summaryrefslogtreecommitdiffstats
path: root/lib/Sema/AnalysisBasedWarnings.cpp
blob: a8e679132c74d39fff965a13917effea70bc8a7b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
//=- AnalysisBasedWarnings.cpp - Sema warnings based on libAnalysis -*- C++ -*-=//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines analysis_warnings::[Policy,Executor].
// Together they are used by Sema to issue warnings based on inexpensive
// static analysis algorithms in libAnalysis.
//
//===----------------------------------------------------------------------===//

#include "clang/Sema/AnalysisBasedWarnings.h"
#include "clang/Sema/SemaInternal.h"
#include "clang/Sema/ScopeInfo.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Basic/SourceLocation.h"
#include "clang/Lex/Preprocessor.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/ExprObjC.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/StmtObjC.h"
#include "clang/AST/StmtCXX.h"
#include "clang/AST/EvaluatedExprVisitor.h"
#include "clang/AST/StmtVisitor.h"
#include "clang/Analysis/AnalysisContext.h"
#include "clang/Analysis/CFG.h"
#include "clang/Analysis/Analyses/ReachableCode.h"
#include "clang/Analysis/Analyses/CFGReachabilityAnalysis.h"
#include "clang/Analysis/Analyses/ThreadSafety.h"
#include "clang/Analysis/CFGStmtMap.h"
#include "clang/Analysis/Analyses/UninitializedValues.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/FoldingSet.h"
#include "llvm/ADT/ImmutableMap.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Support/Casting.h"
#include <algorithm>
#include <vector>

using namespace clang;

//===----------------------------------------------------------------------===//
// Unreachable code analysis.
//===----------------------------------------------------------------------===//

namespace {
  class UnreachableCodeHandler : public reachable_code::Callback {
    Sema &S;
  public:
    UnreachableCodeHandler(Sema &s) : S(s) {}

    void HandleUnreachable(SourceLocation L, SourceRange R1, SourceRange R2) {
      S.Diag(L, diag::warn_unreachable) << R1 << R2;
    }
  };
}

/// CheckUnreachable - Check for unreachable code.
static void CheckUnreachable(Sema &S, AnalysisDeclContext &AC) {
  UnreachableCodeHandler UC(S);
  reachable_code::FindUnreachableCode(AC, UC);
}

//===----------------------------------------------------------------------===//
// Check for missing return value.
//===----------------------------------------------------------------------===//

enum ControlFlowKind {
  UnknownFallThrough,
  NeverFallThrough,
  MaybeFallThrough,
  AlwaysFallThrough,
  NeverFallThroughOrReturn
};

/// CheckFallThrough - Check that we don't fall off the end of a
/// Statement that should return a value.
///
/// \returns AlwaysFallThrough iff we always fall off the end of the statement,
/// MaybeFallThrough iff we might or might not fall off the end,
/// NeverFallThroughOrReturn iff we never fall off the end of the statement or
/// return.  We assume NeverFallThrough iff we never fall off the end of the
/// statement but we may return.  We assume that functions not marked noreturn
/// will return.
static ControlFlowKind CheckFallThrough(AnalysisDeclContext &AC) {
  CFG *cfg = AC.getCFG();
  if (cfg == 0) return UnknownFallThrough;

  // The CFG leaves in dead things, and we don't want the dead code paths to
  // confuse us, so we mark all live things first.
  llvm::BitVector live(cfg->getNumBlockIDs());
  unsigned count = reachable_code::ScanReachableFromBlock(&cfg->getEntry(),
                                                          live);

  bool AddEHEdges = AC.getAddEHEdges();
  if (!AddEHEdges && count != cfg->getNumBlockIDs())
    // When there are things remaining dead, and we didn't add EH edges
    // from CallExprs to the catch clauses, we have to go back and
    // mark them as live.
    for (CFG::iterator I = cfg->begin(), E = cfg->end(); I != E; ++I) {
      CFGBlock &b = **I;
      if (!live[b.getBlockID()]) {
        if (b.pred_begin() == b.pred_end()) {
          if (b.getTerminator() && isa<CXXTryStmt>(b.getTerminator()))
            // When not adding EH edges from calls, catch clauses
            // can otherwise seem dead.  Avoid noting them as dead.
            count += reachable_code::ScanReachableFromBlock(&b, live);
          continue;
        }
      }
    }

  // Now we know what is live, we check the live precessors of the exit block
  // and look for fall through paths, being careful to ignore normal returns,
  // and exceptional paths.
  bool HasLiveReturn = false;
  bool HasFakeEdge = false;
  bool HasPlainEdge = false;
  bool HasAbnormalEdge = false;

  // Ignore default cases that aren't likely to be reachable because all
  // enums in a switch(X) have explicit case statements.
  CFGBlock::FilterOptions FO;
  FO.IgnoreDefaultsWithCoveredEnums = 1;

  for (CFGBlock::filtered_pred_iterator
	 I = cfg->getExit().filtered_pred_start_end(FO); I.hasMore(); ++I) {
    const CFGBlock& B = **I;
    if (!live[B.getBlockID()])
      continue;

    // Skip blocks which contain an element marked as no-return. They don't
    // represent actually viable edges into the exit block, so mark them as
    // abnormal.
    if (B.hasNoReturnElement()) {
      HasAbnormalEdge = true;
      continue;
    }

    // Destructors can appear after the 'return' in the CFG.  This is
    // normal.  We need to look pass the destructors for the return
    // statement (if it exists).
    CFGBlock::const_reverse_iterator ri = B.rbegin(), re = B.rend();

    for ( ; ri != re ; ++ri)
      if (isa<CFGStmt>(*ri))
        break;

    // No more CFGElements in the block?
    if (ri == re) {
      if (B.getTerminator() && isa<CXXTryStmt>(B.getTerminator())) {
        HasAbnormalEdge = true;
        continue;
      }
      // A labeled empty statement, or the entry block...
      HasPlainEdge = true;
      continue;
    }

    CFGStmt CS = cast<CFGStmt>(*ri);
    const Stmt *S = CS.getStmt();
    if (isa<ReturnStmt>(S)) {
      HasLiveReturn = true;
      continue;
    }
    if (isa<ObjCAtThrowStmt>(S)) {
      HasFakeEdge = true;
      continue;
    }
    if (isa<CXXThrowExpr>(S)) {
      HasFakeEdge = true;
      continue;
    }
    if (const AsmStmt *AS = dyn_cast<AsmStmt>(S)) {
      if (AS->isMSAsm()) {
        HasFakeEdge = true;
        HasLiveReturn = true;
        continue;
      }
    }
    if (isa<CXXTryStmt>(S)) {
      HasAbnormalEdge = true;
      continue;
    }
    if (std::find(B.succ_begin(), B.succ_end(), &cfg->getExit())
        == B.succ_end()) {
      HasAbnormalEdge = true;
      continue;
    }

    HasPlainEdge = true;
  }
  if (!HasPlainEdge) {
    if (HasLiveReturn)
      return NeverFallThrough;
    return NeverFallThroughOrReturn;
  }
  if (HasAbnormalEdge || HasFakeEdge || HasLiveReturn)
    return MaybeFallThrough;
  // This says AlwaysFallThrough for calls to functions that are not marked
  // noreturn, that don't return.  If people would like this warning to be more
  // accurate, such functions should be marked as noreturn.
  return AlwaysFallThrough;
}

namespace {

struct CheckFallThroughDiagnostics {
  unsigned diag_MaybeFallThrough_HasNoReturn;
  unsigned diag_MaybeFallThrough_ReturnsNonVoid;
  unsigned diag_AlwaysFallThrough_HasNoReturn;
  unsigned diag_AlwaysFallThrough_ReturnsNonVoid;
  unsigned diag_NeverFallThroughOrReturn;
  enum { Function, Block, Lambda } funMode;
  SourceLocation FuncLoc;

  static CheckFallThroughDiagnostics MakeForFunction(const Decl *Func) {
    CheckFallThroughDiagnostics D;
    D.FuncLoc = Func->getLocation();
    D.diag_MaybeFallThrough_HasNoReturn =
      diag::warn_falloff_noreturn_function;
    D.diag_MaybeFallThrough_ReturnsNonVoid =
      diag::warn_maybe_falloff_nonvoid_function;
    D.diag_AlwaysFallThrough_HasNoReturn =
      diag::warn_falloff_noreturn_function;
    D.diag_AlwaysFallThrough_ReturnsNonVoid =
      diag::warn_falloff_nonvoid_function;

    // Don't suggest that virtual functions be marked "noreturn", since they
    // might be overridden by non-noreturn functions.
    bool isVirtualMethod = false;
    if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Func))
      isVirtualMethod = Method->isVirtual();
    
    // Don't suggest that template instantiations be marked "noreturn"
    bool isTemplateInstantiation = false;
    if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(Func))
      isTemplateInstantiation = Function->isTemplateInstantiation();
        
    if (!isVirtualMethod && !isTemplateInstantiation)
      D.diag_NeverFallThroughOrReturn =
        diag::warn_suggest_noreturn_function;
    else
      D.diag_NeverFallThroughOrReturn = 0;
    
    D.funMode = Function;
    return D;
  }

  static CheckFallThroughDiagnostics MakeForBlock() {
    CheckFallThroughDiagnostics D;
    D.diag_MaybeFallThrough_HasNoReturn =
      diag::err_noreturn_block_has_return_expr;
    D.diag_MaybeFallThrough_ReturnsNonVoid =
      diag::err_maybe_falloff_nonvoid_block;
    D.diag_AlwaysFallThrough_HasNoReturn =
      diag::err_noreturn_block_has_return_expr;
    D.diag_AlwaysFallThrough_ReturnsNonVoid =
      diag::err_falloff_nonvoid_block;
    D.diag_NeverFallThroughOrReturn =
      diag::warn_suggest_noreturn_block;
    D.funMode = Block;
    return D;
  }

  static CheckFallThroughDiagnostics MakeForLambda() {
    CheckFallThroughDiagnostics D;
    D.diag_MaybeFallThrough_HasNoReturn =
      diag::err_noreturn_lambda_has_return_expr;
    D.diag_MaybeFallThrough_ReturnsNonVoid =
      diag::warn_maybe_falloff_nonvoid_lambda;
    D.diag_AlwaysFallThrough_HasNoReturn =
      diag::err_noreturn_lambda_has_return_expr;
    D.diag_AlwaysFallThrough_ReturnsNonVoid =
      diag::warn_falloff_nonvoid_lambda;
    D.diag_NeverFallThroughOrReturn = 0;
    D.funMode = Lambda;
    return D;
  }

  bool checkDiagnostics(DiagnosticsEngine &D, bool ReturnsVoid,
                        bool HasNoReturn) const {
    if (funMode == Function) {
      return (ReturnsVoid ||
              D.getDiagnosticLevel(diag::warn_maybe_falloff_nonvoid_function,
                                   FuncLoc) == DiagnosticsEngine::Ignored)
        && (!HasNoReturn ||
            D.getDiagnosticLevel(diag::warn_noreturn_function_has_return_expr,
                                 FuncLoc) == DiagnosticsEngine::Ignored)
        && (!ReturnsVoid ||
            D.getDiagnosticLevel(diag::warn_suggest_noreturn_block, FuncLoc)
              == DiagnosticsEngine::Ignored);
    }

    // For blocks / lambdas.
    return ReturnsVoid && !HasNoReturn
            && ((funMode == Lambda) ||
                D.getDiagnosticLevel(diag::warn_suggest_noreturn_block, FuncLoc)
                  == DiagnosticsEngine::Ignored);
  }
};

}

/// CheckFallThroughForFunctionDef - Check that we don't fall off the end of a
/// function that should return a value.  Check that we don't fall off the end
/// of a noreturn function.  We assume that functions and blocks not marked
/// noreturn will return.
static void CheckFallThroughForBody(Sema &S, const Decl *D, const Stmt *Body,
                                    const BlockExpr *blkExpr,
                                    const CheckFallThroughDiagnostics& CD,
                                    AnalysisDeclContext &AC) {

  bool ReturnsVoid = false;
  bool HasNoReturn = false;

  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
    ReturnsVoid = FD->getResultType()->isVoidType();
    HasNoReturn = FD->hasAttr<NoReturnAttr>() ||
       FD->getType()->getAs<FunctionType>()->getNoReturnAttr();
  }
  else if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
    ReturnsVoid = MD->getResultType()->isVoidType();
    HasNoReturn = MD->hasAttr<NoReturnAttr>();
  }
  else if (isa<BlockDecl>(D)) {
    QualType BlockTy = blkExpr->getType();
    if (const FunctionType *FT =
          BlockTy->getPointeeType()->getAs<FunctionType>()) {
      if (FT->getResultType()->isVoidType())
        ReturnsVoid = true;
      if (FT->getNoReturnAttr())
        HasNoReturn = true;
    }
  }

  DiagnosticsEngine &Diags = S.getDiagnostics();

  // Short circuit for compilation speed.
  if (CD.checkDiagnostics(Diags, ReturnsVoid, HasNoReturn))
      return;

  // FIXME: Function try block
  if (const CompoundStmt *Compound = dyn_cast<CompoundStmt>(Body)) {
    switch (CheckFallThrough(AC)) {
      case UnknownFallThrough:
        break;

      case MaybeFallThrough:
        if (HasNoReturn)
          S.Diag(Compound->getRBracLoc(),
                 CD.diag_MaybeFallThrough_HasNoReturn);
        else if (!ReturnsVoid)
          S.Diag(Compound->getRBracLoc(),
                 CD.diag_MaybeFallThrough_ReturnsNonVoid);
        break;
      case AlwaysFallThrough:
        if (HasNoReturn)
          S.Diag(Compound->getRBracLoc(),
                 CD.diag_AlwaysFallThrough_HasNoReturn);
        else if (!ReturnsVoid)
          S.Diag(Compound->getRBracLoc(),
                 CD.diag_AlwaysFallThrough_ReturnsNonVoid);
        break;
      case NeverFallThroughOrReturn:
        if (ReturnsVoid && !HasNoReturn && CD.diag_NeverFallThroughOrReturn) {
          if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
            S.Diag(Compound->getLBracLoc(), CD.diag_NeverFallThroughOrReturn)
              << 0 << FD;
          } else if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
            S.Diag(Compound->getLBracLoc(), CD.diag_NeverFallThroughOrReturn)
              << 1 << MD;
          } else {
            S.Diag(Compound->getLBracLoc(), CD.diag_NeverFallThroughOrReturn);
          }
        }
        break;
      case NeverFallThrough:
        break;
    }
  }
}

//===----------------------------------------------------------------------===//
// -Wuninitialized
//===----------------------------------------------------------------------===//

namespace {
/// ContainsReference - A visitor class to search for references to
/// a particular declaration (the needle) within any evaluated component of an
/// expression (recursively).
class ContainsReference : public EvaluatedExprVisitor<ContainsReference> {
  bool FoundReference;
  const DeclRefExpr *Needle;

public:
  ContainsReference(ASTContext &Context, const DeclRefExpr *Needle)
    : EvaluatedExprVisitor<ContainsReference>(Context),
      FoundReference(false), Needle(Needle) {}

  void VisitExpr(Expr *E) {
    // Stop evaluating if we already have a reference.
    if (FoundReference)
      return;

    EvaluatedExprVisitor<ContainsReference>::VisitExpr(E);
  }

  void VisitDeclRefExpr(DeclRefExpr *E) {
    if (E == Needle)
      FoundReference = true;
    else
      EvaluatedExprVisitor<ContainsReference>::VisitDeclRefExpr(E);
  }

  bool doesContainReference() const { return FoundReference; }
};
}

static bool SuggestInitializationFixit(Sema &S, const VarDecl *VD) {
  QualType VariableTy = VD->getType().getCanonicalType();
  if (VariableTy->isBlockPointerType() &&
      !VD->hasAttr<BlocksAttr>()) {
    S.Diag(VD->getLocation(), diag::note_block_var_fixit_add_initialization) << VD->getDeclName()
    << FixItHint::CreateInsertion(VD->getLocation(), "__block ");
    return true;
  }
  
  // Don't issue a fixit if there is already an initializer.
  if (VD->getInit())
    return false;
  
  // Suggest possible initialization (if any).
  const char *Init = S.getFixItZeroInitializerForType(VariableTy);
  if (!Init)
    return false;
  SourceLocation Loc = S.PP.getLocForEndOfToken(VD->getLocEnd());
  
  S.Diag(Loc, diag::note_var_fixit_add_initialization) << VD->getDeclName()
    << FixItHint::CreateInsertion(Loc, Init);
  return true;
}

/// DiagnoseUninitializedUse -- Helper function for diagnosing uses of an
/// uninitialized variable. This manages the different forms of diagnostic
/// emitted for particular types of uses. Returns true if the use was diagnosed
/// as a warning. If a pariticular use is one we omit warnings for, returns
/// false.
static bool DiagnoseUninitializedUse(Sema &S, const VarDecl *VD,
                                     const Expr *E, bool isAlwaysUninit,
                                     bool alwaysReportSelfInit = false) {
  bool isSelfInit = false;

  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
    if (isAlwaysUninit) {
      // Inspect the initializer of the variable declaration which is
      // being referenced prior to its initialization. We emit
      // specialized diagnostics for self-initialization, and we
      // specifically avoid warning about self references which take the
      // form of:
      //
      //   int x = x;
      //
      // This is used to indicate to GCC that 'x' is intentionally left
      // uninitialized. Proven code paths which access 'x' in
      // an uninitialized state after this will still warn.
      //
      // TODO: Should we suppress maybe-uninitialized warnings for
      // variables initialized in this way?
      if (const Expr *Initializer = VD->getInit()) {
        if (!alwaysReportSelfInit && DRE == Initializer->IgnoreParenImpCasts())
          return false;

        ContainsReference CR(S.Context, DRE);
        CR.Visit(const_cast<Expr*>(Initializer));
        isSelfInit = CR.doesContainReference();
      }
      if (isSelfInit) {
        S.Diag(DRE->getLocStart(),
               diag::warn_uninit_self_reference_in_init)
        << VD->getDeclName() << VD->getLocation() << DRE->getSourceRange();
      } else {
        S.Diag(DRE->getLocStart(), diag::warn_uninit_var)
          << VD->getDeclName() << DRE->getSourceRange();
      }
    } else {
      S.Diag(DRE->getLocStart(), diag::warn_maybe_uninit_var)
        << VD->getDeclName() << DRE->getSourceRange();
    }
  } else {
    const BlockExpr *BE = cast<BlockExpr>(E);
    if (VD->getType()->isBlockPointerType() &&
        !VD->hasAttr<BlocksAttr>())
      S.Diag(BE->getLocStart(), diag::warn_uninit_byref_blockvar_captured_by_block)
        << VD->getDeclName();
    else
      S.Diag(BE->getLocStart(),
             isAlwaysUninit ? diag::warn_uninit_var_captured_by_block
                            : diag::warn_maybe_uninit_var_captured_by_block)
        << VD->getDeclName();
  }

  // Report where the variable was declared when the use wasn't within
  // the initializer of that declaration & we didn't already suggest
  // an initialization fixit.
  if (!isSelfInit && !SuggestInitializationFixit(S, VD))
    S.Diag(VD->getLocStart(), diag::note_uninit_var_def)
      << VD->getDeclName();

  return true;
}

typedef std::pair<const Expr*, bool> UninitUse;

namespace {
struct SLocSort {
  bool operator()(const UninitUse &a, const UninitUse &b) {
    SourceLocation aLoc = a.first->getLocStart();
    SourceLocation bLoc = b.first->getLocStart();
    return aLoc.getRawEncoding() < bLoc.getRawEncoding();
  }
};

class UninitValsDiagReporter : public UninitVariablesHandler {
  Sema &S;
  typedef SmallVector<UninitUse, 2> UsesVec;
  typedef llvm::DenseMap<const VarDecl *, std::pair<UsesVec*, bool> > UsesMap;
  UsesMap *uses;
  
public:
  UninitValsDiagReporter(Sema &S) : S(S), uses(0) {}
  ~UninitValsDiagReporter() { 
    flushDiagnostics();
  }

  std::pair<UsesVec*, bool> &getUses(const VarDecl *vd) {
    if (!uses)
      uses = new UsesMap();

    UsesMap::mapped_type &V = (*uses)[vd];
    UsesVec *&vec = V.first;
    if (!vec)
      vec = new UsesVec();
    
    return V;
  }
  
  void handleUseOfUninitVariable(const Expr *ex, const VarDecl *vd,
                                 bool isAlwaysUninit) {
    getUses(vd).first->push_back(std::make_pair(ex, isAlwaysUninit));
  }
  
  void handleSelfInit(const VarDecl *vd) {
    getUses(vd).second = true;    
  }
  
  void flushDiagnostics() {
    if (!uses)
      return;
    
    for (UsesMap::iterator i = uses->begin(), e = uses->end(); i != e; ++i) {
      const VarDecl *vd = i->first;
      const UsesMap::mapped_type &V = i->second;

      UsesVec *vec = V.first;
      bool hasSelfInit = V.second;

      // Specially handle the case where we have uses of an uninitialized 
      // variable, but the root cause is an idiomatic self-init.  We want
      // to report the diagnostic at the self-init since that is the root cause.
      if (!vec->empty() && hasSelfInit && hasAlwaysUninitializedUse(vec))
        DiagnoseUninitializedUse(S, vd, vd->getInit()->IgnoreParenCasts(),
                                 /* isAlwaysUninit */ true,
                                 /* alwaysReportSelfInit */ true);
      else {
        // Sort the uses by their SourceLocations.  While not strictly
        // guaranteed to produce them in line/column order, this will provide
        // a stable ordering.
        std::sort(vec->begin(), vec->end(), SLocSort());
        
        for (UsesVec::iterator vi = vec->begin(), ve = vec->end(); vi != ve;
             ++vi) {
          if (DiagnoseUninitializedUse(S, vd, vi->first,
                                        /*isAlwaysUninit=*/vi->second))
            // Skip further diagnostics for this variable. We try to warn only
            // on the first point at which a variable is used uninitialized.
            break;
        }
      }
      
      // Release the uses vector.
      delete vec;
    }
    delete uses;
  }

private:
  static bool hasAlwaysUninitializedUse(const UsesVec* vec) {
  for (UsesVec::const_iterator i = vec->begin(), e = vec->end(); i != e; ++i) {
    if (i->second) {
      return true;
    }
  }
  return false;
}
};
}


//===----------------------------------------------------------------------===//
// -Wthread-safety
//===----------------------------------------------------------------------===//
namespace clang {
namespace thread_safety {
typedef llvm::SmallVector<PartialDiagnosticAt, 1> OptionalNotes;
typedef std::pair<PartialDiagnosticAt, OptionalNotes> DelayedDiag;
typedef std::list<DelayedDiag> DiagList;

struct SortDiagBySourceLocation {
  SourceManager &SM;
  SortDiagBySourceLocation(SourceManager &SM) : SM(SM) {}

  bool operator()(const DelayedDiag &left, const DelayedDiag &right) {
    // Although this call will be slow, this is only called when outputting
    // multiple warnings.
    return SM.isBeforeInTranslationUnit(left.first.first, right.first.first);
  }
};

namespace {
class ThreadSafetyReporter : public clang::thread_safety::ThreadSafetyHandler {
  Sema &S;
  DiagList Warnings;
  SourceLocation FunLocation, FunEndLocation;

  // Helper functions
  void warnLockMismatch(unsigned DiagID, Name LockName, SourceLocation Loc) {
    // Gracefully handle rare cases when the analysis can't get a more
    // precise source location.
    if (!Loc.isValid())
      Loc = FunLocation;
    PartialDiagnosticAt Warning(Loc, S.PDiag(DiagID) << LockName);
    Warnings.push_back(DelayedDiag(Warning, OptionalNotes()));
  }

 public:
  ThreadSafetyReporter(Sema &S, SourceLocation FL, SourceLocation FEL)
    : S(S), FunLocation(FL), FunEndLocation(FEL) {}

  /// \brief Emit all buffered diagnostics in order of sourcelocation.
  /// We need to output diagnostics produced while iterating through
  /// the lockset in deterministic order, so this function orders diagnostics
  /// and outputs them.
  void emitDiagnostics() {
    Warnings.sort(SortDiagBySourceLocation(S.getSourceManager()));
    for (DiagList::iterator I = Warnings.begin(), E = Warnings.end();
         I != E; ++I) {
      S.Diag(I->first.first, I->first.second);
      const OptionalNotes &Notes = I->second;
      for (unsigned NoteI = 0, NoteN = Notes.size(); NoteI != NoteN; ++NoteI)
        S.Diag(Notes[NoteI].first, Notes[NoteI].second);
    }
  }

  void handleInvalidLockExp(SourceLocation Loc) {
    PartialDiagnosticAt Warning(Loc,
                                S.PDiag(diag::warn_cannot_resolve_lock) << Loc);
    Warnings.push_back(DelayedDiag(Warning, OptionalNotes()));
  }
  void handleUnmatchedUnlock(Name LockName, SourceLocation Loc) {
    warnLockMismatch(diag::warn_unlock_but_no_lock, LockName, Loc);
  }

  void handleDoubleLock(Name LockName, SourceLocation Loc) {
    warnLockMismatch(diag::warn_double_lock, LockName, Loc);
  }

  void handleMutexHeldEndOfScope(Name LockName, SourceLocation LocLocked,
                                 SourceLocation LocEndOfScope,
                                 LockErrorKind LEK){
    unsigned DiagID = 0;
    switch (LEK) {
      case LEK_LockedSomePredecessors:
        DiagID = diag::warn_lock_some_predecessors;
        break;
      case LEK_LockedSomeLoopIterations:
        DiagID = diag::warn_expecting_lock_held_on_loop;
        break;
      case LEK_LockedAtEndOfFunction:
        DiagID = diag::warn_no_unlock;
        break;
    }
    if (LocEndOfScope.isInvalid())
      LocEndOfScope = FunEndLocation;

    PartialDiagnosticAt Warning(LocEndOfScope, S.PDiag(DiagID) << LockName);
    PartialDiagnosticAt Note(LocLocked, S.PDiag(diag::note_locked_here));
    Warnings.push_back(DelayedDiag(Warning, OptionalNotes(1, Note)));
  }


  void handleExclusiveAndShared(Name LockName, SourceLocation Loc1,
                                SourceLocation Loc2) {
    PartialDiagnosticAt Warning(
      Loc1, S.PDiag(diag::warn_lock_exclusive_and_shared) << LockName);
    PartialDiagnosticAt Note(
      Loc2, S.PDiag(diag::note_lock_exclusive_and_shared) << LockName);
    Warnings.push_back(DelayedDiag(Warning, OptionalNotes(1, Note)));
  }

  void handleNoMutexHeld(const NamedDecl *D, ProtectedOperationKind POK,
                         AccessKind AK, SourceLocation Loc) {
    assert((POK == POK_VarAccess || POK == POK_VarDereference)
             && "Only works for variables");
    unsigned DiagID = POK == POK_VarAccess?
                        diag::warn_variable_requires_any_lock:
                        diag::warn_var_deref_requires_any_lock;
    PartialDiagnosticAt Warning(Loc, S.PDiag(DiagID)
      << D->getName() << getLockKindFromAccessKind(AK));
    Warnings.push_back(DelayedDiag(Warning, OptionalNotes()));
  }

  void handleMutexNotHeld(const NamedDecl *D, ProtectedOperationKind POK,
                          Name LockName, LockKind LK, SourceLocation Loc) {
    unsigned DiagID = 0;
    switch (POK) {
      case POK_VarAccess:
        DiagID = diag::warn_variable_requires_lock;
        break;
      case POK_VarDereference:
        DiagID = diag::warn_var_deref_requires_lock;
        break;
      case POK_FunctionCall:
        DiagID = diag::warn_fun_requires_lock;
        break;
    }
    PartialDiagnosticAt Warning(Loc, S.PDiag(DiagID)
      << D->getName() << LockName << LK);
    Warnings.push_back(DelayedDiag(Warning, OptionalNotes()));
  }

  void handleFunExcludesLock(Name FunName, Name LockName, SourceLocation Loc) {
    PartialDiagnosticAt Warning(Loc,
      S.PDiag(diag::warn_fun_excludes_mutex) << FunName << LockName);
    Warnings.push_back(DelayedDiag(Warning, OptionalNotes()));
  }
};
}
}
}

//===----------------------------------------------------------------------===//
// AnalysisBasedWarnings - Worker object used by Sema to execute analysis-based
//  warnings on a function, method, or block.
//===----------------------------------------------------------------------===//

clang::sema::AnalysisBasedWarnings::Policy::Policy() {
  enableCheckFallThrough = 1;
  enableCheckUnreachable = 0;
  enableThreadSafetyAnalysis = 0;
}

clang::sema::AnalysisBasedWarnings::AnalysisBasedWarnings(Sema &s)
  : S(s),
    NumFunctionsAnalyzed(0),
    NumFunctionsWithBadCFGs(0),
    NumCFGBlocks(0),
    MaxCFGBlocksPerFunction(0),
    NumUninitAnalysisFunctions(0),
    NumUninitAnalysisVariables(0),
    MaxUninitAnalysisVariablesPerFunction(0),
    NumUninitAnalysisBlockVisits(0),
    MaxUninitAnalysisBlockVisitsPerFunction(0) {
  DiagnosticsEngine &D = S.getDiagnostics();
  DefaultPolicy.enableCheckUnreachable = (unsigned)
    (D.getDiagnosticLevel(diag::warn_unreachable, SourceLocation()) !=
        DiagnosticsEngine::Ignored);
  DefaultPolicy.enableThreadSafetyAnalysis = (unsigned)
    (D.getDiagnosticLevel(diag::warn_double_lock, SourceLocation()) !=
     DiagnosticsEngine::Ignored);

}

static void flushDiagnostics(Sema &S, sema::FunctionScopeInfo *fscope) {
  for (SmallVectorImpl<sema::PossiblyUnreachableDiag>::iterator
       i = fscope->PossiblyUnreachableDiags.begin(),
       e = fscope->PossiblyUnreachableDiags.end();
       i != e; ++i) {
    const sema::PossiblyUnreachableDiag &D = *i;
    S.Diag(D.Loc, D.PD);
  }
}

void clang::sema::
AnalysisBasedWarnings::IssueWarnings(sema::AnalysisBasedWarnings::Policy P,
                                     sema::FunctionScopeInfo *fscope,
                                     const Decl *D, const BlockExpr *blkExpr) {

  // We avoid doing analysis-based warnings when there are errors for
  // two reasons:
  // (1) The CFGs often can't be constructed (if the body is invalid), so
  //     don't bother trying.
  // (2) The code already has problems; running the analysis just takes more
  //     time.
  DiagnosticsEngine &Diags = S.getDiagnostics();

  // Do not do any analysis for declarations in system headers if we are
  // going to just ignore them.
  if (Diags.getSuppressSystemWarnings() &&
      S.SourceMgr.isInSystemHeader(D->getLocation()))
    return;

  // For code in dependent contexts, we'll do this at instantiation time.
  if (cast<DeclContext>(D)->isDependentContext())
    return;

  if (Diags.hasErrorOccurred() || Diags.hasFatalErrorOccurred()) {
    // Flush out any possibly unreachable diagnostics.
    flushDiagnostics(S, fscope);
    return;
  }
  
  const Stmt *Body = D->getBody();
  assert(Body);

  AnalysisDeclContext AC(/* AnalysisDeclContextManager */ 0,  D, 0);

  // Don't generate EH edges for CallExprs as we'd like to avoid the n^2
  // explosion for destrutors that can result and the compile time hit.
  AC.getCFGBuildOptions().PruneTriviallyFalseEdges = true;
  AC.getCFGBuildOptions().AddEHEdges = false;
  AC.getCFGBuildOptions().AddInitializers = true;
  AC.getCFGBuildOptions().AddImplicitDtors = true;
  
  // Force that certain expressions appear as CFGElements in the CFG.  This
  // is used to speed up various analyses.
  // FIXME: This isn't the right factoring.  This is here for initial
  // prototyping, but we need a way for analyses to say what expressions they
  // expect to always be CFGElements and then fill in the BuildOptions
  // appropriately.  This is essentially a layering violation.
  if (P.enableCheckUnreachable || P.enableThreadSafetyAnalysis) {
    // Unreachable code analysis and thread safety require a linearized CFG.
    AC.getCFGBuildOptions().setAllAlwaysAdd();
  }
  else {
    AC.getCFGBuildOptions()
      .setAlwaysAdd(Stmt::BinaryOperatorClass)
      .setAlwaysAdd(Stmt::BlockExprClass)
      .setAlwaysAdd(Stmt::CStyleCastExprClass)
      .setAlwaysAdd(Stmt::DeclRefExprClass)
      .setAlwaysAdd(Stmt::ImplicitCastExprClass)
      .setAlwaysAdd(Stmt::UnaryOperatorClass);
  }

  // Construct the analysis context with the specified CFG build options.
  
  // Emit delayed diagnostics.
  if (!fscope->PossiblyUnreachableDiags.empty()) {
    bool analyzed = false;

    // Register the expressions with the CFGBuilder.
    for (SmallVectorImpl<sema::PossiblyUnreachableDiag>::iterator
         i = fscope->PossiblyUnreachableDiags.begin(),
         e = fscope->PossiblyUnreachableDiags.end();
         i != e; ++i) {
      if (const Stmt *stmt = i->stmt)
        AC.registerForcedBlockExpression(stmt);
    }

    if (AC.getCFG()) {
      analyzed = true;
      for (SmallVectorImpl<sema::PossiblyUnreachableDiag>::iterator
            i = fscope->PossiblyUnreachableDiags.begin(),
            e = fscope->PossiblyUnreachableDiags.end();
            i != e; ++i)
      {
        const sema::PossiblyUnreachableDiag &D = *i;
        bool processed = false;
        if (const Stmt *stmt = i->stmt) {
          const CFGBlock *block = AC.getBlockForRegisteredExpression(stmt);
          CFGReverseBlockReachabilityAnalysis *cra =
              AC.getCFGReachablityAnalysis();
          // FIXME: We should be able to assert that block is non-null, but
          // the CFG analysis can skip potentially-evaluated expressions in
          // edge cases; see test/Sema/vla-2.c.
          if (block && cra) {
            // Can this block be reached from the entrance?
            if (cra->isReachable(&AC.getCFG()->getEntry(), block))
              S.Diag(D.Loc, D.PD);
            processed = true;
          }
        }
        if (!processed) {
          // Emit the warning anyway if we cannot map to a basic block.
          S.Diag(D.Loc, D.PD);
        }
      }
    }

    if (!analyzed)
      flushDiagnostics(S, fscope);
  }
  
  
  // Warning: check missing 'return'
  if (P.enableCheckFallThrough) {
    const CheckFallThroughDiagnostics &CD =
      (isa<BlockDecl>(D) ? CheckFallThroughDiagnostics::MakeForBlock()
       : (isa<CXXMethodDecl>(D) &&
          cast<CXXMethodDecl>(D)->getOverloadedOperator() == OO_Call &&
          cast<CXXMethodDecl>(D)->getParent()->isLambda())
            ? CheckFallThroughDiagnostics::MakeForLambda()
            : CheckFallThroughDiagnostics::MakeForFunction(D));
    CheckFallThroughForBody(S, D, Body, blkExpr, CD, AC);
  }

  // Warning: check for unreachable code
  if (P.enableCheckUnreachable) {
    // Only check for unreachable code on non-template instantiations.
    // Different template instantiations can effectively change the control-flow
    // and it is very difficult to prove that a snippet of code in a template
    // is unreachable for all instantiations.
    bool isTemplateInstantiation = false;
    if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D))
      isTemplateInstantiation = Function->isTemplateInstantiation();
    if (!isTemplateInstantiation)
      CheckUnreachable(S, AC);
  }

  // Check for thread safety violations
  if (P.enableThreadSafetyAnalysis) {
    SourceLocation FL = AC.getDecl()->getLocation();
    SourceLocation FEL = AC.getDecl()->getLocEnd();
    thread_safety::ThreadSafetyReporter Reporter(S, FL, FEL);
    thread_safety::runThreadSafetyAnalysis(AC, Reporter);
    Reporter.emitDiagnostics();
  }

  if (Diags.getDiagnosticLevel(diag::warn_uninit_var, D->getLocStart())
      != DiagnosticsEngine::Ignored ||
      Diags.getDiagnosticLevel(diag::warn_maybe_uninit_var, D->getLocStart())
      != DiagnosticsEngine::Ignored) {
    if (CFG *cfg = AC.getCFG()) {
      UninitValsDiagReporter reporter(S);
      UninitVariablesAnalysisStats stats;
      std::memset(&stats, 0, sizeof(UninitVariablesAnalysisStats));
      runUninitializedVariablesAnalysis(*cast<DeclContext>(D), *cfg, AC,
                                        reporter, stats);

      if (S.CollectStats && stats.NumVariablesAnalyzed > 0) {
        ++NumUninitAnalysisFunctions;
        NumUninitAnalysisVariables += stats.NumVariablesAnalyzed;
        NumUninitAnalysisBlockVisits += stats.NumBlockVisits;
        MaxUninitAnalysisVariablesPerFunction =
            std::max(MaxUninitAnalysisVariablesPerFunction,
                     stats.NumVariablesAnalyzed);
        MaxUninitAnalysisBlockVisitsPerFunction =
            std::max(MaxUninitAnalysisBlockVisitsPerFunction,
                     stats.NumBlockVisits);
      }
    }
  }

  // Collect statistics about the CFG if it was built.
  if (S.CollectStats && AC.isCFGBuilt()) {
    ++NumFunctionsAnalyzed;
    if (CFG *cfg = AC.getCFG()) {
      // If we successfully built a CFG for this context, record some more
      // detail information about it.
      NumCFGBlocks += cfg->getNumBlockIDs();
      MaxCFGBlocksPerFunction = std::max(MaxCFGBlocksPerFunction,
                                         cfg->getNumBlockIDs());
    } else {
      ++NumFunctionsWithBadCFGs;
    }
  }
}

void clang::sema::AnalysisBasedWarnings::PrintStats() const {
  llvm::errs() << "\n*** Analysis Based Warnings Stats:\n";

  unsigned NumCFGsBuilt = NumFunctionsAnalyzed - NumFunctionsWithBadCFGs;
  unsigned AvgCFGBlocksPerFunction =
      !NumCFGsBuilt ? 0 : NumCFGBlocks/NumCFGsBuilt;
  llvm::errs() << NumFunctionsAnalyzed << " functions analyzed ("
               << NumFunctionsWithBadCFGs << " w/o CFGs).\n"
               << "  " << NumCFGBlocks << " CFG blocks built.\n"
               << "  " << AvgCFGBlocksPerFunction
               << " average CFG blocks per function.\n"
               << "  " << MaxCFGBlocksPerFunction
               << " max CFG blocks per function.\n";

  unsigned AvgUninitVariablesPerFunction = !NumUninitAnalysisFunctions ? 0
      : NumUninitAnalysisVariables/NumUninitAnalysisFunctions;
  unsigned AvgUninitBlockVisitsPerFunction = !NumUninitAnalysisFunctions ? 0
      : NumUninitAnalysisBlockVisits/NumUninitAnalysisFunctions;
  llvm::errs() << NumUninitAnalysisFunctions
               << " functions analyzed for uninitialiazed variables\n"
               << "  " << NumUninitAnalysisVariables << " variables analyzed.\n"
               << "  " << AvgUninitVariablesPerFunction
               << " average variables per function.\n"
               << "  " << MaxUninitAnalysisVariablesPerFunction
               << " max variables per function.\n"
               << "  " << NumUninitAnalysisBlockVisits << " block visits.\n"
               << "  " << AvgUninitBlockVisitsPerFunction
               << " average block visits per function.\n"
               << "  " << MaxUninitAnalysisBlockVisitsPerFunction
               << " max block visits per function.\n";
}