summaryrefslogtreecommitdiffstats
path: root/test/SemaTemplate/alias-templates.cpp
blob: 3b7548d169b0de00085920b8281954f48b55d98e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
// RUN: %clang_cc1 -std=c++11 -fsyntax-only -verify %s

template<typename S>
struct A {
  typedef S B;
  template<typename T> using C = typename T::B;
  template<typename T> struct D {
    template<typename U> using E = typename A<U>::template C<A<T>>;
    template<typename U> using F = A<E<U>>;
    template<typename U> using G = C<F<U>>;
    G<T> g;
  };
  typedef decltype(D<B>().g) H;
  D<H> h;
  template<typename T> using I = A<decltype(h.g)>;
  template<typename T> using J = typename A<decltype(h.g)>::template C<I<T>>;
};

A<int> a;
A<char>::D<double> b;

template<typename T> T make();

namespace X {
  template<typename T> struct traits {
    typedef T thing;
    typedef decltype(val(make<thing>())) inner_ptr;

    template<typename U> using rebind_thing = typename thing::template rebind<U>;
    template<typename U> using rebind = traits<rebind_thing<U>>;

    inner_ptr &&alloc();
    void free(inner_ptr&&);
  };

  template<typename T> struct ptr_traits {
    typedef T *type;
  };
  template<typename T> using ptr = typename ptr_traits<T>::type;

  template<typename T> struct thing {
    typedef T inner;
    typedef ptr<inner> inner_ptr;
    typedef traits<thing<inner>> traits_type;

    template<typename U> using rebind = thing<U>;

    thing(traits_type &traits) : traits(traits), val(traits.alloc()) {}
    ~thing() { traits.free(static_cast<inner_ptr&&>(val)); }

    traits_type &traits;
    inner_ptr val;

    friend inner_ptr val(const thing &t) { return t.val; }
  };

  template<> struct ptr_traits<bool> {
    typedef bool &type;
  };
  template<> bool &traits<thing<bool>>::alloc() { static bool b; return b; }
  template<> void traits<thing<bool>>::free(bool&) {}
}

typedef X::traits<X::thing<int>> itt;

itt::thing::traits_type itr;
itt::thing ith(itr);

itt::rebind<bool> btr;
itt::rebind_thing<bool> btt(btr);

namespace PR11848 {
  template<typename T> using U = int;

  template<typename T, typename ...Ts>
  void f1(U<T> i, U<Ts> ...is) { // expected-note 2{{couldn't infer template argument 'T'}}
    return i + f1<Ts...>(is...);
  }

  // FIXME: This note is technically correct, but could be better. We
  // should really say that we couldn't infer template argument 'Ts'.
  template<typename ...Ts>
  void f2(U<Ts> ...is) { } // expected-note {{requires 0 arguments, but 1 was provided}}

  template<typename...> struct type_tuple {};
  template<typename ...Ts>
  void f3(type_tuple<Ts...>, U<Ts> ...is) {} // expected-note {{requires 4 arguments, but 3 were provided}}

  void g() {
    f1(U<void>()); // expected-error {{no match}}
    f1(1, 2, 3, 4, 5); // expected-error {{no match}}
    f2(); // ok
    f2(1); // expected-error {{no match}}
    f3(type_tuple<>());
    f3(type_tuple<void, void, void>(), 1, 2); // expected-error {{no match}}
    f3(type_tuple<void, void, void>(), 1, 2, 3);
  }

  template<typename ...Ts>
  struct S {
    S(U<Ts>...ts);
  };

  template<typename T>
  struct Hidden1 {
    template<typename ...Ts>
    Hidden1(typename T::template U<Ts> ...ts);
  };

  template<typename T, typename ...Ts>
  struct Hidden2 {
    Hidden2(typename T::template U<Ts> ...ts);
  };

  struct Hide {
    template<typename T> using U = int;
  };

  Hidden1<Hide> h1;
  Hidden2<Hide, double, char> h2(1, 2);
}

namespace Core22036 {
  struct X {};
  void h(...);
  template<typename T> using Y = X;
  template<typename T, typename ...Ts> struct S {
    // An expression can contain an unexpanded pack without being type or
    // value dependent. This is true even if the expression's type is a pack
    // expansion type.
    void f1(Y<T> a) { h(g(a)); } // expected-error {{undeclared identifier 'g'}}
    void f2(Y<Ts>...as) { h(g(as)...); } // expected-error {{undeclared identifier 'g'}}
    void f3(Y<Ts>...as) { g(as...); } // ok
    void f4(Ts ...ts) { h(g(sizeof(ts))...); } // expected-error {{undeclared identifier 'g'}}
    // FIXME: We can reject this, since it has no valid instantiations because
    // 'g' never has any associated namespaces.
    void f5(Ts ...ts) { g(sizeof(ts)...); } // ok
  };
}

namespace PR13243 {
  template<typename A> struct X {};
  template<int I> struct C {};
  template<int I> using Ci = C<I>;

  template<typename A, int I> void f(X<A>, Ci<I>) {}
  template void f(X<int>, C<0>);
}

namespace PR13136 {
  template <typename T, T... Numbers>
  struct NumberTuple { };

  template <unsigned int... Numbers>
  using MyNumberTuple = NumberTuple<unsigned int, Numbers...>;

  template <typename U, unsigned int... Numbers>
  void foo(U&&, MyNumberTuple<Numbers...>);

  template <typename U, unsigned int... Numbers>
  void bar(U&&, NumberTuple<unsigned int, Numbers...>);

  int main() {
    foo(1, NumberTuple<unsigned int, 0, 1>());
    bar(1, NumberTuple<unsigned int, 0, 1>());
    return 0;
  }
}

namespace PR16646 {
  namespace test1 {
    template <typename T> struct DefaultValue { const T value=0;};
    template <typename ... Args> struct tuple {};
    template <typename ... Args> using Zero = tuple<DefaultValue<Args> ...>;
    template <typename ... Args> void f(const Zero<Args ...> &t);
    void f() {
        f(Zero<int,double,double>());
    }
  }

  namespace test2 {
    template<int x> struct X {};
    template <template<int x> class temp> struct DefaultValue { const temp<0> value; };
    template <typename ... Args> struct tuple {};
    template <template<int x> class... Args> using Zero = tuple<DefaultValue<Args> ...>;
    template <template<int x> class... Args> void f(const Zero<Args ...> &t);
    void f() {
      f(Zero<X,X,X>());
    }
  }
}

namespace PR16904 {
  template <typename,typename>
  struct base {
    template <typename> struct derived;
  };
  // FIXME: The diagnostics here are terrible.
  template <typename T, typename U, typename V>
  using derived = base<T, U>::template derived<V>; // expected-error {{expected a type}} expected-error {{expected ';'}}
  template <typename T, typename U, typename V>
  using derived2 = ::PR16904::base<T, U>::template derived<V>; // expected-error {{expected a type}} expected-error {{expected ';'}}
}

namespace PR14858 {
  template<typename ...T> using X = int[sizeof...(T)];

  template<typename ...U> struct Y {
    using Z = X<U...>;
  };
  using A = Y<int, int, int, int>::Z;
  using A = int[4];

  // FIXME: These should be treated as being redeclarations.
  template<typename ...T> void f(X<T...> &) {}
  template<typename ...T> void f(int(&)[sizeof...(T)]) {}

  template<typename ...T> void g(X<typename T::type...> &) {}
  template<typename ...T> void g(int(&)[sizeof...(T)]) {} // ok, different

  template<typename ...T, typename ...U> void h(X<T...> &) {}
  template<typename ...T, typename ...U> void h(X<U...> &) {} // ok, different

  template<typename ...T> void i(auto (T ...t) -> int(&)[sizeof...(t)]);
  auto mk_arr(int, int) -> int(&)[2];
  void test_i() { i<int, int>(mk_arr); }

#if 0 // FIXME: This causes clang to assert.
  template<typename ...T> using Z = auto (T ...p) -> int (&)[sizeof...(p)];
  template<typename ...T, typename ...U> void j(Z<T..., U...> &) {}
  void test_j() { j<int, int>(mk_arr); }
#endif

  template<typename ...T> struct Q {
    template<typename ...U> using V = int[sizeof...(U)];
    template<typename ...U> void f(V<typename U::type..., typename T::type...> *);
  };
  struct B { typedef int type; };
  void test_q(int (&a)[5]) { Q<B, B, B>().f<B, B>(&a); }
}

namespace redecl {
  template<typename> using A = int;
  template<typename = void> using A = int;
  A<> a; // ok
}

namespace PR31514 {
  template<typename T, typename> using EnableTupleSize = T;

  template<typename T> struct tuple_size { static const int value = 0; };
  template<typename T> struct tuple_size<EnableTupleSize<const T, decltype(tuple_size<T>::value)>> {};
  template<typename T> struct tuple_size<EnableTupleSize<volatile T, decltype(tuple_size<T>::value)>> {};

  tuple_size<const int> t;
}

namespace an_alias_template_is_not_a_class_template {
  template<typename T> using Foo = int; // expected-note 2{{here}}
  Foo x; // expected-error {{use of alias template 'Foo' requires template arguments}}
  Foo<> y; // expected-error {{too few template arguments for alias template 'Foo'}}

  template<template<typename> class Bar> void f() { // expected-note 2{{here}}
    Bar x; // expected-error {{use of template template parameter 'Bar' requires template arguments}}
    Bar<> y; // expected-error {{too few template arguments for template template parameter 'Bar'}}
  }
}