summaryrefslogtreecommitdiffstats
path: root/lib/StaticAnalyzer/Core/PathDiagnostic.cpp
blob: 691176dfc1ff2073f384861f25a2517afb008be5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
//===- PathDiagnostic.cpp - Path-Specific Diagnostic Handling -------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
//  This file defines the PathDiagnostic-related interfaces.
//
//===----------------------------------------------------------------------===//

#include "clang/StaticAnalyzer/Core/BugReporter/PathDiagnostic.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclBase.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/Expr.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/OperationKinds.h"
#include "clang/AST/ParentMap.h"
#include "clang/AST/Stmt.h"
#include "clang/AST/Type.h"
#include "clang/Analysis/AnalysisDeclContext.h"
#include "clang/Analysis/CFG.h"
#include "clang/Analysis/ProgramPoint.h"
#include "clang/Basic/FileManager.h"
#include "clang/Basic/LLVM.h"
#include "clang/Basic/SourceLocation.h"
#include "clang/Basic/SourceManager.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/AnalysisManager.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/ExplodedGraph.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/FoldingSet.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>
#include <cstring>
#include <memory>
#include <utility>
#include <vector>

using namespace clang;
using namespace ento;

bool PathDiagnosticMacroPiece::containsEvent() const {
  for (const auto &P : subPieces) {
    if (isa<PathDiagnosticEventPiece>(*P))
      return true;
    if (const auto *MP = dyn_cast<PathDiagnosticMacroPiece>(P.get()))
      if (MP->containsEvent())
        return true;
  }
  return false;
}

static StringRef StripTrailingDots(StringRef s) {
  for (StringRef::size_type i = s.size(); i != 0; --i)
    if (s[i - 1] != '.')
      return s.substr(0, i);
  return {};
}

PathDiagnosticPiece::PathDiagnosticPiece(StringRef s,
                                         Kind k, DisplayHint hint)
    : str(StripTrailingDots(s)), kind(k), Hint(hint) {}

PathDiagnosticPiece::PathDiagnosticPiece(Kind k, DisplayHint hint)
    : kind(k), Hint(hint) {}

PathDiagnosticPiece::~PathDiagnosticPiece() = default;

PathDiagnosticEventPiece::~PathDiagnosticEventPiece() = default;

PathDiagnosticCallPiece::~PathDiagnosticCallPiece() = default;

PathDiagnosticControlFlowPiece::~PathDiagnosticControlFlowPiece() = default;

PathDiagnosticMacroPiece::~PathDiagnosticMacroPiece() = default;

PathDiagnosticNotePiece::~PathDiagnosticNotePiece() = default;

void PathPieces::flattenTo(PathPieces &Primary, PathPieces &Current,
                           bool ShouldFlattenMacros) const {
  for (auto &Piece : *this) {
    switch (Piece->getKind()) {
    case PathDiagnosticPiece::Call: {
      auto &Call = cast<PathDiagnosticCallPiece>(*Piece);
      if (auto CallEnter = Call.getCallEnterEvent())
        Current.push_back(std::move(CallEnter));
      Call.path.flattenTo(Primary, Primary, ShouldFlattenMacros);
      if (auto callExit = Call.getCallExitEvent())
        Current.push_back(std::move(callExit));
      break;
    }
    case PathDiagnosticPiece::Macro: {
      auto &Macro = cast<PathDiagnosticMacroPiece>(*Piece);
      if (ShouldFlattenMacros) {
        Macro.subPieces.flattenTo(Primary, Primary, ShouldFlattenMacros);
      } else {
        Current.push_back(Piece);
        PathPieces NewPath;
        Macro.subPieces.flattenTo(Primary, NewPath, ShouldFlattenMacros);
        // FIXME: This probably shouldn't mutate the original path piece.
        Macro.subPieces = NewPath;
      }
      break;
    }
    case PathDiagnosticPiece::Event:
    case PathDiagnosticPiece::ControlFlow:
    case PathDiagnosticPiece::Note:
      Current.push_back(Piece);
      break;
    }
  }
}

PathDiagnostic::~PathDiagnostic() = default;

PathDiagnostic::PathDiagnostic(
    StringRef CheckName, const Decl *declWithIssue, StringRef bugtype,
    StringRef verboseDesc, StringRef shortDesc, StringRef category,
    PathDiagnosticLocation LocationToUnique, const Decl *DeclToUnique,
    std::unique_ptr<FilesToLineNumsMap> ExecutedLines)
    : CheckName(CheckName), DeclWithIssue(declWithIssue),
      BugType(StripTrailingDots(bugtype)),
      VerboseDesc(StripTrailingDots(verboseDesc)),
      ShortDesc(StripTrailingDots(shortDesc)),
      Category(StripTrailingDots(category)), UniqueingLoc(LocationToUnique),
      UniqueingDecl(DeclToUnique), ExecutedLines(std::move(ExecutedLines)),
      path(pathImpl) {}

static PathDiagnosticCallPiece *
getFirstStackedCallToHeaderFile(PathDiagnosticCallPiece *CP,
                                const SourceManager &SMgr) {
  SourceLocation CallLoc = CP->callEnter.asLocation();

  // If the call is within a macro, don't do anything (for now).
  if (CallLoc.isMacroID())
    return nullptr;

  assert(AnalysisManager::isInCodeFile(CallLoc, SMgr) &&
         "The call piece should not be in a header file.");

  // Check if CP represents a path through a function outside of the main file.
  if (!AnalysisManager::isInCodeFile(CP->callEnterWithin.asLocation(), SMgr))
    return CP;

  const PathPieces &Path = CP->path;
  if (Path.empty())
    return nullptr;

  // Check if the last piece in the callee path is a call to a function outside
  // of the main file.
  if (auto *CPInner = dyn_cast<PathDiagnosticCallPiece>(Path.back().get()))
    return getFirstStackedCallToHeaderFile(CPInner, SMgr);

  // Otherwise, the last piece is in the main file.
  return nullptr;
}

void PathDiagnostic::resetDiagnosticLocationToMainFile() {
  if (path.empty())
    return;

  PathDiagnosticPiece *LastP = path.back().get();
  assert(LastP);
  const SourceManager &SMgr = LastP->getLocation().getManager();

  // We only need to check if the report ends inside headers, if the last piece
  // is a call piece.
  if (auto *CP = dyn_cast<PathDiagnosticCallPiece>(LastP)) {
    CP = getFirstStackedCallToHeaderFile(CP, SMgr);
    if (CP) {
      // Mark the piece.
       CP->setAsLastInMainSourceFile();

      // Update the path diagnostic message.
      const auto *ND = dyn_cast<NamedDecl>(CP->getCallee());
      if (ND) {
        SmallString<200> buf;
        llvm::raw_svector_ostream os(buf);
        os << " (within a call to '" << ND->getDeclName() << "')";
        appendToDesc(os.str());
      }

      // Reset the report containing declaration and location.
      DeclWithIssue = CP->getCaller();
      Loc = CP->getLocation();

      return;
    }
  }
}

void PathDiagnosticConsumer::anchor() {}

PathDiagnosticConsumer::~PathDiagnosticConsumer() {
  // Delete the contents of the FoldingSet if it isn't empty already.
  for (auto &Diag : Diags)
    delete &Diag;
}

void PathDiagnosticConsumer::HandlePathDiagnostic(
    std::unique_ptr<PathDiagnostic> D) {
  if (!D || D->path.empty())
    return;

  // We need to flatten the locations (convert Stmt* to locations) because
  // the referenced statements may be freed by the time the diagnostics
  // are emitted.
  D->flattenLocations();

  // If the PathDiagnosticConsumer does not support diagnostics that
  // cross file boundaries, prune out such diagnostics now.
  if (!supportsCrossFileDiagnostics()) {
    // Verify that the entire path is from the same FileID.
    FileID FID;
    const SourceManager &SMgr = D->path.front()->getLocation().getManager();
    SmallVector<const PathPieces *, 5> WorkList;
    WorkList.push_back(&D->path);
    SmallString<128> buf;
    llvm::raw_svector_ostream warning(buf);
    warning << "warning: Path diagnostic report is not generated. Current "
            << "output format does not support diagnostics that cross file "
            << "boundaries. Refer to --analyzer-output for valid output "
            << "formats\n";

    while (!WorkList.empty()) {
      const PathPieces &path = *WorkList.pop_back_val();

      for (const auto &I : path) {
        const PathDiagnosticPiece *piece = I.get();
        FullSourceLoc L = piece->getLocation().asLocation().getExpansionLoc();

        if (FID.isInvalid()) {
          FID = SMgr.getFileID(L);
        } else if (SMgr.getFileID(L) != FID) {
          llvm::errs() << warning.str();
          return;
        }

        // Check the source ranges.
        ArrayRef<SourceRange> Ranges = piece->getRanges();
        for (const auto &I : Ranges) {
          SourceLocation L = SMgr.getExpansionLoc(I.getBegin());
          if (!L.isFileID() || SMgr.getFileID(L) != FID) {
            llvm::errs() << warning.str();
            return;
          }
          L = SMgr.getExpansionLoc(I.getEnd());
          if (!L.isFileID() || SMgr.getFileID(L) != FID) {
            llvm::errs() << warning.str();
            return;
          }
        }

        if (const auto *call = dyn_cast<PathDiagnosticCallPiece>(piece))
          WorkList.push_back(&call->path);
        else if (const auto *macro = dyn_cast<PathDiagnosticMacroPiece>(piece))
          WorkList.push_back(&macro->subPieces);
      }
    }

    if (FID.isInvalid())
      return; // FIXME: Emit a warning?
  }

  // Profile the node to see if we already have something matching it
  llvm::FoldingSetNodeID profile;
  D->Profile(profile);
  void *InsertPos = nullptr;

  if (PathDiagnostic *orig = Diags.FindNodeOrInsertPos(profile, InsertPos)) {
    // Keep the PathDiagnostic with the shorter path.
    // Note, the enclosing routine is called in deterministic order, so the
    // results will be consistent between runs (no reason to break ties if the
    // size is the same).
    const unsigned orig_size = orig->full_size();
    const unsigned new_size = D->full_size();
    if (orig_size <= new_size)
      return;

    assert(orig != D.get());
    Diags.RemoveNode(orig);
    delete orig;
  }

  Diags.InsertNode(D.release());
}

static Optional<bool> comparePath(const PathPieces &X, const PathPieces &Y);

static Optional<bool>
compareControlFlow(const PathDiagnosticControlFlowPiece &X,
                   const PathDiagnosticControlFlowPiece &Y) {
  FullSourceLoc XSL = X.getStartLocation().asLocation();
  FullSourceLoc YSL = Y.getStartLocation().asLocation();
  if (XSL != YSL)
    return XSL.isBeforeInTranslationUnitThan(YSL);
  FullSourceLoc XEL = X.getEndLocation().asLocation();
  FullSourceLoc YEL = Y.getEndLocation().asLocation();
  if (XEL != YEL)
    return XEL.isBeforeInTranslationUnitThan(YEL);
  return None;
}

static Optional<bool> compareMacro(const PathDiagnosticMacroPiece &X,
                                   const PathDiagnosticMacroPiece &Y) {
  return comparePath(X.subPieces, Y.subPieces);
}

static Optional<bool> compareCall(const PathDiagnosticCallPiece &X,
                                  const PathDiagnosticCallPiece &Y) {
  FullSourceLoc X_CEL = X.callEnter.asLocation();
  FullSourceLoc Y_CEL = Y.callEnter.asLocation();
  if (X_CEL != Y_CEL)
    return X_CEL.isBeforeInTranslationUnitThan(Y_CEL);
  FullSourceLoc X_CEWL = X.callEnterWithin.asLocation();
  FullSourceLoc Y_CEWL = Y.callEnterWithin.asLocation();
  if (X_CEWL != Y_CEWL)
    return X_CEWL.isBeforeInTranslationUnitThan(Y_CEWL);
  FullSourceLoc X_CRL = X.callReturn.asLocation();
  FullSourceLoc Y_CRL = Y.callReturn.asLocation();
  if (X_CRL != Y_CRL)
    return X_CRL.isBeforeInTranslationUnitThan(Y_CRL);
  return comparePath(X.path, Y.path);
}

static Optional<bool> comparePiece(const PathDiagnosticPiece &X,
                                   const PathDiagnosticPiece &Y) {
  if (X.getKind() != Y.getKind())
    return X.getKind() < Y.getKind();

  FullSourceLoc XL = X.getLocation().asLocation();
  FullSourceLoc YL = Y.getLocation().asLocation();
  if (XL != YL)
    return XL.isBeforeInTranslationUnitThan(YL);

  if (X.getString() != Y.getString())
    return X.getString() < Y.getString();

  if (X.getRanges().size() != Y.getRanges().size())
    return X.getRanges().size() < Y.getRanges().size();

  const SourceManager &SM = XL.getManager();

  for (unsigned i = 0, n = X.getRanges().size(); i < n; ++i) {
    SourceRange XR = X.getRanges()[i];
    SourceRange YR = Y.getRanges()[i];
    if (XR != YR) {
      if (XR.getBegin() != YR.getBegin())
        return SM.isBeforeInTranslationUnit(XR.getBegin(), YR.getBegin());
      return SM.isBeforeInTranslationUnit(XR.getEnd(), YR.getEnd());
    }
  }

  switch (X.getKind()) {
    case PathDiagnosticPiece::ControlFlow:
      return compareControlFlow(cast<PathDiagnosticControlFlowPiece>(X),
                                cast<PathDiagnosticControlFlowPiece>(Y));
    case PathDiagnosticPiece::Event:
    case PathDiagnosticPiece::Note:
      return None;
    case PathDiagnosticPiece::Macro:
      return compareMacro(cast<PathDiagnosticMacroPiece>(X),
                          cast<PathDiagnosticMacroPiece>(Y));
    case PathDiagnosticPiece::Call:
      return compareCall(cast<PathDiagnosticCallPiece>(X),
                         cast<PathDiagnosticCallPiece>(Y));
  }
  llvm_unreachable("all cases handled");
}

static Optional<bool> comparePath(const PathPieces &X, const PathPieces &Y) {
  if (X.size() != Y.size())
    return X.size() < Y.size();

  PathPieces::const_iterator X_I = X.begin(), X_end = X.end();
  PathPieces::const_iterator Y_I = Y.begin(), Y_end = Y.end();

  for ( ; X_I != X_end && Y_I != Y_end; ++X_I, ++Y_I) {
    Optional<bool> b = comparePiece(**X_I, **Y_I);
    if (b.hasValue())
      return b.getValue();
  }

  return None;
}

static bool compareCrossTUSourceLocs(FullSourceLoc XL, FullSourceLoc YL) {
  std::pair<FileID, unsigned> XOffs = XL.getDecomposedLoc();
  std::pair<FileID, unsigned> YOffs = YL.getDecomposedLoc();
  const SourceManager &SM = XL.getManager();
  std::pair<bool, bool> InSameTU = SM.isInTheSameTranslationUnit(XOffs, YOffs);
  if (InSameTU.first)
    return XL.isBeforeInTranslationUnitThan(YL);
  const FileEntry *XFE = SM.getFileEntryForID(XL.getSpellingLoc().getFileID());
  const FileEntry *YFE = SM.getFileEntryForID(YL.getSpellingLoc().getFileID());
  if (!XFE || !YFE)
    return XFE && !YFE;
  int NameCmp = XFE->getName().compare(YFE->getName());
  if (NameCmp != 0)
    return NameCmp == -1;
  // Last resort: Compare raw file IDs that are possibly expansions.
  return XL.getFileID() < YL.getFileID();
}

static bool compare(const PathDiagnostic &X, const PathDiagnostic &Y) {
  FullSourceLoc XL = X.getLocation().asLocation();
  FullSourceLoc YL = Y.getLocation().asLocation();
  if (XL != YL)
    return compareCrossTUSourceLocs(XL, YL);
  if (X.getBugType() != Y.getBugType())
    return X.getBugType() < Y.getBugType();
  if (X.getCategory() != Y.getCategory())
    return X.getCategory() < Y.getCategory();
  if (X.getVerboseDescription() != Y.getVerboseDescription())
    return X.getVerboseDescription() < Y.getVerboseDescription();
  if (X.getShortDescription() != Y.getShortDescription())
    return X.getShortDescription() < Y.getShortDescription();
  if (X.getDeclWithIssue() != Y.getDeclWithIssue()) {
    const Decl *XD = X.getDeclWithIssue();
    if (!XD)
      return true;
    const Decl *YD = Y.getDeclWithIssue();
    if (!YD)
      return false;
    SourceLocation XDL = XD->getLocation();
    SourceLocation YDL = YD->getLocation();
    if (XDL != YDL) {
      const SourceManager &SM = XL.getManager();
      return compareCrossTUSourceLocs(FullSourceLoc(XDL, SM),
                                      FullSourceLoc(YDL, SM));
    }
  }
  PathDiagnostic::meta_iterator XI = X.meta_begin(), XE = X.meta_end();
  PathDiagnostic::meta_iterator YI = Y.meta_begin(), YE = Y.meta_end();
  if (XE - XI != YE - YI)
    return (XE - XI) < (YE - YI);
  for ( ; XI != XE ; ++XI, ++YI) {
    if (*XI != *YI)
      return (*XI) < (*YI);
  }
  Optional<bool> b = comparePath(X.path, Y.path);
  assert(b.hasValue());
  return b.getValue();
}

void PathDiagnosticConsumer::FlushDiagnostics(
                                     PathDiagnosticConsumer::FilesMade *Files) {
  if (flushed)
    return;

  flushed = true;

  std::vector<const PathDiagnostic *> BatchDiags;
  for (const auto &D : Diags)
    BatchDiags.push_back(&D);

  // Sort the diagnostics so that they are always emitted in a deterministic
  // order.
  int (*Comp)(const PathDiagnostic *const *, const PathDiagnostic *const *) =
      [](const PathDiagnostic *const *X, const PathDiagnostic *const *Y) {
        assert(*X != *Y && "PathDiagnostics not uniqued!");
        if (compare(**X, **Y))
          return -1;
        assert(compare(**Y, **X) && "Not a total order!");
        return 1;
      };
  array_pod_sort(BatchDiags.begin(), BatchDiags.end(), Comp);

  FlushDiagnosticsImpl(BatchDiags, Files);

  // Delete the flushed diagnostics.
  for (const auto D : BatchDiags)
    delete D;

  // Clear out the FoldingSet.
  Diags.clear();
}

PathDiagnosticConsumer::FilesMade::~FilesMade() {
  for (PDFileEntry &Entry : Set)
    Entry.~PDFileEntry();
}

void PathDiagnosticConsumer::FilesMade::addDiagnostic(const PathDiagnostic &PD,
                                                      StringRef ConsumerName,
                                                      StringRef FileName) {
  llvm::FoldingSetNodeID NodeID;
  NodeID.Add(PD);
  void *InsertPos;
  PDFileEntry *Entry = Set.FindNodeOrInsertPos(NodeID, InsertPos);
  if (!Entry) {
    Entry = Alloc.Allocate<PDFileEntry>();
    Entry = new (Entry) PDFileEntry(NodeID);
    Set.InsertNode(Entry, InsertPos);
  }

  // Allocate persistent storage for the file name.
  char *FileName_cstr = (char*) Alloc.Allocate(FileName.size(), 1);
  memcpy(FileName_cstr, FileName.data(), FileName.size());

  Entry->files.push_back(std::make_pair(ConsumerName,
                                        StringRef(FileName_cstr,
                                                  FileName.size())));
}

PathDiagnosticConsumer::PDFileEntry::ConsumerFiles *
PathDiagnosticConsumer::FilesMade::getFiles(const PathDiagnostic &PD) {
  llvm::FoldingSetNodeID NodeID;
  NodeID.Add(PD);
  void *InsertPos;
  PDFileEntry *Entry = Set.FindNodeOrInsertPos(NodeID, InsertPos);
  if (!Entry)
    return nullptr;
  return &Entry->files;
}

//===----------------------------------------------------------------------===//
// PathDiagnosticLocation methods.
//===----------------------------------------------------------------------===//

static SourceLocation getValidSourceLocation(const Stmt* S,
                                             LocationOrAnalysisDeclContext LAC,
                                             bool UseEnd = false) {
  SourceLocation L = UseEnd ? S->getEndLoc() : S->getBeginLoc();
  assert(!LAC.isNull() && "A valid LocationContext or AnalysisDeclContext should "
                          "be passed to PathDiagnosticLocation upon creation.");

  // S might be a temporary statement that does not have a location in the
  // source code, so find an enclosing statement and use its location.
  if (!L.isValid()) {
    AnalysisDeclContext *ADC;
    if (LAC.is<const LocationContext*>())
      ADC = LAC.get<const LocationContext*>()->getAnalysisDeclContext();
    else
      ADC = LAC.get<AnalysisDeclContext*>();

    ParentMap &PM = ADC->getParentMap();

    const Stmt *Parent = S;
    do {
      Parent = PM.getParent(Parent);

      // In rare cases, we have implicit top-level expressions,
      // such as arguments for implicit member initializers.
      // In this case, fall back to the start of the body (even if we were
      // asked for the statement end location).
      if (!Parent) {
        const Stmt *Body = ADC->getBody();
        if (Body)
          L = Body->getBeginLoc();
        else
          L = ADC->getDecl()->getEndLoc();
        break;
      }

      L = UseEnd ? Parent->getEndLoc() : Parent->getBeginLoc();
    } while (!L.isValid());
  }

  return L;
}

static PathDiagnosticLocation
getLocationForCaller(const StackFrameContext *SFC,
                     const LocationContext *CallerCtx,
                     const SourceManager &SM) {
  const CFGBlock &Block = *SFC->getCallSiteBlock();
  CFGElement Source = Block[SFC->getIndex()];

  switch (Source.getKind()) {
  case CFGElement::Statement:
  case CFGElement::Constructor:
  case CFGElement::CXXRecordTypedCall:
    return PathDiagnosticLocation(Source.castAs<CFGStmt>().getStmt(),
                                  SM, CallerCtx);
  case CFGElement::Initializer: {
    const CFGInitializer &Init = Source.castAs<CFGInitializer>();
    return PathDiagnosticLocation(Init.getInitializer()->getInit(),
                                  SM, CallerCtx);
  }
  case CFGElement::AutomaticObjectDtor: {
    const CFGAutomaticObjDtor &Dtor = Source.castAs<CFGAutomaticObjDtor>();
    return PathDiagnosticLocation::createEnd(Dtor.getTriggerStmt(),
                                             SM, CallerCtx);
  }
  case CFGElement::DeleteDtor: {
    const CFGDeleteDtor &Dtor = Source.castAs<CFGDeleteDtor>();
    return PathDiagnosticLocation(Dtor.getDeleteExpr(), SM, CallerCtx);
  }
  case CFGElement::BaseDtor:
  case CFGElement::MemberDtor: {
    const AnalysisDeclContext *CallerInfo = CallerCtx->getAnalysisDeclContext();
    if (const Stmt *CallerBody = CallerInfo->getBody())
      return PathDiagnosticLocation::createEnd(CallerBody, SM, CallerCtx);
    return PathDiagnosticLocation::create(CallerInfo->getDecl(), SM);
  }
  case CFGElement::NewAllocator: {
    const CFGNewAllocator &Alloc = Source.castAs<CFGNewAllocator>();
    return PathDiagnosticLocation(Alloc.getAllocatorExpr(), SM, CallerCtx);
  }
  case CFGElement::TemporaryDtor: {
    // Temporary destructors are for temporaries. They die immediately at around
    // the location of CXXBindTemporaryExpr. If they are lifetime-extended,
    // they'd be dealt with via an AutomaticObjectDtor instead.
    const auto &Dtor = Source.castAs<CFGTemporaryDtor>();
    return PathDiagnosticLocation::createEnd(Dtor.getBindTemporaryExpr(), SM,
                                             CallerCtx);
  }
  case CFGElement::ScopeBegin:
  case CFGElement::ScopeEnd:
    llvm_unreachable("not yet implemented!");
  case CFGElement::LifetimeEnds:
  case CFGElement::LoopExit:
    llvm_unreachable("CFGElement kind should not be on callsite!");
  }

  llvm_unreachable("Unknown CFGElement kind");
}

PathDiagnosticLocation
PathDiagnosticLocation::createBegin(const Decl *D,
                                    const SourceManager &SM) {
  return PathDiagnosticLocation(D->getBeginLoc(), SM, SingleLocK);
}

PathDiagnosticLocation
PathDiagnosticLocation::createBegin(const Stmt *S,
                                    const SourceManager &SM,
                                    LocationOrAnalysisDeclContext LAC) {
  return PathDiagnosticLocation(getValidSourceLocation(S, LAC),
                                SM, SingleLocK);
}

PathDiagnosticLocation
PathDiagnosticLocation::createEnd(const Stmt *S,
                                  const SourceManager &SM,
                                  LocationOrAnalysisDeclContext LAC) {
  if (const auto *CS = dyn_cast<CompoundStmt>(S))
    return createEndBrace(CS, SM);
  return PathDiagnosticLocation(getValidSourceLocation(S, LAC, /*End=*/true),
                                SM, SingleLocK);
}

PathDiagnosticLocation
PathDiagnosticLocation::createOperatorLoc(const BinaryOperator *BO,
                                          const SourceManager &SM) {
  return PathDiagnosticLocation(BO->getOperatorLoc(), SM, SingleLocK);
}

PathDiagnosticLocation
PathDiagnosticLocation::createConditionalColonLoc(
                                            const ConditionalOperator *CO,
                                            const SourceManager &SM) {
  return PathDiagnosticLocation(CO->getColonLoc(), SM, SingleLocK);
}

PathDiagnosticLocation
PathDiagnosticLocation::createMemberLoc(const MemberExpr *ME,
                                        const SourceManager &SM) {
  return PathDiagnosticLocation(ME->getMemberLoc(), SM, SingleLocK);
}

PathDiagnosticLocation
PathDiagnosticLocation::createBeginBrace(const CompoundStmt *CS,
                                         const SourceManager &SM) {
  SourceLocation L = CS->getLBracLoc();
  return PathDiagnosticLocation(L, SM, SingleLocK);
}

PathDiagnosticLocation
PathDiagnosticLocation::createEndBrace(const CompoundStmt *CS,
                                       const SourceManager &SM) {
  SourceLocation L = CS->getRBracLoc();
  return PathDiagnosticLocation(L, SM, SingleLocK);
}

PathDiagnosticLocation
PathDiagnosticLocation::createDeclBegin(const LocationContext *LC,
                                        const SourceManager &SM) {
  // FIXME: Should handle CXXTryStmt if analyser starts supporting C++.
  if (const auto *CS = dyn_cast_or_null<CompoundStmt>(LC->getDecl()->getBody()))
    if (!CS->body_empty()) {
      SourceLocation Loc = (*CS->body_begin())->getBeginLoc();
      return PathDiagnosticLocation(Loc, SM, SingleLocK);
    }

  return PathDiagnosticLocation();
}

PathDiagnosticLocation
PathDiagnosticLocation::createDeclEnd(const LocationContext *LC,
                                      const SourceManager &SM) {
  SourceLocation L = LC->getDecl()->getBodyRBrace();
  return PathDiagnosticLocation(L, SM, SingleLocK);
}

PathDiagnosticLocation
PathDiagnosticLocation::create(const ProgramPoint& P,
                               const SourceManager &SMng) {
  const Stmt* S = nullptr;
  if (Optional<BlockEdge> BE = P.getAs<BlockEdge>()) {
    const CFGBlock *BSrc = BE->getSrc();
    S = BSrc->getTerminatorCondition();
  } else if (Optional<StmtPoint> SP = P.getAs<StmtPoint>()) {
    S = SP->getStmt();
    if (P.getAs<PostStmtPurgeDeadSymbols>())
      return PathDiagnosticLocation::createEnd(S, SMng, P.getLocationContext());
  } else if (Optional<PostInitializer> PIP = P.getAs<PostInitializer>()) {
    return PathDiagnosticLocation(PIP->getInitializer()->getSourceLocation(),
                                  SMng);
  } else if (Optional<PostImplicitCall> PIE = P.getAs<PostImplicitCall>()) {
    return PathDiagnosticLocation(PIE->getLocation(), SMng);
  } else if (Optional<CallEnter> CE = P.getAs<CallEnter>()) {
    return getLocationForCaller(CE->getCalleeContext(),
                                CE->getLocationContext(),
                                SMng);
  } else if (Optional<CallExitEnd> CEE = P.getAs<CallExitEnd>()) {
    return getLocationForCaller(CEE->getCalleeContext(),
                                CEE->getLocationContext(),
                                SMng);
  } else if (Optional<BlockEntrance> BE = P.getAs<BlockEntrance>()) {
    CFGElement BlockFront = BE->getBlock()->front();
    if (auto StmtElt = BlockFront.getAs<CFGStmt>()) {
      return PathDiagnosticLocation(StmtElt->getStmt()->getBeginLoc(), SMng);
    } else if (auto NewAllocElt = BlockFront.getAs<CFGNewAllocator>()) {
      return PathDiagnosticLocation(
          NewAllocElt->getAllocatorExpr()->getBeginLoc(), SMng);
    }
    llvm_unreachable("Unexpected CFG element at front of block");
  } else {
    llvm_unreachable("Unexpected ProgramPoint");
  }

  return PathDiagnosticLocation(S, SMng, P.getLocationContext());
}

static const LocationContext *
findTopAutosynthesizedParentContext(const LocationContext *LC) {
  assert(LC->getAnalysisDeclContext()->isBodyAutosynthesized());
  const LocationContext *ParentLC = LC->getParent();
  assert(ParentLC && "We don't start analysis from autosynthesized code");
  while (ParentLC->getAnalysisDeclContext()->isBodyAutosynthesized()) {
    LC = ParentLC;
    ParentLC = LC->getParent();
    assert(ParentLC && "We don't start analysis from autosynthesized code");
  }
  return LC;
}

const Stmt *PathDiagnosticLocation::getStmt(const ExplodedNode *N) {
  // We cannot place diagnostics on autosynthesized code.
  // Put them onto the call site through which we jumped into autosynthesized
  // code for the first time.
  const LocationContext *LC = N->getLocationContext();
  if (LC->getAnalysisDeclContext()->isBodyAutosynthesized()) {
    // It must be a stack frame because we only autosynthesize functions.
    return cast<StackFrameContext>(findTopAutosynthesizedParentContext(LC))
        ->getCallSite();
  }
  // Otherwise, see if the node's program point directly points to a statement.
  ProgramPoint P = N->getLocation();
  if (auto SP = P.getAs<StmtPoint>())
    return SP->getStmt();
  if (auto BE = P.getAs<BlockEdge>())
    return BE->getSrc()->getTerminator();
  if (auto CE = P.getAs<CallEnter>())
    return CE->getCallExpr();
  if (auto CEE = P.getAs<CallExitEnd>())
    return CEE->getCalleeContext()->getCallSite();
  if (auto PIPP = P.getAs<PostInitializer>())
    return PIPP->getInitializer()->getInit();
  if (auto CEB = P.getAs<CallExitBegin>())
    return CEB->getReturnStmt();
  if (auto FEP = P.getAs<FunctionExitPoint>())
    return FEP->getStmt();

  return nullptr;
}

const Stmt *PathDiagnosticLocation::getNextStmt(const ExplodedNode *N) {
  for (N = N->getFirstSucc(); N; N = N->getFirstSucc()) {
    if (const Stmt *S = getStmt(N)) {
      // Check if the statement is '?' or '&&'/'||'.  These are "merges",
      // not actual statement points.
      switch (S->getStmtClass()) {
        case Stmt::ChooseExprClass:
        case Stmt::BinaryConditionalOperatorClass:
        case Stmt::ConditionalOperatorClass:
          continue;
        case Stmt::BinaryOperatorClass: {
          BinaryOperatorKind Op = cast<BinaryOperator>(S)->getOpcode();
          if (Op == BO_LAnd || Op == BO_LOr)
            continue;
          break;
        }
        default:
          break;
      }
      // We found the statement, so return it.
      return S;
    }
  }

  return nullptr;
}

PathDiagnosticLocation
  PathDiagnosticLocation::createEndOfPath(const ExplodedNode *N,
                                          const SourceManager &SM) {
  assert(N && "Cannot create a location with a null node.");
  const Stmt *S = getStmt(N);
  const LocationContext *LC = N->getLocationContext();

  if (!S) {
    // If this is an implicit call, return the implicit call point location.
    if (Optional<PreImplicitCall> PIE = N->getLocationAs<PreImplicitCall>())
      return PathDiagnosticLocation(PIE->getLocation(), SM);
    if (auto FE = N->getLocationAs<FunctionExitPoint>()) {
      if (const ReturnStmt *RS = FE->getStmt())
        return PathDiagnosticLocation::createBegin(RS, SM, LC);
    }
    S = getNextStmt(N);
  }

  if (S) {
    ProgramPoint P = N->getLocation();

    // For member expressions, return the location of the '.' or '->'.
    if (const auto *ME = dyn_cast<MemberExpr>(S))
      return PathDiagnosticLocation::createMemberLoc(ME, SM);

    // For binary operators, return the location of the operator.
    if (const auto *B = dyn_cast<BinaryOperator>(S))
      return PathDiagnosticLocation::createOperatorLoc(B, SM);

    if (P.getAs<PostStmtPurgeDeadSymbols>())
      return PathDiagnosticLocation::createEnd(S, SM, LC);

    if (S->getBeginLoc().isValid())
      return PathDiagnosticLocation(S, SM, LC);
    return PathDiagnosticLocation(getValidSourceLocation(S, LC), SM);
  }

  return createDeclEnd(N->getLocationContext(), SM);
}

PathDiagnosticLocation PathDiagnosticLocation::createSingleLocation(
                                           const PathDiagnosticLocation &PDL) {
  FullSourceLoc L = PDL.asLocation();
  return PathDiagnosticLocation(L, L.getManager(), SingleLocK);
}

FullSourceLoc
  PathDiagnosticLocation::genLocation(SourceLocation L,
                                      LocationOrAnalysisDeclContext LAC) const {
  assert(isValid());
  // Note that we want a 'switch' here so that the compiler can warn us in
  // case we add more cases.
  switch (K) {
    case SingleLocK:
    case RangeK:
      break;
    case StmtK:
      // Defensive checking.
      if (!S)
        break;
      return FullSourceLoc(getValidSourceLocation(S, LAC),
                           const_cast<SourceManager&>(*SM));
    case DeclK:
      // Defensive checking.
      if (!D)
        break;
      return FullSourceLoc(D->getLocation(), const_cast<SourceManager&>(*SM));
  }

  return FullSourceLoc(L, const_cast<SourceManager&>(*SM));
}

PathDiagnosticRange
  PathDiagnosticLocation::genRange(LocationOrAnalysisDeclContext LAC) const {
  assert(isValid());
  // Note that we want a 'switch' here so that the compiler can warn us in
  // case we add more cases.
  switch (K) {
    case SingleLocK:
      return PathDiagnosticRange(SourceRange(Loc,Loc), true);
    case RangeK:
      break;
    case StmtK: {
      const Stmt *S = asStmt();
      switch (S->getStmtClass()) {
        default:
          break;
        case Stmt::DeclStmtClass: {
          const auto *DS = cast<DeclStmt>(S);
          if (DS->isSingleDecl()) {
            // Should always be the case, but we'll be defensive.
            return SourceRange(DS->getBeginLoc(),
                               DS->getSingleDecl()->getLocation());
          }
          break;
        }
          // FIXME: Provide better range information for different
          //  terminators.
        case Stmt::IfStmtClass:
        case Stmt::WhileStmtClass:
        case Stmt::DoStmtClass:
        case Stmt::ForStmtClass:
        case Stmt::ChooseExprClass:
        case Stmt::IndirectGotoStmtClass:
        case Stmt::SwitchStmtClass:
        case Stmt::BinaryConditionalOperatorClass:
        case Stmt::ConditionalOperatorClass:
        case Stmt::ObjCForCollectionStmtClass: {
          SourceLocation L = getValidSourceLocation(S, LAC);
          return SourceRange(L, L);
        }
      }
      SourceRange R = S->getSourceRange();
      if (R.isValid())
        return R;
      break;
    }
    case DeclK:
      if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
        return MD->getSourceRange();
      if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
        if (Stmt *Body = FD->getBody())
          return Body->getSourceRange();
      }
      else {
        SourceLocation L = D->getLocation();
        return PathDiagnosticRange(SourceRange(L, L), true);
      }
  }

  return SourceRange(Loc, Loc);
}

void PathDiagnosticLocation::flatten() {
  if (K == StmtK) {
    K = RangeK;
    S = nullptr;
    D = nullptr;
  }
  else if (K == DeclK) {
    K = SingleLocK;
    S = nullptr;
    D = nullptr;
  }
}

//===----------------------------------------------------------------------===//
// Manipulation of PathDiagnosticCallPieces.
//===----------------------------------------------------------------------===//

std::shared_ptr<PathDiagnosticCallPiece>
PathDiagnosticCallPiece::construct(const CallExitEnd &CE,
                                   const SourceManager &SM) {
  const Decl *caller = CE.getLocationContext()->getDecl();
  PathDiagnosticLocation pos = getLocationForCaller(CE.getCalleeContext(),
                                                    CE.getLocationContext(),
                                                    SM);
  return std::shared_ptr<PathDiagnosticCallPiece>(
      new PathDiagnosticCallPiece(caller, pos));
}

PathDiagnosticCallPiece *
PathDiagnosticCallPiece::construct(PathPieces &path,
                                   const Decl *caller) {
  std::shared_ptr<PathDiagnosticCallPiece> C(
      new PathDiagnosticCallPiece(path, caller));
  path.clear();
  auto *R = C.get();
  path.push_front(std::move(C));
  return R;
}

void PathDiagnosticCallPiece::setCallee(const CallEnter &CE,
                                        const SourceManager &SM) {
  const StackFrameContext *CalleeCtx = CE.getCalleeContext();
  Callee = CalleeCtx->getDecl();

  callEnterWithin = PathDiagnosticLocation::createBegin(Callee, SM);
  callEnter = getLocationForCaller(CalleeCtx, CE.getLocationContext(), SM);

  // Autosynthesized property accessors are special because we'd never
  // pop back up to non-autosynthesized code until we leave them.
  // This is not generally true for autosynthesized callees, which may call
  // non-autosynthesized callbacks.
  // Unless set here, the IsCalleeAnAutosynthesizedPropertyAccessor flag
  // defaults to false.
  if (const auto *MD = dyn_cast<ObjCMethodDecl>(Callee))
    IsCalleeAnAutosynthesizedPropertyAccessor = (
        MD->isPropertyAccessor() &&
        CalleeCtx->getAnalysisDeclContext()->isBodyAutosynthesized());
}

static void describeTemplateParameters(raw_ostream &Out,
                                       const ArrayRef<TemplateArgument> TAList,
                                       const LangOptions &LO,
                                       StringRef Prefix = StringRef(),
                                       StringRef Postfix = StringRef());

static void describeTemplateParameter(raw_ostream &Out,
                                      const TemplateArgument &TArg,
                                      const LangOptions &LO) {

  if (TArg.getKind() == TemplateArgument::ArgKind::Pack) {
    describeTemplateParameters(Out, TArg.getPackAsArray(), LO);
  } else {
    TArg.print(PrintingPolicy(LO), Out);
  }
}

static void describeTemplateParameters(raw_ostream &Out,
                                       const ArrayRef<TemplateArgument> TAList,
                                       const LangOptions &LO,
                                       StringRef Prefix, StringRef Postfix) {
  if (TAList.empty())
    return;

  Out << Prefix;
  for (int I = 0, Last = TAList.size() - 1; I != Last; ++I) {
    describeTemplateParameter(Out, TAList[I], LO);
    Out << ", ";
  }
  describeTemplateParameter(Out, TAList[TAList.size() - 1], LO);
  Out << Postfix;
}

static void describeClass(raw_ostream &Out, const CXXRecordDecl *D,
                          StringRef Prefix = StringRef()) {
  if (!D->getIdentifier())
    return;
  Out << Prefix << '\'' << *D;
  if (const auto T = dyn_cast<ClassTemplateSpecializationDecl>(D))
    describeTemplateParameters(Out, T->getTemplateArgs().asArray(),
                               D->getASTContext().getLangOpts(), "<", ">");

  Out << '\'';
}

static bool describeCodeDecl(raw_ostream &Out, const Decl *D,
                             bool ExtendedDescription,
                             StringRef Prefix = StringRef()) {
  if (!D)
    return false;

  if (isa<BlockDecl>(D)) {
    if (ExtendedDescription)
      Out << Prefix << "anonymous block";
    return ExtendedDescription;
  }

  if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) {
    Out << Prefix;
    if (ExtendedDescription && !MD->isUserProvided()) {
      if (MD->isExplicitlyDefaulted())
        Out << "defaulted ";
      else
        Out << "implicit ";
    }

    if (const auto *CD = dyn_cast<CXXConstructorDecl>(MD)) {
      if (CD->isDefaultConstructor())
        Out << "default ";
      else if (CD->isCopyConstructor())
        Out << "copy ";
      else if (CD->isMoveConstructor())
        Out << "move ";

      Out << "constructor";
      describeClass(Out, MD->getParent(), " for ");
    } else if (isa<CXXDestructorDecl>(MD)) {
      if (!MD->isUserProvided()) {
        Out << "destructor";
        describeClass(Out, MD->getParent(), " for ");
      } else {
        // Use ~Foo for explicitly-written destructors.
        Out << "'" << *MD << "'";
      }
    } else if (MD->isCopyAssignmentOperator()) {
        Out << "copy assignment operator";
        describeClass(Out, MD->getParent(), " for ");
    } else if (MD->isMoveAssignmentOperator()) {
        Out << "move assignment operator";
        describeClass(Out, MD->getParent(), " for ");
    } else {
      if (MD->getParent()->getIdentifier())
        Out << "'" << *MD->getParent() << "::" << *MD << "'";
      else
        Out << "'" << *MD << "'";
    }

    return true;
  }

  Out << Prefix << '\'' << cast<NamedDecl>(*D);

  // Adding template parameters.
  if (const auto FD = dyn_cast<FunctionDecl>(D))
    if (const TemplateArgumentList *TAList =
                                    FD->getTemplateSpecializationArgs())
      describeTemplateParameters(Out, TAList->asArray(),
                                 FD->getASTContext().getLangOpts(), "<", ">");

  Out << '\'';
  return true;
}

std::shared_ptr<PathDiagnosticEventPiece>
PathDiagnosticCallPiece::getCallEnterEvent() const {
  // We do not produce call enters and call exits for autosynthesized property
  // accessors. We do generally produce them for other functions coming from
  // the body farm because they may call callbacks that bring us back into
  // visible code.
  if (!Callee || IsCalleeAnAutosynthesizedPropertyAccessor)
    return nullptr;

  SmallString<256> buf;
  llvm::raw_svector_ostream Out(buf);

  Out << "Calling ";
  describeCodeDecl(Out, Callee, /*ExtendedDescription=*/true);

  assert(callEnter.asLocation().isValid());
  return std::make_shared<PathDiagnosticEventPiece>(callEnter, Out.str());
}

std::shared_ptr<PathDiagnosticEventPiece>
PathDiagnosticCallPiece::getCallEnterWithinCallerEvent() const {
  if (!callEnterWithin.asLocation().isValid())
    return nullptr;
  if (Callee->isImplicit() || !Callee->hasBody())
    return nullptr;
  if (const auto *MD = dyn_cast<CXXMethodDecl>(Callee))
    if (MD->isDefaulted())
      return nullptr;

  SmallString<256> buf;
  llvm::raw_svector_ostream Out(buf);

  Out << "Entered call";
  describeCodeDecl(Out, Caller, /*ExtendedDescription=*/false, " from ");

  return std::make_shared<PathDiagnosticEventPiece>(callEnterWithin, Out.str());
}

std::shared_ptr<PathDiagnosticEventPiece>
PathDiagnosticCallPiece::getCallExitEvent() const {
  // We do not produce call enters and call exits for autosynthesized property
  // accessors. We do generally produce them for other functions coming from
  // the body farm because they may call callbacks that bring us back into
  // visible code.
  if (NoExit || IsCalleeAnAutosynthesizedPropertyAccessor)
    return nullptr;

  SmallString<256> buf;
  llvm::raw_svector_ostream Out(buf);

  if (!CallStackMessage.empty()) {
    Out << CallStackMessage;
  } else {
    bool DidDescribe = describeCodeDecl(Out, Callee,
                                        /*ExtendedDescription=*/false,
                                        "Returning from ");
    if (!DidDescribe)
      Out << "Returning to caller";
  }

  assert(callReturn.asLocation().isValid());
  return std::make_shared<PathDiagnosticEventPiece>(callReturn, Out.str());
}

static void compute_path_size(const PathPieces &pieces, unsigned &size) {
  for (const auto &I : pieces) {
    const PathDiagnosticPiece *piece = I.get();
    if (const auto *cp = dyn_cast<PathDiagnosticCallPiece>(piece))
      compute_path_size(cp->path, size);
    else
      ++size;
  }
}

unsigned PathDiagnostic::full_size() {
  unsigned size = 0;
  compute_path_size(path, size);
  return size;
}

//===----------------------------------------------------------------------===//
// FoldingSet profiling methods.
//===----------------------------------------------------------------------===//

void PathDiagnosticLocation::Profile(llvm::FoldingSetNodeID &ID) const {
  ID.AddInteger(Range.getBegin().getRawEncoding());
  ID.AddInteger(Range.getEnd().getRawEncoding());
  ID.AddInteger(Loc.getRawEncoding());
}

void PathDiagnosticPiece::Profile(llvm::FoldingSetNodeID &ID) const {
  ID.AddInteger((unsigned) getKind());
  ID.AddString(str);
  // FIXME: Add profiling support for code hints.
  ID.AddInteger((unsigned) getDisplayHint());
  ArrayRef<SourceRange> Ranges = getRanges();
  for (const auto &I : Ranges) {
    ID.AddInteger(I.getBegin().getRawEncoding());
    ID.AddInteger(I.getEnd().getRawEncoding());
  }
}

void PathDiagnosticCallPiece::Profile(llvm::FoldingSetNodeID &ID) const {
  PathDiagnosticPiece::Profile(ID);
  for (const auto &I : path)
    ID.Add(*I);
}

void PathDiagnosticSpotPiece::Profile(llvm::FoldingSetNodeID &ID) const {
  PathDiagnosticPiece::Profile(ID);
  ID.Add(Pos);
}

void PathDiagnosticControlFlowPiece::Profile(llvm::FoldingSetNodeID &ID) const {
  PathDiagnosticPiece::Profile(ID);
  for (const auto &I : *this)
    ID.Add(I);
}

void PathDiagnosticMacroPiece::Profile(llvm::FoldingSetNodeID &ID) const {
  PathDiagnosticSpotPiece::Profile(ID);
  for (const auto &I : subPieces)
    ID.Add(*I);
}

void PathDiagnosticNotePiece::Profile(llvm::FoldingSetNodeID &ID) const {
  PathDiagnosticSpotPiece::Profile(ID);
}

void PathDiagnostic::Profile(llvm::FoldingSetNodeID &ID) const {
  ID.Add(getLocation());
  ID.AddString(BugType);
  ID.AddString(VerboseDesc);
  ID.AddString(Category);
}

void PathDiagnostic::FullProfile(llvm::FoldingSetNodeID &ID) const {
  Profile(ID);
  for (const auto &I : path)
    ID.Add(*I);
  for (meta_iterator I = meta_begin(), E = meta_end(); I != E; ++I)
    ID.AddString(*I);
}

StackHintGenerator::~StackHintGenerator() = default;

std::string StackHintGeneratorForSymbol::getMessage(const ExplodedNode *N){
  if (!N)
    return getMessageForSymbolNotFound();

  ProgramPoint P = N->getLocation();
  CallExitEnd CExit = P.castAs<CallExitEnd>();

  // FIXME: Use CallEvent to abstract this over all calls.
  const Stmt *CallSite = CExit.getCalleeContext()->getCallSite();
  const auto *CE = dyn_cast_or_null<CallExpr>(CallSite);
  if (!CE)
    return {};

  // Check if one of the parameters are set to the interesting symbol.
  unsigned ArgIndex = 0;
  for (CallExpr::const_arg_iterator I = CE->arg_begin(),
                                    E = CE->arg_end(); I != E; ++I, ++ArgIndex){
    SVal SV = N->getSVal(*I);

    // Check if the variable corresponding to the symbol is passed by value.
    SymbolRef AS = SV.getAsLocSymbol();
    if (AS == Sym) {
      return getMessageForArg(*I, ArgIndex);
    }

    // Check if the parameter is a pointer to the symbol.
    if (Optional<loc::MemRegionVal> Reg = SV.getAs<loc::MemRegionVal>()) {
      // Do not attempt to dereference void*.
      if ((*I)->getType()->isVoidPointerType())
        continue;
      SVal PSV = N->getState()->getSVal(Reg->getRegion());
      SymbolRef AS = PSV.getAsLocSymbol();
      if (AS == Sym) {
        return getMessageForArg(*I, ArgIndex);
      }
    }
  }

  // Check if we are returning the interesting symbol.
  SVal SV = N->getSVal(CE);
  SymbolRef RetSym = SV.getAsLocSymbol();
  if (RetSym == Sym) {
    return getMessageForReturn(CE);
  }

  return getMessageForSymbolNotFound();
}

std::string StackHintGeneratorForSymbol::getMessageForArg(const Expr *ArgE,
                                                          unsigned ArgIndex) {
  // Printed parameters start at 1, not 0.
  ++ArgIndex;

  SmallString<200> buf;
  llvm::raw_svector_ostream os(buf);

  os << Msg << " via " << ArgIndex << llvm::getOrdinalSuffix(ArgIndex)
     << " parameter";

  return os.str();
}

LLVM_DUMP_METHOD void PathPieces::dump() const {
  unsigned index = 0;
  for (PathPieces::const_iterator I = begin(), E = end(); I != E; ++I) {
    llvm::errs() << "[" << index++ << "]  ";
    (*I)->dump();
    llvm::errs() << "\n";
  }
}

LLVM_DUMP_METHOD void PathDiagnosticCallPiece::dump() const {
  llvm::errs() << "CALL\n--------------\n";

  if (const Stmt *SLoc = getLocation().getStmtOrNull())
    SLoc->dump();
  else if (const auto *ND = dyn_cast_or_null<NamedDecl>(getCallee()))
    llvm::errs() << *ND << "\n";
  else
    getLocation().dump();
}

LLVM_DUMP_METHOD void PathDiagnosticEventPiece::dump() const {
  llvm::errs() << "EVENT\n--------------\n";
  llvm::errs() << getString() << "\n";
  llvm::errs() << " ---- at ----\n";
  getLocation().dump();
}

LLVM_DUMP_METHOD void PathDiagnosticControlFlowPiece::dump() const {
  llvm::errs() << "CONTROL\n--------------\n";
  getStartLocation().dump();
  llvm::errs() << " ---- to ----\n";
  getEndLocation().dump();
}

LLVM_DUMP_METHOD void PathDiagnosticMacroPiece::dump() const {
  llvm::errs() << "MACRO\n--------------\n";
  // FIXME: Print which macro is being invoked.
}

LLVM_DUMP_METHOD void PathDiagnosticNotePiece::dump() const {
  llvm::errs() << "NOTE\n--------------\n";
  llvm::errs() << getString() << "\n";
  llvm::errs() << " ---- at ----\n";
  getLocation().dump();
}

LLVM_DUMP_METHOD void PathDiagnosticLocation::dump() const {
  if (!isValid()) {
    llvm::errs() << "<INVALID>\n";
    return;
  }

  switch (K) {
  case RangeK:
    // FIXME: actually print the range.
    llvm::errs() << "<range>\n";
    break;
  case SingleLocK:
    asLocation().dump();
    llvm::errs() << "\n";
    break;
  case StmtK:
    if (S)
      S->dump();
    else
      llvm::errs() << "<NULL STMT>\n";
    break;
  case DeclK:
    if (const auto *ND = dyn_cast_or_null<NamedDecl>(D))
      llvm::errs() << *ND << "\n";
    else if (isa<BlockDecl>(D))
      // FIXME: Make this nicer.
      llvm::errs() << "<block>\n";
    else if (D)
      llvm::errs() << "<unknown decl>\n";
    else
      llvm::errs() << "<NULL DECL>\n";
    break;
  }
}