summaryrefslogtreecommitdiffstats
path: root/lib/Parse/ParseCXXInlineMethods.cpp
blob: 80feff42d7ffc9035b7d4637dbc17e372a405b02 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
//===--- ParseCXXInlineMethods.cpp - C++ class inline methods parsing------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
//  This file implements parsing for C++ class inline methods.
//
//===----------------------------------------------------------------------===//

#include "clang/Parse/ParseDiagnostic.h"
#include "clang/Parse/Parser.h"
#include "clang/Parse/DeclSpec.h"
#include "clang/Parse/Scope.h"
using namespace clang;

/// ParseCXXInlineMethodDef - We parsed and verified that the specified
/// Declarator is a well formed C++ inline method definition. Now lex its body
/// and store its tokens for parsing after the C++ class is complete.
Parser::DeclPtrTy
Parser::ParseCXXInlineMethodDef(AccessSpecifier AS, Declarator &D,
                                const ParsedTemplateInfo &TemplateInfo) {
  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
         "This isn't a function declarator!");
  assert((Tok.is(tok::l_brace) || Tok.is(tok::colon) || Tok.is(tok::kw_try)) &&
         "Current token not a '{', ':' or 'try'!");

  Action::MultiTemplateParamsArg TemplateParams(Actions,
                                                TemplateInfo.TemplateParams? TemplateInfo.TemplateParams->data() : 0,
                                                TemplateInfo.TemplateParams? TemplateInfo.TemplateParams->size() : 0);
  DeclPtrTy FnD;
  if (D.getDeclSpec().isFriendSpecified())
    // FIXME: Friend templates
    FnD = Actions.ActOnFriendDecl(CurScope, &D, /*IsDefinition*/ true);
  else // FIXME: pass template information through
    FnD = Actions.ActOnCXXMemberDeclarator(CurScope, AS, D, 
                                           move(TemplateParams), 0, 0);

  HandleMemberFunctionDefaultArgs(D, FnD);

  // Consume the tokens and store them for later parsing.

  getCurrentClass().MethodDefs.push_back(LexedMethod(FnD));
  CachedTokens &Toks = getCurrentClass().MethodDefs.back().Toks;

  tok::TokenKind kind = Tok.getKind();
  // We may have a constructor initializer or function-try-block here.
  if (kind == tok::colon || kind == tok::kw_try) {
    // Consume everything up to (and including) the left brace.
    if (!ConsumeAndStoreUntil(tok::l_brace, tok::unknown, Toks, tok::semi)) {
      // We didn't find the left-brace we expected after the
      // constructor initializer. 
      if (Tok.is(tok::semi)) {
        // We found a semicolon; complain, consume the semicolon, and
        // don't try to parse this method later.
        Diag(Tok.getLocation(), diag::err_expected_lbrace);
        ConsumeAnyToken();
        getCurrentClass().MethodDefs.pop_back();
        return FnD;
      }
    }

  } else {
    // Begin by storing the '{' token. 
    Toks.push_back(Tok);
    ConsumeBrace();
  }
  // Consume everything up to (and including) the matching right brace.
  ConsumeAndStoreUntil(tok::r_brace, tok::unknown, Toks);

  // If we're in a function-try-block, we need to store all the catch blocks.
  if (kind == tok::kw_try) {
    while (Tok.is(tok::kw_catch)) {
      ConsumeAndStoreUntil(tok::l_brace, tok::unknown, Toks);
      ConsumeAndStoreUntil(tok::r_brace, tok::unknown, Toks);
    }
  }

  return FnD;
}

/// ParseLexedMethodDeclarations - We finished parsing the member
/// specification of a top (non-nested) C++ class. Now go over the
/// stack of method declarations with some parts for which parsing was
/// delayed (such as default arguments) and parse them.
void Parser::ParseLexedMethodDeclarations(ParsingClass &Class) {
  bool HasTemplateScope = !Class.TopLevelClass && Class.TemplateScope;
  ParseScope TemplateScope(this, Scope::TemplateParamScope, HasTemplateScope);
  if (HasTemplateScope)
    Actions.ActOnReenterTemplateScope(CurScope, Class.TagOrTemplate);

  bool HasClassScope = !Class.TopLevelClass;
  ParseScope ClassScope(this, Scope::ClassScope|Scope::DeclScope,
                        HasClassScope);

  for (; !Class.MethodDecls.empty(); Class.MethodDecls.pop_front()) {
    LateParsedMethodDeclaration &LM = Class.MethodDecls.front();
    
    // FIXME: For member function templates, we'll need to introduce a
    // scope for the template parameters.

    // Start the delayed C++ method declaration
    Actions.ActOnStartDelayedCXXMethodDeclaration(CurScope, LM.Method);

    // Introduce the parameters into scope and parse their default
    // arguments.
    ParseScope PrototypeScope(this, 
                              Scope::FunctionPrototypeScope|Scope::DeclScope);
    for (unsigned I = 0, N = LM.DefaultArgs.size(); I != N; ++I) {
      // Introduce the parameter into scope.
      Actions.ActOnDelayedCXXMethodParameter(CurScope, LM.DefaultArgs[I].Param);

      if (CachedTokens *Toks = LM.DefaultArgs[I].Toks) {
        // Parse the default argument from its saved token stream.
        Toks->push_back(Tok); // So that the current token doesn't get lost
        PP.EnterTokenStream(&Toks->front(), Toks->size(), true, false);

        // Consume the previously-pushed token.
        ConsumeAnyToken();

        // Consume the '='.
        assert(Tok.is(tok::equal) && "Default argument not starting with '='");
        SourceLocation EqualLoc = ConsumeToken();

        OwningExprResult DefArgResult(ParseAssignmentExpression());
        if (DefArgResult.isInvalid())
          Actions.ActOnParamDefaultArgumentError(LM.DefaultArgs[I].Param);
        else
          Actions.ActOnParamDefaultArgument(LM.DefaultArgs[I].Param, EqualLoc,
                                            move(DefArgResult));
        delete Toks;
        LM.DefaultArgs[I].Toks = 0;
      }
    }
    PrototypeScope.Exit();

    // Finish the delayed C++ method declaration.
    Actions.ActOnFinishDelayedCXXMethodDeclaration(CurScope, LM.Method);
  }

  for (unsigned I = 0, N = Class.NestedClasses.size(); I != N; ++I)
    ParseLexedMethodDeclarations(*Class.NestedClasses[I]);
}

/// ParseLexedMethodDefs - We finished parsing the member specification of a top
/// (non-nested) C++ class. Now go over the stack of lexed methods that were
/// collected during its parsing and parse them all.
void Parser::ParseLexedMethodDefs(ParsingClass &Class) {
  bool HasTemplateScope = !Class.TopLevelClass && Class.TemplateScope;
  ParseScope TemplateScope(this, Scope::TemplateParamScope, HasTemplateScope);
  if (HasTemplateScope)
    Actions.ActOnReenterTemplateScope(CurScope, Class.TagOrTemplate);

  bool HasClassScope = !Class.TopLevelClass;
  ParseScope ClassScope(this, Scope::ClassScope|Scope::DeclScope,
                        HasClassScope);

  for (; !Class.MethodDefs.empty(); Class.MethodDefs.pop_front()) {
    LexedMethod &LM = Class.MethodDefs.front();

    assert(!LM.Toks.empty() && "Empty body!");
    // Append the current token at the end of the new token stream so that it
    // doesn't get lost.
    LM.Toks.push_back(Tok);
    PP.EnterTokenStream(&LM.Toks.front(), LM.Toks.size(), true, false);

    // Consume the previously pushed token.
    ConsumeAnyToken();
    assert((Tok.is(tok::l_brace) || Tok.is(tok::colon) || Tok.is(tok::kw_try))
           && "Inline method not starting with '{', ':' or 'try'");

    // Parse the method body. Function body parsing code is similar enough
    // to be re-used for method bodies as well.
    ParseScope FnScope(this, Scope::FnScope|Scope::DeclScope);
    Actions.ActOnStartOfFunctionDef(CurScope, LM.D);

    if (Tok.is(tok::kw_try)) {
      ParseFunctionTryBlock(LM.D);
      continue;
    }
    if (Tok.is(tok::colon))
      ParseConstructorInitializer(LM.D);
    else
      Actions.ActOnDefaultCtorInitializers(LM.D);

    // FIXME: What if ParseConstructorInitializer doesn't leave us with a '{'??
    ParseFunctionStatementBody(LM.D);
  }

  for (unsigned I = 0, N = Class.NestedClasses.size(); I != N; ++I)
    ParseLexedMethodDefs(*Class.NestedClasses[I]);
}

/// ConsumeAndStoreUntil - Consume and store the token at the passed token
/// container until the token 'T' is reached (which gets
/// consumed/stored too, if ConsumeFinalToken). 
/// If EarlyAbortIf is specified, then we will stop early if we find that
/// token at the top level.
/// Returns true if token 'T1' or 'T2' was found.
/// NOTE: This is a specialized version of Parser::SkipUntil.
bool Parser::ConsumeAndStoreUntil(tok::TokenKind T1, tok::TokenKind T2,
                                  CachedTokens &Toks,
                                  tok::TokenKind EarlyAbortIf,
                                  bool ConsumeFinalToken) {
  // We always want this function to consume at least one token if the first
  // token isn't T and if not at EOF.
  bool isFirstTokenConsumed = true;
  while (1) {
    // If we found one of the tokens, stop and return true.
    if (Tok.is(T1) || Tok.is(T2)) {
      if (ConsumeFinalToken) {
        Toks.push_back(Tok);
        ConsumeAnyToken();
      }
      return true;
    }

    // If we found the early-abort token, return.
    if (Tok.is(EarlyAbortIf))
      return false;

    switch (Tok.getKind()) {
    case tok::eof:
      // Ran out of tokens.
      return false;

    case tok::l_paren:
      // Recursively consume properly-nested parens.
      Toks.push_back(Tok);
      ConsumeParen();
      ConsumeAndStoreUntil(tok::r_paren, tok::unknown, Toks);
      break;
    case tok::l_square:
      // Recursively consume properly-nested square brackets.
      Toks.push_back(Tok);
      ConsumeBracket();
      ConsumeAndStoreUntil(tok::r_square, tok::unknown, Toks);
      break;
    case tok::l_brace:
      // Recursively consume properly-nested braces.
      Toks.push_back(Tok);
      ConsumeBrace();
      ConsumeAndStoreUntil(tok::r_brace, tok::unknown, Toks);
      break;

    // Okay, we found a ']' or '}' or ')', which we think should be balanced.
    // Since the user wasn't looking for this token (if they were, it would
    // already be handled), this isn't balanced.  If there is a LHS token at a
    // higher level, we will assume that this matches the unbalanced token
    // and return it.  Otherwise, this is a spurious RHS token, which we skip.
    case tok::r_paren:
      if (ParenCount && !isFirstTokenConsumed)
        return false;  // Matches something.
      Toks.push_back(Tok);
      ConsumeParen();
      break;
    case tok::r_square:
      if (BracketCount && !isFirstTokenConsumed)
        return false;  // Matches something.
      Toks.push_back(Tok);
      ConsumeBracket();
      break;
    case tok::r_brace:
      if (BraceCount && !isFirstTokenConsumed)
        return false;  // Matches something.
      Toks.push_back(Tok);
      ConsumeBrace();
      break;

    case tok::string_literal:
    case tok::wide_string_literal:
      Toks.push_back(Tok);
      ConsumeStringToken();
      break;
    default:
      // consume this token.
      Toks.push_back(Tok);
      ConsumeToken();
      break;
    }
    isFirstTokenConsumed = false;
  }
}