getContext().getTypeAlignInChars(Int16Ty)),
            /*Volatile=*/false, Int16Ty, Loc);
        auto *StaticGlobalized = new llvm::GlobalVariable(
            CGM.getModule(), CGM.Int8Ty, /*isConstant=*/false,
            llvm::GlobalValue::CommonLinkage, nullptr);
        auto *RecSize = new llvm::GlobalVariable(
            CGM.getModule(), CGM.SizeTy, /*isConstant=*/true,
            llvm::GlobalValue::InternalLinkage, nullptr,
            "_openmp_static_kernel$size");
        RecSize->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
        llvm::Value *Ld = CGF.EmitLoadOfScalar(
            Address(RecSize, CGM.getSizeAlign()), /*Volatile=*/false,
            CGM.getContext().getSizeType(), Loc);
        llvm::Value *ResAddr = Bld.CreatePointerBitCastOrAddrSpaceCast(
            KernelStaticGlobalized, CGM.VoidPtrPtrTy);
        llvm::Value *GlobalRecordSizeArg[] = {
            llvm::ConstantInt::get(
                CGM.Int16Ty,
                getExecutionMode() == CGOpenMPRuntimeNVPTX::EM_SPMD ? 1 : 0),
            StaticGlobalized, Ld, IsInSharedMemory, ResAddr};
        CGF.EmitRuntimeCall(createNVPTXRuntimeFunction(
                                OMPRTL_NVPTX__kmpc_get_team_static_memory),
                            GlobalRecordSizeArg);
        GlobalizedRecords.back().Buffer = StaticGlobalized;
        GlobalizedRecords.back().RecSize = RecSize;
        GlobalizedRecords.back().UseSharedMemory = UseSharedMemory;
        GlobalizedRecords.back().Loc = Loc;
      }
      assert(KernelStaticGlobalized && "Global address must be set already.");
      Address FrameAddr = CGF.EmitLoadOfPointer(
          Address(KernelStaticGlobalized, CGM.getPointerAlign()),
          CGM.getContext()
              .getPointerType(CGM.getContext().VoidPtrTy)
              .castAs<PointerType>());
      llvm::Value *GlobalRecValue =
          Bld.CreateConstInBoundsGEP(FrameAddr, Offset, CharUnits::One())
              .getPointer();
      I->getSecond().GlobalRecordAddr = GlobalRecValue;
      I->getSecond().IsInSPMDModeFlag = nullptr;
      GlobalRecCastAddr = Bld.CreatePointerBitCastOrAddrSpaceCast(
          GlobalRecValue, CGF.ConvertTypeForMem(GlobalRecTy)->getPointerTo());
    } else {
      // TODO: allow the usage of shared memory to be controlled by
      // the user, for now, default to global.
      llvm::Value *GlobalRecordSizeArg[] = {
          llvm::ConstantInt::get(CGM.SizeTy, GlobalRecordSize),
          CGF.Builder.getInt16(/*UseSharedMemory=*/0)};
      llvm::Value *GlobalRecValue = CGF.EmitRuntimeCall(
          createNVPTXRuntimeFunction(
              OMPRTL_NVPTX__kmpc_data_sharing_coalesced_push_stack),
          GlobalRecordSizeArg);
      GlobalRecCastAddr = Bld.CreatePointerBitCastOrAddrSpaceCast(
          GlobalRecValue, GlobalRecPtrTy);
      I->getSecond().GlobalRecordAddr = GlobalRecValue;
      I->getSecond().IsInSPMDModeFlag = nullptr;
    }
    LValue Base =
        CGF.MakeNaturalAlignPointeeAddrLValue(GlobalRecCastAddr, GlobalRecTy);

    // Emit the "global alloca" which is a GEP from the global declaration
    // record using the pointer returned by the runtime.
    LValue SecBase;
    decltype(I->getSecond().LocalVarData)::const_iterator SecIt;
    if (IsTTD) {
      SecIt = I->getSecond().SecondaryLocalVarData->begin();
      llvm::PointerType *SecGlobalRecPtrTy =
          CGF.ConvertTypeForMem(SecGlobalRecTy)->getPointerTo();
      SecBase = CGF.MakeNaturalAlignPointeeAddrLValue(
          Bld.CreatePointerBitCastOrAddrSpaceCast(
              I->getSecond().GlobalRecordAddr, SecGlobalRecPtrTy),
          SecGlobalRecTy);
    }
    for (auto &Rec : I->getSecond().LocalVarData) {
      bool EscapedParam = I->getSecond().EscapedParameters.count(Rec.first);
      llvm::Value *ParValue;
      if (EscapedParam) {
        const auto *VD = cast<VarDecl>(Rec.first);
        LValue ParLVal =
            CGF.MakeAddrLValue(CGF.GetAddrOfLocalVar(VD), VD->getType());
        ParValue = CGF.EmitLoadOfScalar(ParLVal, Loc);
      }
      LValue VarAddr = CGF.EmitLValueForField(Base, Rec.second.FD);
      // Emit VarAddr basing on lane-id if required.
      QualType VarTy;
      if (Rec.second.IsOnePerTeam) {
        VarTy = Rec.second.FD->getType();
      } else {
        llvm::Value *Ptr = CGF.Builder.CreateInBoundsGEP(
            VarAddr.getAddress().getPointer(),
            {Bld.getInt32(0), getNVPTXLaneID(CGF)});
        VarTy =
            Rec.second.FD->getType()->castAsArrayTypeUnsafe()->getElementType();
        VarAddr = CGF.MakeAddrLValue(
            Address(Ptr, CGM.getContext().getDeclAlign(Rec.first)), VarTy,
            AlignmentSource::Decl);
      }
      Rec.second.PrivateAddr = VarAddr.getAddress();
      if (!IsInTTDRegion &&
          (WithSPMDCheck ||
           getExecutionMode() == CGOpenMPRuntimeNVPTX::EM_Unknown)) {
        assert(I->getSecond().IsInSPMDModeFlag &&
               "Expected unknown execution mode or required SPMD check.");
        if (IsTTD) {
          assert(SecIt->second.IsOnePerTeam &&
                 "Secondary glob data must be one per team.");
          LValue SecVarAddr = CGF.EmitLValueForField(SecBase, SecIt->second.FD);
          VarAddr.setAddress(
              Address(Bld.CreateSelect(IsTTD, SecVarAddr.getPointer(),
                                       VarAddr.getPointer()),
                      VarAddr.getAlignment()));
          Rec.second.PrivateAddr = VarAddr.getAddress();
        }
        Address GlobalPtr = Rec.second.PrivateAddr;
        Address LocalAddr = CGF.CreateMemTemp(VarTy, Rec.second.FD->getName());
        Rec.second.PrivateAddr = Address(
            Bld.CreateSelect(I->getSecond().IsInSPMDModeFlag,
                             LocalAddr.getPointer(), GlobalPtr.getPointer()),
            LocalAddr.getAlignment());
      }
      if (EscapedParam) {
        const auto *VD = cast<VarDecl>(Rec.first);
        CGF.EmitStoreOfScalar(ParValue, VarAddr);
        I->getSecond().MappedParams->setVarAddr(CGF, VD, VarAddr.getAddress());
      }
      if (IsTTD)
        ++SecIt;
    }
  }
  for (const ValueDecl *VD : I->getSecond().EscapedVariableLengthDecls) {
    // Recover pointer to this function's global record. The runtime will
    // handle the specifics of the allocation of the memory.
    // Use actual memory size of the record including the padding
    // for alignment purposes.
    CGBuilderTy &Bld = CGF.Builder;
    llvm::Value *Size = CGF.getTypeSize(VD->getType());
    CharUnits Align = CGM.getContext().getDeclAlign(VD);
    Size = Bld.CreateNUWAdd(
        Size, llvm::ConstantInt::get(CGF.SizeTy, Align.getQuantity() - 1));
    llvm::Value *AlignVal =
        llvm::ConstantInt::get(CGF.SizeTy, Align.getQuantity());
    Size = Bld.CreateUDiv(Size, AlignVal);
    Size = Bld.CreateNUWMul(Size, AlignVal);
    // TODO: allow the usage of shared memory to be controlled by
    // the user, for now, default to global.
    llvm::Value *GlobalRecordSizeArg[] = {
        Size, CGF.Builder.getInt16(/*UseSharedMemory=*/0)};
    llvm::Value *GlobalRecValue = CGF.EmitRuntimeCall(
        createNVPTXRuntimeFunction(
            OMPRTL_NVPTX__kmpc_data_sharing_coalesced_push_stack),
        GlobalRecordSizeArg);
    llvm::Value *GlobalRecCastAddr = Bld.CreatePointerBitCastOrAddrSpaceCast(
        GlobalRecValue, CGF.ConvertTypeForMem(VD->getType())->getPointerTo());
    LValue Base = CGF.MakeAddrLValue(GlobalRecCastAddr, VD->getType(),
                                     CGM.getContext().getDeclAlign(VD),
                                     AlignmentSource::Decl);
    I->getSecond().MappedParams->setVarAddr(CGF, cast<VarDecl>(VD),
                                            Base.getAddress());
    I->getSecond().EscapedVariableLengthDeclsAddrs.emplace_back(GlobalRecValue);
  }
  I->getSecond().MappedParams->apply(CGF);
}

void CGOpenMPRuntimeNVPTX::emitGenericVarsEpilog(CodeGenFunction &CGF,
                                                 bool WithSPMDCheck) {
  if (getDataSharingMode(CGM) != CGOpenMPRuntimeNVPTX::Generic &&
      getExecutionMode() != CGOpenMPRuntimeNVPTX::EM_SPMD)
    return;

  const auto I = FunctionGlobalizedDecls.find(CGF.CurFn);
  if (I != FunctionGlobalizedDecls.end()) {
    I->getSecond().MappedParams->restore(CGF);
    if (!CGF.HaveInsertPoint())
      return;
    for (llvm::Value *Addr :
         llvm::reverse(I->getSecond().EscapedVariableLengthDeclsAddrs)) {
      CGF.EmitRuntimeCall(
          createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_data_sharing_pop_stack),
          Addr);
    }
    if (I->getSecond().GlobalRecordAddr) {
      if (!IsInTTDRegion &&
          (WithSPMDCheck ||
           getExecutionMode() == CGOpenMPRuntimeNVPTX::EM_Unknown)) {
        CGBuilderTy &Bld = CGF.Builder;
        llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".exit");
        llvm::BasicBlock *NonSPMDBB = CGF.createBasicBlock(".non-spmd");
        Bld.CreateCondBr(I->getSecond().IsInSPMDModeFlag, ExitBB, NonSPMDBB);
        // There is no need to emit line number for unconditional branch.
        (void)ApplyDebugLocation::CreateEmpty(CGF);
        CGF.EmitBlock(NonSPMDBB);
        CGF.EmitRuntimeCall(
            createNVPTXRuntimeFunction(
                OMPRTL_NVPTX__kmpc_data_sharing_pop_stack),
            CGF.EmitCastToVoidPtr(I->getSecond().GlobalRecordAddr));
        CGF.EmitBlock(ExitBB);
      } else if (IsInTTDRegion) {
        assert(GlobalizedRecords.back().RegionCounter > 0 &&
               "region counter must be > 0.");
        --GlobalizedRecords.back().RegionCounter;
        // Emit the restore function only in the target region.
        if (GlobalizedRecords.back().RegionCounter == 0) {
          QualType Int16Ty = CGM.getContext().getIntTypeForBitwidth(
              /*DestWidth=*/16, /*Signed=*/0);
          llvm::Value *IsInSharedMemory = CGF.EmitLoadOfScalar(
              Address(GlobalizedRecords.back().UseSharedMemory,
                      CGM.getContext().getTypeAlignInChars(Int16Ty)),
              /*Volatile=*/false, Int16Ty, GlobalizedRecords.back().Loc);
          llvm::Value *Args[] = {
              llvm::ConstantInt::get(
                  CGM.Int16Ty,
                  getExecutionMode() == CGOpenMPRuntimeNVPTX::EM_SPMD ? 1 : 0),
              IsInSharedMemory};
          CGF.EmitRuntimeCall(
              createNVPTXRuntimeFunction(
                  OMPRTL_NVPTX__kmpc_restore_team_static_memory),
              Args);
        }
      } else {
        CGF.EmitRuntimeCall(createNVPTXRuntimeFunction(
                                OMPRTL_NVPTX__kmpc_data_sharing_pop_stack),
                            I->getSecond().GlobalRecordAddr);
      }
    }
  }
}

void CGOpenMPRuntimeNVPTX::emitTeamsCall(CodeGenFunction &CGF,
                                         const OMPExecutableDirective &D,
                                         SourceLocation Loc,
                                         llvm::Value *OutlinedFn,
                                         ArrayRef<llvm::Value *> CapturedVars) {
  if (!CGF.HaveInsertPoint())
    return;

  Address ZeroAddr = CGF.CreateMemTemp(
      CGF.getContext().getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1),
      /*Name*/ ".zero.addr");
  CGF.InitTempAlloca(ZeroAddr, CGF.Builder.getInt32(/*C*/ 0));
  llvm::SmallVector<llvm::Value *, 16> OutlinedFnArgs;
  OutlinedFnArgs.push_back(emitThreadIDAddress(CGF, Loc).getPointer());
  OutlinedFnArgs.push_back(ZeroAddr.getPointer());
  OutlinedFnArgs.append(CapturedVars.begin(), CapturedVars.end());
  emitOutlinedFunctionCall(CGF, Loc, OutlinedFn, OutlinedFnArgs);
}

void CGOpenMPRuntimeNVPTX::emitParallelCall(
    CodeGenFunction &CGF, SourceLocation Loc, llvm::Value *OutlinedFn,
    ArrayRef<llvm::Value *> CapturedVars, const Expr *IfCond) {
  if (!CGF.HaveInsertPoint())
    return;

  if (getExecutionMode() == CGOpenMPRuntimeNVPTX::EM_SPMD)
    emitSPMDParallelCall(CGF, Loc, OutlinedFn, CapturedVars, IfCond);
  else
    emitNonSPMDParallelCall(CGF, Loc, OutlinedFn, CapturedVars, IfCond);
}

void CGOpenMPRuntimeNVPTX::emitNonSPMDParallelCall(
    CodeGenFunction &CGF, SourceLocation Loc, llvm::Value *OutlinedFn,
    ArrayRef<llvm::Value *> CapturedVars, const Expr *IfCond) {
  llvm::Function *Fn = cast<llvm::Function>(OutlinedFn);

  // Force inline this outlined function at its call site.
  Fn->setLinkage(llvm::GlobalValue::InternalLinkage);

  Address ZeroAddr = CGF.CreateMemTemp(CGF.getContext().getIntTypeForBitwidth(
                                           /*DestWidth=*/32, /*Signed=*/1),
                                       ".zero.addr");
  CGF.InitTempAlloca(ZeroAddr, CGF.Builder.getInt32(/*C*/ 0));
  // ThreadId for serialized parallels is 0.
  Address ThreadIDAddr = ZeroAddr;
  auto &&CodeGen = [this, Fn, CapturedVars, Loc, ZeroAddr, &ThreadIDAddr](
                       CodeGenFunction &CGF, PrePostActionTy &Action) {
    Action.Enter(CGF);

    llvm::SmallVector<llvm::Value *, 16> OutlinedFnArgs;
    OutlinedFnArgs.push_back(ThreadIDAddr.getPointer());
    OutlinedFnArgs.push_back(ZeroAddr.getPointer());
    OutlinedFnArgs.append(CapturedVars.begin(), CapturedVars.end());
    emitOutlinedFunctionCall(CGF, Loc, Fn, OutlinedFnArgs);
  };
  auto &&SeqGen = [this, &CodeGen, Loc](CodeGenFunction &CGF,
                                        PrePostActionTy &) {

    RegionCodeGenTy RCG(CodeGen);
    llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc);
    llvm::Value *ThreadID = getThreadID(CGF, Loc);
    llvm::Value *Args[] = {RTLoc, ThreadID};

    NVPTXActionTy Action(
        createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_serialized_parallel),
        Args,
        createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_end_serialized_parallel),
        Args);
    RCG.setAction(Action);
    RCG(CGF);
  };

  auto &&L0ParallelGen = [this, CapturedVars, Fn](CodeGenFunction &CGF,
                                                  PrePostActionTy &Action) {
    CGBuilderTy &Bld = CGF.Builder;
    llvm::Function *WFn = WrapperFunctionsMap[Fn];
    assert(WFn && "Wrapper function does not exist!");
    llvm::Value *ID = Bld.CreateBitOrPointerCast(WFn, CGM.Int8PtrTy);

    // Prepare for parallel region. Indicate the outlined function.
    llvm::Value *Args[] = {ID, /*RequiresOMPRuntime=*/Bld.getInt16(1)};
    CGF.EmitRuntimeCall(
        createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_kernel_prepare_parallel),
        Args);

    // Create a private scope that will globalize the arguments
    // passed from the outside of the target region.
    CodeGenFunction::OMPPrivateScope PrivateArgScope(CGF);

    // There's something to share.
    if (!CapturedVars.empty()) {
      // Prepare for parallel region. Indicate the outlined function.
      Address SharedArgs =
          CGF.CreateDefaultAlignTempAlloca(CGF.VoidPtrPtrTy, "shared_arg_refs");
      llvm::Value *SharedArgsPtr = SharedArgs.getPointer();

      llvm::Value *DataSharingArgs[] = {
          SharedArgsPtr,
          llvm::ConstantInt::get(CGM.SizeTy, CapturedVars.size())};
      CGF.EmitRuntimeCall(createNVPTXRuntimeFunction(
                              OMPRTL_NVPTX__kmpc_begin_sharing_variables),
                          DataSharingArgs);

      // Store variable address in a list of references to pass to workers.
      unsigned Idx = 0;
      ASTContext &Ctx = CGF.getContext();
      Address SharedArgListAddress = CGF.EmitLoadOfPointer(
          SharedArgs, Ctx.getPointerType(Ctx.getPointerType(Ctx.VoidPtrTy))
                          .castAs<PointerType>());
      for (llvm::Value *V : CapturedVars) {
        Address Dst = Bld.CreateConstInBoundsGEP(SharedArgListAddress, Idx,
                                                 CGF.getPointerSize());
        llvm::Value *PtrV;
        if (V->getType()->isIntegerTy())
          PtrV = Bld.CreateIntToPtr(V, CGF.VoidPtrTy);
        else
          PtrV = Bld.CreatePointerBitCastOrAddrSpaceCast(V, CGF.VoidPtrTy);
        CGF.EmitStoreOfScalar(PtrV, Dst, /*Volatile=*/false,
                              Ctx.getPointerType(Ctx.VoidPtrTy));
        ++Idx;
      }
    }

    // Activate workers. This barrier is used by the master to signal
    // work for the workers.
    syncCTAThreads(CGF);

    // OpenMP [2.5, Parallel Construct, p.49]
    // There is an implied barrier at the end of a parallel region. After the
    // end of a parallel region, only the master thread of the team resumes
    // execution of the enclosing task region.
    //
    // The master waits at this barrier until all workers are done.
    syncCTAThreads(CGF);

    if (!CapturedVars.empty())
      CGF.EmitRuntimeCall(
          createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_end_sharing_variables));

    // Remember for post-processing in worker loop.
    Work.emplace_back(WFn);
  };

  auto &&LNParallelGen = [this, Loc, &SeqGen, &L0ParallelGen](
                             CodeGenFunction &CGF, PrePostActionTy &Action) {
    if (IsInParallelRegion) {
      SeqGen(CGF, Action);
    } else if (IsInTargetMasterThreadRegion) {
      L0ParallelGen(CGF, Action);
    } else {
      // Check for master and then parallelism:
      // if (__kmpc_is_spmd_exec_mode() || __kmpc_parallel_level(loc, gtid)) {
      //   Serialized execution.
      // } else {
      //   Worker call.
      // }
      CGBuilderTy &Bld = CGF.Builder;
      llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".exit");
      llvm::BasicBlock *SeqBB = CGF.createBasicBlock(".sequential");
      llvm::BasicBlock *ParallelCheckBB = CGF.createBasicBlock(".parcheck");
      llvm::BasicBlock *MasterBB = CGF.createBasicBlock(".master");
      llvm::Value *IsSPMD = Bld.CreateIsNotNull(CGF.EmitNounwindRuntimeCall(
          createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_is_spmd_exec_mode)));
      Bld.CreateCondBr(IsSPMD, SeqBB, ParallelCheckBB);
      // There is no need to emit line number for unconditional branch.
      (void)ApplyDebugLocation::CreateEmpty(CGF);
      CGF.EmitBlock(ParallelCheckBB);
      llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc);
      llvm::Value *ThreadID = getThreadID(CGF, Loc);
      llvm::Value *PL = CGF.EmitRuntimeCall(
          createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_parallel_level),
          {RTLoc, ThreadID});
      llvm::Value *Res = Bld.CreateIsNotNull(PL);
      Bld.CreateCondBr(Res, SeqBB, MasterBB);
      CGF.EmitBlock(SeqBB);
      SeqGen(CGF, Action);
      CGF.EmitBranch(ExitBB);
      // There is no need to emit line number for unconditional branch.
      (void)ApplyDebugLocation::CreateEmpty(CGF);
      CGF.EmitBlock(MasterBB);
      L0ParallelGen(CGF, Action);
      CGF.EmitBranch(ExitBB);
      // There is no need to emit line number for unconditional branch.
      (void)ApplyDebugLocation::CreateEmpty(CGF);
      // Emit the continuation block for code after the if.
      CGF.EmitBlock(ExitBB, /*IsFinished=*/true);
    }
  };

  if (IfCond) {
    emitOMPIfClause(CGF, IfCond, LNParallelGen, SeqGen);
  } else {
    CodeGenFunction::RunCleanupsScope Scope(CGF);
    RegionCodeGenTy ThenRCG(LNParallelGen);
    ThenRCG(CGF);
  }
}

void CGOpenMPRuntimeNVPTX::emitSPMDParallelCall(
    CodeGenFunction &CGF, SourceLocation Loc, llvm::Value *OutlinedFn,
    ArrayRef<llvm::Value *> CapturedVars, const Expr *IfCond) {
  // Just call the outlined function to execute the parallel region.
  // OutlinedFn(&GTid, &zero, CapturedStruct);
  //
  llvm::SmallVector<llvm::Value *, 16> OutlinedFnArgs;

  Address ZeroAddr = CGF.CreateMemTemp(CGF.getContext().getIntTypeForBitwidth(
                                           /*DestWidth=*/32, /*Signed=*/1),
                                       ".zero.addr");
  CGF.InitTempAlloca(ZeroAddr, CGF.Builder.getInt32(/*C*/ 0));
  // ThreadId for serialized parallels is 0.
  Address ThreadIDAddr = ZeroAddr;
  auto &&CodeGen = [this, OutlinedFn, CapturedVars, Loc, ZeroAddr,
                    &ThreadIDAddr](CodeGenFunction &CGF,
                                   PrePostActionTy &Action) {
    Action.Enter(CGF);

    llvm::SmallVector<llvm::Value *, 16> OutlinedFnArgs;
    OutlinedFnArgs.push_back(ThreadIDAddr.getPointer());
    OutlinedFnArgs.push_back(ZeroAddr.getPointer());
    OutlinedFnArgs.append(CapturedVars.begin(), CapturedVars.end());
    emitOutlinedFunctionCall(CGF, Loc, OutlinedFn, OutlinedFnArgs);
  };
  auto &&SeqGen = [this, &CodeGen, Loc](CodeGenFunction &CGF,
                                        PrePostActionTy &) {

    RegionCodeGenTy RCG(CodeGen);
    llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc);
    llvm::Value *ThreadID = getThreadID(CGF, Loc);
    llvm::Value *Args[] = {RTLoc, ThreadID};

    NVPTXActionTy Action(
        createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_serialized_parallel),
        Args,
        createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_end_serialized_parallel),
        Args);
    RCG.setAction(Action);
    RCG(CGF);
  };

  if (IsInTargetMasterThreadRegion) {
    // In the worker need to use the real thread id.
    ThreadIDAddr = emitThreadIDAddress(CGF, Loc);
    RegionCodeGenTy RCG(CodeGen);
    RCG(CGF);
  } else {
    // If we are not in the target region, it is definitely L2 parallelism or
    // more, because for SPMD mode we always has L1 parallel level, sowe don't
    // need to check for orphaned directives.
    RegionCodeGenTy RCG(SeqGen);
    RCG(CGF);
  }
}

void CGOpenMPRuntimeNVPTX::syncCTAThreads(CodeGenFunction &CGF) {
  // Always emit simple barriers!
  if (!CGF.HaveInsertPoint())
    return;
  // Build call __kmpc_barrier_simple_spmd(nullptr, 0);
  // This function does not use parameters, so we can emit just default values.
  llvm::Value *Args[] = {
      llvm::ConstantPointerNull::get(
          cast<llvm::PointerType>(getIdentTyPointerTy())),
      llvm::ConstantInt::get(CGF.Int32Ty, /*V=*/0, /*isSigned=*/true)};
  CGF.EmitRuntimeCall(
      createNVPTXRuntimeFunction(OMPRTL__kmpc_barrier_simple_spmd), Args);
}

void CGOpenMPRuntimeNVPTX::emitBarrierCall(CodeGenFunction &CGF,
                                           SourceLocation Loc,
                                           OpenMPDirectiveKind Kind, bool,
                                           bool) {
  // Always emit simple barriers!
  if (!CGF.HaveInsertPoint())
    return;
  // Build call __kmpc_cancel_barrier(loc, thread_id);
  unsigned Flags = getDefaultFlagsForBarriers(Kind);
  llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc, Flags),
                         getThreadID(CGF, Loc)};
  CGF.EmitRuntimeCall(createNVPTXRuntimeFunction(OMPRTL__kmpc_barrier), Args);
}

void CGOpenMPRuntimeNVPTX::emitCriticalRegion(
    CodeGenFunction &CGF, StringRef CriticalName,
    const RegionCodeGenTy &CriticalOpGen, SourceLocation Loc,
    const Expr *Hint) {
  llvm::BasicBlock *LoopBB = CGF.createBasicBlock("omp.critical.loop");
  llvm::BasicBlock *TestBB = CGF.createBasicBlock("omp.critical.test");
  llvm::BasicBlock *SyncBB = CGF.createBasicBlock("omp.critical.sync");
  llvm::BasicBlock *BodyBB = CGF.createBasicBlock("omp.critical.body");
  llvm::BasicBlock *ExitBB = CGF.createBasicBlock("omp.critical.exit");

  // Fetch team-local id of the thread.
  llvm::Value *ThreadID = getNVPTXThreadID(CGF);

  // Get the width of the team.
  llvm::Value *TeamWidth = getNVPTXNumThreads(CGF);

  // Initialize the counter variable for the loop.
  QualType Int32Ty =
      CGF.getContext().getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/0);
  Address Counter = CGF.CreateMemTemp(Int32Ty, "critical_counter");
  LValue CounterLVal = CGF.MakeAddrLValue(Counter, Int32Ty);
  CGF.EmitStoreOfScalar(llvm::Constant::getNullValue(CGM.Int32Ty), CounterLVal,
                        /*isInit=*/true);

  // Block checks if loop counter exceeds upper bound.
  CGF.EmitBlock(LoopBB);
  llvm::Value *CounterVal = CGF.EmitLoadOfScalar(CounterLVal, Loc);
  llvm::Value *CmpLoopBound = CGF.Builder.CreateICmpSLT(CounterVal, TeamWidth);
  CGF.Builder.CreateCondBr(CmpLoopBound, TestBB, ExitBB);

  // Block tests which single thread should execute region, and which threads
  // should go straight to synchronisation point.
  CGF.EmitBlock(TestBB);
  CounterVal = CGF.EmitLoadOfScalar(CounterLVal, Loc);
  llvm::Value *CmpThreadToCounter =
      CGF.Builder.CreateICmpEQ(ThreadID, CounterVal);
  CGF.Builder.CreateCondBr(CmpThreadToCounter, BodyBB, SyncBB);

  // Block emits the body of the critical region.
  CGF.EmitBlock(BodyBB);

  // Output the critical statement.
  CGOpenMPRuntime::emitCriticalRegion(CGF, CriticalName, CriticalOpGen, Loc,
                                      Hint);

  // After the body surrounded by the critical region, the single executing
  // thread will jump to the synchronisation point.
  // Block waits for all threads in current team to finish then increments the
  // counter variable and returns to the loop.
  CGF.EmitBlock(SyncBB);
  emitBarrierCall(CGF, Loc, OMPD_unknown, /*EmitChecks=*/false,
                  /*ForceSimpleCall=*/true);

  llvm::Value *IncCounterVal =
      CGF.Builder.CreateNSWAdd(CounterVal, CGF.Builder.getInt32(1));
  CGF.EmitStoreOfScalar(IncCounterVal, CounterLVal);
  CGF.EmitBranch(LoopBB);

  // Block that is reached when  all threads in the team complete the region.
  CGF.EmitBlock(ExitBB, /*IsFinished=*/true);
}

/// Cast value to the specified type.
static llvm::Value *castValueToType(CodeGenFunction &CGF, llvm::Value *Val,
                                    QualType ValTy, QualType CastTy,
                                    SourceLocation Loc) {
  assert(!CGF.getContext().getTypeSizeInChars(CastTy).isZero() &&
         "Cast type must sized.");
  assert(!CGF.getContext().getTypeSizeInChars(ValTy).isZero() &&
         "Val type must sized.");
  llvm::Type *LLVMCastTy = CGF.ConvertTypeForMem(CastTy);
  if (ValTy == CastTy)
    return Val;
  if (CGF.getContext().getTypeSizeInChars(ValTy) ==
      CGF.getContext().getTypeSizeInChars(CastTy))
    return CGF.Builder.CreateBitCast(Val, LLVMCastTy);
  if (CastTy->isIntegerType() && ValTy->isIntegerType())
    return CGF.Builder.CreateIntCast(Val, LLVMCastTy,
                                     CastTy->hasSignedIntegerRepresentation());
  Address CastItem = CGF.CreateMemTemp(CastTy);
  Address ValCastItem = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
      CastItem, Val->getType()->getPointerTo(CastItem.getAddressSpace()));
  CGF.EmitStoreOfScalar(Val, ValCastItem, /*Volatile=*/false, ValTy);
  return CGF.EmitLoadOfScalar(CastItem, /*Volatile=*/false, CastTy, Loc);
}

/// This function creates calls to one of two shuffle functions to copy
/// variables between lanes in a warp.
static llvm::Value *createRuntimeShuffleFunction(CodeGenFunction &CGF,
                                                 llvm::Value *Elem,
                                                 QualType ElemType,
                                                 llvm::Value *Offset,
                                                 SourceLocation Loc) {
  CodeGenModule &CGM = CGF.CGM;
  CGBuilderTy &Bld = CGF.Builder;
  CGOpenMPRuntimeNVPTX &RT =
      *(static_cast<CGOpenMPRuntimeNVPTX *>(&CGM.getOpenMPRuntime()));

  CharUnits Size = CGF.getContext().getTypeSizeInChars(ElemType);
  assert(Size.getQuantity() <= 8 &&
         "Unsupported bitwidth in shuffle instruction.");

  OpenMPRTLFunctionNVPTX ShuffleFn = Size.getQuantity() <= 4
                                         ? OMPRTL_NVPTX__kmpc_shuffle_int32
                                         : OMPRTL_NVPTX__kmpc_shuffle_int64;

  // Cast all types to 32- or 64-bit values before calling shuffle routines.
  QualType CastTy = CGF.getContext().getIntTypeForBitwidth(
      Size.getQuantity() <= 4 ? 32 : 64, /*Signed=*/1);
  llvm::Value *ElemCast = castValueToType(CGF, Elem, ElemType, CastTy, Loc);
  llvm::Value *WarpSize =
      Bld.CreateIntCast(getNVPTXWarpSize(CGF), CGM.Int16Ty, /*isSigned=*/true);

  llvm::Value *ShuffledVal = CGF.EmitRuntimeCall(
      RT.createNVPTXRuntimeFunction(ShuffleFn), {ElemCast, Offset, WarpSize});

  return castValueToType(CGF, ShuffledVal, CastTy, ElemType, Loc);
}

static void shuffleAndStore(CodeGenFunction &CGF, Address SrcAddr,
                            Address DestAddr, QualType ElemType,
                            llvm::Value *Offset, SourceLocation Loc) {
  CGBuilderTy &Bld = CGF.Builder;

  CharUnits Size = CGF.getContext().getTypeSizeInChars(ElemType);
  // Create the loop over the big sized data.
  // ptr = (void*)Elem;
  // ptrEnd = (void*) Elem + 1;
  // Step = 8;
  // while (ptr + Step < ptrEnd)
  //   shuffle((int64_t)*ptr);
  // Step = 4;
  // while (ptr + Step < ptrEnd)
  //   shuffle((int32_t)*ptr);
  // ...
  Address ElemPtr = DestAddr;
  Address Ptr = SrcAddr;
  Address PtrEnd = Bld.CreatePointerBitCastOrAddrSpaceCast(
      Bld.CreateConstGEP(SrcAddr, 1, Size), CGF.VoidPtrTy);
  for (int IntSize = 8; IntSize >= 1; IntSize /= 2) {
    if (Size < CharUnits::fromQuantity(IntSize))
      continue;
    QualType IntType = CGF.getContext().getIntTypeForBitwidth(
        CGF.getContext().toBits(CharUnits::fromQuantity(IntSize)),
        /*Signed=*/1);
    llvm::Type *IntTy = CGF.ConvertTypeForMem(IntType);
    Ptr = Bld.CreatePointerBitCastOrAddrSpaceCast(Ptr, IntTy->getPointerTo());
    ElemPtr =
        Bld.CreatePointerBitCastOrAddrSpaceCast(ElemPtr, IntTy->getPointerTo());
    if (Size.getQuantity() / IntSize > 1) {
      llvm::BasicBlock *PreCondBB = CGF.createBasicBlock(".shuffle.pre_cond");
      llvm::BasicBlock *ThenBB = CGF.createBasicBlock(".shuffle.then");
      llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".shuffle.exit");
      llvm::BasicBlock *CurrentBB = Bld.GetInsertBlock();
      CGF.EmitBlock(PreCondBB);
      llvm::PHINode *PhiSrc =
          Bld.CreatePHI(Ptr.getType(), /*NumReservedValues=*/2);
      PhiSrc->addIncoming(Ptr.getPointer(), CurrentBB);
      llvm::PHINode *PhiDest =
          Bld.CreatePHI(ElemPtr.getType(), /*NumReservedValues=*/2);
      PhiDest->addIncoming(ElemPtr.getPointer(), CurrentBB);
      Ptr = Address(PhiSrc, Ptr.getAlignment());
      ElemPtr = Address(PhiDest, ElemPtr.getAlignment());
      llvm::Value *PtrDiff = Bld.CreatePtrDiff(
          PtrEnd.getPointer(), Bld.CreatePointerBitCastOrAddrSpaceCast(
                                   Ptr.getPointer(), CGF.VoidPtrTy));
      Bld.CreateCondBr(Bld.CreateICmpSGT(PtrDiff, Bld.getInt64(IntSize - 1)),
                       ThenBB, ExitBB);
      CGF.EmitBlock(ThenBB);
      llvm::Value *Res = createRuntimeShuffleFunction(
          CGF, CGF.EmitLoadOfScalar(Ptr, /*Volatile=*/false, IntType, Loc),
          IntType, Offset, Loc);
      CGF.EmitStoreOfScalar(Res, ElemPtr, /*Volatile=*/false, IntType);
      Address LocalPtr =
          Bld.CreateConstGEP(Ptr, 1, CharUnits::fromQuantity(IntSize));
      Address LocalElemPtr =
          Bld.CreateConstGEP(ElemPtr, 1, CharUnits::fromQuantity(IntSize));
      PhiSrc->addIncoming(LocalPtr.getPointer(), ThenBB);
      PhiDest->addIncoming(LocalElemPtr.getPointer(), ThenBB);
      CGF.EmitBranch(PreCondBB);
      CGF.EmitBlock(ExitBB);
    } else {
      llvm::Value *Res = createRuntimeShuffleFunction(
          CGF, CGF.EmitLoadOfScalar(Ptr, /*Volatile=*/false, IntType, Loc),
          IntType, Offset, Loc);
      CGF.EmitStoreOfScalar(Res, ElemPtr, /*Volatile=*/false, IntType);
      Ptr = Bld.CreateConstGEP(Ptr, 1, CharUnits::fromQuantity(IntSize));
      ElemPtr =
          Bld.CreateConstGEP(ElemPtr, 1, CharUnits::fromQuantity(IntSize));
    }
    Size = Size % IntSize;
  }
}

namespace {
enum CopyAction : unsigned {
  // RemoteLaneToThread: Copy over a Reduce list from a remote lane in
  // the warp using shuffle instructions.
  RemoteLaneToThread,
  // ThreadCopy: Make a copy of a Reduce list on the thread's stack.
  ThreadCopy,
  // ThreadToScratchpad: Copy a team-reduced array to the scratchpad.
  ThreadToScratchpad,
  // ScratchpadToThread: Copy from a scratchpad array in global memory
  // containing team-reduced data to a thread's stack.
  ScratchpadToThread,
};
} // namespace

struct CopyOptionsTy {
  llvm::Value *RemoteLaneOffset;
  llvm::Value *ScratchpadIndex;
  llvm::Value *ScratchpadWidth;
};

/// Emit instructions to copy a Reduce list, which contains partially
/// aggregated values, in the specified direction.
static void emitReductionListCopy(
    CopyAction Action, CodeGenFunction &CGF, QualType ReductionArrayTy,
    ArrayRef<const Expr *> Privates, Address SrcBase, Address DestBase,
    CopyOptionsTy CopyOptions = {nullptr, nullptr, nullptr}) {

  CodeGenModule &CGM = CGF.CGM;
  ASTContext &C = CGM.getContext();
  CGBuilderTy &Bld = CGF.Builder;

  llvm::Value *RemoteLaneOffset = CopyOptions.RemoteLaneOffset;
  llvm::Value *ScratchpadIndex = CopyOptions.ScratchpadIndex;
  llvm::Value *ScratchpadWidth = CopyOptions.ScratchpadWidth;

  // Iterates, element-by-element, through the source Reduce list and
  // make a copy.
  unsigned Idx = 0;
  unsigned Size = Privates.size();
  for (const Expr *Private : Privates) {
    Address SrcElementAddr = Address::invalid();
    Address DestElementAddr = Address::invalid();
    Address DestElementPtrAddr = Address::invalid();
    // Should we shuffle in an element from a remote lane?
    bool ShuffleInElement = false;
    // Set to true to update the pointer in the dest Reduce list to a
    // newly created element.
    bool UpdateDestListPtr = false;
    // Increment the src or dest pointer to the scratchpad, for each
    // new element.
    bool IncrScratchpadSrc = false;
    bool IncrScratchpadDest = false;

    switch (Action) {
    case RemoteLaneToThread: {
      // Step 1.1: Get the address for the src element in the Reduce list.
      Address SrcElementPtrAddr =
          Bld.CreateConstArrayGEP(SrcBase, Idx, CGF.getPointerSize());
      SrcElementAddr = CGF.EmitLoadOfPointer(
          SrcElementPtrAddr,
          C.getPointerType(Private->getType())->castAs<PointerType>());

      // Step 1.2: Create a temporary to store the element in the destination
      // Reduce list.
      DestElementPtrAddr =
          Bld.CreateConstArrayGEP(DestBase, Idx, CGF.getPointerSize());
      DestElementAddr =
          CGF.CreateMemTemp(Private->getType(), ".omp.reduction.element");
      ShuffleInElement = true;
      UpdateDestListPtr = true;
      break;
    }
    case ThreadCopy: {
      // Step 1.1: Get the address for the src element in the Reduce list.
      Address SrcElementPtrAddr =
          Bld.CreateConstArrayGEP(SrcBase, Idx, CGF.getPointerSize());
      SrcElementAddr = CGF.EmitLoadOfPointer(
          SrcElementPtrAddr,
          C.getPointerType(Private->getType())->castAs<PointerType>());

      // Step 1.2: Get the address for dest element.  The destination
      // element has already been created on the thread's stack.
      DestElementPtrAddr =
          Bld.CreateConstArrayGEP(DestBase, Idx, CGF.getPointerSize());
      DestElementAddr = CGF.EmitLoadOfPointer(
          DestElementPtrAddr,
          C.getPointerType(Private->getType())->castAs<PointerType>());
      break;
    }
    case ThreadToScratchpad: {
      // Step 1.1: Get the address for the src element in the Reduce list.
      Address SrcElementPtrAddr =
          Bld.CreateConstArrayGEP(SrcBase, Idx, CGF.getPointerSize());
      SrcElementAddr = CGF.EmitLoadOfPointer(
          SrcElementPtrAddr,
          C.getPointerType(Private->getType())->castAs<PointerType>());

      // Step 1.2: Get the address for dest element:
      // address = base + index * ElementSizeInChars.
      llvm::Value *ElementSizeInChars = CGF.getTypeSize(Private->getType());
      llvm::Value *CurrentOffset =
          Bld.CreateNUWMul(ElementSizeInChars, ScratchpadIndex);
      llvm::Value *ScratchPadElemAbsolutePtrVal =
          Bld.CreateNUWAdd(DestBase.getPointer(), CurrentOffset);
      ScratchPadElemAbsolutePtrVal =
          Bld.CreateIntToPtr(ScratchPadElemAbsolutePtrVal, CGF.VoidPtrTy);
      DestElementAddr = Address(ScratchPadElemAbsolutePtrVal,
                                C.getTypeAlignInChars(Private->getType()));
      IncrScratchpadDest = true;
      break;
    }
    case ScratchpadToThread: {
      // Step 1.1: Get the address for the src element in the scratchpad.
      // address = base + index * ElementSizeInChars.
      llvm::Value *ElementSizeInChars = CGF.getTypeSize(Private->getType());
      llvm::Value *CurrentOffset =
          Bld.CreateNUWMul(ElementSizeInChars, ScratchpadIndex);
      llvm::Value *ScratchPadElemAbsolutePtrVal =
          Bld.CreateNUWAdd(SrcBase.getPointer(), CurrentOffset);
      ScratchPadElemAbsolutePtrVal =
          Bld.CreateIntToPtr(ScratchPadElemAbsolutePtrVal, CGF.VoidPtrTy);
      SrcElementAddr = Address(ScratchPadElemAbsolutePtrVal,
                               C.getTypeAlignInChars(Private->getType()));
      IncrScratchpadSrc = true;

      // Step 1.2: Create a temporary to store the element in the destination
      // Reduce list.
      DestElementPtrAddr =
          Bld.CreateConstArrayGEP(DestBase, Idx, CGF.getPointerSize());
      DestElementAddr =
          CGF.CreateMemTemp(Private->getType(), ".omp.reduction.element");
      UpdateDestListPtr = true;
      break;
    }
    }

    // Regardless of src and dest of copy, we emit the load of src
    // element as this is required in all directions
    SrcElementAddr = Bld.CreateElementBitCast(
        SrcElementAddr, CGF.ConvertTypeForMem(Private->getType()));
    DestElementAddr = Bld.CreateElementBitCast(DestElementAddr,
                                               SrcElementAddr.getElementType());

    // Now that all active lanes have read the element in the
    // Reduce list, shuffle over the value from the remote lane.
    if (ShuffleInElement) {
      shuffleAndStore(CGF, SrcElementAddr, DestElementAddr, Private->getType(),
                      RemoteLaneOffset, Private->getExprLoc());
    } else {
      if (Private->getType()->isScalarType()) {
        llvm::Value *Elem =
            CGF.EmitLoadOfScalar(SrcElementAddr, /*Volatile=*/false,
                                 Private->getType(), Private->getExprLoc());
        // Store the source element value to the dest element address.
        CGF.EmitStoreOfScalar(Elem, DestElementAddr, /*Volatile=*/false,
                              Private->getType());
      } else {
        CGF.EmitAggregateCopy(
            CGF.MakeAddrLValue(DestElementAddr, Private->getType()),
            CGF.MakeAddrLValue(SrcElementAddr, Private->getType()),
            Private->getType(), AggValueSlot::DoesNotOverlap);
      }
    }

    // Step 3.1: Modify reference in dest Reduce list as needed.
    // Modifying the reference in Reduce list to point to the newly
    // created element.  The element is live in the current function
    // scope and that of functions it invokes (i.e., reduce_function).
    // RemoteReduceData[i] = (void*)&RemoteElem
    if (UpdateDestListPtr) {
      CGF.EmitStoreOfScalar(Bld.CreatePointerBitCastOrAddrSpaceCast(
                                DestElementAddr.getPointer(), CGF.VoidPtrTy),
                            DestElementPtrAddr, /*Volatile=*/false,
                            C.VoidPtrTy);
    }

    // Step 4.1: Increment SrcBase/DestBase so that it points to the starting
    // address of the next element in scratchpad memory, unless we're currently
    // processing the last one.  Memory alignment is also taken care of here.
    if ((IncrScratchpadDest || IncrScratchpadSrc) && (Idx + 1 < Size)) {
      llvm::Value *ScratchpadBasePtr =
          IncrScratchpadDest ? DestBase.getPointer() : SrcBase.getPointer();
      llvm::Value *ElementSizeInChars = CGF.getTypeSize(Private->getType());
      ScratchpadBasePtr = Bld.CreateNUWAdd(
          ScratchpadBasePtr,
          Bld.CreateNUWMul(ScratchpadWidth, ElementSizeInChars));

      // Take care of global memory alignment for performance
      ScratchpadBasePtr = Bld.CreateNUWSub(
          ScratchpadBasePtr, llvm::ConstantInt::get(CGM.SizeTy, 1));
      ScratchpadBasePtr = Bld.CreateUDiv(
          ScratchpadBasePtr,
          llvm::ConstantInt::get(CGM.SizeTy, GlobalMemoryAlignment));
      ScratchpadBasePtr = Bld.CreateNUWAdd(
          ScratchpadBasePtr, llvm::ConstantInt::get(CGM.SizeTy, 1));
      ScratchpadBasePtr = Bld.CreateNUWMul(
          ScratchpadBasePtr,
          llvm::ConstantInt::get(CGM.SizeTy, GlobalMemoryAlignment));

      if (IncrScratchpadDest)
        DestBase = Address(ScratchpadBasePtr, CGF.getPointerAlign());
      else /* IncrScratchpadSrc = true */
        SrcBase = Address(ScratchpadBasePtr, CGF.getPointerAlign());
    }

    ++Idx;
  }
}

/// This function emits a helper that gathers Reduce lists from the first
/// lane of every active warp to lanes in the first warp.
///
/// void inter_warp_copy_func(void* reduce_data, num_warps)
///   shared smem[warp_size];
///   For all data entries D in reduce_data:
///     sync
///     If (I am the first lane in each warp)
///       Copy my local D to smem[warp_id]
///     sync
///     if (I am the first warp)
///       Copy smem[thread_id] to my local D
static llvm::Value *emitInterWarpCopyFunction(CodeGenModule &CGM,
                                              ArrayRef<const Expr *> Privates,
                                              QualType ReductionArrayTy,
                                              SourceLocation Loc) {
  ASTContext &C = CGM.getContext();
  llvm::Module &M = CGM.getModule();

  // ReduceList: thread local Reduce list.
  // At the stage of the computation when this function is called, partially
  // aggregated values reside in the first lane of every active warp.
  ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
                                  C.VoidPtrTy, ImplicitParamDecl::Other);
  // NumWarps: number of warps active in the parallel region.  This could
  // be smaller than 32 (max warps in a CTA) for partial block reduction.
  ImplicitParamDecl NumWarpsArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
                                C.getIntTypeForBitwidth(32, /* Signed */ true),
                                ImplicitParamDecl::Other);
  FunctionArgList Args;
  Args.push_back(&ReduceListArg);
  Args.push_back(&NumWarpsArg);

  const CGFunctionInfo &CGFI =
      CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
  auto *Fn = llvm::Function::Create(
      CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
      "_omp_reduction_inter_warp_copy_func", &CGM.getModule());
  CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
  Fn->setDoesNotRecurse();
  CodeGenFunction CGF(CGM);
  CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);

  CGBuilderTy &Bld = CGF.Builder;

  // This array is used as a medium to transfer, one reduce element at a time,
  // the data from the first lane of every warp to lanes in the first warp
  // in order to perform the final step of a reduction in a parallel region
  // (reduction across warps).  The array is placed in NVPTX __shared__ memory
  // for reduced latency, as well as to have a distinct copy for concurrently
  // executing target regions.  The array is declared with common linkage so
  // as to be shared across compilation units.
  StringRef TransferMediumName =
      "__openmp_nvptx_data_transfer_temporary_storage";
  llvm::GlobalVariable *TransferMedium =
      M.getGlobalVariable(TransferMediumName);
  if (!TransferMedium) {
    auto *Ty = llvm::ArrayType::get(CGM.Int32Ty, WarpSize);
    unsigned SharedAddressSpace = C.getTargetAddressSpace(LangAS::cuda_shared);
    TransferMedium = new llvm::GlobalVariable(
        M, Ty, /*isConstant=*/false, llvm::GlobalVariable::CommonLinkage,
        llvm::Constant::getNullValue(Ty), TransferMediumName,
        /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal,
        SharedAddressSpace);
    CGM.addCompilerUsedGlobal(TransferMedium);
  }

  // Get the CUDA thread id of the current OpenMP thread on the GPU.
  llvm::Value *ThreadID = getNVPTXThreadID(CGF);
  // nvptx_lane_id = nvptx_id % warpsize
  llvm::Value *LaneID = getNVPTXLaneID(CGF);
  // nvptx_warp_id = nvptx_id / warpsize
  llvm::Value *WarpID = getNVPTXWarpID(CGF);

  Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg);
  Address LocalReduceList(
      Bld.CreatePointerBitCastOrAddrSpaceCast(
          CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false,
                               C.VoidPtrTy, Loc),
          CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo()),
      CGF.getPointerAlign());

  unsigned Idx = 0;
  for (const Expr *Private : Privates) {
    //
    // Warp master copies reduce element to transfer medium in __shared__
    // memory.
    //
    unsigned RealTySize =
        C.getTypeSizeInChars(Private->getType())
            .alignTo(C.getTypeAlignInChars(Private->getType()))
            .getQuantity();
    for (unsigned TySize = 4; TySize > 0 && RealTySize > 0; TySize /=2) {
      unsigned NumIters = RealTySize / TySize;
      if (NumIters == 0)
        continue;
      QualType CType = C.getIntTypeForBitwidth(
          C.toBits(CharUnits::fromQuantity(TySize)), /*Signed=*/1);
      llvm::Type *CopyType = CGF.ConvertTypeForMem(CType);
      CharUnits Align = CharUnits::fromQuantity(TySize);
      llvm::Value *Cnt = nullptr;
      Address CntAddr = Address::invalid();
      llvm::BasicBlock *PrecondBB = nullptr;
      llvm::BasicBlock *ExitBB = nullptr;
      if (NumIters > 1) {
        CntAddr = CGF.CreateMemTemp(C.IntTy, ".cnt.addr");
        CGF.EmitStoreOfScalar(llvm::Constant::getNullValue(CGM.IntTy), CntAddr,
                              /*Volatile=*/false, C.IntTy);
        PrecondBB = CGF.createBasicBlock("precond");
        ExitBB = CGF.createBasicBlock("exit");
        llvm::BasicBlock *BodyBB = CGF.createBasicBlock("body");
        // There is no need to emit line number for unconditional branch.
        (void)ApplyDebugLocation::CreateEmpty(CGF);
        CGF.EmitBlock(PrecondBB);
        Cnt = CGF.EmitLoadOfScalar(CntAddr, /*Volatile=*/false, C.IntTy, Loc);
        llvm::Value *Cmp =
            Bld.CreateICmpULT(Cnt, llvm::ConstantInt::get(CGM.IntTy, NumIters));
        Bld.CreateCondBr(Cmp, BodyBB, ExitBB);
        CGF.EmitBlock(BodyBB);
      }
      // kmpc_barrier.
      CGM.getOpenMPRuntime().emitBarrierCall(CGF, Loc, OMPD_unknown,
                                             /*EmitChecks=*/false,
                                             /*ForceSimpleCall=*/true);
      llvm::BasicBlock *ThenBB = CGF.createBasicBlock("then");
      llvm::BasicBlock *ElseBB = CGF.createBasicBlock("else");
      llvm::BasicBlock *MergeBB = CGF.createBasicBlock("ifcont");

      // if (lane_id == 0)
      llvm::Value *IsWarpMaster = Bld.CreateIsNull(LaneID, "warp_master");
      Bld.CreateCondBr(IsWarpMaster, ThenBB, ElseBB);
      CGF.EmitBlock(ThenBB);

      // Reduce element = LocalReduceList[i]
      Address ElemPtrPtrAddr =
          Bld.CreateConstArrayGEP(LocalReduceList, Idx, CGF.getPointerSize());
      llvm::Value *ElemPtrPtr = CGF.EmitLoadOfScalar(
          ElemPtrPtrAddr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation());
      // elemptr = ((CopyType*)(elemptrptr)) + I
      Address ElemPtr = Address(ElemPtrPtr, Align);
      ElemPtr = Bld.CreateElementBitCast(ElemPtr, CopyType);
      if (NumIters > 1) {
        ElemPtr = Address(Bld.CreateGEP(ElemPtr.getPointer(), Cnt),
                          ElemPtr.getAlignment());
      }

      // Get pointer to location in transfer medium.
      // MediumPtr = &medium[warp_id]
      llvm::Value *MediumPtrVal = Bld.CreateInBoundsGEP(
          TransferMedium, {llvm::Constant::getNullValue(CGM.Int64Ty), WarpID});
      Address MediumPtr(MediumPtrVal, Align);
      // Casting to actual data type.
      // MediumPtr = (CopyType*)MediumPtrAddr;
      MediumPtr = Bld.CreateElementBitCast(MediumPtr, CopyType);

      // elem = *elemptr
      //*MediumPtr = elem
      llvm::Value *Elem =
          CGF.EmitLoadOfScalar(ElemPtr, /*Volatile=*/false, CType, Loc);
      // Store the source element value to the dest element address.
      CGF.EmitStoreOfScalar(Elem, MediumPtr, /*Volatile=*/true, CType);

      Bld.CreateBr(MergeBB);

      CGF.EmitBlock(ElseBB);
      Bld.CreateBr(MergeBB);

      CGF.EmitBlock(MergeBB);

      // kmpc_barrier.
      CGM.getOpenMPRuntime().emitBarrierCall(CGF, Loc, OMPD_unknown,
                                             /*EmitChecks=*/false,
                                             /*ForceSimpleCall=*/true);

      //
      // Warp 0 copies reduce element from transfer medium.
      //
      llvm::BasicBlock *W0ThenBB = CGF.createBasicBlock("then");
      llvm::BasicBlock *W0ElseBB = CGF.createBasicBlock("else");
      llvm::BasicBlock *W0MergeBB = CGF.createBasicBlock("ifcont");

      Address AddrNumWarpsArg = CGF.GetAddrOfLocalVar(&NumWarpsArg);
      llvm::Value *NumWarpsVal = CGF.EmitLoadOfScalar(
          AddrNumWarpsArg, /*Volatile=*/false, C.IntTy, Loc);

      // Up to 32 threads in warp 0 are active.
      llvm::Value *IsActiveThread =
          Bld.CreateICmpULT(ThreadID, NumWarpsVal, "is_active_thread");
      Bld.CreateCondBr(IsActiveThread, W0ThenBB, W0ElseBB);

      CGF.EmitBlock(W0ThenBB);

      // SrcMediumPtr = &medium[tid]
      llvm::Value *SrcMediumPtrVal = Bld.CreateInBoundsGEP(
          TransferMedium,
          {llvm::Constant::getNullValue(CGM.Int64Ty), ThreadID});
      Address SrcMediumPtr(SrcMediumPtrVal, Align);
      // SrcMediumVal = *SrcMediumPtr;
      SrcMediumPtr = Bld.CreateElementBitCast(SrcMediumPtr, CopyType);

      // TargetElemPtr = (CopyType*)(SrcDataAddr[i]) + I
      Address TargetElemPtrPtr =
          Bld.CreateConstArrayGEP(LocalReduceList, Idx, CGF.getPointerSize());
      llvm::Value *TargetElemPtrVal = CGF.EmitLoadOfScalar(
          TargetElemPtrPtr, /*Volatile=*/false, C.VoidPtrTy, Loc);
      Address TargetElemPtr = Address(TargetElemPtrVal, Align);
      TargetElemPtr = Bld.CreateElementBitCast(TargetElemPtr, CopyType);
      if (NumIters > 1) {
        TargetElemPtr = Address(Bld.CreateGEP(TargetElemPtr.getPointer(), Cnt),
                                TargetElemPtr.getAlignment());
      }

      // *TargetElemPtr = SrcMediumVal;
      llvm::Value *SrcMediumValue =
          CGF.EmitLoadOfScalar(SrcMediumPtr, /*Volatile=*/true, CType, Loc);
      CGF.EmitStoreOfScalar(SrcMediumValue, TargetElemPtr, /*Volatile=*/false,
                            CType);
      Bld.CreateBr(W0MergeBB);

      CGF.EmitBlock(W0ElseBB);
      Bld.CreateBr(W0MergeBB);

      CGF.EmitBlock(W0MergeBB);

      if (NumIters > 1) {
        Cnt = Bld.CreateNSWAdd(Cnt, llvm::ConstantInt::get(CGM.IntTy, /*V=*/1));
        CGF.EmitStoreOfScalar(Cnt, CntAddr, /*Volatile=*/false, C.IntTy);
        CGF.EmitBranch(PrecondBB);
        (void)ApplyDebugLocation::CreateEmpty(CGF);
        CGF.EmitBlock(ExitBB);
      }
      RealTySize %= TySize;
    }
    ++Idx;
  }

  CGF.FinishFunction();
  return Fn;
}

/// Emit a helper that reduces data across two OpenMP threads (lanes)
/// in the same warp.  It uses shuffle instructions to copy over data from
/// a remote lane's stack.  The reduction algorithm performed is specified
/// by the fourth parameter.
///
/// Algorithm Versions.
/// Full Warp Reduce (argument value 0):
///   This algorithm assumes that all 32 lanes are active and gathers
///   data from these 32 lanes, producing a single resultant value.
/// Contiguous Partial Warp Reduce (argument value 1):
///   This algorithm assumes that only a *contiguous* subset of lanes
///   are active.  This happens for the last warp in a parallel region
///   when the user specified num_threads is not an integer multiple of
///   32.  This contiguous subset always starts with the zeroth lane.
/// Partial Warp Reduce (argument value 2):
///   This algorithm gathers data from any number of lanes at any position.
/// All reduced values are stored in the lowest possible lane.  The set
/// of problems every algorithm addresses is a super set of those
/// addressable by algorithms with a lower version number.  Overhead
/// increases as algorithm version increases.
///
/// Terminology
/// Reduce element:
///   Reduce element refers to the individual data field with primitive
///   data types to be combined and reduced across threads.
/// Reduce list:
///   Reduce list refers to a collection of local, thread-private
///   reduce elements.
/// Remote Reduce list:
///   Remote Reduce list refers to a collection of remote (relative to
///   the current thread) reduce elements.
///
/// We distinguish between three states of threads that are important to
/// the implementation of this function.
/// Alive threads:
///   Threads in a warp executing the SIMT instruction, as distinguished from
///   threads that are inactive due to divergent control flow.
/// Active threads:
///   The minimal set of threads that has to be alive upon entry to this
///   function.  The computation is correct iff active threads are alive.
///   Some threads are alive but they are not active because they do not
///   contribute to the computation in any useful manner.  Turning them off
///   may introduce control flow overheads without any tangible benefits.
/// Effective threads:
///   In order to comply with the argument requirements of the shuffle
///   function, we must keep all lanes holding data alive.  But at most
///   half of them perform value aggregation; we refer to this half of
///   threads as effective. The other half is simply handing off their
///   data.
///
/// Procedure
/// Value shuffle:
///   In this step active threads transfer data from higher lane positions
///   in the warp to lower lane positions, creating Remote Reduce list.
/// Value aggregation:
///   In this step, effective threads combine their thread local Reduce list
///   with Remote Reduce list and store the result in the thread local
///   Reduce list.
/// Value copy:
///   In this step, we deal with the assumption made by algorithm 2
///   (i.e. contiguity assumption).  When we have an odd number of lanes
///   active, say 2k+1, only k threads will be effective and therefore k
///   new values will be produced.  However, the Reduce list owned by the
///   (2k+1)th thread is ignored in the value aggregation.  Therefore
///   we copy the Reduce list from the (2k+1)th lane to (k+1)th lane so
///   that the contiguity assumption still holds.
static llvm::Value *emitShuffleAndReduceFunction(
    CodeGenModule &CGM, ArrayRef<const Expr *> Privates,
    QualType ReductionArrayTy, llvm::Value *ReduceFn, SourceLocation Loc) {
  ASTContext &C = CGM.getContext();

  // Thread local Reduce list used to host the values of data to be reduced.
  ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
                                  C.VoidPtrTy, ImplicitParamDecl::Other);
  // Current lane id; could be logical.
  ImplicitParamDecl LaneIDArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.ShortTy,
                              ImplicitParamDecl::Other);
  // Offset of the remote source lane relative to the current lane.
  ImplicitParamDecl RemoteLaneOffsetArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
                                        C.ShortTy, ImplicitParamDecl::Other);
  // Algorithm version.  This is expected to be known at compile time.
  ImplicitParamDecl AlgoVerArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
                               C.ShortTy, ImplicitParamDecl::Other);
  FunctionArgList Args;
  Args.push_back(&ReduceListArg);
  Args.push_back(&LaneIDArg);
  Args.push_back(&RemoteLaneOffsetArg);
  Args.push_back(&AlgoVerArg);

  const CGFunctionInfo &CGFI =
      CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
  auto *Fn = llvm::Function::Create(
      CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
      "_omp_reduction_shuffle_and_reduce_func", &CGM.getModule());
  CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
  Fn->setDoesNotRecurse();
  CodeGenFunction CGF(CGM);
  CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);

  CGBuilderTy &Bld = CGF.Builder;

  Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg);
  Address LocalReduceList(
      Bld.CreatePointerBitCastOrAddrSpaceCast(
          CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false,
                               C.VoidPtrTy, SourceLocation()),
          CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo()),
      CGF.getPointerAlign());

  Address AddrLaneIDArg = CGF.GetAddrOfLocalVar(&LaneIDArg);
  llvm::Value *LaneIDArgVal = CGF.EmitLoadOfScalar(
      AddrLaneIDArg, /*Volatile=*/false, C.ShortTy, SourceLocation());

  Address AddrRemoteLaneOffsetArg = CGF.GetAddrOfLocalVar(&RemoteLaneOffsetArg);
  llvm::Value *RemoteLaneOffsetArgVal = CGF.EmitLoadOfScalar(
      AddrRemoteLaneOffsetArg, /*Volatile=*/false, C.ShortTy, SourceLocation());

  Address AddrAlgoVerArg = CGF.GetAddrOfLocalVar(&AlgoVerArg);
  llvm::Value *AlgoVerArgVal = CGF.EmitLoadOfScalar(
      AddrAlgoVerArg, /*Volatile=*/false, C.ShortTy, SourceLocation());

  // Create a local thread-private variable to host the Reduce list
  // from a remote lane.
  Address RemoteReduceList =
      CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.remote_reduce_list");

  // This loop iterates through the list of reduce elements and copies,
  // element by element, from a remote lane in the warp to RemoteReduceList,
  // hosted on the thread's stack.
  emitReductionListCopy(RemoteLaneToThread, CGF, ReductionArrayTy, Privates,
                        LocalReduceList, RemoteReduceList,
                        {/*RemoteLaneOffset=*/RemoteLaneOffsetArgVal,
                         /*ScratchpadIndex=*/nullptr,
                         /*ScratchpadWidth=*/nullptr});

  // The actions to be performed on the Remote Reduce list is dependent
  // on the algorithm version.
  //
  //  if (AlgoVer==0) || (AlgoVer==1 && (LaneId < Offset)) || (AlgoVer==2 &&
  //  LaneId % 2 == 0 && Offset > 0):
  //    do the reduction value aggregation
  //
  //  The thread local variable Reduce list is mutated in place to host the
  //  reduced data, which is the aggregated value produced from local and
  //  remote lanes.
  //
  //  Note that AlgoVer is expected to be a constant integer known at compile
  //  time.
  //  When AlgoVer==0, the first conjunction evaluates to true, making
  //    the entire predicate true during compile time.
  //  When AlgoVer==1, the second conjunction has only the second part to be
  //    evaluated during runtime.  Other conjunctions evaluates to false
  //    during compile time.
  //  When AlgoVer==2, the third conjunction has only the second part to be
  //    evaluated during runtime.  Other conjunctions evaluates to false
  //    during compile time.
  llvm::Value *CondAlgo0 = Bld.CreateIsNull(AlgoVerArgVal);

  llvm::Value *Algo1 = Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(1));
  llvm::Value *CondAlgo1 = Bld.CreateAnd(
      Algo1, Bld.CreateICmpULT(LaneIDArgVal, RemoteLaneOffsetArgVal));

  llvm::Value *Algo2 = Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(2));
  llvm::Value *CondAlgo2 = Bld.CreateAnd(
      Algo2, Bld.CreateIsNull(Bld.CreateAnd(LaneIDArgVal, Bld.getInt16(1))));
  CondAlgo2 = Bld.CreateAnd(
      CondAlgo2, Bld.CreateICmpSGT(RemoteLaneOffsetArgVal, Bld.getInt16(0)));

  llvm::Value *CondReduce = Bld.CreateOr(CondAlgo0, CondAlgo1);
  CondReduce = Bld.CreateOr(CondReduce, CondAlgo2);

  llvm::BasicBlock *ThenBB = CGF.createBasicBlock("then");
  llvm::BasicBlock *ElseBB = CGF.createBasicBlock("else");
  llvm::BasicBlock *MergeBB = CGF.createBasicBlock("ifcont");
  Bld.CreateCondBr(CondReduce, ThenBB, ElseBB);

  CGF.EmitBlock(ThenBB);
  // reduce_function(LocalReduceList, RemoteReduceList)
  llvm::Value *LocalReduceListPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
      LocalReduceList.getPointer(), CGF.VoidPtrTy);
  llvm::Value *RemoteReduceListPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
      RemoteReduceList.getPointer(), CGF.VoidPtrTy);
  CGM.getOpenMPRuntime().emitOutlinedFunctionCall(
      CGF, Loc, ReduceFn, {LocalReduceListPtr, RemoteReduceListPtr});
  Bld.CreateBr(MergeBB);

  CGF.EmitBlock(ElseBB);
  Bld.CreateBr(MergeBB);

  CGF.EmitBlock(MergeBB);

  // if (AlgoVer==1 && (LaneId >= Offset)) copy Remote Reduce list to local
  // Reduce list.
  Algo1 = Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(1));
  llvm::Value *CondCopy = Bld.CreateAnd(
      Algo1, Bld.CreateICmpUGE(LaneIDArgVal, RemoteLaneOffsetArgVal));

  llvm::BasicBlock *CpyThenBB = CGF.createBasicBlock("then");
  llvm::BasicBlock *CpyElseBB = CGF.createBasicBlock("else");
  llvm::BasicBlock *CpyMergeBB = CGF.createBasicBlock("ifcont");
  Bld.CreateCondBr(CondCopy, CpyThenBB, CpyElseBB);

  CGF.EmitBlock(CpyThenBB);
  emitReductionListCopy(ThreadCopy, CGF, ReductionArrayTy, Privates,
                        RemoteReduceList, LocalReduceList);
  Bld.CreateBr(CpyMergeBB);

  CGF.EmitBlock(CpyElseBB);
  Bld.CreateBr(CpyMergeBB);

  CGF.EmitBlock(CpyMergeBB);

  CGF.FinishFunction();
  return Fn;
}

///
/// Design of OpenMP reductions on the GPU
///
/// Consider a typical OpenMP program with one or more reduction
/// clauses:
///
/// float foo;
/// double bar;
/// #pragma omp target teams distribute parallel for \
///             reduction(+:foo) reduction(*:bar)
/// for (int i = 0; i < N; i++) {
///   foo += A[i]; bar *= B[i];
/// }
///
/// where 'foo' and 'bar' are reduced across all OpenMP threads in
/// all teams.  In our OpenMP implementation on the NVPTX device an
/// OpenMP team is mapped to a CUDA threadblock and OpenMP threads
/// within a team are mapped to CUDA threads within a threadblock.
/// Our goal is to efficiently aggregate values across all OpenMP
/// threads such that:
///
///   - the compiler and runtime are logically concise, and
///   - the reduction is performed efficiently in a hierarchical
///     manner as follows: within OpenMP threads in the same warp,
///     across warps in a threadblock, and finally across teams on
///     the NVPTX device.
///
/// Introduction to Decoupling
///
/// We would like to decouple the compiler and the runtime so that the
/// latter is ignorant of the reduction variables (number, data types)
/// and the reduction operators.  This allows a simpler interface
/// and implementation while still attaining good performance.
///
/// Pseudocode for the aforementioned OpenMP program generated by the
/// compiler is as follows:
///
/// 1. Create private copies of reduction variables on each OpenMP
///    thread: 'foo_private', 'bar_private'
/// 2. Each OpenMP thread reduces the chunk of 'A' and 'B' assigned
///    to it and writes the result in 'foo_private' and 'bar_private'
///    respectively.
/// 3. Call the OpenMP runtime on the GPU to reduce within a team
///    and store the result on the team master:
///
///     __kmpc_nvptx_parallel_reduce_nowait_v2(...,
///        reduceData, shuffleReduceFn, interWarpCpyFn)
///
///     where:
///       struct ReduceData {
///         double *foo;
///         double *bar;
///       } reduceData
///       reduceData.foo = &foo_private
///       reduceData.bar = &bar_private
///
///     'shuffleReduceFn' and 'interWarpCpyFn' are pointers to two
///     auxiliary functions generated by the compiler that operate on
///     variables of type 'ReduceData'.  They aid the runtime perform
///     algorithmic steps in a data agnostic manner.
///
///     'shuffleReduceFn' is a pointer to a function that reduces data
///     of type 'ReduceData' across two OpenMP threads (lanes) in the
///     same warp.  It takes the following arguments as input:
///
///     a. variable of type 'ReduceData' on the calling lane,
///     b. its lane_id,
///     c. an offset relative to the current lane_id to generate a
///        remote_lane_id.  The remote lane contains the second
///        variable of type 'ReduceData' that is to be reduced.
///     d. an algorithm version parameter determining which reduction
///        algorithm to use.
///
///     'shuffleReduceFn' retrieves data from the remote lane using
///     efficient GPU shuffle intrinsics and reduces, using the
///     algorithm specified by the 4th parameter, the two operands
///     element-wise.  The result is written to the first operand.
///
///     Different reduction algorithms are implemented in different
///     runtime functions, all calling 'shuffleReduceFn' to perform
///     the essential reduction step.  Therefore, based on the 4th
///     parameter, this function behaves slightly differently to
///     cooperate with the runtime to ensure correctness under
///     different circumstances.
///
///     'InterWarpCpyFn' is a pointer to a function that transfers
///     reduced variables across warps.  It tunnels, through CUDA
///     shared memory, the thread-private data of type 'ReduceData'
///     from lane 0 of each warp to a lane in the first warp.
/// 4. Call the OpenMP runtime on the GPU to reduce across teams.
///    The last team writes the global reduced value to memory.
///
///     ret = __kmpc_nvptx_teams_reduce_nowait(...,
///             reduceData, shuffleReduceFn, interWarpCpyFn,
///             scratchpadCopyFn, loadAndReduceFn)
///
///     'scratchpadCopyFn' is a helper that stores reduced
///     data from the team master to a scratchpad array in
///     global memory.
///
///     'loadAndReduceFn' is a helper that loads data from
///     the scratchpad array and reduces it with the input
///     operand.
///
///     These compiler generated functions hide address
///     calculation and alignment information from the runtime.
/// 5. if ret == 1:
///     The team master of the last team stores the reduced
///     result to the globals in memory.
///     foo += reduceData.foo; bar *= reduceData.bar
///
///
/// Warp Reduction Algorithms
///
/// On the warp level, we have three algorithms implemented in the
/// OpenMP runtime depending on the number of active lanes:
///
/// Full Warp Reduction
///
/// The reduce algorithm within a warp where all lanes are active
/// is implemented in the runtime as follows:
///
/// full_warp_reduce(void *reduce_data,
///                  kmp_ShuffleReductFctPtr ShuffleReduceFn) {
///   for (int offset = WARPSIZE/2; offset > 0; offset /= 2)
///     ShuffleReduceFn(reduce_data, 0, offset, 0);
/// }
///
/// The algorithm completes in log(2, WARPSIZE) steps.
///
/// 'ShuffleReduceFn' is used here with lane_id set to 0 because it is
/// not used therefore we save instructions by not retrieving lane_id
/// from the corresponding special registers.  The 4th parameter, which
/// represents the version of the algorithm being used, is set to 0 to
/// signify full warp reduction.
///
/// In this version, 'ShuffleReduceFn' behaves, per element, as follows:
///
/// #reduce_elem refers to an element in the local lane's data structure
/// #remote_elem is retrieved from a remote lane
/// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE);
/// reduce_elem = reduce_elem REDUCE_OP remote_elem;
///
/// Contiguous Partial Warp Reduction
///
/// This reduce algorithm is used within a warp where only the first
/// 'n' (n <= WARPSIZE) lanes are active.  It is typically used when the
/// number of OpenMP threads in a parallel region is not a multiple of
/// WARPSIZE.  The algorithm is implemented in the runtime as follows:
///
/// void
/// contiguous_partial_reduce(void *reduce_data,
///                           kmp_ShuffleReductFctPtr ShuffleReduceFn,
///                           int size, int lane_id) {
///   int curr_size;
///   int offset;
///   curr_size = size;
///   mask = curr_size/2;
///   while (offset>0) {
///     ShuffleReduceFn(reduce_data, lane_id, offset, 1);
///     curr_size = (curr_size+1)/2;
///     offset = curr_size/2;
///   }
/// }
///
/// In this version, 'ShuffleReduceFn' behaves, per element, as follows:
///
/// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE);
/// if (lane_id < offset)
///     reduce_elem = reduce_elem REDUCE_OP remote_elem
/// else
///     reduce_elem = remote_elem
///
/// This algorithm assumes that the data to be reduced are located in a
/// contiguous subset of lanes starting from the first.  When there is
/// an odd number of active lanes, the data in the last lane is not
/// aggregated with any other lane's dat but is instead copied over.
///
/// Dispersed Partial Warp Reduction
///
/// This algorithm is used within a warp when any discontiguous subset of
/// lanes are active.  It is used to implement the reduction operation
/// across lanes in an OpenMP simd region or in a nested parallel region.
///
/// void
/// dispersed_partial_reduce(void *reduce_data,
///                          kmp_ShuffleReductFctPtr ShuffleReduceFn) {
///   int size, remote_id;
///   int logical_lane_id = number_of_active_lanes_before_me() * 2;
///   do {
///       remote_id = next_active_lane_id_right_after_me();
///       # the above function returns 0 of no active lane
///       # is present right after the current lane.
///       size = number_of_active_lanes_in_this_warp();
///       logical_lane_id /= 2;
///       ShuffleReduceFn(reduce_data, logical_lane_id,
///                       remote_id-1-threadIdx.x, 2);
///   } while (logical_lane_id % 2 == 0 && size > 1);
/// }
///
/// There is no assumption made about the initial state of the reduction.
/// Any number of lanes (>=1) could be active at any position.  The reduction
/// result is returned in the first active lane.
///
/// In this version, 'ShuffleReduceFn' behaves, per element, as follows:
///
/// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE);
/// if (lane_id % 2 == 0 && offset > 0)
///     reduce_elem = reduce_elem REDUCE_OP remote_elem
/// else
///     reduce_elem = remote_elem
///
///
/// Intra-Team Reduction
///
/// This function, as implemented in the runtime call
/// '__kmpc_nvptx_parallel_reduce_nowait_v2', aggregates data across OpenMP
/// threads in a team.  It first reduces within a warp using the
/// aforementioned algorithms.  We then proceed to gather all such
/// reduced values at the first warp.
///
/// The runtime makes use of the function 'InterWarpCpyFn', which copies
/// data from each of the "warp master" (zeroth lane of each warp, where
/// warp-reduced data is held) to the zeroth warp.  This step reduces (in
/// a mathematical sense) the problem of reduction across warp masters in
/// a block to the problem of warp reduction.
///
///
/// Inter-Team Reduction
///
/// Once a team has reduced its data to a single value, it is stored in
/// a global scratchpad array.  Since each team has a distinct slot, this
/// can be done without locking.
///
/// The last team to write to the scratchpad array proceeds to reduce the
/// scratchpad array.  One or more workers in the last team use the helper
/// 'loadAndReduceDataFn' to load and reduce values from the array, i.e.,
/// the k'th worker reduces every k'th element.
///
/// Finally, a call is made to '__kmpc_nvptx_parallel_reduce_nowait_v2' to
/// reduce across workers and compute a globally reduced value.
///
void CGOpenMPRuntimeNVPTX::emitReduction(
    CodeGenFunction &CGF, SourceLocation Loc, ArrayRef<const Expr *> Privates,
    ArrayRef<const Expr *> LHSExprs, ArrayRef<const Expr *> RHSExprs,
    ArrayRef<const Expr *> ReductionOps, ReductionOptionsTy Options) {
  if (!CGF.HaveInsertPoint())
    return;

  bool ParallelReduction = isOpenMPParallelDirective(Options.ReductionKind);
#ifndef NDEBUG
  bool TeamsReduction = isOpenMPTeamsDirective(Options.ReductionKind);
#endif

  if (Options.SimpleReduction) {
    assert(!TeamsReduction && !ParallelReduction &&
           "Invalid reduction selection in emitReduction.");
    CGOpenMPRuntime::emitReduction(CGF, Loc, Privates, LHSExprs, RHSExprs,
                                   ReductionOps, Options);
    return;
  }

  assert((TeamsReduction || ParallelReduction) &&
         "Invalid reduction selection in emitReduction.");

  // Build res = __kmpc_reduce{_nowait}(<gtid>, <n>, sizeof(RedList),
  // RedList, shuffle_reduce_func, interwarp_copy_func);
  // or
  // Build res = __kmpc_reduce_teams_nowait_simple(<loc>, <gtid>, <lck>);
  llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc);
  llvm::Value *ThreadId = getThreadID(CGF, Loc);

  llvm::Value *Res;
  if (ParallelReduction) {
    ASTContext &C = CGM.getContext();
    // 1. Build a list of reduction variables.
    // void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]};
    auto Size = RHSExprs.size();
    for (const Expr *E : Privates) {
      if (E->getType()->isVariablyModifiedType())
        // Reserve place for array size.
        ++Size;
    }
    llvm::APInt ArraySize(/*unsigned int numBits=*/32, Size);
    QualType ReductionArrayTy =
        C.getConstantArrayType(C.VoidPtrTy, ArraySize, ArrayType::Normal,
                               /*IndexTypeQuals=*/0);
    Address ReductionList =
        CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list");
    auto IPriv = Privates.begin();
    unsigned Idx = 0;
    for (unsigned I = 0, E = RHSExprs.size(); I < E; ++I, ++IPriv, ++Idx) {
      Address Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx,
                                                     CGF.getPointerSize());
      CGF.Builder.CreateStore(
          CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
              CGF.EmitLValue(RHSExprs[I]).getPointer(), CGF.VoidPtrTy),
          Elem);
      if ((*IPriv)->getType()->isVariablyModifiedType()) {
        // Store array size.
        ++Idx;
        Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx,
                                               CGF.getPointerSize());
        llvm::Value *Size = CGF.Builder.CreateIntCast(
            CGF.getVLASize(
                   CGF.getContext().getAsVariableArrayType((*IPriv)->getType()))
                .NumElts,
            CGF.SizeTy, /*isSigned=*/false);
        CGF.Builder.CreateStore(CGF.Builder.CreateIntToPtr(Size, CGF.VoidPtrTy),
                                Elem);
      }
    }

    llvm::Value *ReductionArrayTySize = CGF.getTypeSize(ReductionArrayTy);
    llvm::Value *RL = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
        ReductionList.getPointer(), CGF.VoidPtrTy);
    llvm::Value *ReductionFn = emitReductionFunction(
        CGM, Loc, CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo(),
        Privates, LHSExprs, RHSExprs, ReductionOps);
    llvm::Value *ShuffleAndReduceFn = emitShuffleAndReduceFunction(
        CGM, Privates, ReductionArrayTy, ReductionFn, Loc);
    llvm::Value *InterWarpCopyFn =
        emitInterWarpCopyFunction(CGM, Privates, ReductionArrayTy, Loc);

    llvm::Value *Args[] = {RTLoc,
                           ThreadId,
                           CGF.Builder.getInt32(RHSExprs.size()),
                           ReductionArrayTySize,
                           RL,
                           ShuffleAndReduceFn,
                           InterWarpCopyFn};

    Res = CGF.EmitRuntimeCall(createNVPTXRuntimeFunction(
                                  OMPRTL_NVPTX__kmpc_parallel_reduce_nowait_v2),
                              Args);
  } else {
    assert(TeamsReduction && "expected teams reduction.");
    std::string Name = getName({"reduction"});
    llvm::Value *Lock = getCriticalRegionLock(Name);
    llvm::Value *Args[] = {RTLoc, ThreadId, Lock};
    Res = CGF.EmitRuntimeCall(
        createNVPTXRuntimeFunction(
            OMPRTL_NVPTX__kmpc_nvptx_teams_reduce_nowait_simple),
        Args);
  }

  // 5. Build if (res == 1)
  llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".omp.reduction.done");
  llvm::BasicBlock *ThenBB = CGF.createBasicBlock(".omp.reduction.then");
  llvm::Value *Cond = CGF.Builder.CreateICmpEQ(
      Res, llvm::ConstantInt::get(CGM.Int32Ty, /*V=*/1));
  CGF.Builder.CreateCondBr(Cond, ThenBB, ExitBB);

  // 6. Build then branch: where we have reduced values in the master
  //    thread in each team.
  //    __kmpc_end_reduce{_nowait}(<gtid>);
  //    break;
  CGF.EmitBlock(ThenBB);

  // Add emission of __kmpc_end_reduce{_nowait}(<gtid>);
  auto &&CodeGen = [Privates, LHSExprs, RHSExprs, ReductionOps,
                    this](CodeGenFunction &CGF, PrePostActionTy &Action) {
    auto IPriv = Privates.begin();
    auto ILHS = LHSExprs.begin();
    auto IRHS = RHSExprs.begin();
    for (const Expr *E : ReductionOps) {
      emitSingleReductionCombiner(CGF, E, *IPriv, cast<DeclRefExpr>(*ILHS),
                                  cast<DeclRefExpr>(*IRHS));
      ++IPriv;
      ++ILHS;
      ++IRHS;
    }
  };
  if (ParallelReduction) {
    llvm::Value *EndArgs[] = {ThreadId};
    RegionCodeGenTy RCG(CodeGen);
    NVPTXActionTy Action(
        nullptr, llvm::None,
        createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_end_reduce_nowait),
        EndArgs);
    RCG.setAction(Action);
    RCG(CGF);
  } else {
    assert(TeamsReduction && "expected teams reduction.");
    llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc);
    std::string Name = getName({"reduction"});
    llvm::Value *Lock = getCriticalRegionLock(Name);
    llvm::Value *EndArgs[] = {RTLoc, ThreadId, Lock};
    RegionCodeGenTy RCG(CodeGen);
    NVPTXActionTy Action(
        nullptr, llvm::None,
        createNVPTXRuntimeFunction(
            OMPRTL_NVPTX__kmpc_nvptx_teams_end_reduce_nowait_simple),
        EndArgs);
    RCG.setAction(Action);
    RCG(CGF);
  }
  // There is no need to emit line number for unconditional branch.
  (void)ApplyDebugLocation::CreateEmpty(CGF);
  CGF.EmitBlock(ExitBB, /*IsFinished=*/true);
}

const VarDecl *
CGOpenMPRuntimeNVPTX::translateParameter(const FieldDecl *FD,
                                         const VarDecl *NativeParam) const {
  if (!NativeParam->getType()->isReferenceType())
    return NativeParam;
  QualType ArgType = NativeParam->getType();
  QualifierCollector QC;
  const Type *NonQualTy = QC.strip(ArgType);
  QualType PointeeTy = cast<ReferenceType>(NonQualTy)->getPointeeType();
  if (const auto *Attr = FD->getAttr<OMPCaptureKindAttr>()) {
    if (Attr->getCaptureKind() == OMPC_map) {
      PointeeTy = CGM.getContext().getAddrSpaceQualType(PointeeTy,
                                                        LangAS::opencl_global);
    }
  }
  ArgType = CGM.getContext().getPointerType(PointeeTy);
  QC.addRestrict();
  enum { NVPTX_local_addr = 5 };
  QC.addAddressSpace(getLangASFromTargetAS(NVPTX_local_addr));
  ArgType = QC.apply(CGM.getContext(), ArgType);
  if (isa<ImplicitParamDecl>(NativeParam))
    return ImplicitParamDecl::Create(
        CGM.getContext(), /*DC=*/nullptr, NativeParam->getLocation(),
        NativeParam->getIdentifier(), ArgType, ImplicitParamDecl::Other);
  return ParmVarDecl::Create(
      CGM.getContext(),
      const_cast<DeclContext *>(NativeParam->getDeclContext()),
      NativeParam->getBeginLoc(), NativeParam->getLocation(),
      NativeParam->getIdentifier(), ArgType,
      /*TInfo=*/nullptr, SC_None, /*DefArg=*/nullptr);
}

Address
CGOpenMPRuntimeNVPTX::getParameterAddress(CodeGenFunction &CGF,
                                          const VarDecl *NativeParam,
                                          const VarDecl *TargetParam) const {
  assert(NativeParam != TargetParam &&
         NativeParam->getType()->isReferenceType() &&
         "Native arg must not be the same as target arg.");
  Address LocalAddr = CGF.GetAddrOfLocalVar(TargetParam);
  QualType NativeParamType = NativeParam->getType();
  QualifierCollector QC;
  const Type *NonQualTy = QC.strip(NativeParamType);
  QualType NativePointeeTy = cast<ReferenceType>(NonQualTy)->getPointeeType();
  unsigned NativePointeeAddrSpace =
      CGF.getContext().getTargetAddressSpace(NativePointeeTy);
  QualType TargetTy = TargetParam->getType();
  llvm::Value *TargetAddr = CGF.EmitLoadOfScalar(
      LocalAddr, /*Volatile=*/false, TargetTy, SourceLocation());
  // First cast to generic.
  TargetAddr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
      TargetAddr, TargetAddr->getType()->getPointerElementType()->getPointerTo(
                      /*AddrSpace=*/0));
  // Cast from generic to native address space.
  TargetAddr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
      TargetAddr, TargetAddr->getType()->getPointerElementType()->getPointerTo(
                      NativePointeeAddrSpace));
  Address NativeParamAddr = CGF.CreateMemTemp(NativeParamType);
  CGF.EmitStoreOfScalar(TargetAddr, NativeParamAddr, /*Volatile=*/false,
                        NativeParamType);
  return NativeParamAddr;
}

void CGOpenMPRuntimeNVPTX::emitOutlinedFunctionCall(
    CodeGenFunction &CGF, SourceLocation Loc, llvm::Value *OutlinedFn,
    ArrayRef<llvm::Value *> Args) const {
  SmallVector<llvm::Value *, 4> TargetArgs;
  TargetArgs.reserve(Args.size());
  auto *FnType =
      cast<llvm::FunctionType>(OutlinedFn->getType()->getPointerElementType());
  for (unsigned I = 0, E = Args.size(); I < E; ++I) {
    if (FnType->isVarArg() && FnType->getNumParams() <= I) {
      TargetArgs.append(std::next(Args.begin(), I), Args.end());
      break;
    }
    llvm::Type *TargetType = FnType->getParamType(I);
    llvm::Value *NativeArg = Args[I];
    if (!TargetType->isPointerTy()) {
      TargetArgs.emplace_back(NativeArg);
      continue;
    }
    llvm::Value *TargetArg = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
        NativeArg,
        NativeArg->getType()->getPointerElementType()->getPointerTo());
    TargetArgs.emplace_back(
        CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(TargetArg, TargetType));
  }
  CGOpenMPRuntime::emitOutlinedFunctionCall(CGF, Loc, OutlinedFn, TargetArgs);
}

/// Emit function which wraps the outline parallel region
/// and controls the arguments which are passed to this function.
/// The wrapper ensures that the outlined function is called
/// with the correct arguments when data is shared.
llvm::Function *CGOpenMPRuntimeNVPTX::createParallelDataSharingWrapper(
    llvm::Function *OutlinedParallelFn, const OMPExecutableDirective &D) {
  ASTContext &Ctx = CGM.getContext();
  const auto &CS = *D.getCapturedStmt(OMPD_parallel);

  // Create a function that takes as argument the source thread.
  FunctionArgList WrapperArgs;
  QualType Int16QTy =
      Ctx.getIntTypeForBitwidth(/*DestWidth=*/16, /*Signed=*/false);
  QualType Int32QTy =
      Ctx.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/false);
  ImplicitParamDecl ParallelLevelArg(Ctx, /*DC=*/nullptr, D.getBeginLoc(),
                                     /*Id=*/nullptr, Int16QTy,
                                     ImplicitParamDecl::Other);
  ImplicitParamDecl WrapperArg(Ctx, /*DC=*/nullptr, D.getBeginLoc(),
                               /*Id=*/nullptr, Int32QTy,
                               ImplicitParamDecl::Other);
  WrapperArgs.emplace_back(&ParallelLevelArg);
  WrapperArgs.emplace_back(&WrapperArg);

  const CGFunctionInfo &CGFI =
      CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, WrapperArgs);

  auto *Fn = llvm::Function::Create(
      CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
      Twine(OutlinedParallelFn->getName(), "_wrapper"), &CGM.getModule());
  CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
  Fn->setLinkage(llvm::GlobalValue::InternalLinkage);
  Fn->setDoesNotRecurse();

  CodeGenFunction CGF(CGM, /*suppressNewContext=*/true);
  CGF.StartFunction(GlobalDecl(), Ctx.VoidTy, Fn, CGFI, WrapperArgs,
                    D.getBeginLoc(), D.getBeginLoc());

  const auto *RD = CS.getCapturedRecordDecl();
  auto CurField = RD->field_begin();

  Address ZeroAddr = CGF.CreateMemTemp(
      CGF.getContext().getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1),
      /*Name*/ ".zero.addr");
  CGF.InitTempAlloca(ZeroAddr, CGF.Builder.getInt32(/*C*/ 0));
  // Get the array of arguments.
  SmallVector<llvm::Value *, 8> Args;

  Args.emplace_back(CGF.GetAddrOfLocalVar(&WrapperArg).getPointer());
  Args.emplace_back(ZeroAddr.getPointer());

  CGBuilderTy &Bld = CGF.Builder;
  auto CI = CS.capture_begin();

  // Use global memory for data sharing.
  // Handle passing of global args to workers.
  Address GlobalArgs =
      CGF.CreateDefaultAlignTempAlloca(CGF.VoidPtrPtrTy, "global_args");
  llvm::Value *GlobalArgsPtr = GlobalArgs.getPointer();
  llvm::Value *DataSharingArgs[] = {GlobalArgsPtr};
  CGF.EmitRuntimeCall(
      createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_get_shared_variables),
      DataSharingArgs);

  // Retrieve the shared variables from the list of references returned
  // by the runtime. Pass the variables to the outlined function.
  Address SharedArgListAddress = Address::invalid();
  if (CS.capture_size() > 0 ||
      isOpenMPLoopBoundSharingDirective(D.getDirectiveKind())) {
    SharedArgListAddress = CGF.EmitLoadOfPointer(
        GlobalArgs, CGF.getContext()
                        .getPointerType(CGF.getContext().getPointerType(
                            CGF.getContext().VoidPtrTy))
                        .castAs<PointerType>());
  }
  unsigned Idx = 0;
  if (isOpenMPLoopBoundSharingDirective(D.getDirectiveKind())) {
    Address Src = Bld.CreateConstInBoundsGEP(SharedArgListAddress, Idx,
                                             CGF.getPointerSize());
    Address TypedAddress = Bld.CreatePointerBitCastOrAddrSpaceCast(
        Src, CGF.SizeTy->getPointerTo());
    llvm::Value *LB = CGF.EmitLoadOfScalar(
        TypedAddress,
        /*Volatile=*/false,
        CGF.getContext().getPointerType(CGF.getContext().getSizeType()),
        cast<OMPLoopDirective>(D).getLowerBoundVariable()->getExprLoc());
    Args.emplace_back(LB);
    ++Idx;
    Src = Bld.CreateConstInBoundsGEP(SharedArgListAddress, Idx,
                                     CGF.getPointerSize());
    TypedAddress = Bld.CreatePointerBitCastOrAddrSpaceCast(
        Src, CGF.SizeTy->getPointerTo());
    llvm::Value *UB = CGF.EmitLoadOfScalar(
        TypedAddress,
        /*Volatile=*/false,
        CGF.getContext().getPointerType(CGF.getContext().getSizeType()),
        cast<OMPLoopDirective>(D).getUpperBoundVariable()->getExprLoc());
    Args.emplace_back(UB);
    ++Idx;
  }
  if (CS.capture_size() > 0) {
    ASTContext &CGFContext = CGF.getContext();
    for (unsigned I = 0, E = CS.capture_size(); I < E; ++I, ++CI, ++CurField) {
      QualType ElemTy = CurField->getType();
      Address Src = Bld.CreateConstInBoundsGEP(SharedArgListAddress, I + Idx,
                                               CGF.getPointerSize());
      Address TypedAddress = Bld.CreatePointerBitCastOrAddrSpaceCast(
          Src, CGF.ConvertTypeForMem(CGFContext.getPointerType(ElemTy)));
      llvm::Value *Arg = CGF.EmitLoadOfScalar(TypedAddress,
                                              /*Volatile=*/false,
                                              CGFContext.getPointerType(ElemTy),
                                              CI->getLocation());
      if (CI->capturesVariableByCopy() &&
          !CI->getCapturedVar()->getType()->isAnyPointerType()) {
        Arg = castValueToType(CGF, Arg, ElemTy, CGFContext.getUIntPtrType(),
                              CI->getLocation());
      }
      Args.emplace_back(Arg);
    }
  }

  emitOutlinedFunctionCall(CGF, D.getBeginLoc(), OutlinedParallelFn, Args);
  CGF.FinishFunction();
  return Fn;
}

void CGOpenMPRuntimeNVPTX::emitFunctionProlog(CodeGenFunction &CGF,
                                              const Decl *D) {
  if (getDataSharingMode(CGM) != CGOpenMPRuntimeNVPTX::Generic)
    return;

  assert(D && "Expected function or captured|block decl.");
  assert(FunctionGlobalizedDecls.count(CGF.CurFn) == 0 &&
         "Function is registered already.");
  assert((!TeamAndReductions.first || TeamAndReductions.first == D) &&
         "Team is set but not processed.");
  const Stmt *Body = nullptr;
  bool NeedToDelayGlobalization = false;
  if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
    Body = FD->getBody();
  } else if (const auto *BD = dyn_cast<BlockDecl>(D)) {
    Body = BD->getBody();
  } else if (const auto *CD = dyn_cast<CapturedDecl>(D)) {
    Body = CD->getBody();
    NeedToDelayGlobalization = CGF.CapturedStmtInfo->getKind() == CR_OpenMP;
    if (NeedToDelayGlobalization &&
        getExecutionMode() == CGOpenMPRuntimeNVPTX::EM_SPMD)
      return;
  }
  if (!Body)
    return;
  CheckVarsEscapingDeclContext VarChecker(CGF, TeamAndReductions.second);
  VarChecker.Visit(Body);
  const RecordDecl *GlobalizedVarsRecord =
      VarChecker.getGlobalizedRecord(IsInTTDRegion);
  TeamAndReductions.first = nullptr;
  TeamAndReductions.second.clear();
  ArrayRef<const ValueDecl *> EscapedVariableLengthDecls =
      VarChecker.getEscapedVariableLengthDecls();
  if (!GlobalizedVarsRecord && EscapedVariableLengthDecls.empty())
    return;
  auto I = FunctionGlobalizedDecls.try_emplace(CGF.CurFn).first;
  I->getSecond().MappedParams =
      llvm::make_unique<CodeGenFunction::OMPMapVars>();
  I->getSecond().GlobalRecord = GlobalizedVarsRecord;
  I->getSecond().EscapedParameters.insert(
      VarChecker.getEscapedParameters().begin(),
      VarChecker.getEscapedParameters().end());
  I->getSecond().EscapedVariableLengthDecls.append(
      EscapedVariableLengthDecls.begin(), EscapedVariableLengthDecls.end());
  DeclToAddrMapTy &Data = I->getSecond().LocalVarData;
  for (const ValueDecl *VD : VarChecker.getEscapedDecls()) {
    assert(VD->isCanonicalDecl() && "Expected canonical declaration");
    const FieldDecl *FD = VarChecker.getFieldForGlobalizedVar(VD);
    Data.insert(std::make_pair(VD, MappedVarData(FD, IsInTTDRegion)));
  }
  if (!IsInTTDRegion && !NeedToDelayGlobalization && !IsInParallelRegion) {
    CheckVarsEscapingDeclContext VarChecker(CGF, llvm::None);
    VarChecker.Visit(Body);
    I->getSecond().SecondaryGlobalRecord =
        VarChecker.getGlobalizedRecord(/*IsInTTDRegion=*/true);
    I->getSecond().SecondaryLocalVarData.emplace();
    DeclToAddrMapTy &Data = I->getSecond().SecondaryLocalVarData.getValue();
    for (const ValueDecl *VD : VarChecker.getEscapedDecls()) {
      assert(VD->isCanonicalDecl() && "Expected canonical declaration");
      const FieldDecl *FD = VarChecker.getFieldForGlobalizedVar(VD);
      Data.insert(
          std::make_pair(VD, MappedVarData(FD, /*IsInTTDRegion=*/true)));
    }
  }
  if (!NeedToDelayGlobalization) {
    emitGenericVarsProlog(CGF, D->getBeginLoc(), /*WithSPMDCheck=*/true);
    struct GlobalizationScope final : EHScopeStack::Cleanup {
      GlobalizationScope() = default;

      void Emit(CodeGenFunction &CGF, Flags flags) override {
        static_cast<CGOpenMPRuntimeNVPTX &>(CGF.CGM.getOpenMPRuntime())
            .emitGenericVarsEpilog(CGF, /*WithSPMDCheck=*/true);
      }
    };
    CGF.EHStack.pushCleanup<GlobalizationScope>(NormalAndEHCleanup);
  }
}

Address CGOpenMPRuntimeNVPTX::getAddressOfLocalVariable(CodeGenFunction &CGF,
                                                        const VarDecl *VD) {
  if (getDataSharingMode(CGM) != CGOpenMPRuntimeNVPTX::Generic)
    return Address::invalid();

  VD = VD->getCanonicalDecl();
  auto I = FunctionGlobalizedDecls.find(CGF.CurFn);
  if (I == FunctionGlobalizedDecls.end())
    return Address::invalid();
  auto VDI = I->getSecond().LocalVarData.find(VD);
  if (VDI != I->getSecond().LocalVarData.end())
    return VDI->second.PrivateAddr;
  if (VD->hasAttrs()) {
    for (specific_attr_iterator<OMPReferencedVarAttr> IT(VD->attr_begin()),
         E(VD->attr_end());
         IT != E; ++IT) {
      auto VDI = I->getSecond().LocalVarData.find(
          cast<VarDecl>(cast<DeclRefExpr>(IT->getRef())->getDecl())
              ->getCanonicalDecl());
      if (VDI != I->getSecond().LocalVarData.end())
        return VDI->second.PrivateAddr;
    }
  }
  return Address::invalid();
}

void CGOpenMPRuntimeNVPTX::functionFinished(CodeGenFunction &CGF) {
  FunctionGlobalizedDecls.erase(CGF.CurFn);
  CGOpenMPRuntime::functionFinished(CGF);
}

void CGOpenMPRuntimeNVPTX::getDefaultDistScheduleAndChunk(
    CodeGenFunction &CGF, const OMPLoopDirective &S,
    OpenMPDistScheduleClauseKind &ScheduleKind,
    llvm::Value *&Chunk) const {
  if (getExecutionMode() == CGOpenMPRuntimeNVPTX::EM_SPMD) {
    ScheduleKind = OMPC_DIST_SCHEDULE_static;
    Chunk = CGF.EmitScalarConversion(getNVPTXNumThreads(CGF),
        CGF.getContext().getIntTypeForBitwidth(32, /*Signed=*/0),
        S.getIterationVariable()->getType(), S.getBeginLoc());
    return;
  }
  CGOpenMPRuntime::getDefaultDistScheduleAndChunk(
      CGF, S, ScheduleKind, Chunk);
}

void CGOpenMPRuntimeNVPTX::getDefaultScheduleAndChunk(
    CodeGenFunction &CGF, const OMPLoopDirective &S,
    OpenMPScheduleClauseKind &ScheduleKind,
    const Expr *&ChunkExpr) const {
  ScheduleKind = OMPC_SCHEDULE_static;
  // Chunk size is 1 in this case.
  llvm::APInt ChunkSize(32, 1);
  ChunkExpr = IntegerLiteral::Create(CGF.getContext(), ChunkSize,
      CGF.getContext().getIntTypeForBitwidth(32, /*Signed=*/0),
      SourceLocation());
}

void CGOpenMPRuntimeNVPTX::adjustTargetSpecificDataForLambdas(
    CodeGenFunction &CGF, const OMPExecutableDirective &D) const {
  assert(isOpenMPTargetExecutionDirective(D.getDirectiveKind()) &&
         " Expected target-based directive.");
  const CapturedStmt *CS = D.getCapturedStmt(OMPD_target);
  for (const CapturedStmt::Capture &C : CS->captures()) {
    // Capture variables captured by reference in lambdas for target-based
    // directives.
    if (!C.capturesVariable())
      continue;
    const VarDecl *VD = C.getCapturedVar();
    const auto *RD = VD->getType()
                         .getCanonicalType()
                         .getNonReferenceType()
                         ->getAsCXXRecordDecl();
    if (!RD || !RD->isLambda())
      continue;
    Address VDAddr = CGF.GetAddrOfLocalVar(VD);
    LValue VDLVal;
    if (VD->getType().getCanonicalType()->isReferenceType())
      VDLVal = CGF.EmitLoadOfReferenceLValue(VDAddr, VD->getType());
    else
      VDLVal = CGF.MakeAddrLValue(
          VDAddr, VD->getType().getCanonicalType().getNonReferenceType());
    llvm::DenseMap<const VarDecl *, FieldDecl *> Captures;
    FieldDecl *ThisCapture = nullptr;
    RD->getCaptureFields(Captures, ThisCapture);
    if (ThisCapture && CGF.CapturedStmtInfo->isCXXThisExprCaptured()) {
      LValue ThisLVal =
          CGF.EmitLValueForFieldInitialization(VDLVal, ThisCapture);
      llvm::Value *CXXThis = CGF.LoadCXXThis();
      CGF.EmitStoreOfScalar(CXXThis, ThisLVal);
    }
    for (const LambdaCapture &LC : RD->captures()) {
      if (LC.getCaptureKind() != LCK_ByRef)
        continue;
      const VarDecl *VD = LC.getCapturedVar();
      if (!CS->capturesVariable(VD))
        continue;
      auto It = Captures.find(VD);
      assert(It != Captures.end() && "Found lambda capture without field.");
      LValue VarLVal = CGF.EmitLValueForFieldInitialization(VDLVal, It->second);
      Address VDAddr = CGF.GetAddrOfLocalVar(VD);
      if (VD->getType().getCanonicalType()->isReferenceType())
        VDAddr = CGF.EmitLoadOfReferenceLValue(VDAddr,
                                               VD->getType().getCanonicalType())
                     .getAddress();
      CGF.EmitStoreOfScalar(VDAddr.getPointer(), VarLVal);
    }
  }
}

// Get current CudaArch and ignore any unknown values
static CudaArch getCudaArch(CodeGenModule &CGM) {
  if (!CGM.getTarget().hasFeature("ptx"))
    return CudaArch::UNKNOWN;
  llvm::StringMap<bool> Features;
  CGM.getTarget().initFeatureMap(Features, CGM.getDiags(),
                                 CGM.getTarget().getTargetOpts().CPU,
                                 CGM.getTarget().getTargetOpts().Features);
  for (const auto &Feature : Features) {
    if (Feature.getValue()) {
      CudaArch Arch = StringToCudaArch(Feature.getKey());
      if (Arch != CudaArch::UNKNOWN)
        return Arch;
    }
  }
  return CudaArch::UNKNOWN;
}

/// Check to see if target architecture supports unified addressing which is
/// a restriction for OpenMP requires clause "unified_shared_memory".
void CGOpenMPRuntimeNVPTX::checkArchForUnifiedAddressing(
    CodeGenModule &CGM, const OMPRequiresDecl *D) const {
  for (const OMPClause *Clause : D->clauselists()) {
    if (Clause->getClauseKind() == OMPC_unified_shared_memory) {
      switch (getCudaArch(CGM)) {
      case CudaArch::SM_20:
      case CudaArch::SM_21:
      case CudaArch::SM_30:
      case CudaArch::SM_32:
      case CudaArch::SM_35:
      case CudaArch::SM_37:
      case CudaArch::SM_50:
      case CudaArch::SM_52:
      case CudaArch::SM_53:
      case CudaArch::SM_60:
      case CudaArch::SM_61:
      case CudaArch::SM_62:
        CGM.Error(Clause->getBeginLoc(),
                  "Target architecture does not support unified addressing");
        return;
      case CudaArch::SM_70:
      case CudaArch::SM_72:
      case CudaArch::SM_75:
      case CudaArch::GFX600:
      case CudaArch::GFX601:
      case CudaArch::GFX700:
      case CudaArch::GFX701:
      case CudaArch::GFX702:
      case CudaArch::GFX703:
      case CudaArch::GFX704:
      case CudaArch::GFX801:
      case CudaArch::GFX802:
      case CudaArch::GFX803:
      case CudaArch::GFX810:
      case CudaArch::GFX900:
      case CudaArch::GFX902:
      case CudaArch::GFX904:
      case CudaArch::GFX906:
      case CudaArch::GFX909:
      case CudaArch::UNKNOWN:
        break;
      case CudaArch::LAST:
        llvm_unreachable("Unexpected Cuda arch.");
      }
    }
  }
}

/// Get number of SMs and number of blocks per SM.
static std::pair<unsigned, unsigned> getSMsBlocksPerSM(CodeGenModule &CGM) {
  std::pair<unsigned, unsigned> Data;
  if (CGM.getLangOpts().OpenMPCUDANumSMs)
    Data.first = CGM.getLangOpts().OpenMPCUDANumSMs;
  if (CGM.getLangOpts().OpenMPCUDABlocksPerSM)
    Data.second = CGM.getLangOpts().OpenMPCUDABlocksPerSM;
  if (Data.first && Data.second)
    return Data;
  switch (getCudaArch(CGM)) {
  case CudaArch::SM_20:
  case CudaArch::SM_21:
  case CudaArch::SM_30:
  case CudaArch::SM_32:
  case CudaArch::SM_35:
  case CudaArch::SM_37:
  case CudaArch::SM_50:
  case CudaArch::SM_52:
  case CudaArch::SM_53:
    return {16, 16};
  case CudaArch::SM_60:
  case CudaArch::SM_61:
  case CudaArch::SM_62:
    return {56, 32};
  case CudaArch::SM_70:
  case CudaArch::SM_72:
  case CudaArch::SM_75:
    return {84, 32};
  case CudaArch::GFX600:
  case CudaArch::GFX601:
  case CudaArch::GFX700:
  case CudaArch::GFX701:
  case CudaArch::GFX702:
  case CudaArch::GFX703:
  case CudaArch::GFX704:
  case CudaArch::GFX801:
  case CudaArch::GFX802:
  case CudaArch::GFX803:
  case CudaArch::GFX810:
  case CudaArch::GFX900:
  case CudaArch::GFX902:
  case CudaArch::GFX904:
  case CudaArch::GFX906:
  case CudaArch::GFX909:
  case CudaArch::UNKNOWN:
    break;
  case CudaArch::LAST:
    llvm_unreachable("Unexpected Cuda arch.");
  }
  llvm_unreachable("Unexpected NVPTX target without ptx feature.");
}

void CGOpenMPRuntimeNVPTX::clear() {
  if (!GlobalizedRecords.empty()) {
    ASTContext &C = CGM.getContext();
    llvm::SmallVector<const GlobalPtrSizeRecsTy *, 4> GlobalRecs;
    llvm::SmallVector<const GlobalPtrSizeRecsTy *, 4> SharedRecs;
    RecordDecl *StaticRD = C.buildImplicitRecord(
        "_openmp_static_memory_type_$_", RecordDecl::TagKind::TTK_Union);
    StaticRD->startDefinition();
    RecordDecl *SharedStaticRD = C.buildImplicitRecord(
        "_shared_openmp_static_memory_type_$_", RecordDecl::TagKind::TTK_Union);
    SharedStaticRD->startDefinition();
    for (const GlobalPtrSizeRecsTy &Records : GlobalizedRecords) {
      if (Records.Records.empty())
        continue;
      unsigned Size = 0;
      unsigned RecAlignment = 0;
      for (const RecordDecl *RD : Records.Records) {
        QualType RDTy = C.getRecordType(RD);
        unsigned Alignment = C.getTypeAlignInChars(RDTy).getQuantity();
        RecAlignment = std::max(RecAlignment, Alignment);
        unsigned RecSize = C.getTypeSizeInChars(RDTy).getQuantity();
        Size =
            llvm::alignTo(llvm::alignTo(Size, Alignment) + RecSize, Alignment);
      }
      Size = llvm::alignTo(Size, RecAlignment);
      llvm::APInt ArySize(/*numBits=*/64, Size);
      QualType SubTy = C.getConstantArrayType(
          C.CharTy, ArySize, ArrayType::Normal, /*IndexTypeQuals=*/0);
      const bool UseSharedMemory = Size <= SharedMemorySize;
      auto *Field =
          FieldDecl::Create(C, UseSharedMemory ? SharedStaticRD : StaticRD,
                            SourceLocation(), SourceLocation(), nullptr, SubTy,
                            C.getTrivialTypeSourceInfo(SubTy, SourceLocation()),
                            /*BW=*/nullptr, /*Mutable=*/false,
                            /*InitStyle=*/ICIS_NoInit);
      Field->setAccess(AS_public);
      if (UseSharedMemory) {
        SharedStaticRD->addDecl(Field);
        SharedRecs.push_back(&Records);
      } else {
        StaticRD->addDecl(Field);
        GlobalRecs.push_back(&Records);
      }
      Records.RecSize->setInitializer(llvm::ConstantInt::get(CGM.SizeTy, Size));
      Records.UseSharedMemory->setInitializer(
          llvm::ConstantInt::get(CGM.Int16Ty, UseSharedMemory ? 1 : 0));
    }
    // Allocate SharedMemorySize buffer for the shared memory.
    // FIXME: nvlink does not handle weak linkage correctly (object with the
    // different size are reported as erroneous).
    // Restore this code as sson as nvlink is fixed.
    if (!SharedStaticRD->field_empty()) {
      llvm::APInt ArySize(/*numBits=*/64, SharedMemorySize);
      QualType SubTy = C.getConstantArrayType(
          C.CharTy, ArySize, ArrayType::Normal, /*IndexTypeQuals=*/0);
      auto *Field = FieldDecl::Create(
          C, SharedStaticRD, SourceLocation(), SourceLocation(), nullptr, SubTy,
          C.getTrivialTypeSourceInfo(SubTy, SourceLocation()),
          /*BW=*/nullptr, /*Mutable=*/false,
          /*InitStyle=*/ICIS_NoInit);
      Field->setAccess(AS_public);
      SharedStaticRD->addDecl(Field);
    }
    SharedStaticRD->completeDefinition();
    if (!SharedStaticRD->field_empty()) {
      QualType StaticTy = C.getRecordType(SharedStaticRD);
      llvm::Type *LLVMStaticTy = CGM.getTypes().ConvertTypeForMem(StaticTy);
      auto *GV = new llvm::GlobalVariable(
          CGM.getModule(), LLVMStaticTy,
          /*isConstant=*/false, llvm::GlobalValue::CommonLinkage,
          llvm::Constant::getNullValue(LLVMStaticTy),
          "_openmp_shared_static_glob_rd_$_", /*InsertBefore=*/nullptr,
          llvm::GlobalValue::NotThreadLocal,
          C.getTargetAddressSpace(LangAS::cuda_shared));
      auto *Replacement = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
          GV, CGM.VoidPtrTy);
      for (const GlobalPtrSizeRecsTy *Rec : SharedRecs) {
        Rec->Buffer->replaceAllUsesWith(Replacement);
        Rec->Buffer->eraseFromParent();
      }
    }
    StaticRD->completeDefinition();
    if (!StaticRD->field_empty()) {
      QualType StaticTy = C.getRecordType(StaticRD);
      std::pair<unsigned, unsigned> SMsBlockPerSM = getSMsBlocksPerSM(CGM);
      llvm::APInt Size1(32, SMsBlockPerSM.second);
      QualType Arr1Ty =
          C.getConstantArrayType(StaticTy, Size1, ArrayType::Normal,
                                 /*IndexTypeQuals=*/0);
      llvm::APInt Size2(32, SMsBlockPerSM.first);
      QualType Arr2Ty = C.getConstantArrayType(Arr1Ty, Size2, ArrayType::Normal,
                                               /*IndexTypeQuals=*/0);
      llvm::Type *LLVMArr2Ty = CGM.getTypes().ConvertTypeForMem(Arr2Ty);
      auto *GV = new llvm::GlobalVariable(
          CGM.getModule(), LLVMArr2Ty,
          /*isConstant=*/false, llvm::GlobalValue::CommonLinkage,
          llvm::Constant::getNullValue(LLVMArr2Ty),
          "_openmp_static_glob_rd_$_");
      auto *Replacement = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
          GV, CGM.VoidPtrTy);
      for (const GlobalPtrSizeRecsTy *Rec : GlobalRecs) {
        Rec->Buffer->replaceAllUsesWith(Replacement);
        Rec->Buffer->eraseFromParent();
      }
    }
  }
  CGOpenMPRuntime::clear();
}