//===--- ParseDecl.cpp - Declaration Parsing --------------------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements the Declaration portions of the Parser interfaces. // //===----------------------------------------------------------------------===// #include "clang/AST/ASTContext.h" #include "clang/AST/DeclTemplate.h" #include "clang/AST/PrettyDeclStackTrace.h" #include "clang/Basic/AddressSpaces.h" #include "clang/Basic/AttributeCommonInfo.h" #include "clang/Basic/Attributes.h" #include "clang/Basic/CharInfo.h" #include "clang/Basic/TargetInfo.h" #include "clang/Basic/TokenKinds.h" #include "clang/Parse/ParseDiagnostic.h" #include "clang/Parse/Parser.h" #include "clang/Parse/RAIIObjectsForParser.h" #include "clang/Sema/EnterExpressionEvaluationContext.h" #include "clang/Sema/Lookup.h" #include "clang/Sema/ParsedTemplate.h" #include "clang/Sema/Scope.h" #include "clang/Sema/SemaCUDA.h" #include "clang/Sema/SemaDiagnostic.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/StringSwitch.h" #include using namespace clang; //===----------------------------------------------------------------------===// // C99 6.7: Declarations. //===----------------------------------------------------------------------===// /// ParseTypeName /// type-name: [C99 6.7.6] /// specifier-qualifier-list abstract-declarator[opt] /// /// Called type-id in C++. TypeResult Parser::ParseTypeName(SourceRange *Range, DeclaratorContext Context, AccessSpecifier AS, Decl **OwnedType, ParsedAttributes *Attrs) { DeclSpecContext DSC = getDeclSpecContextFromDeclaratorContext(Context); if (DSC == DeclSpecContext::DSC_normal) DSC = DeclSpecContext::DSC_type_specifier; // Parse the common declaration-specifiers piece. DeclSpec DS(AttrFactory); if (Attrs) DS.addAttributes(*Attrs); ParseSpecifierQualifierList(DS, AS, DSC); if (OwnedType) *OwnedType = DS.isTypeSpecOwned() ? DS.getRepAsDecl() : nullptr; // Move declspec attributes to ParsedAttributes if (Attrs) { llvm::SmallVector ToBeMoved; for (ParsedAttr &AL : DS.getAttributes()) { if (AL.isDeclspecAttribute()) ToBeMoved.push_back(&AL); } for (ParsedAttr *AL : ToBeMoved) Attrs->takeOneFrom(DS.getAttributes(), AL); } // Parse the abstract-declarator, if present. Declarator DeclaratorInfo(DS, ParsedAttributesView::none(), Context); ParseDeclarator(DeclaratorInfo); if (Range) *Range = DeclaratorInfo.getSourceRange(); if (DeclaratorInfo.isInvalidType()) return true; return Actions.ActOnTypeName(DeclaratorInfo); } /// Normalizes an attribute name by dropping prefixed and suffixed __. static StringRef normalizeAttrName(StringRef Name) { if (Name.size() >= 4 && Name.starts_with("__") && Name.ends_with("__")) return Name.drop_front(2).drop_back(2); return Name; } /// isAttributeLateParsed - Return true if the attribute has arguments that /// require late parsing. static bool isAttributeLateParsed(const IdentifierInfo &II) { #define CLANG_ATTR_LATE_PARSED_LIST return llvm::StringSwitch(normalizeAttrName(II.getName())) #include "clang/Parse/AttrParserStringSwitches.inc" .Default(false); #undef CLANG_ATTR_LATE_PARSED_LIST } /// Check if the a start and end source location expand to the same macro. static bool FindLocsWithCommonFileID(Preprocessor &PP, SourceLocation StartLoc, SourceLocation EndLoc) { if (!StartLoc.isMacroID() || !EndLoc.isMacroID()) return false; SourceManager &SM = PP.getSourceManager(); if (SM.getFileID(StartLoc) != SM.getFileID(EndLoc)) return false; bool AttrStartIsInMacro = Lexer::isAtStartOfMacroExpansion(StartLoc, SM, PP.getLangOpts()); bool AttrEndIsInMacro = Lexer::isAtEndOfMacroExpansion(EndLoc, SM, PP.getLangOpts()); return AttrStartIsInMacro && AttrEndIsInMacro; } void Parser::ParseAttributes(unsigned WhichAttrKinds, ParsedAttributes &Attrs, LateParsedAttrList *LateAttrs) { bool MoreToParse; do { // Assume there's nothing left to parse, but if any attributes are in fact // parsed, loop to ensure all specified attribute combinations are parsed. MoreToParse = false; if (WhichAttrKinds & PAKM_CXX11) MoreToParse |= MaybeParseCXX11Attributes(Attrs); if (WhichAttrKinds & PAKM_GNU) MoreToParse |= MaybeParseGNUAttributes(Attrs, LateAttrs); if (WhichAttrKinds & PAKM_Declspec) MoreToParse |= MaybeParseMicrosoftDeclSpecs(Attrs); } while (MoreToParse); } /// ParseGNUAttributes - Parse a non-empty attributes list. /// /// [GNU] attributes: /// attribute /// attributes attribute /// /// [GNU] attribute: /// '__attribute__' '(' '(' attribute-list ')' ')' /// /// [GNU] attribute-list: /// attrib /// attribute_list ',' attrib /// /// [GNU] attrib: /// empty /// attrib-name /// attrib-name '(' identifier ')' /// attrib-name '(' identifier ',' nonempty-expr-list ')' /// attrib-name '(' argument-expression-list [C99 6.5.2] ')' /// /// [GNU] attrib-name: /// identifier /// typespec /// typequal /// storageclass /// /// Whether an attribute takes an 'identifier' is determined by the /// attrib-name. GCC's behavior here is not worth imitating: /// /// * In C mode, if the attribute argument list starts with an identifier /// followed by a ',' or an ')', and the identifier doesn't resolve to /// a type, it is parsed as an identifier. If the attribute actually /// wanted an expression, it's out of luck (but it turns out that no /// attributes work that way, because C constant expressions are very /// limited). /// * In C++ mode, if the attribute argument list starts with an identifier, /// and the attribute *wants* an identifier, it is parsed as an identifier. /// At block scope, any additional tokens between the identifier and the /// ',' or ')' are ignored, otherwise they produce a parse error. /// /// We follow the C++ model, but don't allow junk after the identifier. void Parser::ParseGNUAttributes(ParsedAttributes &Attrs, LateParsedAttrList *LateAttrs, Declarator *D) { assert(Tok.is(tok::kw___attribute) && "Not a GNU attribute list!"); SourceLocation StartLoc = Tok.getLocation(); SourceLocation EndLoc = StartLoc; while (Tok.is(tok::kw___attribute)) { SourceLocation AttrTokLoc = ConsumeToken(); unsigned OldNumAttrs = Attrs.size(); unsigned OldNumLateAttrs = LateAttrs ? LateAttrs->size() : 0; if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after, "attribute")) { SkipUntil(tok::r_paren, StopAtSemi); // skip until ) or ; return; } if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after, "(")) { SkipUntil(tok::r_paren, StopAtSemi); // skip until ) or ; return; } // Parse the attribute-list. e.g. __attribute__(( weak, alias("__f") )) do { // Eat preceeding commas to allow __attribute__((,,,foo)) while (TryConsumeToken(tok::comma)) ; // Expect an identifier or declaration specifier (const, int, etc.) if (Tok.isAnnotation()) break; if (Tok.is(tok::code_completion)) { cutOffParsing(); Actions.CodeCompleteAttribute(AttributeCommonInfo::Syntax::AS_GNU); break; } IdentifierInfo *AttrName = Tok.getIdentifierInfo(); if (!AttrName) break; SourceLocation AttrNameLoc = ConsumeToken(); if (Tok.isNot(tok::l_paren)) { Attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0, ParsedAttr::Form::GNU()); continue; } // Handle "parameterized" attributes if (!LateAttrs || !isAttributeLateParsed(*AttrName)) { ParseGNUAttributeArgs(AttrName, AttrNameLoc, Attrs, &EndLoc, nullptr, SourceLocation(), ParsedAttr::Form::GNU(), D); continue; } // Handle attributes with arguments that require late parsing. LateParsedAttribute *LA = new LateParsedAttribute(this, *AttrName, AttrNameLoc); LateAttrs->push_back(LA); // Attributes in a class are parsed at the end of the class, along // with other late-parsed declarations. if (!ClassStack.empty() && !LateAttrs->parseSoon()) getCurrentClass().LateParsedDeclarations.push_back(LA); // Be sure ConsumeAndStoreUntil doesn't see the start l_paren, since it // recursively consumes balanced parens. LA->Toks.push_back(Tok); ConsumeParen(); // Consume everything up to and including the matching right parens. ConsumeAndStoreUntil(tok::r_paren, LA->Toks, /*StopAtSemi=*/true); Token Eof; Eof.startToken(); Eof.setLocation(Tok.getLocation()); LA->Toks.push_back(Eof); } while (Tok.is(tok::comma)); if (ExpectAndConsume(tok::r_paren)) SkipUntil(tok::r_paren, StopAtSemi); SourceLocation Loc = Tok.getLocation(); if (ExpectAndConsume(tok::r_paren)) SkipUntil(tok::r_paren, StopAtSemi); EndLoc = Loc; // If this was declared in a macro, attach the macro IdentifierInfo to the // parsed attribute. auto &SM = PP.getSourceManager(); if (!SM.isWrittenInBuiltinFile(SM.getSpellingLoc(AttrTokLoc)) && FindLocsWithCommonFileID(PP, AttrTokLoc, Loc)) { CharSourceRange ExpansionRange = SM.getExpansionRange(AttrTokLoc); StringRef FoundName = Lexer::getSourceText(ExpansionRange, SM, PP.getLangOpts()); IdentifierInfo *MacroII = PP.getIdentifierInfo(FoundName); for (unsigned i = OldNumAttrs; i < Attrs.size(); ++i) Attrs[i].setMacroIdentifier(MacroII, ExpansionRange.getBegin()); if (LateAttrs) { for (unsigned i = OldNumLateAttrs; i < LateAttrs->size(); ++i) (*LateAttrs)[i]->MacroII = MacroII; } } } Attrs.Range = SourceRange(StartLoc, EndLoc); } /// Determine whether the given attribute has an identifier argument. static bool attributeHasIdentifierArg(const IdentifierInfo &II) { #define CLANG_ATTR_IDENTIFIER_ARG_LIST return llvm::StringSwitch(normalizeAttrName(II.getName())) #include "clang/Parse/AttrParserStringSwitches.inc" .Default(false); #undef CLANG_ATTR_IDENTIFIER_ARG_LIST } /// Determine whether the given attribute has an identifier argument. static ParsedAttributeArgumentsProperties attributeStringLiteralListArg(const llvm::Triple &T, const IdentifierInfo &II) { #define CLANG_ATTR_STRING_LITERAL_ARG_LIST return llvm::StringSwitch(normalizeAttrName(II.getName())) #include "clang/Parse/AttrParserStringSwitches.inc" .Default(0); #undef CLANG_ATTR_STRING_LITERAL_ARG_LIST } /// Determine whether the given attribute has a variadic identifier argument. static bool attributeHasVariadicIdentifierArg(const IdentifierInfo &II) { #define CLANG_ATTR_VARIADIC_IDENTIFIER_ARG_LIST return llvm::StringSwitch(normalizeAttrName(II.getName())) #include "clang/Parse/AttrParserStringSwitches.inc" .Default(false); #undef CLANG_ATTR_VARIADIC_IDENTIFIER_ARG_LIST } /// Determine whether the given attribute treats kw_this as an identifier. static bool attributeTreatsKeywordThisAsIdentifier(const IdentifierInfo &II) { #define CLANG_ATTR_THIS_ISA_IDENTIFIER_ARG_LIST return llvm::StringSwitch(normalizeAttrName(II.getName())) #include "clang/Parse/AttrParserStringSwitches.inc" .Default(false); #undef CLANG_ATTR_THIS_ISA_IDENTIFIER_ARG_LIST } /// Determine if an attribute accepts parameter packs. static bool attributeAcceptsExprPack(const IdentifierInfo &II) { #define CLANG_ATTR_ACCEPTS_EXPR_PACK return llvm::StringSwitch(normalizeAttrName(II.getName())) #include "clang/Parse/AttrParserStringSwitches.inc" .Default(false); #undef CLANG_ATTR_ACCEPTS_EXPR_PACK } /// Determine whether the given attribute parses a type argument. static bool attributeIsTypeArgAttr(const IdentifierInfo &II) { #define CLANG_ATTR_TYPE_ARG_LIST return llvm::StringSwitch(normalizeAttrName(II.getName())) #include "clang/Parse/AttrParserStringSwitches.inc" .Default(false); #undef CLANG_ATTR_TYPE_ARG_LIST } /// Determine whether the given attribute requires parsing its arguments /// in an unevaluated context or not. static bool attributeParsedArgsUnevaluated(const IdentifierInfo &II) { #define CLANG_ATTR_ARG_CONTEXT_LIST return llvm::StringSwitch(normalizeAttrName(II.getName())) #include "clang/Parse/AttrParserStringSwitches.inc" .Default(false); #undef CLANG_ATTR_ARG_CONTEXT_LIST } IdentifierLoc *Parser::ParseIdentifierLoc() { assert(Tok.is(tok::identifier) && "expected an identifier"); IdentifierLoc *IL = IdentifierLoc::create(Actions.Context, Tok.getLocation(), Tok.getIdentifierInfo()); ConsumeToken(); return IL; } void Parser::ParseAttributeWithTypeArg(IdentifierInfo &AttrName, SourceLocation AttrNameLoc, ParsedAttributes &Attrs, IdentifierInfo *ScopeName, SourceLocation ScopeLoc, ParsedAttr::Form Form) { BalancedDelimiterTracker Parens(*this, tok::l_paren); Parens.consumeOpen(); TypeResult T; if (Tok.isNot(tok::r_paren)) T = ParseTypeName(); if (Parens.consumeClose()) return; if (T.isInvalid()) return; if (T.isUsable()) Attrs.addNewTypeAttr(&AttrName, SourceRange(AttrNameLoc, Parens.getCloseLocation()), ScopeName, ScopeLoc, T.get(), Form); else Attrs.addNew(&AttrName, SourceRange(AttrNameLoc, Parens.getCloseLocation()), ScopeName, ScopeLoc, nullptr, 0, Form); } ExprResult Parser::ParseUnevaluatedStringInAttribute(const IdentifierInfo &AttrName) { if (Tok.is(tok::l_paren)) { BalancedDelimiterTracker Paren(*this, tok::l_paren); Paren.consumeOpen(); ExprResult Res = ParseUnevaluatedStringInAttribute(AttrName); Paren.consumeClose(); return Res; } if (!isTokenStringLiteral()) { Diag(Tok.getLocation(), diag::err_expected_string_literal) << /*in attribute...*/ 4 << AttrName.getName(); return ExprError(); } return ParseUnevaluatedStringLiteralExpression(); } bool Parser::ParseAttributeArgumentList( const IdentifierInfo &AttrName, SmallVectorImpl &Exprs, ParsedAttributeArgumentsProperties ArgsProperties) { bool SawError = false; unsigned Arg = 0; while (true) { ExprResult Expr; if (ArgsProperties.isStringLiteralArg(Arg)) { Expr = ParseUnevaluatedStringInAttribute(AttrName); } else if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) { Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists); Expr = ParseBraceInitializer(); } else { Expr = ParseAssignmentExpression(); } Expr = Actions.CorrectDelayedTyposInExpr(Expr); if (Tok.is(tok::ellipsis)) Expr = Actions.ActOnPackExpansion(Expr.get(), ConsumeToken()); else if (Tok.is(tok::code_completion)) { // There's nothing to suggest in here as we parsed a full expression. // Instead fail and propagate the error since caller might have something // the suggest, e.g. signature help in function call. Note that this is // performed before pushing the \p Expr, so that signature help can report // current argument correctly. SawError = true; cutOffParsing(); break; } if (Expr.isInvalid()) { SawError = true; break; } Exprs.push_back(Expr.get()); if (Tok.isNot(tok::comma)) break; // Move to the next argument, remember where the comma was. Token Comma = Tok; ConsumeToken(); checkPotentialAngleBracketDelimiter(Comma); Arg++; } if (SawError) { // Ensure typos get diagnosed when errors were encountered while parsing the // expression list. for (auto &E : Exprs) { ExprResult Expr = Actions.CorrectDelayedTyposInExpr(E); if (Expr.isUsable()) E = Expr.get(); } } return SawError; } unsigned Parser::ParseAttributeArgsCommon( IdentifierInfo *AttrName, SourceLocation AttrNameLoc, ParsedAttributes &Attrs, SourceLocation *EndLoc, IdentifierInfo *ScopeName, SourceLocation ScopeLoc, ParsedAttr::Form Form) { // Ignore the left paren location for now. ConsumeParen(); bool ChangeKWThisToIdent = attributeTreatsKeywordThisAsIdentifier(*AttrName); bool AttributeIsTypeArgAttr = attributeIsTypeArgAttr(*AttrName); bool AttributeHasVariadicIdentifierArg = attributeHasVariadicIdentifierArg(*AttrName); // Interpret "kw_this" as an identifier if the attributed requests it. if (ChangeKWThisToIdent && Tok.is(tok::kw_this)) Tok.setKind(tok::identifier); ArgsVector ArgExprs; if (Tok.is(tok::identifier)) { // If this attribute wants an 'identifier' argument, make it so. bool IsIdentifierArg = AttributeHasVariadicIdentifierArg || attributeHasIdentifierArg(*AttrName); ParsedAttr::Kind AttrKind = ParsedAttr::getParsedKind(AttrName, ScopeName, Form.getSyntax()); // If we don't know how to parse this attribute, but this is the only // token in this argument, assume it's meant to be an identifier. if (AttrKind == ParsedAttr::UnknownAttribute || AttrKind == ParsedAttr::IgnoredAttribute) { const Token &Next = NextToken(); IsIdentifierArg = Next.isOneOf(tok::r_paren, tok::comma); } if (IsIdentifierArg) ArgExprs.push_back(ParseIdentifierLoc()); } ParsedType TheParsedType; if (!ArgExprs.empty() ? Tok.is(tok::comma) : Tok.isNot(tok::r_paren)) { // Eat the comma. if (!ArgExprs.empty()) ConsumeToken(); if (AttributeIsTypeArgAttr) { // FIXME: Multiple type arguments are not implemented. TypeResult T = ParseTypeName(); if (T.isInvalid()) { SkipUntil(tok::r_paren, StopAtSemi); return 0; } if (T.isUsable()) TheParsedType = T.get(); } else if (AttributeHasVariadicIdentifierArg) { // Parse variadic identifier arg. This can either consume identifiers or // expressions. Variadic identifier args do not support parameter packs // because those are typically used for attributes with enumeration // arguments, and those enumerations are not something the user could // express via a pack. do { // Interpret "kw_this" as an identifier if the attributed requests it. if (ChangeKWThisToIdent && Tok.is(tok::kw_this)) Tok.setKind(tok::identifier); ExprResult ArgExpr; if (Tok.is(tok::identifier)) { ArgExprs.push_back(ParseIdentifierLoc()); } else { bool Uneval = attributeParsedArgsUnevaluated(*AttrName); EnterExpressionEvaluationContext Unevaluated( Actions, Uneval ? Sema::ExpressionEvaluationContext::Unevaluated : Sema::ExpressionEvaluationContext::ConstantEvaluated); ExprResult ArgExpr( Actions.CorrectDelayedTyposInExpr(ParseAssignmentExpression())); if (ArgExpr.isInvalid()) { SkipUntil(tok::r_paren, StopAtSemi); return 0; } ArgExprs.push_back(ArgExpr.get()); } // Eat the comma, move to the next argument } while (TryConsumeToken(tok::comma)); } else { // General case. Parse all available expressions. bool Uneval = attributeParsedArgsUnevaluated(*AttrName); EnterExpressionEvaluationContext Unevaluated( Actions, Uneval ? Sema::ExpressionEvaluationContext::Unevaluated : Sema::ExpressionEvaluationContext::ConstantEvaluated); ExprVector ParsedExprs; ParsedAttributeArgumentsProperties ArgProperties = attributeStringLiteralListArg(getTargetInfo().getTriple(), *AttrName); if (ParseAttributeArgumentList(*AttrName, ParsedExprs, ArgProperties)) { SkipUntil(tok::r_paren, StopAtSemi); return 0; } // Pack expansion must currently be explicitly supported by an attribute. for (size_t I = 0; I < ParsedExprs.size(); ++I) { if (!isa(ParsedExprs[I])) continue; if (!attributeAcceptsExprPack(*AttrName)) { Diag(Tok.getLocation(), diag::err_attribute_argument_parm_pack_not_supported) << AttrName; SkipUntil(tok::r_paren, StopAtSemi); return 0; } } ArgExprs.insert(ArgExprs.end(), ParsedExprs.begin(), ParsedExprs.end()); } } SourceLocation RParen = Tok.getLocation(); if (!ExpectAndConsume(tok::r_paren)) { SourceLocation AttrLoc = ScopeLoc.isValid() ? ScopeLoc : AttrNameLoc; if (AttributeIsTypeArgAttr && !TheParsedType.get().isNull()) { Attrs.addNewTypeAttr(AttrName, SourceRange(AttrNameLoc, RParen), ScopeName, ScopeLoc, TheParsedType, Form); } else { Attrs.addNew(AttrName, SourceRange(AttrLoc, RParen), ScopeName, ScopeLoc, ArgExprs.data(), ArgExprs.size(), Form); } } if (EndLoc) *EndLoc = RParen; return static_cast(ArgExprs.size() + !TheParsedType.get().isNull()); } /// Parse the arguments to a parameterized GNU attribute or /// a C++11 attribute in "gnu" namespace. void Parser::ParseGNUAttributeArgs( IdentifierInfo *AttrName, SourceLocation AttrNameLoc, ParsedAttributes &Attrs, SourceLocation *EndLoc, IdentifierInfo *ScopeName, SourceLocation ScopeLoc, ParsedAttr::Form Form, Declarator *D) { assert(Tok.is(tok::l_paren) && "Attribute arg list not starting with '('"); ParsedAttr::Kind AttrKind = ParsedAttr::getParsedKind(AttrName, ScopeName, Form.getSyntax()); if (AttrKind == ParsedAttr::AT_Availability) { ParseAvailabilityAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc, ScopeName, ScopeLoc, Form); return; } else if (AttrKind == ParsedAttr::AT_ExternalSourceSymbol) { ParseExternalSourceSymbolAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc, ScopeName, ScopeLoc, Form); return; } else if (AttrKind == ParsedAttr::AT_ObjCBridgeRelated) { ParseObjCBridgeRelatedAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc, ScopeName, ScopeLoc, Form); return; } else if (AttrKind == ParsedAttr::AT_SwiftNewType) { ParseSwiftNewTypeAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc, ScopeName, ScopeLoc, Form); return; } else if (AttrKind == ParsedAttr::AT_TypeTagForDatatype) { ParseTypeTagForDatatypeAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc, ScopeName, ScopeLoc, Form); return; } else if (attributeIsTypeArgAttr(*AttrName)) { ParseAttributeWithTypeArg(*AttrName, AttrNameLoc, Attrs, ScopeName, ScopeLoc, Form); return; } else if (AttrKind == ParsedAttr::AT_CountedBy) { ParseBoundsAttribute(*AttrName, AttrNameLoc, Attrs, ScopeName, ScopeLoc, Form); return; } // These may refer to the function arguments, but need to be parsed early to // participate in determining whether it's a redeclaration. std::optional PrototypeScope; if (normalizeAttrName(AttrName->getName()) == "enable_if" && D && D->isFunctionDeclarator()) { DeclaratorChunk::FunctionTypeInfo FTI = D->getFunctionTypeInfo(); PrototypeScope.emplace(this, Scope::FunctionPrototypeScope | Scope::FunctionDeclarationScope | Scope::DeclScope); for (unsigned i = 0; i != FTI.NumParams; ++i) { ParmVarDecl *Param = cast(FTI.Params[i].Param); Actions.ActOnReenterCXXMethodParameter(getCurScope(), Param); } } ParseAttributeArgsCommon(AttrName, AttrNameLoc, Attrs, EndLoc, ScopeName, ScopeLoc, Form); } unsigned Parser::ParseClangAttributeArgs( IdentifierInfo *AttrName, SourceLocation AttrNameLoc, ParsedAttributes &Attrs, SourceLocation *EndLoc, IdentifierInfo *ScopeName, SourceLocation ScopeLoc, ParsedAttr::Form Form) { assert(Tok.is(tok::l_paren) && "Attribute arg list not starting with '('"); ParsedAttr::Kind AttrKind = ParsedAttr::getParsedKind(AttrName, ScopeName, Form.getSyntax()); switch (AttrKind) { default: return ParseAttributeArgsCommon(AttrName, AttrNameLoc, Attrs, EndLoc, ScopeName, ScopeLoc, Form); case ParsedAttr::AT_ExternalSourceSymbol: ParseExternalSourceSymbolAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc, ScopeName, ScopeLoc, Form); break; case ParsedAttr::AT_Availability: ParseAvailabilityAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc, ScopeName, ScopeLoc, Form); break; case ParsedAttr::AT_ObjCBridgeRelated: ParseObjCBridgeRelatedAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc, ScopeName, ScopeLoc, Form); break; case ParsedAttr::AT_SwiftNewType: ParseSwiftNewTypeAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc, ScopeName, ScopeLoc, Form); break; case ParsedAttr::AT_TypeTagForDatatype: ParseTypeTagForDatatypeAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc, ScopeName, ScopeLoc, Form); break; } return !Attrs.empty() ? Attrs.begin()->getNumArgs() : 0; } bool Parser::ParseMicrosoftDeclSpecArgs(IdentifierInfo *AttrName, SourceLocation AttrNameLoc, ParsedAttributes &Attrs) { unsigned ExistingAttrs = Attrs.size(); // If the attribute isn't known, we will not attempt to parse any // arguments. if (!hasAttribute(AttributeCommonInfo::Syntax::AS_Declspec, nullptr, AttrName, getTargetInfo(), getLangOpts())) { // Eat the left paren, then skip to the ending right paren. ConsumeParen(); SkipUntil(tok::r_paren); return false; } SourceLocation OpenParenLoc = Tok.getLocation(); if (AttrName->getName() == "property") { // The property declspec is more complex in that it can take one or two // assignment expressions as a parameter, but the lhs of the assignment // must be named get or put. BalancedDelimiterTracker T(*this, tok::l_paren); T.expectAndConsume(diag::err_expected_lparen_after, AttrName->getNameStart(), tok::r_paren); enum AccessorKind { AK_Invalid = -1, AK_Put = 0, AK_Get = 1 // indices into AccessorNames }; IdentifierInfo *AccessorNames[] = {nullptr, nullptr}; bool HasInvalidAccessor = false; // Parse the accessor specifications. while (true) { // Stop if this doesn't look like an accessor spec. if (!Tok.is(tok::identifier)) { // If the user wrote a completely empty list, use a special diagnostic. if (Tok.is(tok::r_paren) && !HasInvalidAccessor && AccessorNames[AK_Put] == nullptr && AccessorNames[AK_Get] == nullptr) { Diag(AttrNameLoc, diag::err_ms_property_no_getter_or_putter); break; } Diag(Tok.getLocation(), diag::err_ms_property_unknown_accessor); break; } AccessorKind Kind; SourceLocation KindLoc = Tok.getLocation(); StringRef KindStr = Tok.getIdentifierInfo()->getName(); if (KindStr == "get") { Kind = AK_Get; } else if (KindStr == "put") { Kind = AK_Put; // Recover from the common mistake of using 'set' instead of 'put'. } else if (KindStr == "set") { Diag(KindLoc, diag::err_ms_property_has_set_accessor) << FixItHint::CreateReplacement(KindLoc, "put"); Kind = AK_Put; // Handle the mistake of forgetting the accessor kind by skipping // this accessor. } else if (NextToken().is(tok::comma) || NextToken().is(tok::r_paren)) { Diag(KindLoc, diag::err_ms_property_missing_accessor_kind); ConsumeToken(); HasInvalidAccessor = true; goto next_property_accessor; // Otherwise, complain about the unknown accessor kind. } else { Diag(KindLoc, diag::err_ms_property_unknown_accessor); HasInvalidAccessor = true; Kind = AK_Invalid; // Try to keep parsing unless it doesn't look like an accessor spec. if (!NextToken().is(tok::equal)) break; } // Consume the identifier. ConsumeToken(); // Consume the '='. if (!TryConsumeToken(tok::equal)) { Diag(Tok.getLocation(), diag::err_ms_property_expected_equal) << KindStr; break; } // Expect the method name. if (!Tok.is(tok::identifier)) { Diag(Tok.getLocation(), diag::err_ms_property_expected_accessor_name); break; } if (Kind == AK_Invalid) { // Just drop invalid accessors. } else if (AccessorNames[Kind] != nullptr) { // Complain about the repeated accessor, ignore it, and keep parsing. Diag(KindLoc, diag::err_ms_property_duplicate_accessor) << KindStr; } else { AccessorNames[Kind] = Tok.getIdentifierInfo(); } ConsumeToken(); next_property_accessor: // Keep processing accessors until we run out. if (TryConsumeToken(tok::comma)) continue; // If we run into the ')', stop without consuming it. if (Tok.is(tok::r_paren)) break; Diag(Tok.getLocation(), diag::err_ms_property_expected_comma_or_rparen); break; } // Only add the property attribute if it was well-formed. if (!HasInvalidAccessor) Attrs.addNewPropertyAttr(AttrName, AttrNameLoc, nullptr, SourceLocation(), AccessorNames[AK_Get], AccessorNames[AK_Put], ParsedAttr::Form::Declspec()); T.skipToEnd(); return !HasInvalidAccessor; } unsigned NumArgs = ParseAttributeArgsCommon(AttrName, AttrNameLoc, Attrs, nullptr, nullptr, SourceLocation(), ParsedAttr::Form::Declspec()); // If this attribute's args were parsed, and it was expected to have // arguments but none were provided, emit a diagnostic. if (ExistingAttrs < Attrs.size() && Attrs.back().getMaxArgs() && !NumArgs) { Diag(OpenParenLoc, diag::err_attribute_requires_arguments) << AttrName; return false; } return true; } /// [MS] decl-specifier: /// __declspec ( extended-decl-modifier-seq ) /// /// [MS] extended-decl-modifier-seq: /// extended-decl-modifier[opt] /// extended-decl-modifier extended-decl-modifier-seq void Parser::ParseMicrosoftDeclSpecs(ParsedAttributes &Attrs) { assert(getLangOpts().DeclSpecKeyword && "__declspec keyword is not enabled"); assert(Tok.is(tok::kw___declspec) && "Not a declspec!"); SourceLocation StartLoc = Tok.getLocation(); SourceLocation EndLoc = StartLoc; while (Tok.is(tok::kw___declspec)) { ConsumeToken(); BalancedDelimiterTracker T(*this, tok::l_paren); if (T.expectAndConsume(diag::err_expected_lparen_after, "__declspec", tok::r_paren)) return; // An empty declspec is perfectly legal and should not warn. Additionally, // you can specify multiple attributes per declspec. while (Tok.isNot(tok::r_paren)) { // Attribute not present. if (TryConsumeToken(tok::comma)) continue; if (Tok.is(tok::code_completion)) { cutOffParsing(); Actions.CodeCompleteAttribute(AttributeCommonInfo::AS_Declspec); return; } // We expect either a well-known identifier or a generic string. Anything // else is a malformed declspec. bool IsString = Tok.getKind() == tok::string_literal; if (!IsString && Tok.getKind() != tok::identifier && Tok.getKind() != tok::kw_restrict) { Diag(Tok, diag::err_ms_declspec_type); T.skipToEnd(); return; } IdentifierInfo *AttrName; SourceLocation AttrNameLoc; if (IsString) { SmallString<8> StrBuffer; bool Invalid = false; StringRef Str = PP.getSpelling(Tok, StrBuffer, &Invalid); if (Invalid) { T.skipToEnd(); return; } AttrName = PP.getIdentifierInfo(Str); AttrNameLoc = ConsumeStringToken(); } else { AttrName = Tok.getIdentifierInfo(); AttrNameLoc = ConsumeToken(); } bool AttrHandled = false; // Parse attribute arguments. if (Tok.is(tok::l_paren)) AttrHandled = ParseMicrosoftDeclSpecArgs(AttrName, AttrNameLoc, Attrs); else if (AttrName->getName() == "property") // The property attribute must have an argument list. Diag(Tok.getLocation(), diag::err_expected_lparen_after) << AttrName->getName(); if (!AttrHandled) Attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0, ParsedAttr::Form::Declspec()); } T.consumeClose(); EndLoc = T.getCloseLocation(); } Attrs.Range = SourceRange(StartLoc, EndLoc); } void Parser::ParseMicrosoftTypeAttributes(ParsedAttributes &attrs) { // Treat these like attributes while (true) { auto Kind = Tok.getKind(); switch (Kind) { case tok::kw___fastcall: case tok::kw___stdcall: case tok::kw___thiscall: case tok::kw___regcall: case tok::kw___cdecl: case tok::kw___vectorcall: case tok::kw___ptr64: case tok::kw___w64: case tok::kw___ptr32: case tok::kw___sptr: case tok::kw___uptr: { IdentifierInfo *AttrName = Tok.getIdentifierInfo(); SourceLocation AttrNameLoc = ConsumeToken(); attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0, Kind); break; } default: return; } } } void Parser::ParseWebAssemblyFuncrefTypeAttribute(ParsedAttributes &attrs) { assert(Tok.is(tok::kw___funcref)); SourceLocation StartLoc = Tok.getLocation(); if (!getTargetInfo().getTriple().isWasm()) { ConsumeToken(); Diag(StartLoc, diag::err_wasm_funcref_not_wasm); return; } IdentifierInfo *AttrName = Tok.getIdentifierInfo(); SourceLocation AttrNameLoc = ConsumeToken(); attrs.addNew(AttrName, AttrNameLoc, /*ScopeName=*/nullptr, /*ScopeLoc=*/SourceLocation{}, /*Args=*/nullptr, /*numArgs=*/0, tok::kw___funcref); } void Parser::DiagnoseAndSkipExtendedMicrosoftTypeAttributes() { SourceLocation StartLoc = Tok.getLocation(); SourceLocation EndLoc = SkipExtendedMicrosoftTypeAttributes(); if (EndLoc.isValid()) { SourceRange Range(StartLoc, EndLoc); Diag(StartLoc, diag::warn_microsoft_qualifiers_ignored) << Range; } } SourceLocation Parser::SkipExtendedMicrosoftTypeAttributes() { SourceLocation EndLoc; while (true) { switch (Tok.getKind()) { case tok::kw_const: case tok::kw_volatile: case tok::kw___fastcall: case tok::kw___stdcall: case tok::kw___thiscall: case tok::kw___cdecl: case tok::kw___vectorcall: case tok::kw___ptr32: case tok::kw___ptr64: case tok::kw___w64: case tok::kw___unaligned: case tok::kw___sptr: case tok::kw___uptr: EndLoc = ConsumeToken(); break; default: return EndLoc; } } } void Parser::ParseBorlandTypeAttributes(ParsedAttributes &attrs) { // Treat these like attributes while (Tok.is(tok::kw___pascal)) { IdentifierInfo *AttrName = Tok.getIdentifierInfo(); SourceLocation AttrNameLoc = ConsumeToken(); attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0, tok::kw___pascal); } } void Parser::ParseOpenCLKernelAttributes(ParsedAttributes &attrs) { // Treat these like attributes while (Tok.is(tok::kw___kernel)) { IdentifierInfo *AttrName = Tok.getIdentifierInfo(); SourceLocation AttrNameLoc = ConsumeToken(); attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0, tok::kw___kernel); } } void Parser::ParseCUDAFunctionAttributes(ParsedAttributes &attrs) { while (Tok.is(tok::kw___noinline__)) { IdentifierInfo *AttrName = Tok.getIdentifierInfo(); SourceLocation AttrNameLoc = ConsumeToken(); attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0, tok::kw___noinline__); } } void Parser::ParseOpenCLQualifiers(ParsedAttributes &Attrs) { IdentifierInfo *AttrName = Tok.getIdentifierInfo(); SourceLocation AttrNameLoc = Tok.getLocation(); Attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0, Tok.getKind()); } bool Parser::isHLSLQualifier(const Token &Tok) const { return Tok.is(tok::kw_groupshared); } void Parser::ParseHLSLQualifiers(ParsedAttributes &Attrs) { IdentifierInfo *AttrName = Tok.getIdentifierInfo(); auto Kind = Tok.getKind(); SourceLocation AttrNameLoc = ConsumeToken(); Attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0, Kind); } void Parser::ParseNullabilityTypeSpecifiers(ParsedAttributes &attrs) { // Treat these like attributes, even though they're type specifiers. while (true) { auto Kind = Tok.getKind(); switch (Kind) { case tok::kw__Nonnull: case tok::kw__Nullable: case tok::kw__Nullable_result: case tok::kw__Null_unspecified: { IdentifierInfo *AttrName = Tok.getIdentifierInfo(); SourceLocation AttrNameLoc = ConsumeToken(); if (!getLangOpts().ObjC) Diag(AttrNameLoc, diag::ext_nullability) << AttrName; attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0, Kind); break; } default: return; } } } static bool VersionNumberSeparator(const char Separator) { return (Separator == '.' || Separator == '_'); } /// Parse a version number. /// /// version: /// simple-integer /// simple-integer '.' simple-integer /// simple-integer '_' simple-integer /// simple-integer '.' simple-integer '.' simple-integer /// simple-integer '_' simple-integer '_' simple-integer VersionTuple Parser::ParseVersionTuple(SourceRange &Range) { Range = SourceRange(Tok.getLocation(), Tok.getEndLoc()); if (!Tok.is(tok::numeric_constant)) { Diag(Tok, diag::err_expected_version); SkipUntil(tok::comma, tok::r_paren, StopAtSemi | StopBeforeMatch | StopAtCodeCompletion); return VersionTuple(); } // Parse the major (and possibly minor and subminor) versions, which // are stored in the numeric constant. We utilize a quirk of the // lexer, which is that it handles something like 1.2.3 as a single // numeric constant, rather than two separate tokens. SmallString<512> Buffer; Buffer.resize(Tok.getLength()+1); const char *ThisTokBegin = &Buffer[0]; // Get the spelling of the token, which eliminates trigraphs, etc. bool Invalid = false; unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin, &Invalid); if (Invalid) return VersionTuple(); // Parse the major version. unsigned AfterMajor = 0; unsigned Major = 0; while (AfterMajor < ActualLength && isDigit(ThisTokBegin[AfterMajor])) { Major = Major * 10 + ThisTokBegin[AfterMajor] - '0'; ++AfterMajor; } if (AfterMajor == 0) { Diag(Tok, diag::err_expected_version); SkipUntil(tok::comma, tok::r_paren, StopAtSemi | StopBeforeMatch | StopAtCodeCompletion); return VersionTuple(); } if (AfterMajor == ActualLength) { ConsumeToken(); // We only had a single version component. if (Major == 0) { Diag(Tok, diag::err_zero_version); return VersionTuple(); } return VersionTuple(Major); } const char AfterMajorSeparator = ThisTokBegin[AfterMajor]; if (!VersionNumberSeparator(AfterMajorSeparator) || (AfterMajor + 1 == ActualLength)) { Diag(Tok, diag::err_expected_version); SkipUntil(tok::comma, tok::r_paren, StopAtSemi | StopBeforeMatch | StopAtCodeCompletion); return VersionTuple(); } // Parse the minor version. unsigned AfterMinor = AfterMajor + 1; unsigned Minor = 0; while (AfterMinor < ActualLength && isDigit(ThisTokBegin[AfterMinor])) { Minor = Minor * 10 + ThisTokBegin[AfterMinor] - '0'; ++AfterMinor; } if (AfterMinor == ActualLength) { ConsumeToken(); // We had major.minor. if (Major == 0 && Minor == 0) { Diag(Tok, diag::err_zero_version); return VersionTuple(); } return VersionTuple(Major, Minor); } const char AfterMinorSeparator = ThisTokBegin[AfterMinor]; // If what follows is not a '.' or '_', we have a problem. if (!VersionNumberSeparator(AfterMinorSeparator)) { Diag(Tok, diag::err_expected_version); SkipUntil(tok::comma, tok::r_paren, StopAtSemi | StopBeforeMatch | StopAtCodeCompletion); return VersionTuple(); } // Warn if separators, be it '.' or '_', do not match. if (AfterMajorSeparator != AfterMinorSeparator) Diag(Tok, diag::warn_expected_consistent_version_separator); // Parse the subminor version. unsigned AfterSubminor = AfterMinor + 1; unsigned Subminor = 0; while (AfterSubminor < ActualLength && isDigit(ThisTokBegin[AfterSubminor])) { Subminor = Subminor * 10 + ThisTokBegin[AfterSubminor] - '0'; ++AfterSubminor; } if (AfterSubminor != ActualLength) { Diag(Tok, diag::err_expected_version); SkipUntil(tok::comma, tok::r_paren, StopAtSemi | StopBeforeMatch | StopAtCodeCompletion); return VersionTuple(); } ConsumeToken(); return VersionTuple(Major, Minor, Subminor); } /// Parse the contents of the "availability" attribute. /// /// availability-attribute: /// 'availability' '(' platform ',' opt-strict version-arg-list, /// opt-replacement, opt-message')' /// /// platform: /// identifier /// /// opt-strict: /// 'strict' ',' /// /// version-arg-list: /// version-arg /// version-arg ',' version-arg-list /// /// version-arg: /// 'introduced' '=' version /// 'deprecated' '=' version /// 'obsoleted' = version /// 'unavailable' /// opt-replacement: /// 'replacement' '=' /// opt-message: /// 'message' '=' void Parser::ParseAvailabilityAttribute( IdentifierInfo &Availability, SourceLocation AvailabilityLoc, ParsedAttributes &attrs, SourceLocation *endLoc, IdentifierInfo *ScopeName, SourceLocation ScopeLoc, ParsedAttr::Form Form) { enum { Introduced, Deprecated, Obsoleted, Unknown }; AvailabilityChange Changes[Unknown]; ExprResult MessageExpr, ReplacementExpr; // Opening '('. BalancedDelimiterTracker T(*this, tok::l_paren); if (T.consumeOpen()) { Diag(Tok, diag::err_expected) << tok::l_paren; return; } // Parse the platform name. if (Tok.isNot(tok::identifier)) { Diag(Tok, diag::err_availability_expected_platform); SkipUntil(tok::r_paren, StopAtSemi); return; } IdentifierLoc *Platform = ParseIdentifierLoc(); if (const IdentifierInfo *const Ident = Platform->Ident) { // Disallow xrOS for availability attributes. if (Ident->getName().contains("xrOS") || Ident->getName().contains("xros")) Diag(Platform->Loc, diag::warn_availability_unknown_platform) << Ident; // Canonicalize platform name from "macosx" to "macos". else if (Ident->getName() == "macosx") Platform->Ident = PP.getIdentifierInfo("macos"); // Canonicalize platform name from "macosx_app_extension" to // "macos_app_extension". else if (Ident->getName() == "macosx_app_extension") Platform->Ident = PP.getIdentifierInfo("macos_app_extension"); else Platform->Ident = PP.getIdentifierInfo( AvailabilityAttr::canonicalizePlatformName(Ident->getName())); } // Parse the ',' following the platform name. if (ExpectAndConsume(tok::comma)) { SkipUntil(tok::r_paren, StopAtSemi); return; } // If we haven't grabbed the pointers for the identifiers // "introduced", "deprecated", and "obsoleted", do so now. if (!Ident_introduced) { Ident_introduced = PP.getIdentifierInfo("introduced"); Ident_deprecated = PP.getIdentifierInfo("deprecated"); Ident_obsoleted = PP.getIdentifierInfo("obsoleted"); Ident_unavailable = PP.getIdentifierInfo("unavailable"); Ident_message = PP.getIdentifierInfo("message"); Ident_strict = PP.getIdentifierInfo("strict"); Ident_replacement = PP.getIdentifierInfo("replacement"); } // Parse the optional "strict", the optional "replacement" and the set of // introductions/deprecations/removals. SourceLocation UnavailableLoc, StrictLoc; do { if (Tok.isNot(tok::identifier)) { Diag(Tok, diag::err_availability_expected_change); SkipUntil(tok::r_paren, StopAtSemi); return; } IdentifierInfo *Keyword = Tok.getIdentifierInfo(); SourceLocation KeywordLoc = ConsumeToken(); if (Keyword == Ident_strict) { if (StrictLoc.isValid()) { Diag(KeywordLoc, diag::err_availability_redundant) << Keyword << SourceRange(StrictLoc); } StrictLoc = KeywordLoc; continue; } if (Keyword == Ident_unavailable) { if (UnavailableLoc.isValid()) { Diag(KeywordLoc, diag::err_availability_redundant) << Keyword << SourceRange(UnavailableLoc); } UnavailableLoc = KeywordLoc; continue; } if (Keyword == Ident_deprecated && Platform->Ident && Platform->Ident->isStr("swift")) { // For swift, we deprecate for all versions. if (Changes[Deprecated].KeywordLoc.isValid()) { Diag(KeywordLoc, diag::err_availability_redundant) << Keyword << SourceRange(Changes[Deprecated].KeywordLoc); } Changes[Deprecated].KeywordLoc = KeywordLoc; // Use a fake version here. Changes[Deprecated].Version = VersionTuple(1); continue; } if (Tok.isNot(tok::equal)) { Diag(Tok, diag::err_expected_after) << Keyword << tok::equal; SkipUntil(tok::r_paren, StopAtSemi); return; } ConsumeToken(); if (Keyword == Ident_message || Keyword == Ident_replacement) { if (!isTokenStringLiteral()) { Diag(Tok, diag::err_expected_string_literal) << /*Source='availability attribute'*/2; SkipUntil(tok::r_paren, StopAtSemi); return; } if (Keyword == Ident_message) { MessageExpr = ParseUnevaluatedStringLiteralExpression(); break; } else { ReplacementExpr = ParseUnevaluatedStringLiteralExpression(); continue; } } // Special handling of 'NA' only when applied to introduced or // deprecated. if ((Keyword == Ident_introduced || Keyword == Ident_deprecated) && Tok.is(tok::identifier)) { IdentifierInfo *NA = Tok.getIdentifierInfo(); if (NA->getName() == "NA") { ConsumeToken(); if (Keyword == Ident_introduced) UnavailableLoc = KeywordLoc; continue; } } SourceRange VersionRange; VersionTuple Version = ParseVersionTuple(VersionRange); if (Version.empty()) { SkipUntil(tok::r_paren, StopAtSemi); return; } unsigned Index; if (Keyword == Ident_introduced) Index = Introduced; else if (Keyword == Ident_deprecated) Index = Deprecated; else if (Keyword == Ident_obsoleted) Index = Obsoleted; else Index = Unknown; if (Index < Unknown) { if (!Changes[Index].KeywordLoc.isInvalid()) { Diag(KeywordLoc, diag::err_availability_redundant) << Keyword << SourceRange(Changes[Index].KeywordLoc, Changes[Index].VersionRange.getEnd()); } Changes[Index].KeywordLoc = KeywordLoc; Changes[Index].Version = Version; Changes[Index].VersionRange = VersionRange; } else { Diag(KeywordLoc, diag::err_availability_unknown_change) << Keyword << VersionRange; } } while (TryConsumeToken(tok::comma)); // Closing ')'. if (T.consumeClose()) return; if (endLoc) *endLoc = T.getCloseLocation(); // The 'unavailable' availability cannot be combined with any other // availability changes. Make sure that hasn't happened. if (UnavailableLoc.isValid()) { bool Complained = false; for (unsigned Index = Introduced; Index != Unknown; ++Index) { if (Changes[Index].KeywordLoc.isValid()) { if (!Complained) { Diag(UnavailableLoc, diag::warn_availability_and_unavailable) << SourceRange(Changes[Index].KeywordLoc, Changes[Index].VersionRange.getEnd()); Complained = true; } // Clear out the availability. Changes[Index] = AvailabilityChange(); } } } // Record this attribute attrs.addNew(&Availability, SourceRange(AvailabilityLoc, T.getCloseLocation()), ScopeName, ScopeLoc, Platform, Changes[Introduced], Changes[Deprecated], Changes[Obsoleted], UnavailableLoc, MessageExpr.get(), Form, StrictLoc, ReplacementExpr.get()); } /// Parse the contents of the "external_source_symbol" attribute. /// /// external-source-symbol-attribute: /// 'external_source_symbol' '(' keyword-arg-list ')' /// /// keyword-arg-list: /// keyword-arg /// keyword-arg ',' keyword-arg-list /// /// keyword-arg: /// 'language' '=' /// 'defined_in' '=' /// 'USR' '=' /// 'generated_declaration' void Parser::ParseExternalSourceSymbolAttribute( IdentifierInfo &ExternalSourceSymbol, SourceLocation Loc, ParsedAttributes &Attrs, SourceLocation *EndLoc, IdentifierInfo *ScopeName, SourceLocation ScopeLoc, ParsedAttr::Form Form) { // Opening '('. BalancedDelimiterTracker T(*this, tok::l_paren); if (T.expectAndConsume()) return; // Initialize the pointers for the keyword identifiers when required. if (!Ident_language) { Ident_language = PP.getIdentifierInfo("language"); Ident_defined_in = PP.getIdentifierInfo("defined_in"); Ident_generated_declaration = PP.getIdentifierInfo("generated_declaration"); Ident_USR = PP.getIdentifierInfo("USR"); } ExprResult Language; bool HasLanguage = false; ExprResult DefinedInExpr; bool HasDefinedIn = false; IdentifierLoc *GeneratedDeclaration = nullptr; ExprResult USR; bool HasUSR = false; // Parse the language/defined_in/generated_declaration keywords do { if (Tok.isNot(tok::identifier)) { Diag(Tok, diag::err_external_source_symbol_expected_keyword); SkipUntil(tok::r_paren, StopAtSemi); return; } SourceLocation KeywordLoc = Tok.getLocation(); IdentifierInfo *Keyword = Tok.getIdentifierInfo(); if (Keyword == Ident_generated_declaration) { if (GeneratedDeclaration) { Diag(Tok, diag::err_external_source_symbol_duplicate_clause) << Keyword; SkipUntil(tok::r_paren, StopAtSemi); return; } GeneratedDeclaration = ParseIdentifierLoc(); continue; } if (Keyword != Ident_language && Keyword != Ident_defined_in && Keyword != Ident_USR) { Diag(Tok, diag::err_external_source_symbol_expected_keyword); SkipUntil(tok::r_paren, StopAtSemi); return; } ConsumeToken(); if (ExpectAndConsume(tok::equal, diag::err_expected_after, Keyword->getName())) { SkipUntil(tok::r_paren, StopAtSemi); return; } bool HadLanguage = HasLanguage, HadDefinedIn = HasDefinedIn, HadUSR = HasUSR; if (Keyword == Ident_language) HasLanguage = true; else if (Keyword == Ident_USR) HasUSR = true; else HasDefinedIn = true; if (!isTokenStringLiteral()) { Diag(Tok, diag::err_expected_string_literal) << /*Source='external_source_symbol attribute'*/ 3 << /*language | source container | USR*/ ( Keyword == Ident_language ? 0 : (Keyword == Ident_defined_in ? 1 : 2)); SkipUntil(tok::comma, tok::r_paren, StopAtSemi | StopBeforeMatch); continue; } if (Keyword == Ident_language) { if (HadLanguage) { Diag(KeywordLoc, diag::err_external_source_symbol_duplicate_clause) << Keyword; ParseUnevaluatedStringLiteralExpression(); continue; } Language = ParseUnevaluatedStringLiteralExpression(); } else if (Keyword == Ident_USR) { if (HadUSR) { Diag(KeywordLoc, diag::err_external_source_symbol_duplicate_clause) << Keyword; ParseUnevaluatedStringLiteralExpression(); continue; } USR = ParseUnevaluatedStringLiteralExpression(); } else { assert(Keyword == Ident_defined_in && "Invalid clause keyword!"); if (HadDefinedIn) { Diag(KeywordLoc, diag::err_external_source_symbol_duplicate_clause) << Keyword; ParseUnevaluatedStringLiteralExpression(); continue; } DefinedInExpr = ParseUnevaluatedStringLiteralExpression(); } } while (TryConsumeToken(tok::comma)); // Closing ')'. if (T.consumeClose()) return; if (EndLoc) *EndLoc = T.getCloseLocation(); ArgsUnion Args[] = {Language.get(), DefinedInExpr.get(), GeneratedDeclaration, USR.get()}; Attrs.addNew(&ExternalSourceSymbol, SourceRange(Loc, T.getCloseLocation()), ScopeName, ScopeLoc, Args, std::size(Args), Form); } /// Parse the contents of the "objc_bridge_related" attribute. /// objc_bridge_related '(' related_class ',' opt-class_method ',' opt-instance_method ')' /// related_class: /// Identifier /// /// opt-class_method: /// Identifier: | /// /// opt-instance_method: /// Identifier | /// void Parser::ParseObjCBridgeRelatedAttribute( IdentifierInfo &ObjCBridgeRelated, SourceLocation ObjCBridgeRelatedLoc, ParsedAttributes &Attrs, SourceLocation *EndLoc, IdentifierInfo *ScopeName, SourceLocation ScopeLoc, ParsedAttr::Form Form) { // Opening '('. BalancedDelimiterTracker T(*this, tok::l_paren); if (T.consumeOpen()) { Diag(Tok, diag::err_expected) << tok::l_paren; return; } // Parse the related class name. if (Tok.isNot(tok::identifier)) { Diag(Tok, diag::err_objcbridge_related_expected_related_class); SkipUntil(tok::r_paren, StopAtSemi); return; } IdentifierLoc *RelatedClass = ParseIdentifierLoc(); if (ExpectAndConsume(tok::comma)) { SkipUntil(tok::r_paren, StopAtSemi); return; } // Parse class method name. It's non-optional in the sense that a trailing // comma is required, but it can be the empty string, and then we record a // nullptr. IdentifierLoc *ClassMethod = nullptr; if (Tok.is(tok::identifier)) { ClassMethod = ParseIdentifierLoc(); if (!TryConsumeToken(tok::colon)) { Diag(Tok, diag::err_objcbridge_related_selector_name); SkipUntil(tok::r_paren, StopAtSemi); return; } } if (!TryConsumeToken(tok::comma)) { if (Tok.is(tok::colon)) Diag(Tok, diag::err_objcbridge_related_selector_name); else Diag(Tok, diag::err_expected) << tok::comma; SkipUntil(tok::r_paren, StopAtSemi); return; } // Parse instance method name. Also non-optional but empty string is // permitted. IdentifierLoc *InstanceMethod = nullptr; if (Tok.is(tok::identifier)) InstanceMethod = ParseIdentifierLoc(); else if (Tok.isNot(tok::r_paren)) { Diag(Tok, diag::err_expected) << tok::r_paren; SkipUntil(tok::r_paren, StopAtSemi); return; } // Closing ')'. if (T.consumeClose()) return; if (EndLoc) *EndLoc = T.getCloseLocation(); // Record this attribute Attrs.addNew(&ObjCBridgeRelated, SourceRange(ObjCBridgeRelatedLoc, T.getCloseLocation()), ScopeName, ScopeLoc, RelatedClass, ClassMethod, InstanceMethod, Form); } void Parser::ParseSwiftNewTypeAttribute( IdentifierInfo &AttrName, SourceLocation AttrNameLoc, ParsedAttributes &Attrs, SourceLocation *EndLoc, IdentifierInfo *ScopeName, SourceLocation ScopeLoc, ParsedAttr::Form Form) { BalancedDelimiterTracker T(*this, tok::l_paren); // Opening '(' if (T.consumeOpen()) { Diag(Tok, diag::err_expected) << tok::l_paren; return; } if (Tok.is(tok::r_paren)) { Diag(Tok.getLocation(), diag::err_argument_required_after_attribute); T.consumeClose(); return; } if (Tok.isNot(tok::kw_struct) && Tok.isNot(tok::kw_enum)) { Diag(Tok, diag::warn_attribute_type_not_supported) << &AttrName << Tok.getIdentifierInfo(); if (!isTokenSpecial()) ConsumeToken(); T.consumeClose(); return; } auto *SwiftType = IdentifierLoc::create(Actions.Context, Tok.getLocation(), Tok.getIdentifierInfo()); ConsumeToken(); // Closing ')' if (T.consumeClose()) return; if (EndLoc) *EndLoc = T.getCloseLocation(); ArgsUnion Args[] = {SwiftType}; Attrs.addNew(&AttrName, SourceRange(AttrNameLoc, T.getCloseLocation()), ScopeName, ScopeLoc, Args, std::size(Args), Form); } void Parser::ParseTypeTagForDatatypeAttribute( IdentifierInfo &AttrName, SourceLocation AttrNameLoc, ParsedAttributes &Attrs, SourceLocation *EndLoc, IdentifierInfo *ScopeName, SourceLocation ScopeLoc, ParsedAttr::Form Form) { assert(Tok.is(tok::l_paren) && "Attribute arg list not starting with '('"); BalancedDelimiterTracker T(*this, tok::l_paren); T.consumeOpen(); if (Tok.isNot(tok::identifier)) { Diag(Tok, diag::err_expected) << tok::identifier; T.skipToEnd(); return; } IdentifierLoc *ArgumentKind = ParseIdentifierLoc(); if (ExpectAndConsume(tok::comma)) { T.skipToEnd(); return; } SourceRange MatchingCTypeRange; TypeResult MatchingCType = ParseTypeName(&MatchingCTypeRange); if (MatchingCType.isInvalid()) { T.skipToEnd(); return; } bool LayoutCompatible = false; bool MustBeNull = false; while (TryConsumeToken(tok::comma)) { if (Tok.isNot(tok::identifier)) { Diag(Tok, diag::err_expected) << tok::identifier; T.skipToEnd(); return; } IdentifierInfo *Flag = Tok.getIdentifierInfo(); if (Flag->isStr("layout_compatible")) LayoutCompatible = true; else if (Flag->isStr("must_be_null")) MustBeNull = true; else { Diag(Tok, diag::err_type_safety_unknown_flag) << Flag; T.skipToEnd(); return; } ConsumeToken(); // consume flag } if (!T.consumeClose()) { Attrs.addNewTypeTagForDatatype(&AttrName, AttrNameLoc, ScopeName, ScopeLoc, ArgumentKind, MatchingCType.get(), LayoutCompatible, MustBeNull, Form); } if (EndLoc) *EndLoc = T.getCloseLocation(); } /// DiagnoseProhibitedCXX11Attribute - We have found the opening square brackets /// of a C++11 attribute-specifier in a location where an attribute is not /// permitted. By C++11 [dcl.attr.grammar]p6, this is ill-formed. Diagnose this /// situation. /// /// \return \c true if we skipped an attribute-like chunk of tokens, \c false if /// this doesn't appear to actually be an attribute-specifier, and the caller /// should try to parse it. bool Parser::DiagnoseProhibitedCXX11Attribute() { assert(Tok.is(tok::l_square) && NextToken().is(tok::l_square)); switch (isCXX11AttributeSpecifier(/*Disambiguate*/true)) { case CAK_NotAttributeSpecifier: // No diagnostic: we're in Obj-C++11 and this is not actually an attribute. return false; case CAK_InvalidAttributeSpecifier: Diag(Tok.getLocation(), diag::err_l_square_l_square_not_attribute); return false; case CAK_AttributeSpecifier: // Parse and discard the attributes. SourceLocation BeginLoc = ConsumeBracket(); ConsumeBracket(); SkipUntil(tok::r_square); assert(Tok.is(tok::r_square) && "isCXX11AttributeSpecifier lied"); SourceLocation EndLoc = ConsumeBracket(); Diag(BeginLoc, diag::err_attributes_not_allowed) << SourceRange(BeginLoc, EndLoc); return true; } llvm_unreachable("All cases handled above."); } /// We have found the opening square brackets of a C++11 /// attribute-specifier in a location where an attribute is not permitted, but /// we know where the attributes ought to be written. Parse them anyway, and /// provide a fixit moving them to the right place. void Parser::DiagnoseMisplacedCXX11Attribute(ParsedAttributes &Attrs, SourceLocation CorrectLocation) { assert((Tok.is(tok::l_square) && NextToken().is(tok::l_square)) || Tok.is(tok::kw_alignas) || Tok.isRegularKeywordAttribute()); // Consume the attributes. auto Keyword = Tok.isRegularKeywordAttribute() ? Tok.getIdentifierInfo() : nullptr; SourceLocation Loc = Tok.getLocation(); ParseCXX11Attributes(Attrs); CharSourceRange AttrRange(SourceRange(Loc, Attrs.Range.getEnd()), true); // FIXME: use err_attributes_misplaced (Keyword ? Diag(Loc, diag::err_keyword_not_allowed) << Keyword : Diag(Loc, diag::err_attributes_not_allowed)) << FixItHint::CreateInsertionFromRange(CorrectLocation, AttrRange) << FixItHint::CreateRemoval(AttrRange); } void Parser::DiagnoseProhibitedAttributes( const ParsedAttributesView &Attrs, const SourceLocation CorrectLocation) { auto *FirstAttr = Attrs.empty() ? nullptr : &Attrs.front(); if (CorrectLocation.isValid()) { CharSourceRange AttrRange(Attrs.Range, true); (FirstAttr && FirstAttr->isRegularKeywordAttribute() ? Diag(CorrectLocation, diag::err_keyword_misplaced) << FirstAttr : Diag(CorrectLocation, diag::err_attributes_misplaced)) << FixItHint::CreateInsertionFromRange(CorrectLocation, AttrRange) << FixItHint::CreateRemoval(AttrRange); } else { const SourceRange &Range = Attrs.Range; (FirstAttr && FirstAttr->isRegularKeywordAttribute() ? Diag(Range.getBegin(), diag::err_keyword_not_allowed) << FirstAttr : Diag(Range.getBegin(), diag::err_attributes_not_allowed)) << Range; } } void Parser::ProhibitCXX11Attributes(ParsedAttributes &Attrs, unsigned AttrDiagID, unsigned KeywordDiagID, bool DiagnoseEmptyAttrs, bool WarnOnUnknownAttrs) { if (DiagnoseEmptyAttrs && Attrs.empty() && Attrs.Range.isValid()) { // An attribute list has been parsed, but it was empty. // This is the case for [[]]. const auto &LangOpts = getLangOpts(); auto &SM = PP.getSourceManager(); Token FirstLSquare; Lexer::getRawToken(Attrs.Range.getBegin(), FirstLSquare, SM, LangOpts); if (FirstLSquare.is(tok::l_square)) { std::optional SecondLSquare = Lexer::findNextToken(FirstLSquare.getLocation(), SM, LangOpts); if (SecondLSquare && SecondLSquare->is(tok::l_square)) { // The attribute range starts with [[, but is empty. So this must // be [[]], which we are supposed to diagnose because // DiagnoseEmptyAttrs is true. Diag(Attrs.Range.getBegin(), AttrDiagID) << Attrs.Range; return; } } } for (const ParsedAttr &AL : Attrs) { if (AL.isRegularKeywordAttribute()) { Diag(AL.getLoc(), KeywordDiagID) << AL; AL.setInvalid(); continue; } if (!AL.isStandardAttributeSyntax()) continue; if (AL.getKind() == ParsedAttr::UnknownAttribute) { if (WarnOnUnknownAttrs) Diag(AL.getLoc(), diag::warn_unknown_attribute_ignored) << AL << AL.getRange(); } else { Diag(AL.getLoc(), AttrDiagID) << AL; AL.setInvalid(); } } } void Parser::DiagnoseCXX11AttributeExtension(ParsedAttributes &Attrs) { for (const ParsedAttr &PA : Attrs) { if (PA.isStandardAttributeSyntax() || PA.isRegularKeywordAttribute()) Diag(PA.getLoc(), diag::ext_cxx11_attr_placement) << PA << PA.isRegularKeywordAttribute() << PA.getRange(); } } // Usually, `__attribute__((attrib)) class Foo {} var` means that attribute // applies to var, not the type Foo. // As an exception to the rule, __declspec(align(...)) before the // class-key affects the type instead of the variable. // Also, Microsoft-style [attributes] seem to affect the type instead of the // variable. // This function moves attributes that should apply to the type off DS to Attrs. void Parser::stripTypeAttributesOffDeclSpec(ParsedAttributes &Attrs, DeclSpec &DS, Sema::TagUseKind TUK) { if (TUK == Sema::TUK_Reference) return; llvm::SmallVector ToBeMoved; for (ParsedAttr &AL : DS.getAttributes()) { if ((AL.getKind() == ParsedAttr::AT_Aligned && AL.isDeclspecAttribute()) || AL.isMicrosoftAttribute()) ToBeMoved.push_back(&AL); } for (ParsedAttr *AL : ToBeMoved) { DS.getAttributes().remove(AL); Attrs.addAtEnd(AL); } } /// ParseDeclaration - Parse a full 'declaration', which consists of /// declaration-specifiers, some number of declarators, and a semicolon. /// 'Context' should be a DeclaratorContext value. This returns the /// location of the semicolon in DeclEnd. /// /// declaration: [C99 6.7] /// block-declaration -> /// simple-declaration /// others [FIXME] /// [C++] template-declaration /// [C++] namespace-definition /// [C++] using-directive /// [C++] using-declaration /// [C++11/C11] static_assert-declaration /// others... [FIXME] /// Parser::DeclGroupPtrTy Parser::ParseDeclaration(DeclaratorContext Context, SourceLocation &DeclEnd, ParsedAttributes &DeclAttrs, ParsedAttributes &DeclSpecAttrs, SourceLocation *DeclSpecStart) { ParenBraceBracketBalancer BalancerRAIIObj(*this); // Must temporarily exit the objective-c container scope for // parsing c none objective-c decls. ObjCDeclContextSwitch ObjCDC(*this); Decl *SingleDecl = nullptr; switch (Tok.getKind()) { case tok::kw_template: case tok::kw_export: ProhibitAttributes(DeclAttrs); ProhibitAttributes(DeclSpecAttrs); return ParseDeclarationStartingWithTemplate(Context, DeclEnd, DeclAttrs); case tok::kw_inline: // Could be the start of an inline namespace. Allowed as an ext in C++03. if (getLangOpts().CPlusPlus && NextToken().is(tok::kw_namespace)) { ProhibitAttributes(DeclAttrs); ProhibitAttributes(DeclSpecAttrs); SourceLocation InlineLoc = ConsumeToken(); return ParseNamespace(Context, DeclEnd, InlineLoc); } return ParseSimpleDeclaration(Context, DeclEnd, DeclAttrs, DeclSpecAttrs, true, nullptr, DeclSpecStart); case tok::kw_cbuffer: case tok::kw_tbuffer: SingleDecl = ParseHLSLBuffer(DeclEnd); break; case tok::kw_namespace: ProhibitAttributes(DeclAttrs); ProhibitAttributes(DeclSpecAttrs); return ParseNamespace(Context, DeclEnd); case tok::kw_using: { ParsedAttributes Attrs(AttrFactory); takeAndConcatenateAttrs(DeclAttrs, DeclSpecAttrs, Attrs); return ParseUsingDirectiveOrDeclaration(Context, ParsedTemplateInfo(), DeclEnd, Attrs); } case tok::kw_static_assert: case tok::kw__Static_assert: ProhibitAttributes(DeclAttrs); ProhibitAttributes(DeclSpecAttrs); SingleDecl = ParseStaticAssertDeclaration(DeclEnd); break; default: return ParseSimpleDeclaration(Context, DeclEnd, DeclAttrs, DeclSpecAttrs, true, nullptr, DeclSpecStart); } // This routine returns a DeclGroup, if the thing we parsed only contains a // single decl, convert it now. return Actions.ConvertDeclToDeclGroup(SingleDecl); } /// simple-declaration: [C99 6.7: declaration] [C++ 7p1: dcl.dcl] /// declaration-specifiers init-declarator-list[opt] ';' /// [C++11] attribute-specifier-seq decl-specifier-seq[opt] /// init-declarator-list ';' ///[C90/C++]init-declarator-list ';' [TODO] /// [OMP] threadprivate-directive /// [OMP] allocate-directive [TODO] /// /// for-range-declaration: [C++11 6.5p1: stmt.ranged] /// attribute-specifier-seq[opt] type-specifier-seq declarator /// /// If RequireSemi is false, this does not check for a ';' at the end of the /// declaration. If it is true, it checks for and eats it. /// /// If FRI is non-null, we might be parsing a for-range-declaration instead /// of a simple-declaration. If we find that we are, we also parse the /// for-range-initializer, and place it here. /// /// DeclSpecStart is used when decl-specifiers are parsed before parsing /// the Declaration. The SourceLocation for this Decl is set to /// DeclSpecStart if DeclSpecStart is non-null. Parser::DeclGroupPtrTy Parser::ParseSimpleDeclaration( DeclaratorContext Context, SourceLocation &DeclEnd, ParsedAttributes &DeclAttrs, ParsedAttributes &DeclSpecAttrs, bool RequireSemi, ForRangeInit *FRI, SourceLocation *DeclSpecStart) { // Need to retain these for diagnostics before we add them to the DeclSepc. ParsedAttributesView OriginalDeclSpecAttrs; OriginalDeclSpecAttrs.addAll(DeclSpecAttrs.begin(), DeclSpecAttrs.end()); OriginalDeclSpecAttrs.Range = DeclSpecAttrs.Range; // Parse the common declaration-specifiers piece. ParsingDeclSpec DS(*this); DS.takeAttributesFrom(DeclSpecAttrs); ParsedTemplateInfo TemplateInfo; DeclSpecContext DSContext = getDeclSpecContextFromDeclaratorContext(Context); ParseDeclarationSpecifiers(DS, TemplateInfo, AS_none, DSContext); // If we had a free-standing type definition with a missing semicolon, we // may get this far before the problem becomes obvious. if (DS.hasTagDefinition() && DiagnoseMissingSemiAfterTagDefinition(DS, AS_none, DSContext)) return nullptr; // C99 6.7.2.3p6: Handle "struct-or-union identifier;", "enum { X };" // declaration-specifiers init-declarator-list[opt] ';' if (Tok.is(tok::semi)) { ProhibitAttributes(DeclAttrs); DeclEnd = Tok.getLocation(); if (RequireSemi) ConsumeToken(); RecordDecl *AnonRecord = nullptr; Decl *TheDecl = Actions.ParsedFreeStandingDeclSpec( getCurScope(), AS_none, DS, ParsedAttributesView::none(), AnonRecord); Actions.ActOnDefinedDeclarationSpecifier(TheDecl); DS.complete(TheDecl); if (AnonRecord) { Decl* decls[] = {AnonRecord, TheDecl}; return Actions.BuildDeclaratorGroup(decls); } return Actions.ConvertDeclToDeclGroup(TheDecl); } if (DS.hasTagDefinition()) Actions.ActOnDefinedDeclarationSpecifier(DS.getRepAsDecl()); if (DeclSpecStart) DS.SetRangeStart(*DeclSpecStart); return ParseDeclGroup(DS, Context, DeclAttrs, TemplateInfo, &DeclEnd, FRI); } /// Returns true if this might be the start of a declarator, or a common typo /// for a declarator. bool Parser::MightBeDeclarator(DeclaratorContext Context) { switch (Tok.getKind()) { case tok::annot_cxxscope: case tok::annot_template_id: case tok::caret: case tok::code_completion: case tok::coloncolon: case tok::ellipsis: case tok::kw___attribute: case tok::kw_operator: case tok::l_paren: case tok::star: return true; case tok::amp: case tok::ampamp: return getLangOpts().CPlusPlus; case tok::l_square: // Might be an attribute on an unnamed bit-field. return Context == DeclaratorContext::Member && getLangOpts().CPlusPlus11 && NextToken().is(tok::l_square); case tok::colon: // Might be a typo for '::' or an unnamed bit-field. return Context == DeclaratorContext::Member || getLangOpts().CPlusPlus; case tok::identifier: switch (NextToken().getKind()) { case tok::code_completion: case tok::coloncolon: case tok::comma: case tok::equal: case tok::equalequal: // Might be a typo for '='. case tok::kw_alignas: case tok::kw_asm: case tok::kw___attribute: case tok::l_brace: case tok::l_paren: case tok::l_square: case tok::less: case tok::r_brace: case tok::r_paren: case tok::r_square: case tok::semi: return true; case tok::colon: // At namespace scope, 'identifier:' is probably a typo for 'identifier::' // and in block scope it's probably a label. Inside a class definition, // this is a bit-field. return Context == DeclaratorContext::Member || (getLangOpts().CPlusPlus && Context == DeclaratorContext::File); case tok::identifier: // Possible virt-specifier. return getLangOpts().CPlusPlus11 && isCXX11VirtSpecifier(NextToken()); default: return Tok.isRegularKeywordAttribute(); } default: return Tok.isRegularKeywordAttribute(); } } /// Skip until we reach something which seems like a sensible place to pick /// up parsing after a malformed declaration. This will sometimes stop sooner /// than SkipUntil(tok::r_brace) would, but will never stop later. void Parser::SkipMalformedDecl() { while (true) { switch (Tok.getKind()) { case tok::l_brace: // Skip until matching }, then stop. We've probably skipped over // a malformed class or function definition or similar. ConsumeBrace(); SkipUntil(tok::r_brace); if (Tok.isOneOf(tok::comma, tok::l_brace, tok::kw_try)) { // This declaration isn't over yet. Keep skipping. continue; } TryConsumeToken(tok::semi); return; case tok::l_square: ConsumeBracket(); SkipUntil(tok::r_square); continue; case tok::l_paren: ConsumeParen(); SkipUntil(tok::r_paren); continue; case tok::r_brace: return; case tok::semi: ConsumeToken(); return; case tok::kw_inline: // 'inline namespace' at the start of a line is almost certainly // a good place to pick back up parsing, except in an Objective-C // @interface context. if (Tok.isAtStartOfLine() && NextToken().is(tok::kw_namespace) && (!ParsingInObjCContainer || CurParsedObjCImpl)) return; break; case tok::kw_namespace: // 'namespace' at the start of a line is almost certainly a good // place to pick back up parsing, except in an Objective-C // @interface context. if (Tok.isAtStartOfLine() && (!ParsingInObjCContainer || CurParsedObjCImpl)) return; break; case tok::at: // @end is very much like } in Objective-C contexts. if (NextToken().isObjCAtKeyword(tok::objc_end) && ParsingInObjCContainer) return; break; case tok::minus: case tok::plus: // - and + probably start new method declarations in Objective-C contexts. if (Tok.isAtStartOfLine() && ParsingInObjCContainer) return; break; case tok::eof: case tok::annot_module_begin: case tok::annot_module_end: case tok::annot_module_include: case tok::annot_repl_input_end: return; default: break; } ConsumeAnyToken(); } } /// ParseDeclGroup - Having concluded that this is either a function /// definition or a group of object declarations, actually parse the /// result. Parser::DeclGroupPtrTy Parser::ParseDeclGroup(ParsingDeclSpec &DS, DeclaratorContext Context, ParsedAttributes &Attrs, ParsedTemplateInfo &TemplateInfo, SourceLocation *DeclEnd, ForRangeInit *FRI) { // Parse the first declarator. // Consume all of the attributes from `Attrs` by moving them to our own local // list. This ensures that we will not attempt to interpret them as statement // attributes higher up the callchain. ParsedAttributes LocalAttrs(AttrFactory); LocalAttrs.takeAllFrom(Attrs); ParsingDeclarator D(*this, DS, LocalAttrs, Context); if (TemplateInfo.TemplateParams) D.setTemplateParameterLists(*TemplateInfo.TemplateParams); bool IsTemplateSpecOrInst = (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation || TemplateInfo.Kind == ParsedTemplateInfo::ExplicitSpecialization); SuppressAccessChecks SAC(*this, IsTemplateSpecOrInst); ParseDeclarator(D); if (IsTemplateSpecOrInst) SAC.done(); // Bail out if the first declarator didn't seem well-formed. if (!D.hasName() && !D.mayOmitIdentifier()) { SkipMalformedDecl(); return nullptr; } if (getLangOpts().HLSL) MaybeParseHLSLSemantics(D); if (Tok.is(tok::kw_requires)) ParseTrailingRequiresClause(D); // Save late-parsed attributes for now; they need to be parsed in the // appropriate function scope after the function Decl has been constructed. // These will be parsed in ParseFunctionDefinition or ParseLexedAttrList. LateParsedAttrList LateParsedAttrs(true); if (D.isFunctionDeclarator()) { MaybeParseGNUAttributes(D, &LateParsedAttrs); // The _Noreturn keyword can't appear here, unlike the GNU noreturn // attribute. If we find the keyword here, tell the user to put it // at the start instead. if (Tok.is(tok::kw__Noreturn)) { SourceLocation Loc = ConsumeToken(); const char *PrevSpec; unsigned DiagID; // We can offer a fixit if it's valid to mark this function as _Noreturn // and we don't have any other declarators in this declaration. bool Fixit = !DS.setFunctionSpecNoreturn(Loc, PrevSpec, DiagID); MaybeParseGNUAttributes(D, &LateParsedAttrs); Fixit &= Tok.isOneOf(tok::semi, tok::l_brace, tok::kw_try); Diag(Loc, diag::err_c11_noreturn_misplaced) << (Fixit ? FixItHint::CreateRemoval(Loc) : FixItHint()) << (Fixit ? FixItHint::CreateInsertion(D.getBeginLoc(), "_Noreturn ") : FixItHint()); } // Check to see if we have a function *definition* which must have a body. if (Tok.is(tok::equal) && NextToken().is(tok::code_completion)) { cutOffParsing(); Actions.CodeCompleteAfterFunctionEquals(D); return nullptr; } // We're at the point where the parsing of function declarator is finished. // // A common error is that users accidently add a virtual specifier // (e.g. override) in an out-line method definition. // We attempt to recover by stripping all these specifiers coming after // the declarator. while (auto Specifier = isCXX11VirtSpecifier()) { Diag(Tok, diag::err_virt_specifier_outside_class) << VirtSpecifiers::getSpecifierName(Specifier) << FixItHint::CreateRemoval(Tok.getLocation()); ConsumeToken(); } // Look at the next token to make sure that this isn't a function // declaration. We have to check this because __attribute__ might be the // start of a function definition in GCC-extended K&R C. if (!isDeclarationAfterDeclarator()) { // Function definitions are only allowed at file scope and in C++ classes. // The C++ inline method definition case is handled elsewhere, so we only // need to handle the file scope definition case. if (Context == DeclaratorContext::File) { if (isStartOfFunctionDefinition(D)) { // C++23 [dcl.typedef] p1: // The typedef specifier shall not be [...], and it shall not be // used in the decl-specifier-seq of a parameter-declaration nor in // the decl-specifier-seq of a function-definition. if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef) { // If the user intended to write 'typename', we should have already // suggested adding it elsewhere. In any case, recover by ignoring // 'typedef' and suggest removing it. Diag(DS.getStorageClassSpecLoc(), diag::err_function_declared_typedef) << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc()); DS.ClearStorageClassSpecs(); } Decl *TheDecl = nullptr; if (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation) { if (D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) { // If the declarator-id is not a template-id, issue a diagnostic // and recover by ignoring the 'template' keyword. Diag(Tok, diag::err_template_defn_explicit_instantiation) << 0; TheDecl = ParseFunctionDefinition(D, ParsedTemplateInfo(), &LateParsedAttrs); } else { SourceLocation LAngleLoc = PP.getLocForEndOfToken(TemplateInfo.TemplateLoc); Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_with_definition) << SourceRange(TemplateInfo.TemplateLoc) << FixItHint::CreateInsertion(LAngleLoc, "<>"); // Recover as if it were an explicit specialization. TemplateParameterLists FakedParamLists; FakedParamLists.push_back(Actions.ActOnTemplateParameterList( 0, SourceLocation(), TemplateInfo.TemplateLoc, LAngleLoc, std::nullopt, LAngleLoc, nullptr)); TheDecl = ParseFunctionDefinition( D, ParsedTemplateInfo(&FakedParamLists, /*isSpecialization=*/true, /*lastParameterListWasEmpty=*/true), &LateParsedAttrs); } } else { TheDecl = ParseFunctionDefinition(D, TemplateInfo, &LateParsedAttrs); } return Actions.ConvertDeclToDeclGroup(TheDecl); } if (isDeclarationSpecifier(ImplicitTypenameContext::No) || Tok.is(tok::kw_namespace)) { // If there is an invalid declaration specifier or a namespace // definition right after the function prototype, then we must be in a // missing semicolon case where this isn't actually a body. Just fall // through into the code that handles it as a prototype, and let the // top-level code handle the erroneous declspec where it would // otherwise expect a comma or semicolon. Note that // isDeclarationSpecifier already covers 'inline namespace', since // 'inline' can be a declaration specifier. } else { Diag(Tok, diag::err_expected_fn_body); SkipUntil(tok::semi); return nullptr; } } else { if (Tok.is(tok::l_brace)) { Diag(Tok, diag::err_function_definition_not_allowed); SkipMalformedDecl(); return nullptr; } } } } if (ParseAsmAttributesAfterDeclarator(D)) return nullptr; // C++0x [stmt.iter]p1: Check if we have a for-range-declarator. If so, we // must parse and analyze the for-range-initializer before the declaration is // analyzed. // // Handle the Objective-C for-in loop variable similarly, although we // don't need to parse the container in advance. if (FRI && (Tok.is(tok::colon) || isTokIdentifier_in())) { bool IsForRangeLoop = false; if (TryConsumeToken(tok::colon, FRI->ColonLoc)) { IsForRangeLoop = true; EnterExpressionEvaluationContext ForRangeInitContext( Actions, Sema::ExpressionEvaluationContext::PotentiallyEvaluated, /*LambdaContextDecl=*/nullptr, Sema::ExpressionEvaluationContextRecord::EK_Other, getLangOpts().CPlusPlus23); // P2718R0 - Lifetime extension in range-based for loops. if (getLangOpts().CPlusPlus23) { auto &LastRecord = Actions.ExprEvalContexts.back(); LastRecord.InLifetimeExtendingContext = true; } if (getLangOpts().OpenMP) Actions.startOpenMPCXXRangeFor(); if (Tok.is(tok::l_brace)) FRI->RangeExpr = ParseBraceInitializer(); else FRI->RangeExpr = ParseExpression(); // Before c++23, ForRangeLifetimeExtendTemps should be empty. assert( getLangOpts().CPlusPlus23 || Actions.ExprEvalContexts.back().ForRangeLifetimeExtendTemps.empty()); // Move the collected materialized temporaries into ForRangeInit before // ForRangeInitContext exit. FRI->LifetimeExtendTemps = std::move( Actions.ExprEvalContexts.back().ForRangeLifetimeExtendTemps); } Decl *ThisDecl = Actions.ActOnDeclarator(getCurScope(), D); if (IsForRangeLoop) { Actions.ActOnCXXForRangeDecl(ThisDecl); } else { // Obj-C for loop if (auto *VD = dyn_cast_or_null(ThisDecl)) VD->setObjCForDecl(true); } Actions.FinalizeDeclaration(ThisDecl); D.complete(ThisDecl); return Actions.FinalizeDeclaratorGroup(getCurScope(), DS, ThisDecl); } SmallVector DeclsInGroup; Decl *FirstDecl = ParseDeclarationAfterDeclaratorAndAttributes(D, TemplateInfo, FRI); if (LateParsedAttrs.size() > 0) ParseLexedAttributeList(LateParsedAttrs, FirstDecl, true, false); D.complete(FirstDecl); if (FirstDecl) DeclsInGroup.push_back(FirstDecl); bool ExpectSemi = Context != DeclaratorContext::ForInit; // If we don't have a comma, it is either the end of the list (a ';') or an // error, bail out. SourceLocation CommaLoc; while (TryConsumeToken(tok::comma, CommaLoc)) { if (Tok.isAtStartOfLine() && ExpectSemi && !MightBeDeclarator(Context)) { // This comma was followed by a line-break and something which can't be // the start of a declarator. The comma was probably a typo for a // semicolon. Diag(CommaLoc, diag::err_expected_semi_declaration) << FixItHint::CreateReplacement(CommaLoc, ";"); ExpectSemi = false; break; } // C++23 [temp.pre]p5: // In a template-declaration, explicit specialization, or explicit // instantiation the init-declarator-list in the declaration shall // contain at most one declarator. if (TemplateInfo.Kind != ParsedTemplateInfo::NonTemplate && D.isFirstDeclarator()) { Diag(CommaLoc, diag::err_multiple_template_declarators) << TemplateInfo.Kind; } // Parse the next declarator. D.clear(); D.setCommaLoc(CommaLoc); // Accept attributes in an init-declarator. In the first declarator in a // declaration, these would be part of the declspec. In subsequent // declarators, they become part of the declarator itself, so that they // don't apply to declarators after *this* one. Examples: // short __attribute__((common)) var; -> declspec // short var __attribute__((common)); -> declarator // short x, __attribute__((common)) var; -> declarator MaybeParseGNUAttributes(D); // MSVC parses but ignores qualifiers after the comma as an extension. if (getLangOpts().MicrosoftExt) DiagnoseAndSkipExtendedMicrosoftTypeAttributes(); ParseDeclarator(D); if (getLangOpts().HLSL) MaybeParseHLSLSemantics(D); if (!D.isInvalidType()) { // C++2a [dcl.decl]p1 // init-declarator: // declarator initializer[opt] // declarator requires-clause if (Tok.is(tok::kw_requires)) ParseTrailingRequiresClause(D); Decl *ThisDecl = ParseDeclarationAfterDeclarator(D, TemplateInfo); D.complete(ThisDecl); if (ThisDecl) DeclsInGroup.push_back(ThisDecl); } } if (DeclEnd) *DeclEnd = Tok.getLocation(); if (ExpectSemi && ExpectAndConsumeSemi( Context == DeclaratorContext::File ? diag::err_invalid_token_after_toplevel_declarator : diag::err_expected_semi_declaration)) { // Okay, there was no semicolon and one was expected. If we see a // declaration specifier, just assume it was missing and continue parsing. // Otherwise things are very confused and we skip to recover. if (!isDeclarationSpecifier(ImplicitTypenameContext::No)) SkipMalformedDecl(); } return Actions.FinalizeDeclaratorGroup(getCurScope(), DS, DeclsInGroup); } /// Parse an optional simple-asm-expr and attributes, and attach them to a /// declarator. Returns true on an error. bool Parser::ParseAsmAttributesAfterDeclarator(Declarator &D) { // If a simple-asm-expr is present, parse it. if (Tok.is(tok::kw_asm)) { SourceLocation Loc; ExprResult AsmLabel(ParseSimpleAsm(/*ForAsmLabel*/ true, &Loc)); if (AsmLabel.isInvalid()) { SkipUntil(tok::semi, StopBeforeMatch); return true; } D.setAsmLabel(AsmLabel.get()); D.SetRangeEnd(Loc); } MaybeParseGNUAttributes(D); return false; } /// Parse 'declaration' after parsing 'declaration-specifiers /// declarator'. This method parses the remainder of the declaration /// (including any attributes or initializer, among other things) and /// finalizes the declaration. /// /// init-declarator: [C99 6.7] /// declarator /// declarator '=' initializer /// [GNU] declarator simple-asm-expr[opt] attributes[opt] /// [GNU] declarator simple-asm-expr[opt] attributes[opt] '=' initializer /// [C++] declarator initializer[opt] /// /// [C++] initializer: /// [C++] '=' initializer-clause /// [C++] '(' expression-list ')' /// [C++0x] '=' 'default' [TODO] /// [C++0x] '=' 'delete' /// [C++0x] braced-init-list /// /// According to the standard grammar, =default and =delete are function /// definitions, but that definitely doesn't fit with the parser here. /// Decl *Parser::ParseDeclarationAfterDeclarator( Declarator &D, const ParsedTemplateInfo &TemplateInfo) { if (ParseAsmAttributesAfterDeclarator(D)) return nullptr; return ParseDeclarationAfterDeclaratorAndAttributes(D, TemplateInfo); } Decl *Parser::ParseDeclarationAfterDeclaratorAndAttributes( Declarator &D, const ParsedTemplateInfo &TemplateInfo, ForRangeInit *FRI) { // RAII type used to track whether we're inside an initializer. struct InitializerScopeRAII { Parser &P; Declarator &D; Decl *ThisDecl; InitializerScopeRAII(Parser &P, Declarator &D, Decl *ThisDecl) : P(P), D(D), ThisDecl(ThisDecl) { if (ThisDecl && P.getLangOpts().CPlusPlus) { Scope *S = nullptr; if (D.getCXXScopeSpec().isSet()) { P.EnterScope(0); S = P.getCurScope(); } P.Actions.ActOnCXXEnterDeclInitializer(S, ThisDecl); } } ~InitializerScopeRAII() { pop(); } void pop() { if (ThisDecl && P.getLangOpts().CPlusPlus) { Scope *S = nullptr; if (D.getCXXScopeSpec().isSet()) S = P.getCurScope(); P.Actions.ActOnCXXExitDeclInitializer(S, ThisDecl); if (S) P.ExitScope(); } ThisDecl = nullptr; } }; enum class InitKind { Uninitialized, Equal, CXXDirect, CXXBraced }; InitKind TheInitKind; // If a '==' or '+=' is found, suggest a fixit to '='. if (isTokenEqualOrEqualTypo()) TheInitKind = InitKind::Equal; else if (Tok.is(tok::l_paren)) TheInitKind = InitKind::CXXDirect; else if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace) && (!CurParsedObjCImpl || !D.isFunctionDeclarator())) TheInitKind = InitKind::CXXBraced; else TheInitKind = InitKind::Uninitialized; if (TheInitKind != InitKind::Uninitialized) D.setHasInitializer(); // Inform Sema that we just parsed this declarator. Decl *ThisDecl = nullptr; Decl *OuterDecl = nullptr; switch (TemplateInfo.Kind) { case ParsedTemplateInfo::NonTemplate: ThisDecl = Actions.ActOnDeclarator(getCurScope(), D); break; case ParsedTemplateInfo::Template: case ParsedTemplateInfo::ExplicitSpecialization: { ThisDecl = Actions.ActOnTemplateDeclarator(getCurScope(), *TemplateInfo.TemplateParams, D); if (VarTemplateDecl *VT = dyn_cast_or_null(ThisDecl)) { // Re-direct this decl to refer to the templated decl so that we can // initialize it. ThisDecl = VT->getTemplatedDecl(); OuterDecl = VT; } break; } case ParsedTemplateInfo::ExplicitInstantiation: { if (Tok.is(tok::semi)) { DeclResult ThisRes = Actions.ActOnExplicitInstantiation( getCurScope(), TemplateInfo.ExternLoc, TemplateInfo.TemplateLoc, D); if (ThisRes.isInvalid()) { SkipUntil(tok::semi, StopBeforeMatch); return nullptr; } ThisDecl = ThisRes.get(); } else { // FIXME: This check should be for a variable template instantiation only. // Check that this is a valid instantiation if (D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) { // If the declarator-id is not a template-id, issue a diagnostic and // recover by ignoring the 'template' keyword. Diag(Tok, diag::err_template_defn_explicit_instantiation) << 2 << FixItHint::CreateRemoval(TemplateInfo.TemplateLoc); ThisDecl = Actions.ActOnDeclarator(getCurScope(), D); } else { SourceLocation LAngleLoc = PP.getLocForEndOfToken(TemplateInfo.TemplateLoc); Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_with_definition) << SourceRange(TemplateInfo.TemplateLoc) << FixItHint::CreateInsertion(LAngleLoc, "<>"); // Recover as if it were an explicit specialization. TemplateParameterLists FakedParamLists; FakedParamLists.push_back(Actions.ActOnTemplateParameterList( 0, SourceLocation(), TemplateInfo.TemplateLoc, LAngleLoc, std::nullopt, LAngleLoc, nullptr)); ThisDecl = Actions.ActOnTemplateDeclarator(getCurScope(), FakedParamLists, D); } } break; } } SemaCUDA::CUDATargetContextRAII X(Actions.CUDA(), SemaCUDA::CTCK_InitGlobalVar, ThisDecl); switch (TheInitKind) { // Parse declarator '=' initializer. case InitKind::Equal: { SourceLocation EqualLoc = ConsumeToken(); if (Tok.is(tok::kw_delete)) { if (D.isFunctionDeclarator()) Diag(ConsumeToken(), diag::err_default_delete_in_multiple_declaration) << 1 /* delete */; else Diag(ConsumeToken(), diag::err_deleted_non_function); SkipDeletedFunctionBody(); } else if (Tok.is(tok::kw_default)) { if (D.isFunctionDeclarator()) Diag(ConsumeToken(), diag::err_default_delete_in_multiple_declaration) << 0 /* default */; else Diag(ConsumeToken(), diag::err_default_special_members) << getLangOpts().CPlusPlus20; } else { InitializerScopeRAII InitScope(*this, D, ThisDecl); if (Tok.is(tok::code_completion)) { cutOffParsing(); Actions.CodeCompleteInitializer(getCurScope(), ThisDecl); Actions.FinalizeDeclaration(ThisDecl); return nullptr; } PreferredType.enterVariableInit(Tok.getLocation(), ThisDecl); ExprResult Init = ParseInitializer(); // If this is the only decl in (possibly) range based for statement, // our best guess is that the user meant ':' instead of '='. if (Tok.is(tok::r_paren) && FRI && D.isFirstDeclarator()) { Diag(EqualLoc, diag::err_single_decl_assign_in_for_range) << FixItHint::CreateReplacement(EqualLoc, ":"); // We are trying to stop parser from looking for ';' in this for // statement, therefore preventing spurious errors to be issued. FRI->ColonLoc = EqualLoc; Init = ExprError(); FRI->RangeExpr = Init; } InitScope.pop(); if (Init.isInvalid()) { SmallVector StopTokens; StopTokens.push_back(tok::comma); if (D.getContext() == DeclaratorContext::ForInit || D.getContext() == DeclaratorContext::SelectionInit) StopTokens.push_back(tok::r_paren); SkipUntil(StopTokens, StopAtSemi | StopBeforeMatch); Actions.ActOnInitializerError(ThisDecl); } else Actions.AddInitializerToDecl(ThisDecl, Init.get(), /*DirectInit=*/false); } break; } case InitKind::CXXDirect: { // Parse C++ direct initializer: '(' expression-list ')' BalancedDelimiterTracker T(*this, tok::l_paren); T.consumeOpen(); ExprVector Exprs; InitializerScopeRAII InitScope(*this, D, ThisDecl); auto ThisVarDecl = dyn_cast_or_null(ThisDecl); auto RunSignatureHelp = [&]() { QualType PreferredType = Actions.ProduceConstructorSignatureHelp( ThisVarDecl->getType()->getCanonicalTypeInternal(), ThisDecl->getLocation(), Exprs, T.getOpenLocation(), /*Braced=*/false); CalledSignatureHelp = true; return PreferredType; }; auto SetPreferredType = [&] { PreferredType.enterFunctionArgument(Tok.getLocation(), RunSignatureHelp); }; llvm::function_ref ExpressionStarts; if (ThisVarDecl) { // ParseExpressionList can sometimes succeed even when ThisDecl is not // VarDecl. This is an error and it is reported in a call to // Actions.ActOnInitializerError(). However, we call // ProduceConstructorSignatureHelp only on VarDecls. ExpressionStarts = SetPreferredType; } bool SawError = ParseExpressionList(Exprs, ExpressionStarts); InitScope.pop(); if (SawError) { if (ThisVarDecl && PP.isCodeCompletionReached() && !CalledSignatureHelp) { Actions.ProduceConstructorSignatureHelp( ThisVarDecl->getType()->getCanonicalTypeInternal(), ThisDecl->getLocation(), Exprs, T.getOpenLocation(), /*Braced=*/false); CalledSignatureHelp = true; } Actions.ActOnInitializerError(ThisDecl); SkipUntil(tok::r_paren, StopAtSemi); } else { // Match the ')'. T.consumeClose(); ExprResult Initializer = Actions.ActOnParenListExpr(T.getOpenLocation(), T.getCloseLocation(), Exprs); Actions.AddInitializerToDecl(ThisDecl, Initializer.get(), /*DirectInit=*/true); } break; } case InitKind::CXXBraced: { // Parse C++0x braced-init-list. Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists); InitializerScopeRAII InitScope(*this, D, ThisDecl); PreferredType.enterVariableInit(Tok.getLocation(), ThisDecl); ExprResult Init(ParseBraceInitializer()); InitScope.pop(); if (Init.isInvalid()) { Actions.ActOnInitializerError(ThisDecl); } else Actions.AddInitializerToDecl(ThisDecl, Init.get(), /*DirectInit=*/true); break; } case InitKind::Uninitialized: { Actions.ActOnUninitializedDecl(ThisDecl); break; } } Actions.FinalizeDeclaration(ThisDecl); return OuterDecl ? OuterDecl : ThisDecl; } /// ParseSpecifierQualifierList /// specifier-qualifier-list: /// type-specifier specifier-qualifier-list[opt] /// type-qualifier specifier-qualifier-list[opt] /// [GNU] attributes specifier-qualifier-list[opt] /// void Parser::ParseSpecifierQualifierList( DeclSpec &DS, ImplicitTypenameContext AllowImplicitTypename, AccessSpecifier AS, DeclSpecContext DSC) { /// specifier-qualifier-list is a subset of declaration-specifiers. Just /// parse declaration-specifiers and complain about extra stuff. /// TODO: diagnose attribute-specifiers and alignment-specifiers. ParseDeclarationSpecifiers(DS, ParsedTemplateInfo(), AS, DSC, nullptr, AllowImplicitTypename); // Validate declspec for type-name. unsigned Specs = DS.getParsedSpecifiers(); if (isTypeSpecifier(DSC) && !DS.hasTypeSpecifier()) { Diag(Tok, diag::err_expected_type); DS.SetTypeSpecError(); } else if (Specs == DeclSpec::PQ_None && !DS.hasAttributes()) { Diag(Tok, diag::err_typename_requires_specqual); if (!DS.hasTypeSpecifier()) DS.SetTypeSpecError(); } // Issue diagnostic and remove storage class if present. if (Specs & DeclSpec::PQ_StorageClassSpecifier) { if (DS.getStorageClassSpecLoc().isValid()) Diag(DS.getStorageClassSpecLoc(),diag::err_typename_invalid_storageclass); else Diag(DS.getThreadStorageClassSpecLoc(), diag::err_typename_invalid_storageclass); DS.ClearStorageClassSpecs(); } // Issue diagnostic and remove function specifier if present. if (Specs & DeclSpec::PQ_FunctionSpecifier) { if (DS.isInlineSpecified()) Diag(DS.getInlineSpecLoc(), diag::err_typename_invalid_functionspec); if (DS.isVirtualSpecified()) Diag(DS.getVirtualSpecLoc(), diag::err_typename_invalid_functionspec); if (DS.hasExplicitSpecifier()) Diag(DS.getExplicitSpecLoc(), diag::err_typename_invalid_functionspec); if (DS.isNoreturnSpecified()) Diag(DS.getNoreturnSpecLoc(), diag::err_typename_invalid_functionspec); DS.ClearFunctionSpecs(); } // Issue diagnostic and remove constexpr specifier if present. if (DS.hasConstexprSpecifier() && DSC != DeclSpecContext::DSC_condition) { Diag(DS.getConstexprSpecLoc(), diag::err_typename_invalid_constexpr) << static_cast(DS.getConstexprSpecifier()); DS.ClearConstexprSpec(); } } /// isValidAfterIdentifierInDeclaratorAfterDeclSpec - Return true if the /// specified token is valid after the identifier in a declarator which /// immediately follows the declspec. For example, these things are valid: /// /// int x [ 4]; // direct-declarator /// int x ( int y); // direct-declarator /// int(int x ) // direct-declarator /// int x ; // simple-declaration /// int x = 17; // init-declarator-list /// int x , y; // init-declarator-list /// int x __asm__ ("foo"); // init-declarator-list /// int x : 4; // struct-declarator /// int x { 5}; // C++'0x unified initializers /// /// This is not, because 'x' does not immediately follow the declspec (though /// ')' happens to be valid anyway). /// int (x) /// static bool isValidAfterIdentifierInDeclarator(const Token &T) { return T.isOneOf(tok::l_square, tok::l_paren, tok::r_paren, tok::semi, tok::comma, tok::equal, tok::kw_asm, tok::l_brace, tok::colon); } /// ParseImplicitInt - This method is called when we have an non-typename /// identifier in a declspec (which normally terminates the decl spec) when /// the declspec has no type specifier. In this case, the declspec is either /// malformed or is "implicit int" (in K&R and C89). /// /// This method handles diagnosing this prettily and returns false if the /// declspec is done being processed. If it recovers and thinks there may be /// other pieces of declspec after it, it returns true. /// bool Parser::ParseImplicitInt(DeclSpec &DS, CXXScopeSpec *SS, const ParsedTemplateInfo &TemplateInfo, AccessSpecifier AS, DeclSpecContext DSC, ParsedAttributes &Attrs) { assert(Tok.is(tok::identifier) && "should have identifier"); SourceLocation Loc = Tok.getLocation(); // If we see an identifier that is not a type name, we normally would // parse it as the identifier being declared. However, when a typename // is typo'd or the definition is not included, this will incorrectly // parse the typename as the identifier name and fall over misparsing // later parts of the diagnostic. // // As such, we try to do some look-ahead in cases where this would // otherwise be an "implicit-int" case to see if this is invalid. For // example: "static foo_t x = 4;" In this case, if we parsed foo_t as // an identifier with implicit int, we'd get a parse error because the // next token is obviously invalid for a type. Parse these as a case // with an invalid type specifier. assert(!DS.hasTypeSpecifier() && "Type specifier checked above"); // Since we know that this either implicit int (which is rare) or an // error, do lookahead to try to do better recovery. This never applies // within a type specifier. Outside of C++, we allow this even if the // language doesn't "officially" support implicit int -- we support // implicit int as an extension in some language modes. if (!isTypeSpecifier(DSC) && getLangOpts().isImplicitIntAllowed() && isValidAfterIdentifierInDeclarator(NextToken())) { // If this token is valid for implicit int, e.g. "static x = 4", then // we just avoid eating the identifier, so it will be parsed as the // identifier in the declarator. return false; } // Early exit as Sema has a dedicated missing_actual_pipe_type diagnostic // for incomplete declarations such as `pipe p`. if (getLangOpts().OpenCLCPlusPlus && DS.isTypeSpecPipe()) return false; if (getLangOpts().CPlusPlus && DS.getStorageClassSpec() == DeclSpec::SCS_auto) { // Don't require a type specifier if we have the 'auto' storage class // specifier in C++98 -- we'll promote it to a type specifier. if (SS) AnnotateScopeToken(*SS, /*IsNewAnnotation*/false); return false; } if (getLangOpts().CPlusPlus && (!SS || SS->isEmpty()) && getLangOpts().MSVCCompat) { // Lookup of an unqualified type name has failed in MSVC compatibility mode. // Give Sema a chance to recover if we are in a template with dependent base // classes. if (ParsedType T = Actions.ActOnMSVCUnknownTypeName( *Tok.getIdentifierInfo(), Tok.getLocation(), DSC == DeclSpecContext::DSC_template_type_arg)) { const char *PrevSpec; unsigned DiagID; DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec, DiagID, T, Actions.getASTContext().getPrintingPolicy()); DS.SetRangeEnd(Tok.getLocation()); ConsumeToken(); return false; } } // Otherwise, if we don't consume this token, we are going to emit an // error anyway. Try to recover from various common problems. Check // to see if this was a reference to a tag name without a tag specified. // This is a common problem in C (saying 'foo' instead of 'struct foo'). // // C++ doesn't need this, and isTagName doesn't take SS. if (SS == nullptr) { const char *TagName = nullptr, *FixitTagName = nullptr; tok::TokenKind TagKind = tok::unknown; switch (Actions.isTagName(*Tok.getIdentifierInfo(), getCurScope())) { default: break; case DeclSpec::TST_enum: TagName="enum" ; FixitTagName = "enum " ; TagKind=tok::kw_enum ;break; case DeclSpec::TST_union: TagName="union" ; FixitTagName = "union " ;TagKind=tok::kw_union ;break; case DeclSpec::TST_struct: TagName="struct"; FixitTagName = "struct ";TagKind=tok::kw_struct;break; case DeclSpec::TST_interface: TagName="__interface"; FixitTagName = "__interface "; TagKind=tok::kw___interface;break; case DeclSpec::TST_class: TagName="class" ; FixitTagName = "class " ;TagKind=tok::kw_class ;break; } if (TagName) { IdentifierInfo *TokenName = Tok.getIdentifierInfo(); LookupResult R(Actions, TokenName, SourceLocation(), Sema::LookupOrdinaryName); Diag(Loc, diag::err_use_of_tag_name_without_tag) << TokenName << TagName << getLangOpts().CPlusPlus << FixItHint::CreateInsertion(Tok.getLocation(), FixitTagName); if (Actions.LookupParsedName(R, getCurScope(), SS)) { for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) Diag((*I)->getLocation(), diag::note_decl_hiding_tag_type) << TokenName << TagName; } // Parse this as a tag as if the missing tag were present. if (TagKind == tok::kw_enum) ParseEnumSpecifier(Loc, DS, TemplateInfo, AS, DeclSpecContext::DSC_normal); else ParseClassSpecifier(TagKind, Loc, DS, TemplateInfo, AS, /*EnteringContext*/ false, DeclSpecContext::DSC_normal, Attrs); return true; } } // Determine whether this identifier could plausibly be the name of something // being declared (with a missing type). if (!isTypeSpecifier(DSC) && (!SS || DSC == DeclSpecContext::DSC_top_level || DSC == DeclSpecContext::DSC_class)) { // Look ahead to the next token to try to figure out what this declaration // was supposed to be. switch (NextToken().getKind()) { case tok::l_paren: { // static x(4); // 'x' is not a type // x(int n); // 'x' is not a type // x (*p)[]; // 'x' is a type // // Since we're in an error case, we can afford to perform a tentative // parse to determine which case we're in. TentativeParsingAction PA(*this); ConsumeToken(); TPResult TPR = TryParseDeclarator(/*mayBeAbstract*/false); PA.Revert(); if (TPR != TPResult::False) { // The identifier is followed by a parenthesized declarator. // It's supposed to be a type. break; } // If we're in a context where we could be declaring a constructor, // check whether this is a constructor declaration with a bogus name. if (DSC == DeclSpecContext::DSC_class || (DSC == DeclSpecContext::DSC_top_level && SS)) { IdentifierInfo *II = Tok.getIdentifierInfo(); if (Actions.isCurrentClassNameTypo(II, SS)) { Diag(Loc, diag::err_constructor_bad_name) << Tok.getIdentifierInfo() << II << FixItHint::CreateReplacement(Tok.getLocation(), II->getName()); Tok.setIdentifierInfo(II); } } // Fall through. [[fallthrough]]; } case tok::comma: case tok::equal: case tok::kw_asm: case tok::l_brace: case tok::l_square: case tok::semi: // This looks like a variable or function declaration. The type is // probably missing. We're done parsing decl-specifiers. // But only if we are not in a function prototype scope. if (getCurScope()->isFunctionPrototypeScope()) break; if (SS) AnnotateScopeToken(*SS, /*IsNewAnnotation*/false); return false; default: // This is probably supposed to be a type. This includes cases like: // int f(itn); // struct S { unsigned : 4; }; break; } } // This is almost certainly an invalid type name. Let Sema emit a diagnostic // and attempt to recover. ParsedType T; IdentifierInfo *II = Tok.getIdentifierInfo(); bool IsTemplateName = getLangOpts().CPlusPlus && NextToken().is(tok::less); Actions.DiagnoseUnknownTypeName(II, Loc, getCurScope(), SS, T, IsTemplateName); if (T) { // The action has suggested that the type T could be used. Set that as // the type in the declaration specifiers, consume the would-be type // name token, and we're done. const char *PrevSpec; unsigned DiagID; DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec, DiagID, T, Actions.getASTContext().getPrintingPolicy()); DS.SetRangeEnd(Tok.getLocation()); ConsumeToken(); // There may be other declaration specifiers after this. return true; } else if (II != Tok.getIdentifierInfo()) { // If no type was suggested, the correction is to a keyword Tok.setKind(II->getTokenID()); // There may be other declaration specifiers after this. return true; } // Otherwise, the action had no suggestion for us. Mark this as an error. DS.SetTypeSpecError(); DS.SetRangeEnd(Tok.getLocation()); ConsumeToken(); // Eat any following template arguments. if (IsTemplateName) { SourceLocation LAngle, RAngle; TemplateArgList Args; ParseTemplateIdAfterTemplateName(true, LAngle, Args, RAngle); } // TODO: Could inject an invalid typedef decl in an enclosing scope to // avoid rippling error messages on subsequent uses of the same type, // could be useful if #include was forgotten. return true; } /// Determine the declaration specifier context from the declarator /// context. /// /// \param Context the declarator context, which is one of the /// DeclaratorContext enumerator values. Parser::DeclSpecContext Parser::getDeclSpecContextFromDeclaratorContext(DeclaratorContext Context) { switch (Context) { case DeclaratorContext::Member: return DeclSpecContext::DSC_class; case DeclaratorContext::File: return DeclSpecContext::DSC_top_level; case DeclaratorContext::TemplateParam: return DeclSpecContext::DSC_template_param; case DeclaratorContext::TemplateArg: return DeclSpecContext::DSC_template_arg; case DeclaratorContext::TemplateTypeArg: return DeclSpecContext::DSC_template_type_arg; case DeclaratorContext::TrailingReturn: case DeclaratorContext::TrailingReturnVar: return DeclSpecContext::DSC_trailing; case DeclaratorContext::AliasDecl: case DeclaratorContext::AliasTemplate: return DeclSpecContext::DSC_alias_declaration; case DeclaratorContext::Association: return DeclSpecContext::DSC_association; case DeclaratorContext::TypeName: return DeclSpecContext::DSC_type_specifier; case DeclaratorContext::Condition: return DeclSpecContext::DSC_condition; case DeclaratorContext::ConversionId: return DeclSpecContext::DSC_conv_operator; case DeclaratorContext::CXXNew: return DeclSpecContext::DSC_new; case DeclaratorContext::Prototype: case DeclaratorContext::ObjCResult: case DeclaratorContext::ObjCParameter: case DeclaratorContext::KNRTypeList: case DeclaratorContext::FunctionalCast: case DeclaratorContext::Block: case DeclaratorContext::ForInit: case DeclaratorContext::SelectionInit: case DeclaratorContext::CXXCatch: case DeclaratorContext::ObjCCatch: case DeclaratorContext::BlockLiteral: case DeclaratorContext::LambdaExpr: case DeclaratorContext::LambdaExprParameter: case DeclaratorContext::RequiresExpr: return DeclSpecContext::DSC_normal; } llvm_unreachable("Missing DeclaratorContext case"); } /// ParseAlignArgument - Parse the argument to an alignment-specifier. /// /// [C11] type-id /// [C11] constant-expression /// [C++0x] type-id ...[opt] /// [C++0x] assignment-expression ...[opt] ExprResult Parser::ParseAlignArgument(StringRef KWName, SourceLocation Start, SourceLocation &EllipsisLoc, bool &IsType, ParsedType &TypeResult) { ExprResult ER; if (isTypeIdInParens()) { SourceLocation TypeLoc = Tok.getLocation(); ParsedType Ty = ParseTypeName().get(); SourceRange TypeRange(Start, Tok.getLocation()); if (Actions.ActOnAlignasTypeArgument(KWName, Ty, TypeLoc, TypeRange)) return ExprError(); TypeResult = Ty; IsType = true; } else { ER = ParseConstantExpression(); IsType = false; } if (getLangOpts().CPlusPlus11) TryConsumeToken(tok::ellipsis, EllipsisLoc); return ER; } /// ParseAlignmentSpecifier - Parse an alignment-specifier, and add the /// attribute to Attrs. /// /// alignment-specifier: /// [C11] '_Alignas' '(' type-id ')' /// [C11] '_Alignas' '(' constant-expression ')' /// [C++11] 'alignas' '(' type-id ...[opt] ')' /// [C++11] 'alignas' '(' assignment-expression ...[opt] ')' void Parser::ParseAlignmentSpecifier(ParsedAttributes &Attrs, SourceLocation *EndLoc) { assert(Tok.isOneOf(tok::kw_alignas, tok::kw__Alignas) && "Not an alignment-specifier!"); Token KWTok = Tok; IdentifierInfo *KWName = KWTok.getIdentifierInfo(); auto Kind = KWTok.getKind(); SourceLocation KWLoc = ConsumeToken(); BalancedDelimiterTracker T(*this, tok::l_paren); if (T.expectAndConsume()) return; bool IsType; ParsedType TypeResult; SourceLocation EllipsisLoc; ExprResult ArgExpr = ParseAlignArgument(PP.getSpelling(KWTok), T.getOpenLocation(), EllipsisLoc, IsType, TypeResult); if (ArgExpr.isInvalid()) { T.skipToEnd(); return; } T.consumeClose(); if (EndLoc) *EndLoc = T.getCloseLocation(); if (IsType) { Attrs.addNewTypeAttr(KWName, KWLoc, nullptr, KWLoc, TypeResult, Kind, EllipsisLoc); } else { ArgsVector ArgExprs; ArgExprs.push_back(ArgExpr.get()); Attrs.addNew(KWName, KWLoc, nullptr, KWLoc, ArgExprs.data(), 1, Kind, EllipsisLoc); } } /// Bounds attributes (e.g., counted_by): /// AttrName '(' expression ')' void Parser::ParseBoundsAttribute(IdentifierInfo &AttrName, SourceLocation AttrNameLoc, ParsedAttributes &Attrs, IdentifierInfo *ScopeName, SourceLocation ScopeLoc, ParsedAttr::Form Form) { assert(Tok.is(tok::l_paren) && "Attribute arg list not starting with '('"); BalancedDelimiterTracker Parens(*this, tok::l_paren); Parens.consumeOpen(); if (Tok.is(tok::r_paren)) { Diag(Tok.getLocation(), diag::err_argument_required_after_attribute); Parens.consumeClose(); return; } ArgsVector ArgExprs; // Don't evaluate argument when the attribute is ignored. using ExpressionKind = Sema::ExpressionEvaluationContextRecord::ExpressionKind; EnterExpressionEvaluationContext EC( Actions, Sema::ExpressionEvaluationContext::PotentiallyEvaluated, nullptr, ExpressionKind::EK_BoundsAttrArgument); ExprResult ArgExpr( Actions.CorrectDelayedTyposInExpr(ParseAssignmentExpression())); if (ArgExpr.isInvalid()) { Parens.skipToEnd(); return; } ArgExprs.push_back(ArgExpr.get()); Parens.consumeClose(); ASTContext &Ctx = Actions.getASTContext(); ArgExprs.push_back(IntegerLiteral::Create( Ctx, llvm::APInt(Ctx.getTypeSize(Ctx.getSizeType()), 0), Ctx.getSizeType(), SourceLocation())); Attrs.addNew(&AttrName, SourceRange(AttrNameLoc, Parens.getCloseLocation()), ScopeName, ScopeLoc, ArgExprs.data(), ArgExprs.size(), Form); } ExprResult Parser::ParseExtIntegerArgument() { assert(Tok.isOneOf(tok::kw__ExtInt, tok::kw__BitInt) && "Not an extended int type"); ConsumeToken(); BalancedDelimiterTracker T(*this, tok::l_paren); if (T.expectAndConsume()) return ExprError(); ExprResult ER = ParseConstantExpression(); if (ER.isInvalid()) { T.skipToEnd(); return ExprError(); } if(T.consumeClose()) return ExprError(); return ER; } /// Determine whether we're looking at something that might be a declarator /// in a simple-declaration. If it can't possibly be a declarator, maybe /// diagnose a missing semicolon after a prior tag definition in the decl /// specifier. /// /// \return \c true if an error occurred and this can't be any kind of /// declaration. bool Parser::DiagnoseMissingSemiAfterTagDefinition(DeclSpec &DS, AccessSpecifier AS, DeclSpecContext DSContext, LateParsedAttrList *LateAttrs) { assert(DS.hasTagDefinition() && "shouldn't call this"); bool EnteringContext = (DSContext == DeclSpecContext::DSC_class || DSContext == DeclSpecContext::DSC_top_level); if (getLangOpts().CPlusPlus && Tok.isOneOf(tok::identifier, tok::coloncolon, tok::kw_decltype, tok::annot_template_id) && TryAnnotateCXXScopeToken(EnteringContext)) { SkipMalformedDecl(); return true; } bool HasScope = Tok.is(tok::annot_cxxscope); // Make a copy in case GetLookAheadToken invalidates the result of NextToken. Token AfterScope = HasScope ? NextToken() : Tok; // Determine whether the following tokens could possibly be a // declarator. bool MightBeDeclarator = true; if (Tok.isOneOf(tok::kw_typename, tok::annot_typename)) { // A declarator-id can't start with 'typename'. MightBeDeclarator = false; } else if (AfterScope.is(tok::annot_template_id)) { // If we have a type expressed as a template-id, this cannot be a // declarator-id (such a type cannot be redeclared in a simple-declaration). TemplateIdAnnotation *Annot = static_cast(AfterScope.getAnnotationValue()); if (Annot->Kind == TNK_Type_template) MightBeDeclarator = false; } else if (AfterScope.is(tok::identifier)) { const Token &Next = HasScope ? GetLookAheadToken(2) : NextToken(); // These tokens cannot come after the declarator-id in a // simple-declaration, and are likely to come after a type-specifier. if (Next.isOneOf(tok::star, tok::amp, tok::ampamp, tok::identifier, tok::annot_cxxscope, tok::coloncolon)) { // Missing a semicolon. MightBeDeclarator = false; } else if (HasScope) { // If the declarator-id has a scope specifier, it must redeclare a // previously-declared entity. If that's a type (and this is not a // typedef), that's an error. CXXScopeSpec SS; Actions.RestoreNestedNameSpecifierAnnotation( Tok.getAnnotationValue(), Tok.getAnnotationRange(), SS); IdentifierInfo *Name = AfterScope.getIdentifierInfo(); Sema::NameClassification Classification = Actions.ClassifyName( getCurScope(), SS, Name, AfterScope.getLocation(), Next, /*CCC=*/nullptr); switch (Classification.getKind()) { case Sema::NC_Error: SkipMalformedDecl(); return true; case Sema::NC_Keyword: llvm_unreachable("typo correction is not possible here"); case Sema::NC_Type: case Sema::NC_TypeTemplate: case Sema::NC_UndeclaredNonType: case Sema::NC_UndeclaredTemplate: // Not a previously-declared non-type entity. MightBeDeclarator = false; break; case Sema::NC_Unknown: case Sema::NC_NonType: case Sema::NC_DependentNonType: case Sema::NC_OverloadSet: case Sema::NC_VarTemplate: case Sema::NC_FunctionTemplate: case Sema::NC_Concept: // Might be a redeclaration of a prior entity. break; } } } if (MightBeDeclarator) return false; const PrintingPolicy &PPol = Actions.getASTContext().getPrintingPolicy(); Diag(PP.getLocForEndOfToken(DS.getRepAsDecl()->getEndLoc()), diag::err_expected_after) << DeclSpec::getSpecifierName(DS.getTypeSpecType(), PPol) << tok::semi; // Try to recover from the typo, by dropping the tag definition and parsing // the problematic tokens as a type. // // FIXME: Split the DeclSpec into pieces for the standalone // declaration and pieces for the following declaration, instead // of assuming that all the other pieces attach to new declaration, // and call ParsedFreeStandingDeclSpec as appropriate. DS.ClearTypeSpecType(); ParsedTemplateInfo NotATemplate; ParseDeclarationSpecifiers(DS, NotATemplate, AS, DSContext, LateAttrs); return false; } /// ParseDeclarationSpecifiers /// declaration-specifiers: [C99 6.7] /// storage-class-specifier declaration-specifiers[opt] /// type-specifier declaration-specifiers[opt] /// [C99] function-specifier declaration-specifiers[opt] /// [C11] alignment-specifier declaration-specifiers[opt] /// [GNU] attributes declaration-specifiers[opt] /// [Clang] '__module_private__' declaration-specifiers[opt] /// [ObjC1] '__kindof' declaration-specifiers[opt] /// /// storage-class-specifier: [C99 6.7.1] /// 'typedef' /// 'extern' /// 'static' /// 'auto' /// 'register' /// [C++] 'mutable' /// [C++11] 'thread_local' /// [C11] '_Thread_local' /// [GNU] '__thread' /// function-specifier: [C99 6.7.4] /// [C99] 'inline' /// [C++] 'virtual' /// [C++] 'explicit' /// [OpenCL] '__kernel' /// 'friend': [C++ dcl.friend] /// 'constexpr': [C++0x dcl.constexpr] void Parser::ParseDeclarationSpecifiers( DeclSpec &DS, const ParsedTemplateInfo &TemplateInfo, AccessSpecifier AS, DeclSpecContext DSContext, LateParsedAttrList *LateAttrs, ImplicitTypenameContext AllowImplicitTypename) { if (DS.getSourceRange().isInvalid()) { // Start the range at the current token but make the end of the range // invalid. This will make the entire range invalid unless we successfully // consume a token. DS.SetRangeStart(Tok.getLocation()); DS.SetRangeEnd(SourceLocation()); } // If we are in a operator context, convert it back into a type specifier // context for better error handling later on. if (DSContext == DeclSpecContext::DSC_conv_operator) { // No implicit typename here. AllowImplicitTypename = ImplicitTypenameContext::No; DSContext = DeclSpecContext::DSC_type_specifier; } bool EnteringContext = (DSContext == DeclSpecContext::DSC_class || DSContext == DeclSpecContext::DSC_top_level); bool AttrsLastTime = false; ParsedAttributes attrs(AttrFactory); // We use Sema's policy to get bool macros right. PrintingPolicy Policy = Actions.getPrintingPolicy(); while (true) { bool isInvalid = false; bool isStorageClass = false; const char *PrevSpec = nullptr; unsigned DiagID = 0; // This value needs to be set to the location of the last token if the last // token of the specifier is already consumed. SourceLocation ConsumedEnd; // HACK: MSVC doesn't consider _Atomic to be a keyword and its STL // implementation for VS2013 uses _Atomic as an identifier for one of the // classes in . // // A typedef declaration containing _Atomic<...> is among the places where // the class is used. If we are currently parsing such a declaration, treat // the token as an identifier. if (getLangOpts().MSVCCompat && Tok.is(tok::kw__Atomic) && DS.getStorageClassSpec() == clang::DeclSpec::SCS_typedef && !DS.hasTypeSpecifier() && GetLookAheadToken(1).is(tok::less)) Tok.setKind(tok::identifier); SourceLocation Loc = Tok.getLocation(); // Helper for image types in OpenCL. auto handleOpenCLImageKW = [&] (StringRef Ext, TypeSpecifierType ImageTypeSpec) { // Check if the image type is supported and otherwise turn the keyword into an identifier // because image types from extensions are not reserved identifiers. if (!StringRef(Ext).empty() && !getActions().getOpenCLOptions().isSupported(Ext, getLangOpts())) { Tok.getIdentifierInfo()->revertTokenIDToIdentifier(); Tok.setKind(tok::identifier); return false; } isInvalid = DS.SetTypeSpecType(ImageTypeSpec, Loc, PrevSpec, DiagID, Policy); return true; }; // Turn off usual access checking for template specializations and // instantiations. bool IsTemplateSpecOrInst = (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation || TemplateInfo.Kind == ParsedTemplateInfo::ExplicitSpecialization); switch (Tok.getKind()) { default: if (Tok.isRegularKeywordAttribute()) goto Attribute; DoneWithDeclSpec: if (!AttrsLastTime) ProhibitAttributes(attrs); else { // Reject C++11 / C23 attributes that aren't type attributes. for (const ParsedAttr &PA : attrs) { if (!PA.isCXX11Attribute() && !PA.isC23Attribute() && !PA.isRegularKeywordAttribute()) continue; if (PA.getKind() == ParsedAttr::UnknownAttribute) // We will warn about the unknown attribute elsewhere (in // SemaDeclAttr.cpp) continue; // GCC ignores this attribute when placed on the DeclSpec in [[]] // syntax, so we do the same. if (PA.getKind() == ParsedAttr::AT_VectorSize) { Diag(PA.getLoc(), diag::warn_attribute_ignored) << PA; PA.setInvalid(); continue; } // We reject AT_LifetimeBound and AT_AnyX86NoCfCheck, even though they // are type attributes, because we historically haven't allowed these // to be used as type attributes in C++11 / C23 syntax. if (PA.isTypeAttr() && PA.getKind() != ParsedAttr::AT_LifetimeBound && PA.getKind() != ParsedAttr::AT_AnyX86NoCfCheck) continue; Diag(PA.getLoc(), diag::err_attribute_not_type_attr) << PA << PA.isRegularKeywordAttribute(); PA.setInvalid(); } DS.takeAttributesFrom(attrs); } // If this is not a declaration specifier token, we're done reading decl // specifiers. First verify that DeclSpec's are consistent. DS.Finish(Actions, Policy); return; // alignment-specifier case tok::kw__Alignas: diagnoseUseOfC11Keyword(Tok); [[fallthrough]]; case tok::kw_alignas: // _Alignas and alignas (C23, not C++) should parse the same way. The C++ // parsing for alignas happens through the usual attribute parsing. This // ensures that an alignas specifier can appear in a type position in C // despite that not being valid in C++. if (getLangOpts().C23 || Tok.getKind() == tok::kw__Alignas) { if (Tok.getKind() == tok::kw_alignas) Diag(Tok, diag::warn_c23_compat_keyword) << Tok.getName(); ParseAlignmentSpecifier(DS.getAttributes()); continue; } [[fallthrough]]; case tok::l_square: if (!isAllowedCXX11AttributeSpecifier()) goto DoneWithDeclSpec; Attribute: ProhibitAttributes(attrs); // FIXME: It would be good to recover by accepting the attributes, // but attempting to do that now would cause serious // madness in terms of diagnostics. attrs.clear(); attrs.Range = SourceRange(); ParseCXX11Attributes(attrs); AttrsLastTime = true; continue; case tok::code_completion: { Sema::ParserCompletionContext CCC = Sema::PCC_Namespace; if (DS.hasTypeSpecifier()) { bool AllowNonIdentifiers = (getCurScope()->getFlags() & (Scope::ControlScope | Scope::BlockScope | Scope::TemplateParamScope | Scope::FunctionPrototypeScope | Scope::AtCatchScope)) == 0; bool AllowNestedNameSpecifiers = DSContext == DeclSpecContext::DSC_top_level || (DSContext == DeclSpecContext::DSC_class && DS.isFriendSpecified()); cutOffParsing(); Actions.CodeCompleteDeclSpec(getCurScope(), DS, AllowNonIdentifiers, AllowNestedNameSpecifiers); return; } // Class context can appear inside a function/block, so prioritise that. if (TemplateInfo.Kind != ParsedTemplateInfo::NonTemplate) CCC = DSContext == DeclSpecContext::DSC_class ? Sema::PCC_MemberTemplate : Sema::PCC_Template; else if (DSContext == DeclSpecContext::DSC_class) CCC = Sema::PCC_Class; else if (getCurScope()->getFnParent() || getCurScope()->getBlockParent()) CCC = Sema::PCC_LocalDeclarationSpecifiers; else if (CurParsedObjCImpl) CCC = Sema::PCC_ObjCImplementation; cutOffParsing(); Actions.CodeCompleteOrdinaryName(getCurScope(), CCC); return; } case tok::coloncolon: // ::foo::bar // C++ scope specifier. Annotate and loop, or bail out on error. if (getLangOpts().CPlusPlus && TryAnnotateCXXScopeToken(EnteringContext)) { if (!DS.hasTypeSpecifier()) DS.SetTypeSpecError(); goto DoneWithDeclSpec; } if (Tok.is(tok::coloncolon)) // ::new or ::delete goto DoneWithDeclSpec; continue; case tok::annot_cxxscope: { if (DS.hasTypeSpecifier() || DS.isTypeAltiVecVector()) goto DoneWithDeclSpec; CXXScopeSpec SS; if (TemplateInfo.TemplateParams) SS.setTemplateParamLists(*TemplateInfo.TemplateParams); Actions.RestoreNestedNameSpecifierAnnotation(Tok.getAnnotationValue(), Tok.getAnnotationRange(), SS); // We are looking for a qualified typename. Token Next = NextToken(); TemplateIdAnnotation *TemplateId = Next.is(tok::annot_template_id) ? takeTemplateIdAnnotation(Next) : nullptr; if (TemplateId && TemplateId->hasInvalidName()) { // We found something like 'T::U x', but U is not a template. // Assume it was supposed to be a type. DS.SetTypeSpecError(); ConsumeAnnotationToken(); break; } if (TemplateId && TemplateId->Kind == TNK_Type_template) { // We have a qualified template-id, e.g., N::A // If this would be a valid constructor declaration with template // arguments, we will reject the attempt to form an invalid type-id // referring to the injected-class-name when we annotate the token, // per C++ [class.qual]p2. // // To improve diagnostics for this case, parse the declaration as a // constructor (and reject the extra template arguments later). if ((DSContext == DeclSpecContext::DSC_top_level || DSContext == DeclSpecContext::DSC_class) && TemplateId->Name && Actions.isCurrentClassName(*TemplateId->Name, getCurScope(), &SS) && isConstructorDeclarator(/*Unqualified=*/false, /*DeductionGuide=*/false, DS.isFriendSpecified())) { // The user meant this to be an out-of-line constructor // definition, but template arguments are not allowed // there. Just allow this as a constructor; we'll // complain about it later. goto DoneWithDeclSpec; } DS.getTypeSpecScope() = SS; ConsumeAnnotationToken(); // The C++ scope. assert(Tok.is(tok::annot_template_id) && "ParseOptionalCXXScopeSpecifier not working"); AnnotateTemplateIdTokenAsType(SS, AllowImplicitTypename); continue; } if (TemplateId && TemplateId->Kind == TNK_Concept_template) { DS.getTypeSpecScope() = SS; // This is probably a qualified placeholder-specifier, e.g., ::C // auto ... Consume the scope annotation and continue to consume the // template-id as a placeholder-specifier. Let the next iteration // diagnose a missing auto. ConsumeAnnotationToken(); continue; } if (Next.is(tok::annot_typename)) { DS.getTypeSpecScope() = SS; ConsumeAnnotationToken(); // The C++ scope. TypeResult T = getTypeAnnotation(Tok); isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Tok.getAnnotationEndLoc(), PrevSpec, DiagID, T, Policy); if (isInvalid) break; DS.SetRangeEnd(Tok.getAnnotationEndLoc()); ConsumeAnnotationToken(); // The typename } if (AllowImplicitTypename == ImplicitTypenameContext::Yes && Next.is(tok::annot_template_id) && static_cast(Next.getAnnotationValue()) ->Kind == TNK_Dependent_template_name) { DS.getTypeSpecScope() = SS; ConsumeAnnotationToken(); // The C++ scope. AnnotateTemplateIdTokenAsType(SS, AllowImplicitTypename); continue; } if (Next.isNot(tok::identifier)) goto DoneWithDeclSpec; // Check whether this is a constructor declaration. If we're in a // context where the identifier could be a class name, and it has the // shape of a constructor declaration, process it as one. if ((DSContext == DeclSpecContext::DSC_top_level || DSContext == DeclSpecContext::DSC_class) && Actions.isCurrentClassName(*Next.getIdentifierInfo(), getCurScope(), &SS) && isConstructorDeclarator(/*Unqualified=*/false, /*DeductionGuide=*/false, DS.isFriendSpecified(), &TemplateInfo)) goto DoneWithDeclSpec; // C++20 [temp.spec] 13.9/6. // This disables the access checking rules for function template explicit // instantiation and explicit specialization: // - `return type`. SuppressAccessChecks SAC(*this, IsTemplateSpecOrInst); ParsedType TypeRep = Actions.getTypeName( *Next.getIdentifierInfo(), Next.getLocation(), getCurScope(), &SS, false, false, nullptr, /*IsCtorOrDtorName=*/false, /*WantNontrivialTypeSourceInfo=*/true, isClassTemplateDeductionContext(DSContext), AllowImplicitTypename); if (IsTemplateSpecOrInst) SAC.done(); // If the referenced identifier is not a type, then this declspec is // erroneous: We already checked about that it has no type specifier, and // C++ doesn't have implicit int. Diagnose it as a typo w.r.t. to the // typename. if (!TypeRep) { if (TryAnnotateTypeConstraint()) goto DoneWithDeclSpec; if (Tok.isNot(tok::annot_cxxscope) || NextToken().isNot(tok::identifier)) continue; // Eat the scope spec so the identifier is current. ConsumeAnnotationToken(); ParsedAttributes Attrs(AttrFactory); if (ParseImplicitInt(DS, &SS, TemplateInfo, AS, DSContext, Attrs)) { if (!Attrs.empty()) { AttrsLastTime = true; attrs.takeAllFrom(Attrs); } continue; } goto DoneWithDeclSpec; } DS.getTypeSpecScope() = SS; ConsumeAnnotationToken(); // The C++ scope. isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec, DiagID, TypeRep, Policy); if (isInvalid) break; DS.SetRangeEnd(Tok.getLocation()); ConsumeToken(); // The typename. continue; } case tok::annot_typename: { // If we've previously seen a tag definition, we were almost surely // missing a semicolon after it. if (DS.hasTypeSpecifier() && DS.hasTagDefinition()) goto DoneWithDeclSpec; TypeResult T = getTypeAnnotation(Tok); isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec, DiagID, T, Policy); if (isInvalid) break; DS.SetRangeEnd(Tok.getAnnotationEndLoc()); ConsumeAnnotationToken(); // The typename continue; } case tok::kw___is_signed: // GNU libstdc++ 4.4 uses __is_signed as an identifier, but Clang // typically treats it as a trait. If we see __is_signed as it appears // in libstdc++, e.g., // // static const bool __is_signed; // // then treat __is_signed as an identifier rather than as a keyword. if (DS.getTypeSpecType() == TST_bool && DS.getTypeQualifiers() == DeclSpec::TQ_const && DS.getStorageClassSpec() == DeclSpec::SCS_static) TryKeywordIdentFallback(true); // We're done with the declaration-specifiers. goto DoneWithDeclSpec; // typedef-name case tok::kw___super: case tok::kw_decltype: case tok::identifier: ParseIdentifier: { // This identifier can only be a typedef name if we haven't already seen // a type-specifier. Without this check we misparse: // typedef int X; struct Y { short X; }; as 'short int'. if (DS.hasTypeSpecifier()) goto DoneWithDeclSpec; // If the token is an identifier named "__declspec" and Microsoft // extensions are not enabled, it is likely that there will be cascading // parse errors if this really is a __declspec attribute. Attempt to // recognize that scenario and recover gracefully. if (!getLangOpts().DeclSpecKeyword && Tok.is(tok::identifier) && Tok.getIdentifierInfo()->getName().equals("__declspec")) { Diag(Loc, diag::err_ms_attributes_not_enabled); // The next token should be an open paren. If it is, eat the entire // attribute declaration and continue. if (NextToken().is(tok::l_paren)) { // Consume the __declspec identifier. ConsumeToken(); // Eat the parens and everything between them. BalancedDelimiterTracker T(*this, tok::l_paren); if (T.consumeOpen()) { assert(false && "Not a left paren?"); return; } T.skipToEnd(); continue; } } // In C++, check to see if this is a scope specifier like foo::bar::, if // so handle it as such. This is important for ctor parsing. if (getLangOpts().CPlusPlus) { // C++20 [temp.spec] 13.9/6. // This disables the access checking rules for function template // explicit instantiation and explicit specialization: // - `return type`. SuppressAccessChecks SAC(*this, IsTemplateSpecOrInst); const bool Success = TryAnnotateCXXScopeToken(EnteringContext); if (IsTemplateSpecOrInst) SAC.done(); if (Success) { if (IsTemplateSpecOrInst) SAC.redelay(); DS.SetTypeSpecError(); goto DoneWithDeclSpec; } if (!Tok.is(tok::identifier)) continue; } // Check for need to substitute AltiVec keyword tokens. if (TryAltiVecToken(DS, Loc, PrevSpec, DiagID, isInvalid)) break; // [AltiVec] 2.2: [If the 'vector' specifier is used] The syntax does not // allow the use of a typedef name as a type specifier. if (DS.isTypeAltiVecVector()) goto DoneWithDeclSpec; if (DSContext == DeclSpecContext::DSC_objc_method_result && isObjCInstancetype()) { ParsedType TypeRep = Actions.ActOnObjCInstanceType(Loc); assert(TypeRep); isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec, DiagID, TypeRep, Policy); if (isInvalid) break; DS.SetRangeEnd(Loc); ConsumeToken(); continue; } // If we're in a context where the identifier could be a class name, // check whether this is a constructor declaration. if (getLangOpts().CPlusPlus && DSContext == DeclSpecContext::DSC_class && Actions.isCurrentClassName(*Tok.getIdentifierInfo(), getCurScope()) && isConstructorDeclarator(/*Unqualified=*/true, /*DeductionGuide=*/false, DS.isFriendSpecified())) goto DoneWithDeclSpec; ParsedType TypeRep = Actions.getTypeName( *Tok.getIdentifierInfo(), Tok.getLocation(), getCurScope(), nullptr, false, false, nullptr, false, false, isClassTemplateDeductionContext(DSContext)); // If this is not a typedef name, don't parse it as part of the declspec, // it must be an implicit int or an error. if (!TypeRep) { if (TryAnnotateTypeConstraint()) goto DoneWithDeclSpec; if (Tok.isNot(tok::identifier)) continue; ParsedAttributes Attrs(AttrFactory); if (ParseImplicitInt(DS, nullptr, TemplateInfo, AS, DSContext, Attrs)) { if (!Attrs.empty()) { AttrsLastTime = true; attrs.takeAllFrom(Attrs); } continue; } goto DoneWithDeclSpec; } // Likewise, if this is a context where the identifier could be a template // name, check whether this is a deduction guide declaration. CXXScopeSpec SS; if (getLangOpts().CPlusPlus17 && (DSContext == DeclSpecContext::DSC_class || DSContext == DeclSpecContext::DSC_top_level) && Actions.isDeductionGuideName(getCurScope(), *Tok.getIdentifierInfo(), Tok.getLocation(), SS) && isConstructorDeclarator(/*Unqualified*/ true, /*DeductionGuide*/ true)) goto DoneWithDeclSpec; isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec, DiagID, TypeRep, Policy); if (isInvalid) break; DS.SetRangeEnd(Tok.getLocation()); ConsumeToken(); // The identifier // Objective-C supports type arguments and protocol references // following an Objective-C object or object pointer // type. Handle either one of them. if (Tok.is(tok::less) && getLangOpts().ObjC) { SourceLocation NewEndLoc; TypeResult NewTypeRep = parseObjCTypeArgsAndProtocolQualifiers( Loc, TypeRep, /*consumeLastToken=*/true, NewEndLoc); if (NewTypeRep.isUsable()) { DS.UpdateTypeRep(NewTypeRep.get()); DS.SetRangeEnd(NewEndLoc); } } // Need to support trailing type qualifiers (e.g. "id

const"). // If a type specifier follows, it will be diagnosed elsewhere. continue; } // type-name or placeholder-specifier case tok::annot_template_id: { TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok); if (TemplateId->hasInvalidName()) { DS.SetTypeSpecError(); break; } if (TemplateId->Kind == TNK_Concept_template) { // If we've already diagnosed that this type-constraint has invalid // arguments, drop it and just form 'auto' or 'decltype(auto)'. if (TemplateId->hasInvalidArgs()) TemplateId = nullptr; // Any of the following tokens are likely the start of the user // forgetting 'auto' or 'decltype(auto)', so diagnose. // Note: if updating this list, please make sure we update // isCXXDeclarationSpecifier's check for IsPlaceholderSpecifier to have // a matching list. if (NextToken().isOneOf(tok::identifier, tok::kw_const, tok::kw_volatile, tok::kw_restrict, tok::amp, tok::ampamp)) { Diag(Loc, diag::err_placeholder_expected_auto_or_decltype_auto) << FixItHint::CreateInsertion(NextToken().getLocation(), "auto"); // Attempt to continue as if 'auto' was placed here. isInvalid = DS.SetTypeSpecType(TST_auto, Loc, PrevSpec, DiagID, TemplateId, Policy); break; } if (!NextToken().isOneOf(tok::kw_auto, tok::kw_decltype)) goto DoneWithDeclSpec; if (TemplateId && !isInvalid && Actions.CheckTypeConstraint(TemplateId)) TemplateId = nullptr; ConsumeAnnotationToken(); SourceLocation AutoLoc = Tok.getLocation(); if (TryConsumeToken(tok::kw_decltype)) { BalancedDelimiterTracker Tracker(*this, tok::l_paren); if (Tracker.consumeOpen()) { // Something like `void foo(Iterator decltype i)` Diag(Tok, diag::err_expected) << tok::l_paren; } else { if (!TryConsumeToken(tok::kw_auto)) { // Something like `void foo(Iterator decltype(int) i)` Tracker.skipToEnd(); Diag(Tok, diag::err_placeholder_expected_auto_or_decltype_auto) << FixItHint::CreateReplacement(SourceRange(AutoLoc, Tok.getLocation()), "auto"); } else { Tracker.consumeClose(); } } ConsumedEnd = Tok.getLocation(); DS.setTypeArgumentRange(Tracker.getRange()); // Even if something went wrong above, continue as if we've seen // `decltype(auto)`. isInvalid = DS.SetTypeSpecType(TST_decltype_auto, Loc, PrevSpec, DiagID, TemplateId, Policy); } else { isInvalid = DS.SetTypeSpecType(TST_auto, AutoLoc, PrevSpec, DiagID, TemplateId, Policy); } break; } if (TemplateId->Kind != TNK_Type_template && TemplateId->Kind != TNK_Undeclared_template) { // This template-id does not refer to a type name, so we're // done with the type-specifiers. goto DoneWithDeclSpec; } // If we're in a context where the template-id could be a // constructor name or specialization, check whether this is a // constructor declaration. if (getLangOpts().CPlusPlus && DSContext == DeclSpecContext::DSC_class && Actions.isCurrentClassName(*TemplateId->Name, getCurScope()) && isConstructorDeclarator(/*Unqualified=*/true, /*DeductionGuide=*/false, DS.isFriendSpecified())) goto DoneWithDeclSpec; // Turn the template-id annotation token into a type annotation // token, then try again to parse it as a type-specifier. CXXScopeSpec SS; AnnotateTemplateIdTokenAsType(SS, AllowImplicitTypename); continue; } // Attributes support. case tok::kw___attribute: case tok::kw___declspec: ParseAttributes(PAKM_GNU | PAKM_Declspec, DS.getAttributes(), LateAttrs); continue; // Microsoft single token adornments. case tok::kw___forceinline: { isInvalid = DS.setFunctionSpecForceInline(Loc, PrevSpec, DiagID); IdentifierInfo *AttrName = Tok.getIdentifierInfo(); SourceLocation AttrNameLoc = Tok.getLocation(); DS.getAttributes().addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0, tok::kw___forceinline); break; } case tok::kw___unaligned: isInvalid = DS.SetTypeQual(DeclSpec::TQ_unaligned, Loc, PrevSpec, DiagID, getLangOpts()); break; case tok::kw___sptr: case tok::kw___uptr: case tok::kw___ptr64: case tok::kw___ptr32: case tok::kw___w64: case tok::kw___cdecl: case tok::kw___stdcall: case tok::kw___fastcall: case tok::kw___thiscall: case tok::kw___regcall: case tok::kw___vectorcall: ParseMicrosoftTypeAttributes(DS.getAttributes()); continue; case tok::kw___funcref: ParseWebAssemblyFuncrefTypeAttribute(DS.getAttributes()); continue; // Borland single token adornments. case tok::kw___pascal: ParseBorlandTypeAttributes(DS.getAttributes()); continue; // OpenCL single token adornments. case tok::kw___kernel: ParseOpenCLKernelAttributes(DS.getAttributes()); continue; // CUDA/HIP single token adornments. case tok::kw___noinline__: ParseCUDAFunctionAttributes(DS.getAttributes()); continue; // Nullability type specifiers. case tok::kw__Nonnull: case tok::kw__Nullable: case tok::kw__Nullable_result: case tok::kw__Null_unspecified: ParseNullabilityTypeSpecifiers(DS.getAttributes()); continue; // Objective-C 'kindof' types. case tok::kw___kindof: DS.getAttributes().addNew(Tok.getIdentifierInfo(), Loc, nullptr, Loc, nullptr, 0, tok::kw___kindof); (void)ConsumeToken(); continue; // storage-class-specifier case tok::kw_typedef: isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_typedef, Loc, PrevSpec, DiagID, Policy); isStorageClass = true; break; case tok::kw_extern: if (DS.getThreadStorageClassSpec() == DeclSpec::TSCS___thread) Diag(Tok, diag::ext_thread_before) << "extern"; isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_extern, Loc, PrevSpec, DiagID, Policy); isStorageClass = true; break; case tok::kw___private_extern__: isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_private_extern, Loc, PrevSpec, DiagID, Policy); isStorageClass = true; break; case tok::kw_static: if (DS.getThreadStorageClassSpec() == DeclSpec::TSCS___thread) Diag(Tok, diag::ext_thread_before) << "static"; isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_static, Loc, PrevSpec, DiagID, Policy); isStorageClass = true; break; case tok::kw_auto: if (getLangOpts().CPlusPlus11 || getLangOpts().C23) { if (isKnownToBeTypeSpecifier(GetLookAheadToken(1))) { isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_auto, Loc, PrevSpec, DiagID, Policy); if (!isInvalid && !getLangOpts().C23) Diag(Tok, diag::ext_auto_storage_class) << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc()); } else isInvalid = DS.SetTypeSpecType(DeclSpec::TST_auto, Loc, PrevSpec, DiagID, Policy); } else isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_auto, Loc, PrevSpec, DiagID, Policy); isStorageClass = true; break; case tok::kw___auto_type: Diag(Tok, diag::ext_auto_type); isInvalid = DS.SetTypeSpecType(DeclSpec::TST_auto_type, Loc, PrevSpec, DiagID, Policy); break; case tok::kw_register: isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_register, Loc, PrevSpec, DiagID, Policy); isStorageClass = true; break; case tok::kw_mutable: isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_mutable, Loc, PrevSpec, DiagID, Policy); isStorageClass = true; break; case tok::kw___thread: isInvalid = DS.SetStorageClassSpecThread(DeclSpec::TSCS___thread, Loc, PrevSpec, DiagID); isStorageClass = true; break; case tok::kw_thread_local: if (getLangOpts().C23) Diag(Tok, diag::warn_c23_compat_keyword) << Tok.getName(); // We map thread_local to _Thread_local in C23 mode so it retains the C // semantics rather than getting the C++ semantics. // FIXME: diagnostics will show _Thread_local when the user wrote // thread_local in source in C23 mode; we need some general way to // identify which way the user spelled the keyword in source. isInvalid = DS.SetStorageClassSpecThread( getLangOpts().C23 ? DeclSpec::TSCS__Thread_local : DeclSpec::TSCS_thread_local, Loc, PrevSpec, DiagID); isStorageClass = true; break; case tok::kw__Thread_local: diagnoseUseOfC11Keyword(Tok); isInvalid = DS.SetStorageClassSpecThread(DeclSpec::TSCS__Thread_local, Loc, PrevSpec, DiagID); isStorageClass = true; break; // function-specifier case tok::kw_inline: isInvalid = DS.setFunctionSpecInline(Loc, PrevSpec, DiagID); break; case tok::kw_virtual: // C++ for OpenCL does not allow virtual function qualifier, to avoid // function pointers restricted in OpenCL v2.0 s6.9.a. if (getLangOpts().OpenCLCPlusPlus && !getActions().getOpenCLOptions().isAvailableOption( "__cl_clang_function_pointers", getLangOpts())) { DiagID = diag::err_openclcxx_virtual_function; PrevSpec = Tok.getIdentifierInfo()->getNameStart(); isInvalid = true; } else { isInvalid = DS.setFunctionSpecVirtual(Loc, PrevSpec, DiagID); } break; case tok::kw_explicit: { SourceLocation ExplicitLoc = Loc; SourceLocation CloseParenLoc; ExplicitSpecifier ExplicitSpec(nullptr, ExplicitSpecKind::ResolvedTrue); ConsumedEnd = ExplicitLoc; ConsumeToken(); // kw_explicit if (Tok.is(tok::l_paren)) { if (getLangOpts().CPlusPlus20 || isExplicitBool() == TPResult::True) { Diag(Tok.getLocation(), getLangOpts().CPlusPlus20 ? diag::warn_cxx17_compat_explicit_bool : diag::ext_explicit_bool); ExprResult ExplicitExpr(static_cast(nullptr)); BalancedDelimiterTracker Tracker(*this, tok::l_paren); Tracker.consumeOpen(); EnterExpressionEvaluationContext ConstantEvaluated( Actions, Sema::ExpressionEvaluationContext::ConstantEvaluated); ExplicitExpr = ParseConstantExpressionInExprEvalContext(); ConsumedEnd = Tok.getLocation(); if (ExplicitExpr.isUsable()) { CloseParenLoc = Tok.getLocation(); Tracker.consumeClose(); ExplicitSpec = Actions.ActOnExplicitBoolSpecifier(ExplicitExpr.get()); } else Tracker.skipToEnd(); } else { Diag(Tok.getLocation(), diag::warn_cxx20_compat_explicit_bool); } } isInvalid = DS.setFunctionSpecExplicit(ExplicitLoc, PrevSpec, DiagID, ExplicitSpec, CloseParenLoc); break; } case tok::kw__Noreturn: diagnoseUseOfC11Keyword(Tok); isInvalid = DS.setFunctionSpecNoreturn(Loc, PrevSpec, DiagID); break; // friend case tok::kw_friend: if (DSContext == DeclSpecContext::DSC_class) isInvalid = DS.SetFriendSpec(Loc, PrevSpec, DiagID); else { PrevSpec = ""; // not actually used by the diagnostic DiagID = diag::err_friend_invalid_in_context; isInvalid = true; } break; // Modules case tok::kw___module_private__: isInvalid = DS.setModulePrivateSpec(Loc, PrevSpec, DiagID); break; // constexpr, consteval, constinit specifiers case tok::kw_constexpr: if (getLangOpts().C23) Diag(Tok, diag::warn_c23_compat_keyword) << Tok.getName(); isInvalid = DS.SetConstexprSpec(ConstexprSpecKind::Constexpr, Loc, PrevSpec, DiagID); break; case tok::kw_consteval: isInvalid = DS.SetConstexprSpec(ConstexprSpecKind::Consteval, Loc, PrevSpec, DiagID); break; case tok::kw_constinit: isInvalid = DS.SetConstexprSpec(ConstexprSpecKind::Constinit, Loc, PrevSpec, DiagID); break; // type-specifier case tok::kw_short: isInvalid = DS.SetTypeSpecWidth(TypeSpecifierWidth::Short, Loc, PrevSpec, DiagID, Policy); break; case tok::kw_long: if (DS.getTypeSpecWidth() != TypeSpecifierWidth::Long) isInvalid = DS.SetTypeSpecWidth(TypeSpecifierWidth::Long, Loc, PrevSpec, DiagID, Policy); else isInvalid = DS.SetTypeSpecWidth(TypeSpecifierWidth::LongLong, Loc, PrevSpec, DiagID, Policy); break; case tok::kw___int64: isInvalid = DS.SetTypeSpecWidth(TypeSpecifierWidth::LongLong, Loc, PrevSpec, DiagID, Policy); break; case tok::kw_signed: isInvalid = DS.SetTypeSpecSign(TypeSpecifierSign::Signed, Loc, PrevSpec, DiagID); break; case tok::kw_unsigned: isInvalid = DS.SetTypeSpecSign(TypeSpecifierSign::Unsigned, Loc, PrevSpec, DiagID); break; case tok::kw__Complex: if (!getLangOpts().C99) Diag(Tok, diag::ext_c99_feature) << Tok.getName(); isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_complex, Loc, PrevSpec, DiagID); break; case tok::kw__Imaginary: if (!getLangOpts().C99) Diag(Tok, diag::ext_c99_feature) << Tok.getName(); isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_imaginary, Loc, PrevSpec, DiagID); break; case tok::kw_void: isInvalid = DS.SetTypeSpecType(DeclSpec::TST_void, Loc, PrevSpec, DiagID, Policy); break; case tok::kw_char: isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char, Loc, PrevSpec, DiagID, Policy); break; case tok::kw_int: isInvalid = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, PrevSpec, DiagID, Policy); break; case tok::kw__ExtInt: case tok::kw__BitInt: { DiagnoseBitIntUse(Tok); ExprResult ER = ParseExtIntegerArgument(); if (ER.isInvalid()) continue; isInvalid = DS.SetBitIntType(Loc, ER.get(), PrevSpec, DiagID, Policy); ConsumedEnd = PrevTokLocation; break; } case tok::kw___int128: isInvalid = DS.SetTypeSpecType(DeclSpec::TST_int128, Loc, PrevSpec, DiagID, Policy); break; case tok::kw_half: isInvalid = DS.SetTypeSpecType(DeclSpec::TST_half, Loc, PrevSpec, DiagID, Policy); break; case tok::kw___bf16: isInvalid = DS.SetTypeSpecType(DeclSpec::TST_BFloat16, Loc, PrevSpec, DiagID, Policy); break; case tok::kw_float: isInvalid = DS.SetTypeSpecType(DeclSpec::TST_float, Loc, PrevSpec, DiagID, Policy); break; case tok::kw_double: isInvalid = DS.SetTypeSpecType(DeclSpec::TST_double, Loc, PrevSpec, DiagID, Policy); break; case tok::kw__Float16: isInvalid = DS.SetTypeSpecType(DeclSpec::TST_float16, Loc, PrevSpec, DiagID, Policy); break; case tok::kw__Accum: assert(getLangOpts().FixedPoint && "This keyword is only used when fixed point types are enabled " "with `-ffixed-point`"); isInvalid = DS.SetTypeSpecType(DeclSpec::TST_accum, Loc, PrevSpec, DiagID, Policy); break; case tok::kw__Fract: assert(getLangOpts().FixedPoint && "This keyword is only used when fixed point types are enabled " "with `-ffixed-point`"); isInvalid = DS.SetTypeSpecType(DeclSpec::TST_fract, Loc, PrevSpec, DiagID, Policy); break; case tok::kw__Sat: assert(getLangOpts().FixedPoint && "This keyword is only used when fixed point types are enabled " "with `-ffixed-point`"); isInvalid = DS.SetTypeSpecSat(Loc, PrevSpec, DiagID); break; case tok::kw___float128: isInvalid = DS.SetTypeSpecType(DeclSpec::TST_float128, Loc, PrevSpec, DiagID, Policy); break; case tok::kw___ibm128: isInvalid = DS.SetTypeSpecType(DeclSpec::TST_ibm128, Loc, PrevSpec, DiagID, Policy); break; case tok::kw_wchar_t: isInvalid = DS.SetTypeSpecType(DeclSpec::TST_wchar, Loc, PrevSpec, DiagID, Policy); break; case tok::kw_char8_t: isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char8, Loc, PrevSpec, DiagID, Policy); break; case tok::kw_char16_t: isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char16, Loc, PrevSpec, DiagID, Policy); break; case tok::kw_char32_t: isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char32, Loc, PrevSpec, DiagID, Policy); break; case tok::kw_bool: if (getLangOpts().C23) Diag(Tok, diag::warn_c23_compat_keyword) << Tok.getName(); [[fallthrough]]; case tok::kw__Bool: if (Tok.is(tok::kw__Bool) && !getLangOpts().C99) Diag(Tok, diag::ext_c99_feature) << Tok.getName(); if (Tok.is(tok::kw_bool) && DS.getTypeSpecType() != DeclSpec::TST_unspecified && DS.getStorageClassSpec() == DeclSpec::SCS_typedef) { PrevSpec = ""; // Not used by the diagnostic. DiagID = diag::err_bool_redeclaration; // For better error recovery. Tok.setKind(tok::identifier); isInvalid = true; } else { isInvalid = DS.SetTypeSpecType(DeclSpec::TST_bool, Loc, PrevSpec, DiagID, Policy); } break; case tok::kw__Decimal32: isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal32, Loc, PrevSpec, DiagID, Policy); break; case tok::kw__Decimal64: isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal64, Loc, PrevSpec, DiagID, Policy); break; case tok::kw__Decimal128: isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal128, Loc, PrevSpec, DiagID, Policy); break; case tok::kw___vector: isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID, Policy); break; case tok::kw___pixel: isInvalid = DS.SetTypeAltiVecPixel(true, Loc, PrevSpec, DiagID, Policy); break; case tok::kw___bool: isInvalid = DS.SetTypeAltiVecBool(true, Loc, PrevSpec, DiagID, Policy); break; case tok::kw_pipe: if (!getLangOpts().OpenCL || getLangOpts().getOpenCLCompatibleVersion() < 200) { // OpenCL 2.0 and later define this keyword. OpenCL 1.2 and earlier // should support the "pipe" word as identifier. Tok.getIdentifierInfo()->revertTokenIDToIdentifier(); Tok.setKind(tok::identifier); goto DoneWithDeclSpec; } else if (!getLangOpts().OpenCLPipes) { DiagID = diag::err_opencl_unknown_type_specifier; PrevSpec = Tok.getIdentifierInfo()->getNameStart(); isInvalid = true; } else isInvalid = DS.SetTypePipe(true, Loc, PrevSpec, DiagID, Policy); break; // We only need to enumerate each image type once. #define IMAGE_READ_WRITE_TYPE(Type, Id, Ext) #define IMAGE_WRITE_TYPE(Type, Id, Ext) #define IMAGE_READ_TYPE(ImgType, Id, Ext) \ case tok::kw_##ImgType##_t: \ if (!handleOpenCLImageKW(Ext, DeclSpec::TST_##ImgType##_t)) \ goto DoneWithDeclSpec; \ break; #include "clang/Basic/OpenCLImageTypes.def" case tok::kw___unknown_anytype: isInvalid = DS.SetTypeSpecType(TST_unknown_anytype, Loc, PrevSpec, DiagID, Policy); break; // class-specifier: case tok::kw_class: case tok::kw_struct: case tok::kw___interface: case tok::kw_union: { tok::TokenKind Kind = Tok.getKind(); ConsumeToken(); // These are attributes following class specifiers. // To produce better diagnostic, we parse them when // parsing class specifier. ParsedAttributes Attributes(AttrFactory); ParseClassSpecifier(Kind, Loc, DS, TemplateInfo, AS, EnteringContext, DSContext, Attributes); // If there are attributes following class specifier, // take them over and handle them here. if (!Attributes.empty()) { AttrsLastTime = true; attrs.takeAllFrom(Attributes); } continue; } // enum-specifier: case tok::kw_enum: ConsumeToken(); ParseEnumSpecifier(Loc, DS, TemplateInfo, AS, DSContext); continue; // cv-qualifier: case tok::kw_const: isInvalid = DS.SetTypeQual(DeclSpec::TQ_const, Loc, PrevSpec, DiagID, getLangOpts()); break; case tok::kw_volatile: isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec, DiagID, getLangOpts()); break; case tok::kw_restrict: isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec, DiagID, getLangOpts()); break; // C++ typename-specifier: case tok::kw_typename: if (TryAnnotateTypeOrScopeToken()) { DS.SetTypeSpecError(); goto DoneWithDeclSpec; } if (!Tok.is(tok::kw_typename)) continue; break; // C23/GNU typeof support. case tok::kw_typeof: case tok::kw_typeof_unqual: ParseTypeofSpecifier(DS); continue; case tok::annot_decltype: ParseDecltypeSpecifier(DS); continue; case tok::annot_pack_indexing_type: ParsePackIndexingType(DS); continue; case tok::annot_pragma_pack: HandlePragmaPack(); continue; case tok::annot_pragma_ms_pragma: HandlePragmaMSPragma(); continue; case tok::annot_pragma_ms_vtordisp: HandlePragmaMSVtorDisp(); continue; case tok::annot_pragma_ms_pointers_to_members: HandlePragmaMSPointersToMembers(); continue; #define TRANSFORM_TYPE_TRAIT_DEF(_, Trait) case tok::kw___##Trait: #include "clang/Basic/TransformTypeTraits.def" // HACK: libstdc++ already uses '__remove_cv' as an alias template so we // work around this by expecting all transform type traits to be suffixed // with '('. They're an identifier otherwise. if (!MaybeParseTypeTransformTypeSpecifier(DS)) goto ParseIdentifier; continue; case tok::kw__Atomic: // C11 6.7.2.4/4: // If the _Atomic keyword is immediately followed by a left parenthesis, // it is interpreted as a type specifier (with a type name), not as a // type qualifier. diagnoseUseOfC11Keyword(Tok); if (NextToken().is(tok::l_paren)) { ParseAtomicSpecifier(DS); continue; } isInvalid = DS.SetTypeQual(DeclSpec::TQ_atomic, Loc, PrevSpec, DiagID, getLangOpts()); break; // OpenCL address space qualifiers: case tok::kw___generic: // generic address space is introduced only in OpenCL v2.0 // see OpenCL C Spec v2.0 s6.5.5 // OpenCL v3.0 introduces __opencl_c_generic_address_space // feature macro to indicate if generic address space is supported if (!Actions.getLangOpts().OpenCLGenericAddressSpace) { DiagID = diag::err_opencl_unknown_type_specifier; PrevSpec = Tok.getIdentifierInfo()->getNameStart(); isInvalid = true; break; } [[fallthrough]]; case tok::kw_private: // It's fine (but redundant) to check this for __generic on the // fallthrough path; we only form the __generic token in OpenCL mode. if (!getLangOpts().OpenCL) goto DoneWithDeclSpec; [[fallthrough]]; case tok::kw___private: case tok::kw___global: case tok::kw___local: case tok::kw___constant: // OpenCL access qualifiers: case tok::kw___read_only: case tok::kw___write_only: case tok::kw___read_write: ParseOpenCLQualifiers(DS.getAttributes()); break; case tok::kw_groupshared: case tok::kw_in: case tok::kw_inout: case tok::kw_out: // NOTE: ParseHLSLQualifiers will consume the qualifier token. ParseHLSLQualifiers(DS.getAttributes()); continue; case tok::less: // GCC ObjC supports types like "" as a synonym for // "id". This is hopelessly old fashioned and dangerous, // but we support it. if (DS.hasTypeSpecifier() || !getLangOpts().ObjC) goto DoneWithDeclSpec; SourceLocation StartLoc = Tok.getLocation(); SourceLocation EndLoc; TypeResult Type = parseObjCProtocolQualifierType(EndLoc); if (Type.isUsable()) { if (DS.SetTypeSpecType(DeclSpec::TST_typename, StartLoc, StartLoc, PrevSpec, DiagID, Type.get(), Actions.getASTContext().getPrintingPolicy())) Diag(StartLoc, DiagID) << PrevSpec; DS.SetRangeEnd(EndLoc); } else { DS.SetTypeSpecError(); } // Need to support trailing type qualifiers (e.g. "id

const"). // If a type specifier follows, it will be diagnosed elsewhere. continue; } DS.SetRangeEnd(ConsumedEnd.isValid() ? ConsumedEnd : Tok.getLocation()); // If the specifier wasn't legal, issue a diagnostic. if (isInvalid) { assert(PrevSpec && "Method did not return previous specifier!"); assert(DiagID); if (DiagID == diag::ext_duplicate_declspec || DiagID == diag::ext_warn_duplicate_declspec || DiagID == diag::err_duplicate_declspec) Diag(Loc, DiagID) << PrevSpec << FixItHint::CreateRemoval( SourceRange(Loc, DS.getEndLoc())); else if (DiagID == diag::err_opencl_unknown_type_specifier) { Diag(Loc, DiagID) << getLangOpts().getOpenCLVersionString() << PrevSpec << isStorageClass; } else Diag(Loc, DiagID) << PrevSpec; } if (DiagID != diag::err_bool_redeclaration && ConsumedEnd.isInvalid()) // After an error the next token can be an annotation token. ConsumeAnyToken(); AttrsLastTime = false; } } static void DiagnoseCountAttributedTypeInUnnamedAnon(ParsingDeclSpec &DS, Parser &P) { if (DS.getTypeSpecType() != DeclSpec::TST_struct) return; auto *RD = dyn_cast(DS.getRepAsDecl()); // We're only interested in unnamed, non-anonymous struct if (!RD || !RD->getName().empty() || RD->isAnonymousStructOrUnion()) return; for (auto *I : RD->decls()) { auto *VD = dyn_cast(I); if (!VD) continue; auto *CAT = VD->getType()->getAs(); if (!CAT) continue; for (const auto &DD : CAT->dependent_decls()) { if (!RD->containsDecl(DD.getDecl())) { P.Diag(VD->getBeginLoc(), diag::err_flexible_array_count_not_in_same_struct) << DD.getDecl(); P.Diag(DD.getDecl()->getBeginLoc(), diag::note_flexible_array_counted_by_attr_field) << DD.getDecl(); } } } } /// ParseStructDeclaration - Parse a struct declaration without the terminating /// semicolon. /// /// Note that a struct declaration refers to a declaration in a struct, /// not to the declaration of a struct. /// /// struct-declaration: /// [C23] attributes-specifier-seq[opt] /// specifier-qualifier-list struct-declarator-list /// [GNU] __extension__ struct-declaration /// [GNU] specifier-qualifier-list /// struct-declarator-list: /// struct-declarator /// struct-declarator-list ',' struct-declarator /// [GNU] struct-declarator-list ',' attributes[opt] struct-declarator /// struct-declarator: /// declarator /// [GNU] declarator attributes[opt] /// declarator[opt] ':' constant-expression /// [GNU] declarator[opt] ':' constant-expression attributes[opt] /// void Parser::ParseStructDeclaration( ParsingDeclSpec &DS, llvm::function_ref FieldsCallback) { if (Tok.is(tok::kw___extension__)) { // __extension__ silences extension warnings in the subexpression. ExtensionRAIIObject O(Diags); // Use RAII to do this. ConsumeToken(); return ParseStructDeclaration(DS, FieldsCallback); } // Parse leading attributes. ParsedAttributes Attrs(AttrFactory); MaybeParseCXX11Attributes(Attrs); // Parse the common specifier-qualifiers-list piece. ParseSpecifierQualifierList(DS); // If there are no declarators, this is a free-standing declaration // specifier. Let the actions module cope with it. if (Tok.is(tok::semi)) { // C23 6.7.2.1p9 : "The optional attribute specifier sequence in a // member declaration appertains to each of the members declared by the // member declarator list; it shall not appear if the optional member // declarator list is omitted." ProhibitAttributes(Attrs); RecordDecl *AnonRecord = nullptr; Decl *TheDecl = Actions.ParsedFreeStandingDeclSpec( getCurScope(), AS_none, DS, ParsedAttributesView::none(), AnonRecord); assert(!AnonRecord && "Did not expect anonymous struct or union here"); DS.complete(TheDecl); return; } // Read struct-declarators until we find the semicolon. bool FirstDeclarator = true; SourceLocation CommaLoc; while (true) { ParsingFieldDeclarator DeclaratorInfo(*this, DS, Attrs); DeclaratorInfo.D.setCommaLoc(CommaLoc); // Attributes are only allowed here on successive declarators. if (!FirstDeclarator) { // However, this does not apply for [[]] attributes (which could show up // before or after the __attribute__ attributes). DiagnoseAndSkipCXX11Attributes(); MaybeParseGNUAttributes(DeclaratorInfo.D); DiagnoseAndSkipCXX11Attributes(); } /// struct-declarator: declarator /// struct-declarator: declarator[opt] ':' constant-expression if (Tok.isNot(tok::colon)) { // Don't parse FOO:BAR as if it were a typo for FOO::BAR. ColonProtectionRAIIObject X(*this); ParseDeclarator(DeclaratorInfo.D); } else DeclaratorInfo.D.SetIdentifier(nullptr, Tok.getLocation()); // Here, we now know that the unnamed struct is not an anonymous struct. // Report an error if a counted_by attribute refers to a field in a // different named struct. DiagnoseCountAttributedTypeInUnnamedAnon(DS, *this); if (TryConsumeToken(tok::colon)) { ExprResult Res(ParseConstantExpression()); if (Res.isInvalid()) SkipUntil(tok::semi, StopBeforeMatch); else DeclaratorInfo.BitfieldSize = Res.get(); } // If attributes exist after the declarator, parse them. MaybeParseGNUAttributes(DeclaratorInfo.D); // We're done with this declarator; invoke the callback. FieldsCallback(DeclaratorInfo); // If we don't have a comma, it is either the end of the list (a ';') // or an error, bail out. if (!TryConsumeToken(tok::comma, CommaLoc)) return; FirstDeclarator = false; } } /// ParseStructUnionBody /// struct-contents: /// struct-declaration-list /// [EXT] empty /// [GNU] "struct-declaration-list" without terminating ';' /// struct-declaration-list: /// struct-declaration /// struct-declaration-list struct-declaration /// [OBC] '@' 'defs' '(' class-name ')' /// void Parser::ParseStructUnionBody(SourceLocation RecordLoc, DeclSpec::TST TagType, RecordDecl *TagDecl) { PrettyDeclStackTraceEntry CrashInfo(Actions.Context, TagDecl, RecordLoc, "parsing struct/union body"); assert(!getLangOpts().CPlusPlus && "C++ declarations not supported"); BalancedDelimiterTracker T(*this, tok::l_brace); if (T.consumeOpen()) return; ParseScope StructScope(this, Scope::ClassScope|Scope::DeclScope); Actions.ActOnTagStartDefinition(getCurScope(), TagDecl); // While we still have something to read, read the declarations in the struct. while (!tryParseMisplacedModuleImport() && Tok.isNot(tok::r_brace) && Tok.isNot(tok::eof)) { // Each iteration of this loop reads one struct-declaration. // Check for extraneous top-level semicolon. if (Tok.is(tok::semi)) { ConsumeExtraSemi(InsideStruct, TagType); continue; } // Parse _Static_assert declaration. if (Tok.isOneOf(tok::kw__Static_assert, tok::kw_static_assert)) { SourceLocation DeclEnd; ParseStaticAssertDeclaration(DeclEnd); continue; } if (Tok.is(tok::annot_pragma_pack)) { HandlePragmaPack(); continue; } if (Tok.is(tok::annot_pragma_align)) { HandlePragmaAlign(); continue; } if (Tok.isOneOf(tok::annot_pragma_openmp, tok::annot_attr_openmp)) { // Result can be ignored, because it must be always empty. AccessSpecifier AS = AS_none; ParsedAttributes Attrs(AttrFactory); (void)ParseOpenMPDeclarativeDirectiveWithExtDecl(AS, Attrs); continue; } if (Tok.is(tok::annot_pragma_openacc)) { ParseOpenACCDirectiveDecl(); continue; } if (tok::isPragmaAnnotation(Tok.getKind())) { Diag(Tok.getLocation(), diag::err_pragma_misplaced_in_decl) << DeclSpec::getSpecifierName( TagType, Actions.getASTContext().getPrintingPolicy()); ConsumeAnnotationToken(); continue; } if (!Tok.is(tok::at)) { auto CFieldCallback = [&](ParsingFieldDeclarator &FD) { // Install the declarator into the current TagDecl. Decl *Field = Actions.ActOnField(getCurScope(), TagDecl, FD.D.getDeclSpec().getSourceRange().getBegin(), FD.D, FD.BitfieldSize); FD.complete(Field); }; // Parse all the comma separated declarators. ParsingDeclSpec DS(*this); ParseStructDeclaration(DS, CFieldCallback); } else { // Handle @defs ConsumeToken(); if (!Tok.isObjCAtKeyword(tok::objc_defs)) { Diag(Tok, diag::err_unexpected_at); SkipUntil(tok::semi); continue; } ConsumeToken(); ExpectAndConsume(tok::l_paren); if (!Tok.is(tok::identifier)) { Diag(Tok, diag::err_expected) << tok::identifier; SkipUntil(tok::semi); continue; } SmallVector Fields; Actions.ActOnDefs(getCurScope(), TagDecl, Tok.getLocation(), Tok.getIdentifierInfo(), Fields); ConsumeToken(); ExpectAndConsume(tok::r_paren); } if (TryConsumeToken(tok::semi)) continue; if (Tok.is(tok::r_brace)) { ExpectAndConsume(tok::semi, diag::ext_expected_semi_decl_list); break; } ExpectAndConsume(tok::semi, diag::err_expected_semi_decl_list); // Skip to end of block or statement to avoid ext-warning on extra ';'. SkipUntil(tok::r_brace, StopAtSemi | StopBeforeMatch); // If we stopped at a ';', eat it. TryConsumeToken(tok::semi); } T.consumeClose(); ParsedAttributes attrs(AttrFactory); // If attributes exist after struct contents, parse them. MaybeParseGNUAttributes(attrs); SmallVector FieldDecls(TagDecl->fields()); Actions.ActOnFields(getCurScope(), RecordLoc, TagDecl, FieldDecls, T.getOpenLocation(), T.getCloseLocation(), attrs); StructScope.Exit(); Actions.ActOnTagFinishDefinition(getCurScope(), TagDecl, T.getRange()); } /// ParseEnumSpecifier /// enum-specifier: [C99 6.7.2.2] /// 'enum' identifier[opt] '{' enumerator-list '}' ///[C99/C++]'enum' identifier[opt] '{' enumerator-list ',' '}' /// [GNU] 'enum' attributes[opt] identifier[opt] '{' enumerator-list ',' [opt] /// '}' attributes[opt] /// [MS] 'enum' __declspec[opt] identifier[opt] '{' enumerator-list ',' [opt] /// '}' /// 'enum' identifier /// [GNU] 'enum' attributes[opt] identifier /// /// [C++11] enum-head '{' enumerator-list[opt] '}' /// [C++11] enum-head '{' enumerator-list ',' '}' /// /// enum-head: [C++11] /// enum-key attribute-specifier-seq[opt] identifier[opt] enum-base[opt] /// enum-key attribute-specifier-seq[opt] nested-name-specifier /// identifier enum-base[opt] /// /// enum-key: [C++11] /// 'enum' /// 'enum' 'class' /// 'enum' 'struct' /// /// enum-base: [C++11] /// ':' type-specifier-seq /// /// [C++] elaborated-type-specifier: /// [C++] 'enum' nested-name-specifier[opt] identifier /// void Parser::ParseEnumSpecifier(SourceLocation StartLoc, DeclSpec &DS, const ParsedTemplateInfo &TemplateInfo, AccessSpecifier AS, DeclSpecContext DSC) { // Parse the tag portion of this. if (Tok.is(tok::code_completion)) { // Code completion for an enum name. cutOffParsing(); Actions.CodeCompleteTag(getCurScope(), DeclSpec::TST_enum); DS.SetTypeSpecError(); // Needed by ActOnUsingDeclaration. return; } // If attributes exist after tag, parse them. ParsedAttributes attrs(AttrFactory); MaybeParseAttributes(PAKM_GNU | PAKM_Declspec | PAKM_CXX11, attrs); SourceLocation ScopedEnumKWLoc; bool IsScopedUsingClassTag = false; // In C++11, recognize 'enum class' and 'enum struct'. if (Tok.isOneOf(tok::kw_class, tok::kw_struct) && getLangOpts().CPlusPlus) { Diag(Tok, getLangOpts().CPlusPlus11 ? diag::warn_cxx98_compat_scoped_enum : diag::ext_scoped_enum); IsScopedUsingClassTag = Tok.is(tok::kw_class); ScopedEnumKWLoc = ConsumeToken(); // Attributes are not allowed between these keywords. Diagnose, // but then just treat them like they appeared in the right place. ProhibitAttributes(attrs); // They are allowed afterwards, though. MaybeParseAttributes(PAKM_GNU | PAKM_Declspec | PAKM_CXX11, attrs); } // C++11 [temp.explicit]p12: // The usual access controls do not apply to names used to specify // explicit instantiations. // We extend this to also cover explicit specializations. Note that // we don't suppress if this turns out to be an elaborated type // specifier. bool shouldDelayDiagsInTag = (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation || TemplateInfo.Kind == ParsedTemplateInfo::ExplicitSpecialization); SuppressAccessChecks diagsFromTag(*this, shouldDelayDiagsInTag); // Determine whether this declaration is permitted to have an enum-base. AllowDefiningTypeSpec AllowEnumSpecifier = isDefiningTypeSpecifierContext(DSC, getLangOpts().CPlusPlus); bool CanBeOpaqueEnumDeclaration = DS.isEmpty() && isOpaqueEnumDeclarationContext(DSC); bool CanHaveEnumBase = (getLangOpts().CPlusPlus11 || getLangOpts().ObjC || getLangOpts().MicrosoftExt) && (AllowEnumSpecifier == AllowDefiningTypeSpec::Yes || CanBeOpaqueEnumDeclaration); CXXScopeSpec &SS = DS.getTypeSpecScope(); if (getLangOpts().CPlusPlus) { // "enum foo : bar;" is not a potential typo for "enum foo::bar;". ColonProtectionRAIIObject X(*this); CXXScopeSpec Spec; if (ParseOptionalCXXScopeSpecifier(Spec, /*ObjectType=*/nullptr, /*ObjectHasErrors=*/false, /*EnteringContext=*/true)) return; if (Spec.isSet() && Tok.isNot(tok::identifier)) { Diag(Tok, diag::err_expected) << tok::identifier; DS.SetTypeSpecError(); if (Tok.isNot(tok::l_brace)) { // Has no name and is not a definition. // Skip the rest of this declarator, up until the comma or semicolon. SkipUntil(tok::comma, StopAtSemi); return; } } SS = Spec; } // Must have either 'enum name' or 'enum {...}' or (rarely) 'enum : T { ... }'. if (Tok.isNot(tok::identifier) && Tok.isNot(tok::l_brace) && Tok.isNot(tok::colon)) { Diag(Tok, diag::err_expected_either) << tok::identifier << tok::l_brace; DS.SetTypeSpecError(); // Skip the rest of this declarator, up until the comma or semicolon. SkipUntil(tok::comma, StopAtSemi); return; } // If an identifier is present, consume and remember it. IdentifierInfo *Name = nullptr; SourceLocation NameLoc; if (Tok.is(tok::identifier)) { Name = Tok.getIdentifierInfo(); NameLoc = ConsumeToken(); } if (!Name && ScopedEnumKWLoc.isValid()) { // C++0x 7.2p2: The optional identifier shall not be omitted in the // declaration of a scoped enumeration. Diag(Tok, diag::err_scoped_enum_missing_identifier); ScopedEnumKWLoc = SourceLocation(); IsScopedUsingClassTag = false; } // Okay, end the suppression area. We'll decide whether to emit the // diagnostics in a second. if (shouldDelayDiagsInTag) diagsFromTag.done(); TypeResult BaseType; SourceRange BaseRange; bool CanBeBitfield = getCurScope()->isClassScope() && ScopedEnumKWLoc.isInvalid() && Name; // Parse the fixed underlying type. if (Tok.is(tok::colon)) { // This might be an enum-base or part of some unrelated enclosing context. // // 'enum E : base' is permitted in two circumstances: // // 1) As a defining-type-specifier, when followed by '{'. // 2) As the sole constituent of a complete declaration -- when DS is empty // and the next token is ';'. // // The restriction to defining-type-specifiers is important to allow parsing // a ? new enum E : int{} // _Generic(a, enum E : int{}) // properly. // // One additional consideration applies: // // C++ [dcl.enum]p1: // A ':' following "enum nested-name-specifier[opt] identifier" within // the decl-specifier-seq of a member-declaration is parsed as part of // an enum-base. // // Other language modes supporting enumerations with fixed underlying types // do not have clear rules on this, so we disambiguate to determine whether // the tokens form a bit-field width or an enum-base. if (CanBeBitfield && !isEnumBase(CanBeOpaqueEnumDeclaration)) { // Outside C++11, do not interpret the tokens as an enum-base if they do // not make sense as one. In C++11, it's an error if this happens. if (getLangOpts().CPlusPlus11) Diag(Tok.getLocation(), diag::err_anonymous_enum_bitfield); } else if (CanHaveEnumBase || !ColonIsSacred) { SourceLocation ColonLoc = ConsumeToken(); // Parse a type-specifier-seq as a type. We can't just ParseTypeName here, // because under -fms-extensions, // enum E : int *p; // declares 'enum E : int; E *p;' not 'enum E : int*; E p;'. DeclSpec DS(AttrFactory); // enum-base is not assumed to be a type and therefore requires the // typename keyword [p0634r3]. ParseSpecifierQualifierList(DS, ImplicitTypenameContext::No, AS, DeclSpecContext::DSC_type_specifier); Declarator DeclaratorInfo(DS, ParsedAttributesView::none(), DeclaratorContext::TypeName); BaseType = Actions.ActOnTypeName(DeclaratorInfo); BaseRange = SourceRange(ColonLoc, DeclaratorInfo.getSourceRange().getEnd()); if (!getLangOpts().ObjC && !getLangOpts().C23) { if (getLangOpts().CPlusPlus11) Diag(ColonLoc, diag::warn_cxx98_compat_enum_fixed_underlying_type) << BaseRange; else if (getLangOpts().CPlusPlus) Diag(ColonLoc, diag::ext_cxx11_enum_fixed_underlying_type) << BaseRange; else if (getLangOpts().MicrosoftExt) Diag(ColonLoc, diag::ext_ms_c_enum_fixed_underlying_type) << BaseRange; else Diag(ColonLoc, diag::ext_clang_c_enum_fixed_underlying_type) << BaseRange; } } } // There are four options here. If we have 'friend enum foo;' then this is a // friend declaration, and cannot have an accompanying definition. If we have // 'enum foo;', then this is a forward declaration. If we have // 'enum foo {...' then this is a definition. Otherwise we have something // like 'enum foo xyz', a reference. // // This is needed to handle stuff like this right (C99 6.7.2.3p11): // enum foo {..}; void bar() { enum foo; } <- new foo in bar. // enum foo {..}; void bar() { enum foo x; } <- use of old foo. // Sema::TagUseKind TUK; if (AllowEnumSpecifier == AllowDefiningTypeSpec::No) TUK = Sema::TUK_Reference; else if (Tok.is(tok::l_brace)) { if (DS.isFriendSpecified()) { Diag(Tok.getLocation(), diag::err_friend_decl_defines_type) << SourceRange(DS.getFriendSpecLoc()); ConsumeBrace(); SkipUntil(tok::r_brace, StopAtSemi); // Discard any other definition-only pieces. attrs.clear(); ScopedEnumKWLoc = SourceLocation(); IsScopedUsingClassTag = false; BaseType = TypeResult(); TUK = Sema::TUK_Friend; } else { TUK = Sema::TUK_Definition; } } else if (!isTypeSpecifier(DSC) && (Tok.is(tok::semi) || (Tok.isAtStartOfLine() && !isValidAfterTypeSpecifier(CanBeBitfield)))) { // An opaque-enum-declaration is required to be standalone (no preceding or // following tokens in the declaration). Sema enforces this separately by // diagnosing anything else in the DeclSpec. TUK = DS.isFriendSpecified() ? Sema::TUK_Friend : Sema::TUK_Declaration; if (Tok.isNot(tok::semi)) { // A semicolon was missing after this declaration. Diagnose and recover. ExpectAndConsume(tok::semi, diag::err_expected_after, "enum"); PP.EnterToken(Tok, /*IsReinject=*/true); Tok.setKind(tok::semi); } } else { TUK = Sema::TUK_Reference; } bool IsElaboratedTypeSpecifier = TUK == Sema::TUK_Reference || TUK == Sema::TUK_Friend; // If this is an elaborated type specifier nested in a larger declaration, // and we delayed diagnostics before, just merge them into the current pool. if (TUK == Sema::TUK_Reference && shouldDelayDiagsInTag) { diagsFromTag.redelay(); } MultiTemplateParamsArg TParams; if (TemplateInfo.Kind != ParsedTemplateInfo::NonTemplate && TUK != Sema::TUK_Reference) { if (!getLangOpts().CPlusPlus11 || !SS.isSet()) { // Skip the rest of this declarator, up until the comma or semicolon. Diag(Tok, diag::err_enum_template); SkipUntil(tok::comma, StopAtSemi); return; } if (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation) { // Enumerations can't be explicitly instantiated. DS.SetTypeSpecError(); Diag(StartLoc, diag::err_explicit_instantiation_enum); return; } assert(TemplateInfo.TemplateParams && "no template parameters"); TParams = MultiTemplateParamsArg(TemplateInfo.TemplateParams->data(), TemplateInfo.TemplateParams->size()); SS.setTemplateParamLists(TParams); } if (!Name && TUK != Sema::TUK_Definition) { Diag(Tok, diag::err_enumerator_unnamed_no_def); DS.SetTypeSpecError(); // Skip the rest of this declarator, up until the comma or semicolon. SkipUntil(tok::comma, StopAtSemi); return; } // An elaborated-type-specifier has a much more constrained grammar: // // 'enum' nested-name-specifier[opt] identifier // // If we parsed any other bits, reject them now. // // MSVC and (for now at least) Objective-C permit a full enum-specifier // or opaque-enum-declaration anywhere. if (IsElaboratedTypeSpecifier && !getLangOpts().MicrosoftExt && !getLangOpts().ObjC) { ProhibitCXX11Attributes(attrs, diag::err_attributes_not_allowed, diag::err_keyword_not_allowed, /*DiagnoseEmptyAttrs=*/true); if (BaseType.isUsable()) Diag(BaseRange.getBegin(), diag::ext_enum_base_in_type_specifier) << (AllowEnumSpecifier == AllowDefiningTypeSpec::Yes) << BaseRange; else if (ScopedEnumKWLoc.isValid()) Diag(ScopedEnumKWLoc, diag::ext_elaborated_enum_class) << FixItHint::CreateRemoval(ScopedEnumKWLoc) << IsScopedUsingClassTag; } stripTypeAttributesOffDeclSpec(attrs, DS, TUK); Sema::SkipBodyInfo SkipBody; if (!Name && TUK == Sema::TUK_Definition && Tok.is(tok::l_brace) && NextToken().is(tok::identifier)) SkipBody = Actions.shouldSkipAnonEnumBody(getCurScope(), NextToken().getIdentifierInfo(), NextToken().getLocation()); bool Owned = false; bool IsDependent = false; const char *PrevSpec = nullptr; unsigned DiagID; Decl *TagDecl = Actions.ActOnTag(getCurScope(), DeclSpec::TST_enum, TUK, StartLoc, SS, Name, NameLoc, attrs, AS, DS.getModulePrivateSpecLoc(), TParams, Owned, IsDependent, ScopedEnumKWLoc, IsScopedUsingClassTag, BaseType, DSC == DeclSpecContext::DSC_type_specifier, DSC == DeclSpecContext::DSC_template_param || DSC == DeclSpecContext::DSC_template_type_arg, OffsetOfState, &SkipBody).get(); if (SkipBody.ShouldSkip) { assert(TUK == Sema::TUK_Definition && "can only skip a definition"); BalancedDelimiterTracker T(*this, tok::l_brace); T.consumeOpen(); T.skipToEnd(); if (DS.SetTypeSpecType(DeclSpec::TST_enum, StartLoc, NameLoc.isValid() ? NameLoc : StartLoc, PrevSpec, DiagID, TagDecl, Owned, Actions.getASTContext().getPrintingPolicy())) Diag(StartLoc, DiagID) << PrevSpec; return; } if (IsDependent) { // This enum has a dependent nested-name-specifier. Handle it as a // dependent tag. if (!Name) { DS.SetTypeSpecError(); Diag(Tok, diag::err_expected_type_name_after_typename); return; } TypeResult Type = Actions.ActOnDependentTag( getCurScope(), DeclSpec::TST_enum, TUK, SS, Name, StartLoc, NameLoc); if (Type.isInvalid()) { DS.SetTypeSpecError(); return; } if (DS.SetTypeSpecType(DeclSpec::TST_typename, StartLoc, NameLoc.isValid() ? NameLoc : StartLoc, PrevSpec, DiagID, Type.get(), Actions.getASTContext().getPrintingPolicy())) Diag(StartLoc, DiagID) << PrevSpec; return; } if (!TagDecl) { // The action failed to produce an enumeration tag. If this is a // definition, consume the entire definition. if (Tok.is(tok::l_brace) && TUK != Sema::TUK_Reference) { ConsumeBrace(); SkipUntil(tok::r_brace, StopAtSemi); } DS.SetTypeSpecError(); return; } if (Tok.is(tok::l_brace) && TUK == Sema::TUK_Definition) { Decl *D = SkipBody.CheckSameAsPrevious ? SkipBody.New : TagDecl; ParseEnumBody(StartLoc, D); if (SkipBody.CheckSameAsPrevious && !Actions.ActOnDuplicateDefinition(TagDecl, SkipBody)) { DS.SetTypeSpecError(); return; } } if (DS.SetTypeSpecType(DeclSpec::TST_enum, StartLoc, NameLoc.isValid() ? NameLoc : StartLoc, PrevSpec, DiagID, TagDecl, Owned, Actions.getASTContext().getPrintingPolicy())) Diag(StartLoc, DiagID) << PrevSpec; } /// ParseEnumBody - Parse a {} enclosed enumerator-list. /// enumerator-list: /// enumerator /// enumerator-list ',' enumerator /// enumerator: /// enumeration-constant attributes[opt] /// enumeration-constant attributes[opt] '=' constant-expression /// enumeration-constant: /// identifier /// void Parser::ParseEnumBody(SourceLocation StartLoc, Decl *EnumDecl) { // Enter the scope of the enum body and start the definition. ParseScope EnumScope(this, Scope::DeclScope | Scope::EnumScope); Actions.ActOnTagStartDefinition(getCurScope(), EnumDecl); BalancedDelimiterTracker T(*this, tok::l_brace); T.consumeOpen(); // C does not allow an empty enumerator-list, C++ does [dcl.enum]. if (Tok.is(tok::r_brace) && !getLangOpts().CPlusPlus) Diag(Tok, diag::err_empty_enum); SmallVector EnumConstantDecls; SmallVector EnumAvailabilityDiags; Decl *LastEnumConstDecl = nullptr; // Parse the enumerator-list. while (Tok.isNot(tok::r_brace)) { // Parse enumerator. If failed, try skipping till the start of the next // enumerator definition. if (Tok.isNot(tok::identifier)) { Diag(Tok.getLocation(), diag::err_expected) << tok::identifier; if (SkipUntil(tok::comma, tok::r_brace, StopBeforeMatch) && TryConsumeToken(tok::comma)) continue; break; } IdentifierInfo *Ident = Tok.getIdentifierInfo(); SourceLocation IdentLoc = ConsumeToken(); // If attributes exist after the enumerator, parse them. ParsedAttributes attrs(AttrFactory); MaybeParseGNUAttributes(attrs); if (isAllowedCXX11AttributeSpecifier()) { if (getLangOpts().CPlusPlus) Diag(Tok.getLocation(), getLangOpts().CPlusPlus17 ? diag::warn_cxx14_compat_ns_enum_attribute : diag::ext_ns_enum_attribute) << 1 /*enumerator*/; ParseCXX11Attributes(attrs); } SourceLocation EqualLoc; ExprResult AssignedVal; EnumAvailabilityDiags.emplace_back(*this); EnterExpressionEvaluationContext ConstantEvaluated( Actions, Sema::ExpressionEvaluationContext::ConstantEvaluated); if (TryConsumeToken(tok::equal, EqualLoc)) { AssignedVal = ParseConstantExpressionInExprEvalContext(); if (AssignedVal.isInvalid()) SkipUntil(tok::comma, tok::r_brace, StopBeforeMatch); } // Install the enumerator constant into EnumDecl. Decl *EnumConstDecl = Actions.ActOnEnumConstant( getCurScope(), EnumDecl, LastEnumConstDecl, IdentLoc, Ident, attrs, EqualLoc, AssignedVal.get()); EnumAvailabilityDiags.back().done(); EnumConstantDecls.push_back(EnumConstDecl); LastEnumConstDecl = EnumConstDecl; if (Tok.is(tok::identifier)) { // We're missing a comma between enumerators. SourceLocation Loc = getEndOfPreviousToken(); Diag(Loc, diag::err_enumerator_list_missing_comma) << FixItHint::CreateInsertion(Loc, ", "); continue; } // Emumerator definition must be finished, only comma or r_brace are // allowed here. SourceLocation CommaLoc; if (Tok.isNot(tok::r_brace) && !TryConsumeToken(tok::comma, CommaLoc)) { if (EqualLoc.isValid()) Diag(Tok.getLocation(), diag::err_expected_either) << tok::r_brace << tok::comma; else Diag(Tok.getLocation(), diag::err_expected_end_of_enumerator); if (SkipUntil(tok::comma, tok::r_brace, StopBeforeMatch)) { if (TryConsumeToken(tok::comma, CommaLoc)) continue; } else { break; } } // If comma is followed by r_brace, emit appropriate warning. if (Tok.is(tok::r_brace) && CommaLoc.isValid()) { if (!getLangOpts().C99 && !getLangOpts().CPlusPlus11) Diag(CommaLoc, getLangOpts().CPlusPlus ? diag::ext_enumerator_list_comma_cxx : diag::ext_enumerator_list_comma_c) << FixItHint::CreateRemoval(CommaLoc); else if (getLangOpts().CPlusPlus11) Diag(CommaLoc, diag::warn_cxx98_compat_enumerator_list_comma) << FixItHint::CreateRemoval(CommaLoc); break; } } // Eat the }. T.consumeClose(); // If attributes exist after the identifier list, parse them. ParsedAttributes attrs(AttrFactory); MaybeParseGNUAttributes(attrs); Actions.ActOnEnumBody(StartLoc, T.getRange(), EnumDecl, EnumConstantDecls, getCurScope(), attrs); // Now handle enum constant availability diagnostics. assert(EnumConstantDecls.size() == EnumAvailabilityDiags.size()); for (size_t i = 0, e = EnumConstantDecls.size(); i != e; ++i) { ParsingDeclRAIIObject PD(*this, ParsingDeclRAIIObject::NoParent); EnumAvailabilityDiags[i].redelay(); PD.complete(EnumConstantDecls[i]); } EnumScope.Exit(); Actions.ActOnTagFinishDefinition(getCurScope(), EnumDecl, T.getRange()); // The next token must be valid after an enum definition. If not, a ';' // was probably forgotten. bool CanBeBitfield = getCurScope()->isClassScope(); if (!isValidAfterTypeSpecifier(CanBeBitfield)) { ExpectAndConsume(tok::semi, diag::err_expected_after, "enum"); // Push this token back into the preprocessor and change our current token // to ';' so that the rest of the code recovers as though there were an // ';' after the definition. PP.EnterToken(Tok, /*IsReinject=*/true); Tok.setKind(tok::semi); } } /// isKnownToBeTypeSpecifier - Return true if we know that the specified token /// is definitely a type-specifier. Return false if it isn't part of a type /// specifier or if we're not sure. bool Parser::isKnownToBeTypeSpecifier(const Token &Tok) const { switch (Tok.getKind()) { default: return false; // type-specifiers case tok::kw_short: case tok::kw_long: case tok::kw___int64: case tok::kw___int128: case tok::kw_signed: case tok::kw_unsigned: case tok::kw__Complex: case tok::kw__Imaginary: case tok::kw_void: case tok::kw_char: case tok::kw_wchar_t: case tok::kw_char8_t: case tok::kw_char16_t: case tok::kw_char32_t: case tok::kw_int: case tok::kw__ExtInt: case tok::kw__BitInt: case tok::kw___bf16: case tok::kw_half: case tok::kw_float: case tok::kw_double: case tok::kw__Accum: case tok::kw__Fract: case tok::kw__Float16: case tok::kw___float128: case tok::kw___ibm128: case tok::kw_bool: case tok::kw__Bool: case tok::kw__Decimal32: case tok::kw__Decimal64: case tok::kw__Decimal128: case tok::kw___vector: #define GENERIC_IMAGE_TYPE(ImgType, Id) case tok::kw_##ImgType##_t: #include "clang/Basic/OpenCLImageTypes.def" // struct-or-union-specifier (C99) or class-specifier (C++) case tok::kw_class: case tok::kw_struct: case tok::kw___interface: case tok::kw_union: // enum-specifier case tok::kw_enum: // typedef-name case tok::annot_typename: return true; } } /// isTypeSpecifierQualifier - Return true if the current token could be the /// start of a specifier-qualifier-list. bool Parser::isTypeSpecifierQualifier() { switch (Tok.getKind()) { default: return false; case tok::identifier: // foo::bar if (TryAltiVecVectorToken()) return true; [[fallthrough]]; case tok::kw_typename: // typename T::type // Annotate typenames and C++ scope specifiers. If we get one, just // recurse to handle whatever we get. if (TryAnnotateTypeOrScopeToken()) return true; if (Tok.is(tok::identifier)) return false; return isTypeSpecifierQualifier(); case tok::coloncolon: // ::foo::bar if (NextToken().is(tok::kw_new) || // ::new NextToken().is(tok::kw_delete)) // ::delete return false; if (TryAnnotateTypeOrScopeToken()) return true; return isTypeSpecifierQualifier(); // GNU attributes support. case tok::kw___attribute: // C23/GNU typeof support. case tok::kw_typeof: case tok::kw_typeof_unqual: // type-specifiers case tok::kw_short: case tok::kw_long: case tok::kw___int64: case tok::kw___int128: case tok::kw_signed: case tok::kw_unsigned: case tok::kw__Complex: case tok::kw__Imaginary: case tok::kw_void: case tok::kw_char: case tok::kw_wchar_t: case tok::kw_char8_t: case tok::kw_char16_t: case tok::kw_char32_t: case tok::kw_int: case tok::kw__ExtInt: case tok::kw__BitInt: case tok::kw_half: case tok::kw___bf16: case tok::kw_float: case tok::kw_double: case tok::kw__Accum: case tok::kw__Fract: case tok::kw__Float16: case tok::kw___float128: case tok::kw___ibm128: case tok::kw_bool: case tok::kw__Bool: case tok::kw__Decimal32: case tok::kw__Decimal64: case tok::kw__Decimal128: case tok::kw___vector: #define GENERIC_IMAGE_TYPE(ImgType, Id) case tok::kw_##ImgType##_t: #include "clang/Basic/OpenCLImageTypes.def" // struct-or-union-specifier (C99) or class-specifier (C++) case tok::kw_class: case tok::kw_struct: case tok::kw___interface: case tok::kw_union: // enum-specifier case tok::kw_enum: // type-qualifier case tok::kw_const: case tok::kw_volatile: case tok::kw_restrict: case tok::kw__Sat: // Debugger support. case tok::kw___unknown_anytype: // typedef-name case tok::annot_typename: return true; // GNU ObjC bizarre protocol extension: with implicit 'id'. case tok::less: return getLangOpts().ObjC; case tok::kw___cdecl: case tok::kw___stdcall: case tok::kw___fastcall: case tok::kw___thiscall: case tok::kw___regcall: case tok::kw___vectorcall: case tok::kw___w64: case tok::kw___ptr64: case tok::kw___ptr32: case tok::kw___pascal: case tok::kw___unaligned: case tok::kw__Nonnull: case tok::kw__Nullable: case tok::kw__Nullable_result: case tok::kw__Null_unspecified: case tok::kw___kindof: case tok::kw___private: case tok::kw___local: case tok::kw___global: case tok::kw___constant: case tok::kw___generic: case tok::kw___read_only: case tok::kw___read_write: case tok::kw___write_only: case tok::kw___funcref: return true; case tok::kw_private: return getLangOpts().OpenCL; // C11 _Atomic case tok::kw__Atomic: return true; // HLSL type qualifiers case tok::kw_groupshared: case tok::kw_in: case tok::kw_inout: case tok::kw_out: return getLangOpts().HLSL; } } Parser::DeclGroupPtrTy Parser::ParseTopLevelStmtDecl() { assert(PP.isIncrementalProcessingEnabled() && "Not in incremental mode"); // Parse a top-level-stmt. Parser::StmtVector Stmts; ParsedStmtContext SubStmtCtx = ParsedStmtContext(); ParseScope FnScope(this, Scope::FnScope | Scope::DeclScope | Scope::CompoundStmtScope); TopLevelStmtDecl *TLSD = Actions.ActOnStartTopLevelStmtDecl(getCurScope()); StmtResult R = ParseStatementOrDeclaration(Stmts, SubStmtCtx); if (!R.isUsable()) return nullptr; Actions.ActOnFinishTopLevelStmtDecl(TLSD, R.get()); if (Tok.is(tok::annot_repl_input_end) && Tok.getAnnotationValue() != nullptr) { ConsumeAnnotationToken(); TLSD->setSemiMissing(); } SmallVector DeclsInGroup; DeclsInGroup.push_back(TLSD); // Currently happens for things like -fms-extensions and use `__if_exists`. for (Stmt *S : Stmts) { // Here we should be safe as `__if_exists` and friends are not introducing // new variables which need to live outside file scope. TopLevelStmtDecl *D = Actions.ActOnStartTopLevelStmtDecl(getCurScope()); Actions.ActOnFinishTopLevelStmtDecl(D, S); DeclsInGroup.push_back(D); } return Actions.BuildDeclaratorGroup(DeclsInGroup); } /// isDeclarationSpecifier() - Return true if the current token is part of a /// declaration specifier. /// /// \param AllowImplicitTypename whether this is a context where T::type [T /// dependent] can appear. /// \param DisambiguatingWithExpression True to indicate that the purpose of /// this check is to disambiguate between an expression and a declaration. bool Parser::isDeclarationSpecifier( ImplicitTypenameContext AllowImplicitTypename, bool DisambiguatingWithExpression) { switch (Tok.getKind()) { default: return false; // OpenCL 2.0 and later define this keyword. case tok::kw_pipe: return getLangOpts().OpenCL && getLangOpts().getOpenCLCompatibleVersion() >= 200; case tok::identifier: // foo::bar // Unfortunate hack to support "Class.factoryMethod" notation. if (getLangOpts().ObjC && NextToken().is(tok::period)) return false; if (TryAltiVecVectorToken()) return true; [[fallthrough]]; case tok::kw_decltype: // decltype(T())::type case tok::kw_typename: // typename T::type // Annotate typenames and C++ scope specifiers. If we get one, just // recurse to handle whatever we get. if (TryAnnotateTypeOrScopeToken(AllowImplicitTypename)) return true; if (TryAnnotateTypeConstraint()) return true; if (Tok.is(tok::identifier)) return false; // If we're in Objective-C and we have an Objective-C class type followed // by an identifier and then either ':' or ']', in a place where an // expression is permitted, then this is probably a class message send // missing the initial '['. In this case, we won't consider this to be // the start of a declaration. if (DisambiguatingWithExpression && isStartOfObjCClassMessageMissingOpenBracket()) return false; return isDeclarationSpecifier(AllowImplicitTypename); case tok::coloncolon: // ::foo::bar if (!getLangOpts().CPlusPlus) return false; if (NextToken().is(tok::kw_new) || // ::new NextToken().is(tok::kw_delete)) // ::delete return false; // Annotate typenames and C++ scope specifiers. If we get one, just // recurse to handle whatever we get. if (TryAnnotateTypeOrScopeToken()) return true; return isDeclarationSpecifier(ImplicitTypenameContext::No); // storage-class-specifier case tok::kw_typedef: case tok::kw_extern: case tok::kw___private_extern__: case tok::kw_static: case tok::kw_auto: case tok::kw___auto_type: case tok::kw_register: case tok::kw___thread: case tok::kw_thread_local: case tok::kw__Thread_local: // Modules case tok::kw___module_private__: // Debugger support case tok::kw___unknown_anytype: // type-specifiers case tok::kw_short: case tok::kw_long: case tok::kw___int64: case tok::kw___int128: case tok::kw_signed: case tok::kw_unsigned: case tok::kw__Complex: case tok::kw__Imaginary: case tok::kw_void: case tok::kw_char: case tok::kw_wchar_t: case tok::kw_char8_t: case tok::kw_char16_t: case tok::kw_char32_t: case tok::kw_int: case tok::kw__ExtInt: case tok::kw__BitInt: case tok::kw_half: case tok::kw___bf16: case tok::kw_float: case tok::kw_double: case tok::kw__Accum: case tok::kw__Fract: case tok::kw__Float16: case tok::kw___float128: case tok::kw___ibm128: case tok::kw_bool: case tok::kw__Bool: case tok::kw__Decimal32: case tok::kw__Decimal64: case tok::kw__Decimal128: case tok::kw___vector: // struct-or-union-specifier (C99) or class-specifier (C++) case tok::kw_class: case tok::kw_struct: case tok::kw_union: case tok::kw___interface: // enum-specifier case tok::kw_enum: // type-qualifier case tok::kw_const: case tok::kw_volatile: case tok::kw_restrict: case tok::kw__Sat: // function-specifier case tok::kw_inline: case tok::kw_virtual: case tok::kw_explicit: case tok::kw__Noreturn: // alignment-specifier case tok::kw__Alignas: // friend keyword. case tok::kw_friend: // static_assert-declaration case tok::kw_static_assert: case tok::kw__Static_assert: // C23/GNU typeof support. case tok::kw_typeof: case tok::kw_typeof_unqual: // GNU attributes. case tok::kw___attribute: // C++11 decltype and constexpr. case tok::annot_decltype: case tok::annot_pack_indexing_type: case tok::kw_constexpr: // C++20 consteval and constinit. case tok::kw_consteval: case tok::kw_constinit: // C11 _Atomic case tok::kw__Atomic: return true; case tok::kw_alignas: // alignas is a type-specifier-qualifier in C23, which is a kind of // declaration-specifier. Outside of C23 mode (including in C++), it is not. return getLangOpts().C23; // GNU ObjC bizarre protocol extension: with implicit 'id'. case tok::less: return getLangOpts().ObjC; // typedef-name case tok::annot_typename: return !DisambiguatingWithExpression || !isStartOfObjCClassMessageMissingOpenBracket(); // placeholder-type-specifier case tok::annot_template_id: { TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok); if (TemplateId->hasInvalidName()) return true; // FIXME: What about type templates that have only been annotated as // annot_template_id, not as annot_typename? return isTypeConstraintAnnotation() && (NextToken().is(tok::kw_auto) || NextToken().is(tok::kw_decltype)); } case tok::annot_cxxscope: { TemplateIdAnnotation *TemplateId = NextToken().is(tok::annot_template_id) ? takeTemplateIdAnnotation(NextToken()) : nullptr; if (TemplateId && TemplateId->hasInvalidName()) return true; // FIXME: What about type templates that have only been annotated as // annot_template_id, not as annot_typename? if (NextToken().is(tok::identifier) && TryAnnotateTypeConstraint()) return true; return isTypeConstraintAnnotation() && GetLookAheadToken(2).isOneOf(tok::kw_auto, tok::kw_decltype); } case tok::kw___declspec: case tok::kw___cdecl: case tok::kw___stdcall: case tok::kw___fastcall: case tok::kw___thiscall: case tok::kw___regcall: case tok::kw___vectorcall: case tok::kw___w64: case tok::kw___sptr: case tok::kw___uptr: case tok::kw___ptr64: case tok::kw___ptr32: case tok::kw___forceinline: case tok::kw___pascal: case tok::kw___unaligned: case tok::kw__Nonnull: case tok::kw__Nullable: case tok::kw__Nullable_result: case tok::kw__Null_unspecified: case tok::kw___kindof: case tok::kw___private: case tok::kw___local: case tok::kw___global: case tok::kw___constant: case tok::kw___generic: case tok::kw___read_only: case tok::kw___read_write: case tok::kw___write_only: #define GENERIC_IMAGE_TYPE(ImgType, Id) case tok::kw_##ImgType##_t: #include "clang/Basic/OpenCLImageTypes.def" case tok::kw___funcref: case tok::kw_groupshared: return true; case tok::kw_private: return getLangOpts().OpenCL; } } bool Parser::isConstructorDeclarator(bool IsUnqualified, bool DeductionGuide, DeclSpec::FriendSpecified IsFriend, const ParsedTemplateInfo *TemplateInfo) { RevertingTentativeParsingAction TPA(*this); // Parse the C++ scope specifier. CXXScopeSpec SS; if (TemplateInfo && TemplateInfo->TemplateParams) SS.setTemplateParamLists(*TemplateInfo->TemplateParams); if (ParseOptionalCXXScopeSpecifier(SS, /*ObjectType=*/nullptr, /*ObjectHasErrors=*/false, /*EnteringContext=*/true)) { return false; } // Parse the constructor name. if (Tok.is(tok::identifier)) { // We already know that we have a constructor name; just consume // the token. ConsumeToken(); } else if (Tok.is(tok::annot_template_id)) { ConsumeAnnotationToken(); } else { return false; } // There may be attributes here, appertaining to the constructor name or type // we just stepped past. SkipCXX11Attributes(); // Current class name must be followed by a left parenthesis. if (Tok.isNot(tok::l_paren)) { return false; } ConsumeParen(); // A right parenthesis, or ellipsis followed by a right parenthesis signals // that we have a constructor. if (Tok.is(tok::r_paren) || (Tok.is(tok::ellipsis) && NextToken().is(tok::r_paren))) { return true; } // A C++11 attribute here signals that we have a constructor, and is an // attribute on the first constructor parameter. if (getLangOpts().CPlusPlus11 && isCXX11AttributeSpecifier(/*Disambiguate*/ false, /*OuterMightBeMessageSend*/ true)) { return true; } // If we need to, enter the specified scope. DeclaratorScopeObj DeclScopeObj(*this, SS); if (SS.isSet() && Actions.ShouldEnterDeclaratorScope(getCurScope(), SS)) DeclScopeObj.EnterDeclaratorScope(); // Optionally skip Microsoft attributes. ParsedAttributes Attrs(AttrFactory); MaybeParseMicrosoftAttributes(Attrs); // Check whether the next token(s) are part of a declaration // specifier, in which case we have the start of a parameter and, // therefore, we know that this is a constructor. // Due to an ambiguity with implicit typename, the above is not enough. // Additionally, check to see if we are a friend. // If we parsed a scope specifier as well as friend, // we might be parsing a friend constructor. bool IsConstructor = false; ImplicitTypenameContext ITC = IsFriend && !SS.isSet() ? ImplicitTypenameContext::No : ImplicitTypenameContext::Yes; // Constructors cannot have this parameters, but we support that scenario here // to improve diagnostic. if (Tok.is(tok::kw_this)) { ConsumeToken(); return isDeclarationSpecifier(ITC); } if (isDeclarationSpecifier(ITC)) IsConstructor = true; else if (Tok.is(tok::identifier) || (Tok.is(tok::annot_cxxscope) && NextToken().is(tok::identifier))) { // We've seen "C ( X" or "C ( X::Y", but "X" / "X::Y" is not a type. // This might be a parenthesized member name, but is more likely to // be a constructor declaration with an invalid argument type. Keep // looking. if (Tok.is(tok::annot_cxxscope)) ConsumeAnnotationToken(); ConsumeToken(); // If this is not a constructor, we must be parsing a declarator, // which must have one of the following syntactic forms (see the // grammar extract at the start of ParseDirectDeclarator): switch (Tok.getKind()) { case tok::l_paren: // C(X ( int)); case tok::l_square: // C(X [ 5]); // C(X [ [attribute]]); case tok::coloncolon: // C(X :: Y); // C(X :: *p); // Assume this isn't a constructor, rather than assuming it's a // constructor with an unnamed parameter of an ill-formed type. break; case tok::r_paren: // C(X ) // Skip past the right-paren and any following attributes to get to // the function body or trailing-return-type. ConsumeParen(); SkipCXX11Attributes(); if (DeductionGuide) { // C(X) -> ... is a deduction guide. IsConstructor = Tok.is(tok::arrow); break; } if (Tok.is(tok::colon) || Tok.is(tok::kw_try)) { // Assume these were meant to be constructors: // C(X) : (the name of a bit-field cannot be parenthesized). // C(X) try (this is otherwise ill-formed). IsConstructor = true; } if (Tok.is(tok::semi) || Tok.is(tok::l_brace)) { // If we have a constructor name within the class definition, // assume these were meant to be constructors: // C(X) { // C(X) ; // ... because otherwise we would be declaring a non-static data // member that is ill-formed because it's of the same type as its // surrounding class. // // FIXME: We can actually do this whether or not the name is qualified, // because if it is qualified in this context it must be being used as // a constructor name. // currently, so we're somewhat conservative here. IsConstructor = IsUnqualified; } break; default: IsConstructor = true; break; } } return IsConstructor; } /// ParseTypeQualifierListOpt /// type-qualifier-list: [C99 6.7.5] /// type-qualifier /// [vendor] attributes /// [ only if AttrReqs & AR_VendorAttributesParsed ] /// type-qualifier-list type-qualifier /// [vendor] type-qualifier-list attributes /// [ only if AttrReqs & AR_VendorAttributesParsed ] /// [C++0x] attribute-specifier[opt] is allowed before cv-qualifier-seq /// [ only if AttReqs & AR_CXX11AttributesParsed ] /// Note: vendor can be GNU, MS, etc and can be explicitly controlled via /// AttrRequirements bitmask values. void Parser::ParseTypeQualifierListOpt( DeclSpec &DS, unsigned AttrReqs, bool AtomicAllowed, bool IdentifierRequired, std::optional> CodeCompletionHandler) { if ((AttrReqs & AR_CXX11AttributesParsed) && isAllowedCXX11AttributeSpecifier()) { ParsedAttributes Attrs(AttrFactory); ParseCXX11Attributes(Attrs); DS.takeAttributesFrom(Attrs); } SourceLocation EndLoc; while (true) { bool isInvalid = false; const char *PrevSpec = nullptr; unsigned DiagID = 0; SourceLocation Loc = Tok.getLocation(); switch (Tok.getKind()) { case tok::code_completion: cutOffParsing(); if (CodeCompletionHandler) (*CodeCompletionHandler)(); else Actions.CodeCompleteTypeQualifiers(DS); return; case tok::kw_const: isInvalid = DS.SetTypeQual(DeclSpec::TQ_const , Loc, PrevSpec, DiagID, getLangOpts()); break; case tok::kw_volatile: isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec, DiagID, getLangOpts()); break; case tok::kw_restrict: isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec, DiagID, getLangOpts()); break; case tok::kw__Atomic: if (!AtomicAllowed) goto DoneWithTypeQuals; diagnoseUseOfC11Keyword(Tok); isInvalid = DS.SetTypeQual(DeclSpec::TQ_atomic, Loc, PrevSpec, DiagID, getLangOpts()); break; // OpenCL qualifiers: case tok::kw_private: if (!getLangOpts().OpenCL) goto DoneWithTypeQuals; [[fallthrough]]; case tok::kw___private: case tok::kw___global: case tok::kw___local: case tok::kw___constant: case tok::kw___generic: case tok::kw___read_only: case tok::kw___write_only: case tok::kw___read_write: ParseOpenCLQualifiers(DS.getAttributes()); break; case tok::kw_groupshared: case tok::kw_in: case tok::kw_inout: case tok::kw_out: // NOTE: ParseHLSLQualifiers will consume the qualifier token. ParseHLSLQualifiers(DS.getAttributes()); continue; case tok::kw___unaligned: isInvalid = DS.SetTypeQual(DeclSpec::TQ_unaligned, Loc, PrevSpec, DiagID, getLangOpts()); break; case tok::kw___uptr: // GNU libc headers in C mode use '__uptr' as an identifier which conflicts // with the MS modifier keyword. if ((AttrReqs & AR_DeclspecAttributesParsed) && !getLangOpts().CPlusPlus && IdentifierRequired && DS.isEmpty() && NextToken().is(tok::semi)) { if (TryKeywordIdentFallback(false)) continue; } [[fallthrough]]; case tok::kw___sptr: case tok::kw___w64: case tok::kw___ptr64: case tok::kw___ptr32: case tok::kw___cdecl: case tok::kw___stdcall: case tok::kw___fastcall: case tok::kw___thiscall: case tok::kw___regcall: case tok::kw___vectorcall: if (AttrReqs & AR_DeclspecAttributesParsed) { ParseMicrosoftTypeAttributes(DS.getAttributes()); continue; } goto DoneWithTypeQuals; case tok::kw___funcref: ParseWebAssemblyFuncrefTypeAttribute(DS.getAttributes()); continue; goto DoneWithTypeQuals; case tok::kw___pascal: if (AttrReqs & AR_VendorAttributesParsed) { ParseBorlandTypeAttributes(DS.getAttributes()); continue; } goto DoneWithTypeQuals; // Nullability type specifiers. case tok::kw__Nonnull: case tok::kw__Nullable: case tok::kw__Nullable_result: case tok::kw__Null_unspecified: ParseNullabilityTypeSpecifiers(DS.getAttributes()); continue; // Objective-C 'kindof' types. case tok::kw___kindof: DS.getAttributes().addNew(Tok.getIdentifierInfo(), Loc, nullptr, Loc, nullptr, 0, tok::kw___kindof); (void)ConsumeToken(); continue; case tok::kw___attribute: if (AttrReqs & AR_GNUAttributesParsedAndRejected) // When GNU attributes are expressly forbidden, diagnose their usage. Diag(Tok, diag::err_attributes_not_allowed); // Parse the attributes even if they are rejected to ensure that error // recovery is graceful. if (AttrReqs & AR_GNUAttributesParsed || AttrReqs & AR_GNUAttributesParsedAndRejected) { ParseGNUAttributes(DS.getAttributes()); continue; // do *not* consume the next token! } // otherwise, FALL THROUGH! [[fallthrough]]; default: DoneWithTypeQuals: // If this is not a type-qualifier token, we're done reading type // qualifiers. First verify that DeclSpec's are consistent. DS.Finish(Actions, Actions.getASTContext().getPrintingPolicy()); if (EndLoc.isValid()) DS.SetRangeEnd(EndLoc); return; } // If the specifier combination wasn't legal, issue a diagnostic. if (isInvalid) { assert(PrevSpec && "Method did not return previous specifier!"); Diag(Tok, DiagID) << PrevSpec; } EndLoc = ConsumeToken(); } } /// ParseDeclarator - Parse and verify a newly-initialized declarator. void Parser::ParseDeclarator(Declarator &D) { /// This implements the 'declarator' production in the C grammar, then checks /// for well-formedness and issues diagnostics. Actions.runWithSufficientStackSpace(D.getBeginLoc(), [&] { ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator); }); } static bool isPtrOperatorToken(tok::TokenKind Kind, const LangOptions &Lang, DeclaratorContext TheContext) { if (Kind == tok::star || Kind == tok::caret) return true; // OpenCL 2.0 and later define this keyword. if (Kind == tok::kw_pipe && Lang.OpenCL && Lang.getOpenCLCompatibleVersion() >= 200) return true; if (!Lang.CPlusPlus) return false; if (Kind == tok::amp) return true; // We parse rvalue refs in C++03, because otherwise the errors are scary. // But we must not parse them in conversion-type-ids and new-type-ids, since // those can be legitimately followed by a && operator. // (The same thing can in theory happen after a trailing-return-type, but // since those are a C++11 feature, there is no rejects-valid issue there.) if (Kind == tok::ampamp) return Lang.CPlusPlus11 || (TheContext != DeclaratorContext::ConversionId && TheContext != DeclaratorContext::CXXNew); return false; } // Indicates whether the given declarator is a pipe declarator. static bool isPipeDeclarator(const Declarator &D) { const unsigned NumTypes = D.getNumTypeObjects(); for (unsigned Idx = 0; Idx != NumTypes; ++Idx) if (DeclaratorChunk::Pipe == D.getTypeObject(Idx).Kind) return true; return false; } /// ParseDeclaratorInternal - Parse a C or C++ declarator. The direct-declarator /// is parsed by the function passed to it. Pass null, and the direct-declarator /// isn't parsed at all, making this function effectively parse the C++ /// ptr-operator production. /// /// If the grammar of this construct is extended, matching changes must also be /// made to TryParseDeclarator and MightBeDeclarator, and possibly to /// isConstructorDeclarator. /// /// declarator: [C99 6.7.5] [C++ 8p4, dcl.decl] /// [C] pointer[opt] direct-declarator /// [C++] direct-declarator /// [C++] ptr-operator declarator /// /// pointer: [C99 6.7.5] /// '*' type-qualifier-list[opt] /// '*' type-qualifier-list[opt] pointer /// /// ptr-operator: /// '*' cv-qualifier-seq[opt] /// '&' /// [C++0x] '&&' /// [GNU] '&' restrict[opt] attributes[opt] /// [GNU?] '&&' restrict[opt] attributes[opt] /// '::'[opt] nested-name-specifier '*' cv-qualifier-seq[opt] void Parser::ParseDeclaratorInternal(Declarator &D, DirectDeclParseFunction DirectDeclParser) { if (Diags.hasAllExtensionsSilenced()) D.setExtension(); // C++ member pointers start with a '::' or a nested-name. // Member pointers get special handling, since there's no place for the // scope spec in the generic path below. if (getLangOpts().CPlusPlus && (Tok.is(tok::coloncolon) || Tok.is(tok::kw_decltype) || (Tok.is(tok::identifier) && (NextToken().is(tok::coloncolon) || NextToken().is(tok::less))) || Tok.is(tok::annot_cxxscope))) { bool EnteringContext = D.getContext() == DeclaratorContext::File || D.getContext() == DeclaratorContext::Member; CXXScopeSpec SS; SS.setTemplateParamLists(D.getTemplateParameterLists()); ParseOptionalCXXScopeSpecifier(SS, /*ObjectType=*/nullptr, /*ObjectHasErrors=*/false, EnteringContext); if (SS.isNotEmpty()) { if (Tok.isNot(tok::star)) { // The scope spec really belongs to the direct-declarator. if (D.mayHaveIdentifier()) D.getCXXScopeSpec() = SS; else AnnotateScopeToken(SS, true); if (DirectDeclParser) (this->*DirectDeclParser)(D); return; } if (SS.isValid()) { checkCompoundToken(SS.getEndLoc(), tok::coloncolon, CompoundToken::MemberPtr); } SourceLocation StarLoc = ConsumeToken(); D.SetRangeEnd(StarLoc); DeclSpec DS(AttrFactory); ParseTypeQualifierListOpt(DS); D.ExtendWithDeclSpec(DS); // Recurse to parse whatever is left. Actions.runWithSufficientStackSpace(D.getBeginLoc(), [&] { ParseDeclaratorInternal(D, DirectDeclParser); }); // Sema will have to catch (syntactically invalid) pointers into global // scope. It has to catch pointers into namespace scope anyway. D.AddTypeInfo(DeclaratorChunk::getMemberPointer( SS, DS.getTypeQualifiers(), StarLoc, DS.getEndLoc()), std::move(DS.getAttributes()), /* Don't replace range end. */ SourceLocation()); return; } } tok::TokenKind Kind = Tok.getKind(); if (D.getDeclSpec().isTypeSpecPipe() && !isPipeDeclarator(D)) { DeclSpec DS(AttrFactory); ParseTypeQualifierListOpt(DS); D.AddTypeInfo( DeclaratorChunk::getPipe(DS.getTypeQualifiers(), DS.getPipeLoc()), std::move(DS.getAttributes()), SourceLocation()); } // Not a pointer, C++ reference, or block. if (!isPtrOperatorToken(Kind, getLangOpts(), D.getContext())) { if (DirectDeclParser) (this->*DirectDeclParser)(D); return; } // Otherwise, '*' -> pointer, '^' -> block, '&' -> lvalue reference, // '&&' -> rvalue reference SourceLocation Loc = ConsumeToken(); // Eat the *, ^, & or &&. D.SetRangeEnd(Loc); if (Kind == tok::star || Kind == tok::caret) { // Is a pointer. DeclSpec DS(AttrFactory); // GNU attributes are not allowed here in a new-type-id, but Declspec and // C++11 attributes are allowed. unsigned Reqs = AR_CXX11AttributesParsed | AR_DeclspecAttributesParsed | ((D.getContext() != DeclaratorContext::CXXNew) ? AR_GNUAttributesParsed : AR_GNUAttributesParsedAndRejected); ParseTypeQualifierListOpt(DS, Reqs, true, !D.mayOmitIdentifier()); D.ExtendWithDeclSpec(DS); // Recursively parse the declarator. Actions.runWithSufficientStackSpace( D.getBeginLoc(), [&] { ParseDeclaratorInternal(D, DirectDeclParser); }); if (Kind == tok::star) // Remember that we parsed a pointer type, and remember the type-quals. D.AddTypeInfo(DeclaratorChunk::getPointer( DS.getTypeQualifiers(), Loc, DS.getConstSpecLoc(), DS.getVolatileSpecLoc(), DS.getRestrictSpecLoc(), DS.getAtomicSpecLoc(), DS.getUnalignedSpecLoc()), std::move(DS.getAttributes()), SourceLocation()); else // Remember that we parsed a Block type, and remember the type-quals. D.AddTypeInfo( DeclaratorChunk::getBlockPointer(DS.getTypeQualifiers(), Loc), std::move(DS.getAttributes()), SourceLocation()); } else { // Is a reference DeclSpec DS(AttrFactory); // Complain about rvalue references in C++03, but then go on and build // the declarator. if (Kind == tok::ampamp) Diag(Loc, getLangOpts().CPlusPlus11 ? diag::warn_cxx98_compat_rvalue_reference : diag::ext_rvalue_reference); // GNU-style and C++11 attributes are allowed here, as is restrict. ParseTypeQualifierListOpt(DS); D.ExtendWithDeclSpec(DS); // C++ 8.3.2p1: cv-qualified references are ill-formed except when the // cv-qualifiers are introduced through the use of a typedef or of a // template type argument, in which case the cv-qualifiers are ignored. if (DS.getTypeQualifiers() != DeclSpec::TQ_unspecified) { if (DS.getTypeQualifiers() & DeclSpec::TQ_const) Diag(DS.getConstSpecLoc(), diag::err_invalid_reference_qualifier_application) << "const"; if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile) Diag(DS.getVolatileSpecLoc(), diag::err_invalid_reference_qualifier_application) << "volatile"; // 'restrict' is permitted as an extension. if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic) Diag(DS.getAtomicSpecLoc(), diag::err_invalid_reference_qualifier_application) << "_Atomic"; } // Recursively parse the declarator. Actions.runWithSufficientStackSpace( D.getBeginLoc(), [&] { ParseDeclaratorInternal(D, DirectDeclParser); }); if (D.getNumTypeObjects() > 0) { // C++ [dcl.ref]p4: There shall be no references to references. DeclaratorChunk& InnerChunk = D.getTypeObject(D.getNumTypeObjects() - 1); if (InnerChunk.Kind == DeclaratorChunk::Reference) { if (const IdentifierInfo *II = D.getIdentifier()) Diag(InnerChunk.Loc, diag::err_illegal_decl_reference_to_reference) << II; else Diag(InnerChunk.Loc, diag::err_illegal_decl_reference_to_reference) << "type name"; // Once we've complained about the reference-to-reference, we // can go ahead and build the (technically ill-formed) // declarator: reference collapsing will take care of it. } } // Remember that we parsed a reference type. D.AddTypeInfo(DeclaratorChunk::getReference(DS.getTypeQualifiers(), Loc, Kind == tok::amp), std::move(DS.getAttributes()), SourceLocation()); } } // When correcting from misplaced brackets before the identifier, the location // is saved inside the declarator so that other diagnostic messages can use // them. This extracts and returns that location, or returns the provided // location if a stored location does not exist. static SourceLocation getMissingDeclaratorIdLoc(Declarator &D, SourceLocation Loc) { if (D.getName().StartLocation.isInvalid() && D.getName().EndLocation.isValid()) return D.getName().EndLocation; return Loc; } /// ParseDirectDeclarator /// direct-declarator: [C99 6.7.5] /// [C99] identifier /// '(' declarator ')' /// [GNU] '(' attributes declarator ')' /// [C90] direct-declarator '[' constant-expression[opt] ']' /// [C99] direct-declarator '[' type-qual-list[opt] assignment-expr[opt] ']' /// [C99] direct-declarator '[' 'static' type-qual-list[opt] assign-expr ']' /// [C99] direct-declarator '[' type-qual-list 'static' assignment-expr ']' /// [C99] direct-declarator '[' type-qual-list[opt] '*' ']' /// [C++11] direct-declarator '[' constant-expression[opt] ']' /// attribute-specifier-seq[opt] /// direct-declarator '(' parameter-type-list ')' /// direct-declarator '(' identifier-list[opt] ')' /// [GNU] direct-declarator '(' parameter-forward-declarations /// parameter-type-list[opt] ')' /// [C++] direct-declarator '(' parameter-declaration-clause ')' /// cv-qualifier-seq[opt] exception-specification[opt] /// [C++11] direct-declarator '(' parameter-declaration-clause ')' /// attribute-specifier-seq[opt] cv-qualifier-seq[opt] /// ref-qualifier[opt] exception-specification[opt] /// [C++] declarator-id /// [C++11] declarator-id attribute-specifier-seq[opt] /// /// declarator-id: [C++ 8] /// '...'[opt] id-expression /// '::'[opt] nested-name-specifier[opt] type-name /// /// id-expression: [C++ 5.1] /// unqualified-id /// qualified-id /// /// unqualified-id: [C++ 5.1] /// identifier /// operator-function-id /// conversion-function-id /// '~' class-name /// template-id /// /// C++17 adds the following, which we also handle here: /// /// simple-declaration: /// '[' identifier-list ']' brace-or-equal-initializer ';' /// /// Note, any additional constructs added here may need corresponding changes /// in isConstructorDeclarator. void Parser::ParseDirectDeclarator(Declarator &D) { DeclaratorScopeObj DeclScopeObj(*this, D.getCXXScopeSpec()); if (getLangOpts().CPlusPlus && D.mayHaveIdentifier()) { // This might be a C++17 structured binding. if (Tok.is(tok::l_square) && !D.mayOmitIdentifier() && D.getCXXScopeSpec().isEmpty()) return ParseDecompositionDeclarator(D); // Don't parse FOO:BAR as if it were a typo for FOO::BAR inside a class, in // this context it is a bitfield. Also in range-based for statement colon // may delimit for-range-declaration. ColonProtectionRAIIObject X( *this, D.getContext() == DeclaratorContext::Member || (D.getContext() == DeclaratorContext::ForInit && getLangOpts().CPlusPlus11)); // ParseDeclaratorInternal might already have parsed the scope. if (D.getCXXScopeSpec().isEmpty()) { bool EnteringContext = D.getContext() == DeclaratorContext::File || D.getContext() == DeclaratorContext::Member; ParseOptionalCXXScopeSpecifier( D.getCXXScopeSpec(), /*ObjectType=*/nullptr, /*ObjectHasErrors=*/false, EnteringContext); } // C++23 [basic.scope.namespace]p1: // For each non-friend redeclaration or specialization whose target scope // is or is contained by the scope, the portion after the declarator-id, // class-head-name, or enum-head-name is also included in the scope. // C++23 [basic.scope.class]p1: // For each non-friend redeclaration or specialization whose target scope // is or is contained by the scope, the portion after the declarator-id, // class-head-name, or enum-head-name is also included in the scope. // // FIXME: We should not be doing this for friend declarations; they have // their own special lookup semantics specified by [basic.lookup.unqual]p6. if (D.getCXXScopeSpec().isValid()) { if (Actions.ShouldEnterDeclaratorScope(getCurScope(), D.getCXXScopeSpec())) // Change the declaration context for name lookup, until this function // is exited (and the declarator has been parsed). DeclScopeObj.EnterDeclaratorScope(); else if (getObjCDeclContext()) { // Ensure that we don't interpret the next token as an identifier when // dealing with declarations in an Objective-C container. D.SetIdentifier(nullptr, Tok.getLocation()); D.setInvalidType(true); ConsumeToken(); goto PastIdentifier; } } // C++0x [dcl.fct]p14: // There is a syntactic ambiguity when an ellipsis occurs at the end of a // parameter-declaration-clause without a preceding comma. In this case, // the ellipsis is parsed as part of the abstract-declarator if the type // of the parameter either names a template parameter pack that has not // been expanded or contains auto; otherwise, it is parsed as part of the // parameter-declaration-clause. if (Tok.is(tok::ellipsis) && D.getCXXScopeSpec().isEmpty() && !((D.getContext() == DeclaratorContext::Prototype || D.getContext() == DeclaratorContext::LambdaExprParameter || D.getContext() == DeclaratorContext::BlockLiteral) && NextToken().is(tok::r_paren) && !D.hasGroupingParens() && !Actions.containsUnexpandedParameterPacks(D) && D.getDeclSpec().getTypeSpecType() != TST_auto)) { SourceLocation EllipsisLoc = ConsumeToken(); if (isPtrOperatorToken(Tok.getKind(), getLangOpts(), D.getContext())) { // The ellipsis was put in the wrong place. Recover, and explain to // the user what they should have done. ParseDeclarator(D); if (EllipsisLoc.isValid()) DiagnoseMisplacedEllipsisInDeclarator(EllipsisLoc, D); return; } else D.setEllipsisLoc(EllipsisLoc); // The ellipsis can't be followed by a parenthesized declarator. We // check for that in ParseParenDeclarator, after we have disambiguated // the l_paren token. } if (Tok.isOneOf(tok::identifier, tok::kw_operator, tok::annot_template_id, tok::tilde)) { // We found something that indicates the start of an unqualified-id. // Parse that unqualified-id. bool AllowConstructorName; bool AllowDeductionGuide; if (D.getDeclSpec().hasTypeSpecifier()) { AllowConstructorName = false; AllowDeductionGuide = false; } else if (D.getCXXScopeSpec().isSet()) { AllowConstructorName = (D.getContext() == DeclaratorContext::File || D.getContext() == DeclaratorContext::Member); AllowDeductionGuide = false; } else { AllowConstructorName = (D.getContext() == DeclaratorContext::Member); AllowDeductionGuide = (D.getContext() == DeclaratorContext::File || D.getContext() == DeclaratorContext::Member); } bool HadScope = D.getCXXScopeSpec().isValid(); SourceLocation TemplateKWLoc; if (ParseUnqualifiedId(D.getCXXScopeSpec(), /*ObjectType=*/nullptr, /*ObjectHadErrors=*/false, /*EnteringContext=*/true, /*AllowDestructorName=*/true, AllowConstructorName, AllowDeductionGuide, &TemplateKWLoc, D.getName()) || // Once we're past the identifier, if the scope was bad, mark the // whole declarator bad. D.getCXXScopeSpec().isInvalid()) { D.SetIdentifier(nullptr, Tok.getLocation()); D.setInvalidType(true); } else { // ParseUnqualifiedId might have parsed a scope specifier during error // recovery. If it did so, enter that scope. if (!HadScope && D.getCXXScopeSpec().isValid() && Actions.ShouldEnterDeclaratorScope(getCurScope(), D.getCXXScopeSpec())) DeclScopeObj.EnterDeclaratorScope(); // Parsed the unqualified-id; update range information and move along. if (D.getSourceRange().getBegin().isInvalid()) D.SetRangeBegin(D.getName().getSourceRange().getBegin()); D.SetRangeEnd(D.getName().getSourceRange().getEnd()); } goto PastIdentifier; } if (D.getCXXScopeSpec().isNotEmpty()) { // We have a scope specifier but no following unqualified-id. Diag(PP.getLocForEndOfToken(D.getCXXScopeSpec().getEndLoc()), diag::err_expected_unqualified_id) << /*C++*/1; D.SetIdentifier(nullptr, Tok.getLocation()); goto PastIdentifier; } } else if (Tok.is(tok::identifier) && D.mayHaveIdentifier()) { assert(!getLangOpts().CPlusPlus && "There's a C++-specific check for tok::identifier above"); assert(Tok.getIdentifierInfo() && "Not an identifier?"); D.SetIdentifier(Tok.getIdentifierInfo(), Tok.getLocation()); D.SetRangeEnd(Tok.getLocation()); ConsumeToken(); goto PastIdentifier; } else if (Tok.is(tok::identifier) && !D.mayHaveIdentifier()) { // We're not allowed an identifier here, but we got one. Try to figure out // if the user was trying to attach a name to the type, or whether the name // is some unrelated trailing syntax. bool DiagnoseIdentifier = false; if (D.hasGroupingParens()) // An identifier within parens is unlikely to be intended to be anything // other than a name being "declared". DiagnoseIdentifier = true; else if (D.getContext() == DeclaratorContext::TemplateArg) // T is an accidental identifier; T'. DiagnoseIdentifier = NextToken().isOneOf(tok::comma, tok::greater, tok::greatergreater); else if (D.getContext() == DeclaratorContext::AliasDecl || D.getContext() == DeclaratorContext::AliasTemplate) // The most likely error is that the ';' was forgotten. DiagnoseIdentifier = NextToken().isOneOf(tok::comma, tok::semi); else if ((D.getContext() == DeclaratorContext::TrailingReturn || D.getContext() == DeclaratorContext::TrailingReturnVar) && !isCXX11VirtSpecifier(Tok)) DiagnoseIdentifier = NextToken().isOneOf( tok::comma, tok::semi, tok::equal, tok::l_brace, tok::kw_try); if (DiagnoseIdentifier) { Diag(Tok.getLocation(), diag::err_unexpected_unqualified_id) << FixItHint::CreateRemoval(Tok.getLocation()); D.SetIdentifier(nullptr, Tok.getLocation()); ConsumeToken(); goto PastIdentifier; } } if (Tok.is(tok::l_paren)) { // If this might be an abstract-declarator followed by a direct-initializer, // check whether this is a valid declarator chunk. If it can't be, assume // that it's an initializer instead. if (D.mayOmitIdentifier() && D.mayBeFollowedByCXXDirectInit()) { RevertingTentativeParsingAction PA(*this); if (TryParseDeclarator(true, D.mayHaveIdentifier(), true, D.getDeclSpec().getTypeSpecType() == TST_auto) == TPResult::False) { D.SetIdentifier(nullptr, Tok.getLocation()); goto PastIdentifier; } } // direct-declarator: '(' declarator ')' // direct-declarator: '(' attributes declarator ')' // Example: 'char (*X)' or 'int (*XX)(void)' ParseParenDeclarator(D); // If the declarator was parenthesized, we entered the declarator // scope when parsing the parenthesized declarator, then exited // the scope already. Re-enter the scope, if we need to. if (D.getCXXScopeSpec().isSet()) { // If there was an error parsing parenthesized declarator, declarator // scope may have been entered before. Don't do it again. if (!D.isInvalidType() && Actions.ShouldEnterDeclaratorScope(getCurScope(), D.getCXXScopeSpec())) // Change the declaration context for name lookup, until this function // is exited (and the declarator has been parsed). DeclScopeObj.EnterDeclaratorScope(); } } else if (D.mayOmitIdentifier()) { // This could be something simple like "int" (in which case the declarator // portion is empty), if an abstract-declarator is allowed. D.SetIdentifier(nullptr, Tok.getLocation()); // The grammar for abstract-pack-declarator does not allow grouping parens. // FIXME: Revisit this once core issue 1488 is resolved. if (D.hasEllipsis() && D.hasGroupingParens()) Diag(PP.getLocForEndOfToken(D.getEllipsisLoc()), diag::ext_abstract_pack_declarator_parens); } else { if (Tok.getKind() == tok::annot_pragma_parser_crash) LLVM_BUILTIN_TRAP; if (Tok.is(tok::l_square)) return ParseMisplacedBracketDeclarator(D); if (D.getContext() == DeclaratorContext::Member) { // Objective-C++: Detect C++ keywords and try to prevent further errors by // treating these keyword as valid member names. if (getLangOpts().ObjC && getLangOpts().CPlusPlus && !Tok.isAnnotation() && Tok.getIdentifierInfo() && Tok.getIdentifierInfo()->isCPlusPlusKeyword(getLangOpts())) { Diag(getMissingDeclaratorIdLoc(D, Tok.getLocation()), diag::err_expected_member_name_or_semi_objcxx_keyword) << Tok.getIdentifierInfo() << (D.getDeclSpec().isEmpty() ? SourceRange() : D.getDeclSpec().getSourceRange()); D.SetIdentifier(Tok.getIdentifierInfo(), Tok.getLocation()); D.SetRangeEnd(Tok.getLocation()); ConsumeToken(); goto PastIdentifier; } Diag(getMissingDeclaratorIdLoc(D, Tok.getLocation()), diag::err_expected_member_name_or_semi) << (D.getDeclSpec().isEmpty() ? SourceRange() : D.getDeclSpec().getSourceRange()); } else { if (Tok.getKind() == tok::TokenKind::kw_while) { Diag(Tok, diag::err_while_loop_outside_of_a_function); } else if (getLangOpts().CPlusPlus) { if (Tok.isOneOf(tok::period, tok::arrow)) Diag(Tok, diag::err_invalid_operator_on_type) << Tok.is(tok::arrow); else { SourceLocation Loc = D.getCXXScopeSpec().getEndLoc(); if (Tok.isAtStartOfLine() && Loc.isValid()) Diag(PP.getLocForEndOfToken(Loc), diag::err_expected_unqualified_id) << getLangOpts().CPlusPlus; else Diag(getMissingDeclaratorIdLoc(D, Tok.getLocation()), diag::err_expected_unqualified_id) << getLangOpts().CPlusPlus; } } else { Diag(getMissingDeclaratorIdLoc(D, Tok.getLocation()), diag::err_expected_either) << tok::identifier << tok::l_paren; } } D.SetIdentifier(nullptr, Tok.getLocation()); D.setInvalidType(true); } PastIdentifier: assert(D.isPastIdentifier() && "Haven't past the location of the identifier yet?"); // Don't parse attributes unless we have parsed an unparenthesized name. if (D.hasName() && !D.getNumTypeObjects()) MaybeParseCXX11Attributes(D); while (true) { if (Tok.is(tok::l_paren)) { bool IsFunctionDeclaration = D.isFunctionDeclaratorAFunctionDeclaration(); // Enter function-declaration scope, limiting any declarators to the // function prototype scope, including parameter declarators. ParseScope PrototypeScope(this, Scope::FunctionPrototypeScope|Scope::DeclScope| (IsFunctionDeclaration ? Scope::FunctionDeclarationScope : 0)); // The paren may be part of a C++ direct initializer, eg. "int x(1);". // In such a case, check if we actually have a function declarator; if it // is not, the declarator has been fully parsed. bool IsAmbiguous = false; if (getLangOpts().CPlusPlus && D.mayBeFollowedByCXXDirectInit()) { // C++2a [temp.res]p5 // A qualified-id is assumed to name a type if // - [...] // - it is a decl-specifier of the decl-specifier-seq of a // - [...] // - parameter-declaration in a member-declaration [...] // - parameter-declaration in a declarator of a function or function // template declaration whose declarator-id is qualified [...] auto AllowImplicitTypename = ImplicitTypenameContext::No; if (D.getCXXScopeSpec().isSet()) AllowImplicitTypename = (ImplicitTypenameContext)Actions.isDeclaratorFunctionLike(D); else if (D.getContext() == DeclaratorContext::Member) { AllowImplicitTypename = ImplicitTypenameContext::Yes; } // The name of the declarator, if any, is tentatively declared within // a possible direct initializer. TentativelyDeclaredIdentifiers.push_back(D.getIdentifier()); bool IsFunctionDecl = isCXXFunctionDeclarator(&IsAmbiguous, AllowImplicitTypename); TentativelyDeclaredIdentifiers.pop_back(); if (!IsFunctionDecl) break; } ParsedAttributes attrs(AttrFactory); BalancedDelimiterTracker T(*this, tok::l_paren); T.consumeOpen(); if (IsFunctionDeclaration) Actions.ActOnStartFunctionDeclarationDeclarator(D, TemplateParameterDepth); ParseFunctionDeclarator(D, attrs, T, IsAmbiguous); if (IsFunctionDeclaration) Actions.ActOnFinishFunctionDeclarationDeclarator(D); PrototypeScope.Exit(); } else if (Tok.is(tok::l_square)) { ParseBracketDeclarator(D); } else if (Tok.isRegularKeywordAttribute()) { // For consistency with attribute parsing. Diag(Tok, diag::err_keyword_not_allowed) << Tok.getIdentifierInfo(); bool TakesArgs = doesKeywordAttributeTakeArgs(Tok.getKind()); ConsumeToken(); if (TakesArgs) { BalancedDelimiterTracker T(*this, tok::l_paren); if (!T.consumeOpen()) T.skipToEnd(); } } else if (Tok.is(tok::kw_requires) && D.hasGroupingParens()) { // This declarator is declaring a function, but the requires clause is // in the wrong place: // void (f() requires true); // instead of // void f() requires true; // or // void (f()) requires true; Diag(Tok, diag::err_requires_clause_inside_parens); ConsumeToken(); ExprResult TrailingRequiresClause = Actions.CorrectDelayedTyposInExpr( ParseConstraintLogicalOrExpression(/*IsTrailingRequiresClause=*/true)); if (TrailingRequiresClause.isUsable() && D.isFunctionDeclarator() && !D.hasTrailingRequiresClause()) // We're already ill-formed if we got here but we'll accept it anyway. D.setTrailingRequiresClause(TrailingRequiresClause.get()); } else { break; } } } void Parser::ParseDecompositionDeclarator(Declarator &D) { assert(Tok.is(tok::l_square)); // If this doesn't look like a structured binding, maybe it's a misplaced // array declarator. // FIXME: Consume the l_square first so we don't need extra lookahead for // this. if (!(NextToken().is(tok::identifier) && GetLookAheadToken(2).isOneOf(tok::comma, tok::r_square)) && !(NextToken().is(tok::r_square) && GetLookAheadToken(2).isOneOf(tok::equal, tok::l_brace))) return ParseMisplacedBracketDeclarator(D); BalancedDelimiterTracker T(*this, tok::l_square); T.consumeOpen(); SmallVector Bindings; while (Tok.isNot(tok::r_square)) { if (!Bindings.empty()) { if (Tok.is(tok::comma)) ConsumeToken(); else { if (Tok.is(tok::identifier)) { SourceLocation EndLoc = getEndOfPreviousToken(); Diag(EndLoc, diag::err_expected) << tok::comma << FixItHint::CreateInsertion(EndLoc, ","); } else { Diag(Tok, diag::err_expected_comma_or_rsquare); } SkipUntil(tok::r_square, tok::comma, tok::identifier, StopAtSemi | StopBeforeMatch); if (Tok.is(tok::comma)) ConsumeToken(); else if (Tok.isNot(tok::identifier)) break; } } if (Tok.isNot(tok::identifier)) { Diag(Tok, diag::err_expected) << tok::identifier; break; } Bindings.push_back({Tok.getIdentifierInfo(), Tok.getLocation()}); ConsumeToken(); } if (Tok.isNot(tok::r_square)) // We've already diagnosed a problem here. T.skipToEnd(); else { // C++17 does not allow the identifier-list in a structured binding // to be empty. if (Bindings.empty()) Diag(Tok.getLocation(), diag::ext_decomp_decl_empty); T.consumeClose(); } return D.setDecompositionBindings(T.getOpenLocation(), Bindings, T.getCloseLocation()); } /// ParseParenDeclarator - We parsed the declarator D up to a paren. This is /// only called before the identifier, so these are most likely just grouping /// parens for precedence. If we find that these are actually function /// parameter parens in an abstract-declarator, we call ParseFunctionDeclarator. /// /// direct-declarator: /// '(' declarator ')' /// [GNU] '(' attributes declarator ')' /// direct-declarator '(' parameter-type-list ')' /// direct-declarator '(' identifier-list[opt] ')' /// [GNU] direct-declarator '(' parameter-forward-declarations /// parameter-type-list[opt] ')' /// void Parser::ParseParenDeclarator(Declarator &D) { BalancedDelimiterTracker T(*this, tok::l_paren); T.consumeOpen(); assert(!D.isPastIdentifier() && "Should be called before passing identifier"); // Eat any attributes before we look at whether this is a grouping or function // declarator paren. If this is a grouping paren, the attribute applies to // the type being built up, for example: // int (__attribute__(()) *x)(long y) // If this ends up not being a grouping paren, the attribute applies to the // first argument, for example: // int (__attribute__(()) int x) // In either case, we need to eat any attributes to be able to determine what // sort of paren this is. // ParsedAttributes attrs(AttrFactory); bool RequiresArg = false; if (Tok.is(tok::kw___attribute)) { ParseGNUAttributes(attrs); // We require that the argument list (if this is a non-grouping paren) be // present even if the attribute list was empty. RequiresArg = true; } // Eat any Microsoft extensions. ParseMicrosoftTypeAttributes(attrs); // Eat any Borland extensions. if (Tok.is(tok::kw___pascal)) ParseBorlandTypeAttributes(attrs); // If we haven't past the identifier yet (or where the identifier would be // stored, if this is an abstract declarator), then this is probably just // grouping parens. However, if this could be an abstract-declarator, then // this could also be the start of function arguments (consider 'void()'). bool isGrouping; if (!D.mayOmitIdentifier()) { // If this can't be an abstract-declarator, this *must* be a grouping // paren, because we haven't seen the identifier yet. isGrouping = true; } else if (Tok.is(tok::r_paren) || // 'int()' is a function. (getLangOpts().CPlusPlus && Tok.is(tok::ellipsis) && NextToken().is(tok::r_paren)) || // C++ int(...) isDeclarationSpecifier( ImplicitTypenameContext::No) || // 'int(int)' is a function. isCXX11AttributeSpecifier()) { // 'int([[]]int)' is a function. // This handles C99 6.7.5.3p11: in "typedef int X; void foo(X)", X is // considered to be a type, not a K&R identifier-list. isGrouping = false; } else { // Otherwise, this is a grouping paren, e.g. 'int (*X)' or 'int(X)'. isGrouping = true; } // If this is a grouping paren, handle: // direct-declarator: '(' declarator ')' // direct-declarator: '(' attributes declarator ')' if (isGrouping) { SourceLocation EllipsisLoc = D.getEllipsisLoc(); D.setEllipsisLoc(SourceLocation()); bool hadGroupingParens = D.hasGroupingParens(); D.setGroupingParens(true); ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator); // Match the ')'. T.consumeClose(); D.AddTypeInfo( DeclaratorChunk::getParen(T.getOpenLocation(), T.getCloseLocation()), std::move(attrs), T.getCloseLocation()); D.setGroupingParens(hadGroupingParens); // An ellipsis cannot be placed outside parentheses. if (EllipsisLoc.isValid()) DiagnoseMisplacedEllipsisInDeclarator(EllipsisLoc, D); return; } // Okay, if this wasn't a grouping paren, it must be the start of a function // argument list. Recognize that this declarator will never have an // identifier (and remember where it would have been), then call into // ParseFunctionDeclarator to handle of argument list. D.SetIdentifier(nullptr, Tok.getLocation()); // Enter function-declaration scope, limiting any declarators to the // function prototype scope, including parameter declarators. ParseScope PrototypeScope(this, Scope::FunctionPrototypeScope | Scope::DeclScope | (D.isFunctionDeclaratorAFunctionDeclaration() ? Scope::FunctionDeclarationScope : 0)); ParseFunctionDeclarator(D, attrs, T, false, RequiresArg); PrototypeScope.Exit(); } void Parser::InitCXXThisScopeForDeclaratorIfRelevant( const Declarator &D, const DeclSpec &DS, std::optional &ThisScope) { // C++11 [expr.prim.general]p3: // If a declaration declares a member function or member function // template of a class X, the expression this is a prvalue of type // "pointer to cv-qualifier-seq X" between the optional cv-qualifer-seq // and the end of the function-definition, member-declarator, or // declarator. // FIXME: currently, "static" case isn't handled correctly. bool IsCXX11MemberFunction = getLangOpts().CPlusPlus11 && D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef && (D.getContext() == DeclaratorContext::Member ? !D.getDeclSpec().isFriendSpecified() : D.getContext() == DeclaratorContext::File && D.getCXXScopeSpec().isValid() && Actions.CurContext->isRecord()); if (!IsCXX11MemberFunction) return; Qualifiers Q = Qualifiers::fromCVRUMask(DS.getTypeQualifiers()); if (D.getDeclSpec().hasConstexprSpecifier() && !getLangOpts().CPlusPlus14) Q.addConst(); // FIXME: Collect C++ address spaces. // If there are multiple different address spaces, the source is invalid. // Carry on using the first addr space for the qualifiers of 'this'. // The diagnostic will be given later while creating the function // prototype for the method. if (getLangOpts().OpenCLCPlusPlus) { for (ParsedAttr &attr : DS.getAttributes()) { LangAS ASIdx = attr.asOpenCLLangAS(); if (ASIdx != LangAS::Default) { Q.addAddressSpace(ASIdx); break; } } } ThisScope.emplace(Actions, dyn_cast(Actions.CurContext), Q, IsCXX11MemberFunction); } /// ParseFunctionDeclarator - We are after the identifier and have parsed the /// declarator D up to a paren, which indicates that we are parsing function /// arguments. /// /// If FirstArgAttrs is non-null, then the caller parsed those attributes /// immediately after the open paren - they will be applied to the DeclSpec /// of the first parameter. /// /// If RequiresArg is true, then the first argument of the function is required /// to be present and required to not be an identifier list. /// /// For C++, after the parameter-list, it also parses the cv-qualifier-seq[opt], /// (C++11) ref-qualifier[opt], exception-specification[opt], /// (C++11) attribute-specifier-seq[opt], (C++11) trailing-return-type[opt] and /// (C++2a) the trailing requires-clause. /// /// [C++11] exception-specification: /// dynamic-exception-specification /// noexcept-specification /// void Parser::ParseFunctionDeclarator(Declarator &D, ParsedAttributes &FirstArgAttrs, BalancedDelimiterTracker &Tracker, bool IsAmbiguous, bool RequiresArg) { assert(getCurScope()->isFunctionPrototypeScope() && "Should call from a Function scope"); // lparen is already consumed! assert(D.isPastIdentifier() && "Should not call before identifier!"); // This should be true when the function has typed arguments. // Otherwise, it is treated as a K&R-style function. bool HasProto = false; // Build up an array of information about the parsed arguments. SmallVector ParamInfo; // Remember where we see an ellipsis, if any. SourceLocation EllipsisLoc; DeclSpec DS(AttrFactory); bool RefQualifierIsLValueRef = true; SourceLocation RefQualifierLoc; ExceptionSpecificationType ESpecType = EST_None; SourceRange ESpecRange; SmallVector DynamicExceptions; SmallVector DynamicExceptionRanges; ExprResult NoexceptExpr; CachedTokens *ExceptionSpecTokens = nullptr; ParsedAttributes FnAttrs(AttrFactory); TypeResult TrailingReturnType; SourceLocation TrailingReturnTypeLoc; /* LocalEndLoc is the end location for the local FunctionTypeLoc. EndLoc is the end location for the function declarator. They differ for trailing return types. */ SourceLocation StartLoc, LocalEndLoc, EndLoc; SourceLocation LParenLoc, RParenLoc; LParenLoc = Tracker.getOpenLocation(); StartLoc = LParenLoc; if (isFunctionDeclaratorIdentifierList()) { if (RequiresArg) Diag(Tok, diag::err_argument_required_after_attribute); ParseFunctionDeclaratorIdentifierList(D, ParamInfo); Tracker.consumeClose(); RParenLoc = Tracker.getCloseLocation(); LocalEndLoc = RParenLoc; EndLoc = RParenLoc; // If there are attributes following the identifier list, parse them and // prohibit them. MaybeParseCXX11Attributes(FnAttrs); ProhibitAttributes(FnAttrs); } else { if (Tok.isNot(tok::r_paren)) ParseParameterDeclarationClause(D, FirstArgAttrs, ParamInfo, EllipsisLoc); else if (RequiresArg) Diag(Tok, diag::err_argument_required_after_attribute); // OpenCL disallows functions without a prototype, but it doesn't enforce // strict prototypes as in C23 because it allows a function definition to // have an identifier list. See OpenCL 3.0 6.11/g for more details. HasProto = ParamInfo.size() || getLangOpts().requiresStrictPrototypes() || getLangOpts().OpenCL; // If we have the closing ')', eat it. Tracker.consumeClose(); RParenLoc = Tracker.getCloseLocation(); LocalEndLoc = RParenLoc; EndLoc = RParenLoc; if (getLangOpts().CPlusPlus) { // FIXME: Accept these components in any order, and produce fixits to // correct the order if the user gets it wrong. Ideally we should deal // with the pure-specifier in the same way. // Parse cv-qualifier-seq[opt]. ParseTypeQualifierListOpt(DS, AR_NoAttributesParsed, /*AtomicAllowed*/ false, /*IdentifierRequired=*/false, llvm::function_ref([&]() { Actions.CodeCompleteFunctionQualifiers(DS, D); })); if (!DS.getSourceRange().getEnd().isInvalid()) { EndLoc = DS.getSourceRange().getEnd(); } // Parse ref-qualifier[opt]. if (ParseRefQualifier(RefQualifierIsLValueRef, RefQualifierLoc)) EndLoc = RefQualifierLoc; std::optional ThisScope; InitCXXThisScopeForDeclaratorIfRelevant(D, DS, ThisScope); // Parse exception-specification[opt]. // FIXME: Per [class.mem]p6, all exception-specifications at class scope // should be delayed, including those for non-members (eg, friend // declarations). But only applying this to member declarations is // consistent with what other implementations do. bool Delayed = D.isFirstDeclarationOfMember() && D.isFunctionDeclaratorAFunctionDeclaration(); if (Delayed && Actions.isLibstdcxxEagerExceptionSpecHack(D) && GetLookAheadToken(0).is(tok::kw_noexcept) && GetLookAheadToken(1).is(tok::l_paren) && GetLookAheadToken(2).is(tok::kw_noexcept) && GetLookAheadToken(3).is(tok::l_paren) && GetLookAheadToken(4).is(tok::identifier) && GetLookAheadToken(4).getIdentifierInfo()->isStr("swap")) { // HACK: We've got an exception-specification // noexcept(noexcept(swap(...))) // or // noexcept(noexcept(swap(...)) && noexcept(swap(...))) // on a 'swap' member function. This is a libstdc++ bug; the lookup // for 'swap' will only find the function we're currently declaring, // whereas it expects to find a non-member swap through ADL. Turn off // delayed parsing to give it a chance to find what it expects. Delayed = false; } ESpecType = tryParseExceptionSpecification(Delayed, ESpecRange, DynamicExceptions, DynamicExceptionRanges, NoexceptExpr, ExceptionSpecTokens); if (ESpecType != EST_None) EndLoc = ESpecRange.getEnd(); // Parse attribute-specifier-seq[opt]. Per DR 979 and DR 1297, this goes // after the exception-specification. MaybeParseCXX11Attributes(FnAttrs); // Parse trailing-return-type[opt]. LocalEndLoc = EndLoc; if (getLangOpts().CPlusPlus11 && Tok.is(tok::arrow)) { Diag(Tok, diag::warn_cxx98_compat_trailing_return_type); if (D.getDeclSpec().getTypeSpecType() == TST_auto) StartLoc = D.getDeclSpec().getTypeSpecTypeLoc(); LocalEndLoc = Tok.getLocation(); SourceRange Range; TrailingReturnType = ParseTrailingReturnType(Range, D.mayBeFollowedByCXXDirectInit()); TrailingReturnTypeLoc = Range.getBegin(); EndLoc = Range.getEnd(); } } else { MaybeParseCXX11Attributes(FnAttrs); } } // Collect non-parameter declarations from the prototype if this is a function // declaration. They will be moved into the scope of the function. Only do // this in C and not C++, where the decls will continue to live in the // surrounding context. SmallVector DeclsInPrototype; if (getCurScope()->isFunctionDeclarationScope() && !getLangOpts().CPlusPlus) { for (Decl *D : getCurScope()->decls()) { NamedDecl *ND = dyn_cast(D); if (!ND || isa(ND)) continue; DeclsInPrototype.push_back(ND); } // Sort DeclsInPrototype based on raw encoding of the source location. // Scope::decls() is iterating over a SmallPtrSet so sort the Decls before // moving to DeclContext. This provides a stable ordering for traversing // Decls in DeclContext, which is important for tasks like ASTWriter for // deterministic output. llvm::sort(DeclsInPrototype, [](Decl *D1, Decl *D2) { return D1->getLocation().getRawEncoding() < D2->getLocation().getRawEncoding(); }); } // Remember that we parsed a function type, and remember the attributes. D.AddTypeInfo(DeclaratorChunk::getFunction( HasProto, IsAmbiguous, LParenLoc, ParamInfo.data(), ParamInfo.size(), EllipsisLoc, RParenLoc, RefQualifierIsLValueRef, RefQualifierLoc, /*MutableLoc=*/SourceLocation(), ESpecType, ESpecRange, DynamicExceptions.data(), DynamicExceptionRanges.data(), DynamicExceptions.size(), NoexceptExpr.isUsable() ? NoexceptExpr.get() : nullptr, ExceptionSpecTokens, DeclsInPrototype, StartLoc, LocalEndLoc, D, TrailingReturnType, TrailingReturnTypeLoc, &DS), std::move(FnAttrs), EndLoc); } /// ParseRefQualifier - Parses a member function ref-qualifier. Returns /// true if a ref-qualifier is found. bool Parser::ParseRefQualifier(bool &RefQualifierIsLValueRef, SourceLocation &RefQualifierLoc) { if (Tok.isOneOf(tok::amp, tok::ampamp)) { Diag(Tok, getLangOpts().CPlusPlus11 ? diag::warn_cxx98_compat_ref_qualifier : diag::ext_ref_qualifier); RefQualifierIsLValueRef = Tok.is(tok::amp); RefQualifierLoc = ConsumeToken(); return true; } return false; } /// isFunctionDeclaratorIdentifierList - This parameter list may have an /// identifier list form for a K&R-style function: void foo(a,b,c) /// /// Note that identifier-lists are only allowed for normal declarators, not for /// abstract-declarators. bool Parser::isFunctionDeclaratorIdentifierList() { return !getLangOpts().requiresStrictPrototypes() && Tok.is(tok::identifier) && !TryAltiVecVectorToken() // K&R identifier lists can't have typedefs as identifiers, per C99 // 6.7.5.3p11. && (TryAnnotateTypeOrScopeToken() || !Tok.is(tok::annot_typename)) // Identifier lists follow a really simple grammar: the identifiers can // be followed *only* by a ", identifier" or ")". However, K&R // identifier lists are really rare in the brave new modern world, and // it is very common for someone to typo a type in a non-K&R style // list. If we are presented with something like: "void foo(intptr x, // float y)", we don't want to start parsing the function declarator as // though it is a K&R style declarator just because intptr is an // invalid type. // // To handle this, we check to see if the token after the first // identifier is a "," or ")". Only then do we parse it as an // identifier list. && (!Tok.is(tok::eof) && (NextToken().is(tok::comma) || NextToken().is(tok::r_paren))); } /// ParseFunctionDeclaratorIdentifierList - While parsing a function declarator /// we found a K&R-style identifier list instead of a typed parameter list. /// /// After returning, ParamInfo will hold the parsed parameters. /// /// identifier-list: [C99 6.7.5] /// identifier /// identifier-list ',' identifier /// void Parser::ParseFunctionDeclaratorIdentifierList( Declarator &D, SmallVectorImpl &ParamInfo) { // We should never reach this point in C23 or C++. assert(!getLangOpts().requiresStrictPrototypes() && "Cannot parse an identifier list in C23 or C++"); // If there was no identifier specified for the declarator, either we are in // an abstract-declarator, or we are in a parameter declarator which was found // to be abstract. In abstract-declarators, identifier lists are not valid: // diagnose this. if (!D.getIdentifier()) Diag(Tok, diag::ext_ident_list_in_param); // Maintain an efficient lookup of params we have seen so far. llvm::SmallSet ParamsSoFar; do { // If this isn't an identifier, report the error and skip until ')'. if (Tok.isNot(tok::identifier)) { Diag(Tok, diag::err_expected) << tok::identifier; SkipUntil(tok::r_paren, StopAtSemi | StopBeforeMatch); // Forget we parsed anything. ParamInfo.clear(); return; } IdentifierInfo *ParmII = Tok.getIdentifierInfo(); // Reject 'typedef int y; int test(x, y)', but continue parsing. if (Actions.getTypeName(*ParmII, Tok.getLocation(), getCurScope())) Diag(Tok, diag::err_unexpected_typedef_ident) << ParmII; // Verify that the argument identifier has not already been mentioned. if (!ParamsSoFar.insert(ParmII).second) { Diag(Tok, diag::err_param_redefinition) << ParmII; } else { // Remember this identifier in ParamInfo. ParamInfo.push_back(DeclaratorChunk::ParamInfo(ParmII, Tok.getLocation(), nullptr)); } // Eat the identifier. ConsumeToken(); // The list continues if we see a comma. } while (TryConsumeToken(tok::comma)); } /// ParseParameterDeclarationClause - Parse a (possibly empty) parameter-list /// after the opening parenthesis. This function will not parse a K&R-style /// identifier list. /// /// DeclContext is the context of the declarator being parsed. If FirstArgAttrs /// is non-null, then the caller parsed those attributes immediately after the /// open paren - they will be applied to the DeclSpec of the first parameter. /// /// After returning, ParamInfo will hold the parsed parameters. EllipsisLoc will /// be the location of the ellipsis, if any was parsed. /// /// parameter-type-list: [C99 6.7.5] /// parameter-list /// parameter-list ',' '...' /// [C++] parameter-list '...' /// /// parameter-list: [C99 6.7.5] /// parameter-declaration /// parameter-list ',' parameter-declaration /// /// parameter-declaration: [C99 6.7.5] /// declaration-specifiers declarator /// [C++] declaration-specifiers declarator '=' assignment-expression /// [C++11] initializer-clause /// [GNU] declaration-specifiers declarator attributes /// declaration-specifiers abstract-declarator[opt] /// [C++] declaration-specifiers abstract-declarator[opt] /// '=' assignment-expression /// [GNU] declaration-specifiers abstract-declarator[opt] attributes /// [C++11] attribute-specifier-seq parameter-declaration /// [C++2b] attribute-specifier-seq 'this' parameter-declaration /// void Parser::ParseParameterDeclarationClause( DeclaratorContext DeclaratorCtx, ParsedAttributes &FirstArgAttrs, SmallVectorImpl &ParamInfo, SourceLocation &EllipsisLoc, bool IsACXXFunctionDeclaration) { // Avoid exceeding the maximum function scope depth. // See https://bugs.llvm.org/show_bug.cgi?id=19607 // Note Sema::ActOnParamDeclarator calls ParmVarDecl::setScopeInfo with // getFunctionPrototypeDepth() - 1. if (getCurScope()->getFunctionPrototypeDepth() - 1 > ParmVarDecl::getMaxFunctionScopeDepth()) { Diag(Tok.getLocation(), diag::err_function_scope_depth_exceeded) << ParmVarDecl::getMaxFunctionScopeDepth(); cutOffParsing(); return; } // C++2a [temp.res]p5 // A qualified-id is assumed to name a type if // - [...] // - it is a decl-specifier of the decl-specifier-seq of a // - [...] // - parameter-declaration in a member-declaration [...] // - parameter-declaration in a declarator of a function or function // template declaration whose declarator-id is qualified [...] // - parameter-declaration in a lambda-declarator [...] auto AllowImplicitTypename = ImplicitTypenameContext::No; if (DeclaratorCtx == DeclaratorContext::Member || DeclaratorCtx == DeclaratorContext::LambdaExpr || DeclaratorCtx == DeclaratorContext::RequiresExpr || IsACXXFunctionDeclaration) { AllowImplicitTypename = ImplicitTypenameContext::Yes; } do { // FIXME: Issue a diagnostic if we parsed an attribute-specifier-seq // before deciding this was a parameter-declaration-clause. if (TryConsumeToken(tok::ellipsis, EllipsisLoc)) break; // Parse the declaration-specifiers. // Just use the ParsingDeclaration "scope" of the declarator. DeclSpec DS(AttrFactory); ParsedAttributes ArgDeclAttrs(AttrFactory); ParsedAttributes ArgDeclSpecAttrs(AttrFactory); if (FirstArgAttrs.Range.isValid()) { // If the caller parsed attributes for the first argument, add them now. // Take them so that we only apply the attributes to the first parameter. // We have already started parsing the decl-specifier sequence, so don't // parse any parameter-declaration pieces that precede it. ArgDeclSpecAttrs.takeAllFrom(FirstArgAttrs); } else { // Parse any C++11 attributes. MaybeParseCXX11Attributes(ArgDeclAttrs); // Skip any Microsoft attributes before a param. MaybeParseMicrosoftAttributes(ArgDeclSpecAttrs); } SourceLocation DSStart = Tok.getLocation(); // Parse a C++23 Explicit Object Parameter // We do that in all language modes to produce a better diagnostic. SourceLocation ThisLoc; if (getLangOpts().CPlusPlus && Tok.is(tok::kw_this)) ThisLoc = ConsumeToken(); ParseDeclarationSpecifiers(DS, /*TemplateInfo=*/ParsedTemplateInfo(), AS_none, DeclSpecContext::DSC_normal, /*LateAttrs=*/nullptr, AllowImplicitTypename); DS.takeAttributesFrom(ArgDeclSpecAttrs); // Parse the declarator. This is "PrototypeContext" or // "LambdaExprParameterContext", because we must accept either // 'declarator' or 'abstract-declarator' here. Declarator ParmDeclarator(DS, ArgDeclAttrs, DeclaratorCtx == DeclaratorContext::RequiresExpr ? DeclaratorContext::RequiresExpr : DeclaratorCtx == DeclaratorContext::LambdaExpr ? DeclaratorContext::LambdaExprParameter : DeclaratorContext::Prototype); ParseDeclarator(ParmDeclarator); if (ThisLoc.isValid()) ParmDeclarator.SetRangeBegin(ThisLoc); // Parse GNU attributes, if present. MaybeParseGNUAttributes(ParmDeclarator); if (getLangOpts().HLSL) MaybeParseHLSLSemantics(DS.getAttributes()); if (Tok.is(tok::kw_requires)) { // User tried to define a requires clause in a parameter declaration, // which is surely not a function declaration. // void f(int (*g)(int, int) requires true); Diag(Tok, diag::err_requires_clause_on_declarator_not_declaring_a_function); ConsumeToken(); Actions.CorrectDelayedTyposInExpr( ParseConstraintLogicalOrExpression(/*IsTrailingRequiresClause=*/true)); } // Remember this parsed parameter in ParamInfo. const IdentifierInfo *ParmII = ParmDeclarator.getIdentifier(); // DefArgToks is used when the parsing of default arguments needs // to be delayed. std::unique_ptr DefArgToks; // If no parameter was specified, verify that *something* was specified, // otherwise we have a missing type and identifier. if (DS.isEmpty() && ParmDeclarator.getIdentifier() == nullptr && ParmDeclarator.getNumTypeObjects() == 0) { // Completely missing, emit error. Diag(DSStart, diag::err_missing_param); } else { // Otherwise, we have something. Add it and let semantic analysis try // to grok it and add the result to the ParamInfo we are building. // Last chance to recover from a misplaced ellipsis in an attempted // parameter pack declaration. if (Tok.is(tok::ellipsis) && (NextToken().isNot(tok::r_paren) || (!ParmDeclarator.getEllipsisLoc().isValid() && !Actions.isUnexpandedParameterPackPermitted())) && Actions.containsUnexpandedParameterPacks(ParmDeclarator)) DiagnoseMisplacedEllipsisInDeclarator(ConsumeToken(), ParmDeclarator); // Now we are at the point where declarator parsing is finished. // // Try to catch keywords in place of the identifier in a declarator, and // in particular the common case where: // 1 identifier comes at the end of the declarator // 2 if the identifier is dropped, the declarator is valid but anonymous // (no identifier) // 3 declarator parsing succeeds, and then we have a trailing keyword, // which is never valid in a param list (e.g. missing a ',') // And we can't handle this in ParseDeclarator because in general keywords // may be allowed to follow the declarator. (And in some cases there'd be // better recovery like inserting punctuation). ParseDeclarator is just // treating this as an anonymous parameter, and fortunately at this point // we've already almost done that. // // We care about case 1) where the declarator type should be known, and // the identifier should be null. if (!ParmDeclarator.isInvalidType() && !ParmDeclarator.hasName() && Tok.isNot(tok::raw_identifier) && !Tok.isAnnotation() && Tok.getIdentifierInfo() && Tok.getIdentifierInfo()->isKeyword(getLangOpts())) { Diag(Tok, diag::err_keyword_as_parameter) << PP.getSpelling(Tok); // Consume the keyword. ConsumeToken(); } // Inform the actions module about the parameter declarator, so it gets // added to the current scope. Decl *Param = Actions.ActOnParamDeclarator(getCurScope(), ParmDeclarator, ThisLoc); // Parse the default argument, if any. We parse the default // arguments in all dialects; the semantic analysis in // ActOnParamDefaultArgument will reject the default argument in // C. if (Tok.is(tok::equal)) { SourceLocation EqualLoc = Tok.getLocation(); // Parse the default argument if (DeclaratorCtx == DeclaratorContext::Member) { // If we're inside a class definition, cache the tokens // corresponding to the default argument. We'll actually parse // them when we see the end of the class definition. DefArgToks.reset(new CachedTokens); SourceLocation ArgStartLoc = NextToken().getLocation(); ConsumeAndStoreInitializer(*DefArgToks, CIK_DefaultArgument); Actions.ActOnParamUnparsedDefaultArgument(Param, EqualLoc, ArgStartLoc); } else { // Consume the '='. ConsumeToken(); // The argument isn't actually potentially evaluated unless it is // used. EnterExpressionEvaluationContext Eval( Actions, Sema::ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed, Param); ExprResult DefArgResult; if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) { Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists); DefArgResult = ParseBraceInitializer(); } else { if (Tok.is(tok::l_paren) && NextToken().is(tok::l_brace)) { Diag(Tok, diag::err_stmt_expr_in_default_arg) << 0; Actions.ActOnParamDefaultArgumentError(Param, EqualLoc, /*DefaultArg=*/nullptr); // Skip the statement expression and continue parsing SkipUntil(tok::comma, StopBeforeMatch); continue; } DefArgResult = ParseAssignmentExpression(); } DefArgResult = Actions.CorrectDelayedTyposInExpr(DefArgResult); if (DefArgResult.isInvalid()) { Actions.ActOnParamDefaultArgumentError(Param, EqualLoc, /*DefaultArg=*/nullptr); SkipUntil(tok::comma, tok::r_paren, StopAtSemi | StopBeforeMatch); } else { // Inform the actions module about the default argument Actions.ActOnParamDefaultArgument(Param, EqualLoc, DefArgResult.get()); } } } ParamInfo.push_back(DeclaratorChunk::ParamInfo(ParmII, ParmDeclarator.getIdentifierLoc(), Param, std::move(DefArgToks))); } if (TryConsumeToken(tok::ellipsis, EllipsisLoc)) { if (!getLangOpts().CPlusPlus) { // We have ellipsis without a preceding ',', which is ill-formed // in C. Complain and provide the fix. Diag(EllipsisLoc, diag::err_missing_comma_before_ellipsis) << FixItHint::CreateInsertion(EllipsisLoc, ", "); } else if (ParmDeclarator.getEllipsisLoc().isValid() || Actions.containsUnexpandedParameterPacks(ParmDeclarator)) { // It looks like this was supposed to be a parameter pack. Warn and // point out where the ellipsis should have gone. SourceLocation ParmEllipsis = ParmDeclarator.getEllipsisLoc(); Diag(EllipsisLoc, diag::warn_misplaced_ellipsis_vararg) << ParmEllipsis.isValid() << ParmEllipsis; if (ParmEllipsis.isValid()) { Diag(ParmEllipsis, diag::note_misplaced_ellipsis_vararg_existing_ellipsis); } else { Diag(ParmDeclarator.getIdentifierLoc(), diag::note_misplaced_ellipsis_vararg_add_ellipsis) << FixItHint::CreateInsertion(ParmDeclarator.getIdentifierLoc(), "...") << !ParmDeclarator.hasName(); } Diag(EllipsisLoc, diag::note_misplaced_ellipsis_vararg_add_comma) << FixItHint::CreateInsertion(EllipsisLoc, ", "); } // We can't have any more parameters after an ellipsis. break; } // If the next token is a comma, consume it and keep reading arguments. } while (TryConsumeToken(tok::comma)); } /// [C90] direct-declarator '[' constant-expression[opt] ']' /// [C99] direct-declarator '[' type-qual-list[opt] assignment-expr[opt] ']' /// [C99] direct-declarator '[' 'static' type-qual-list[opt] assign-expr ']' /// [C99] direct-declarator '[' type-qual-list 'static' assignment-expr ']' /// [C99] direct-declarator '[' type-qual-list[opt] '*' ']' /// [C++11] direct-declarator '[' constant-expression[opt] ']' /// attribute-specifier-seq[opt] void Parser::ParseBracketDeclarator(Declarator &D) { if (CheckProhibitedCXX11Attribute()) return; BalancedDelimiterTracker T(*this, tok::l_square); T.consumeOpen(); // C array syntax has many features, but by-far the most common is [] and [4]. // This code does a fast path to handle some of the most obvious cases. if (Tok.getKind() == tok::r_square) { T.consumeClose(); ParsedAttributes attrs(AttrFactory); MaybeParseCXX11Attributes(attrs); // Remember that we parsed the empty array type. D.AddTypeInfo(DeclaratorChunk::getArray(0, false, false, nullptr, T.getOpenLocation(), T.getCloseLocation()), std::move(attrs), T.getCloseLocation()); return; } else if (Tok.getKind() == tok::numeric_constant && GetLookAheadToken(1).is(tok::r_square)) { // [4] is very common. Parse the numeric constant expression. ExprResult ExprRes(Actions.ActOnNumericConstant(Tok, getCurScope())); ConsumeToken(); T.consumeClose(); ParsedAttributes attrs(AttrFactory); MaybeParseCXX11Attributes(attrs); // Remember that we parsed a array type, and remember its features. D.AddTypeInfo(DeclaratorChunk::getArray(0, false, false, ExprRes.get(), T.getOpenLocation(), T.getCloseLocation()), std::move(attrs), T.getCloseLocation()); return; } else if (Tok.getKind() == tok::code_completion) { cutOffParsing(); Actions.CodeCompleteBracketDeclarator(getCurScope()); return; } // If valid, this location is the position where we read the 'static' keyword. SourceLocation StaticLoc; TryConsumeToken(tok::kw_static, StaticLoc); // If there is a type-qualifier-list, read it now. // Type qualifiers in an array subscript are a C99 feature. DeclSpec DS(AttrFactory); ParseTypeQualifierListOpt(DS, AR_CXX11AttributesParsed); // If we haven't already read 'static', check to see if there is one after the // type-qualifier-list. if (!StaticLoc.isValid()) TryConsumeToken(tok::kw_static, StaticLoc); // Handle "direct-declarator [ type-qual-list[opt] * ]". bool isStar = false; ExprResult NumElements; // Handle the case where we have '[*]' as the array size. However, a leading // star could be the start of an expression, for example 'X[*p + 4]'. Verify // the token after the star is a ']'. Since stars in arrays are // infrequent, use of lookahead is not costly here. if (Tok.is(tok::star) && GetLookAheadToken(1).is(tok::r_square)) { ConsumeToken(); // Eat the '*'. if (StaticLoc.isValid()) { Diag(StaticLoc, diag::err_unspecified_vla_size_with_static); StaticLoc = SourceLocation(); // Drop the static. } isStar = true; } else if (Tok.isNot(tok::r_square)) { // Note, in C89, this production uses the constant-expr production instead // of assignment-expr. The only difference is that assignment-expr allows // things like '=' and '*='. Sema rejects these in C89 mode because they // are not i-c-e's, so we don't need to distinguish between the two here. // Parse the constant-expression or assignment-expression now (depending // on dialect). if (getLangOpts().CPlusPlus) { NumElements = ParseArrayBoundExpression(); } else { EnterExpressionEvaluationContext Unevaluated( Actions, Sema::ExpressionEvaluationContext::ConstantEvaluated); NumElements = Actions.CorrectDelayedTyposInExpr(ParseAssignmentExpression()); } } else { if (StaticLoc.isValid()) { Diag(StaticLoc, diag::err_unspecified_size_with_static); StaticLoc = SourceLocation(); // Drop the static. } } // If there was an error parsing the assignment-expression, recover. if (NumElements.isInvalid()) { D.setInvalidType(true); // If the expression was invalid, skip it. SkipUntil(tok::r_square, StopAtSemi); return; } T.consumeClose(); MaybeParseCXX11Attributes(DS.getAttributes()); // Remember that we parsed a array type, and remember its features. D.AddTypeInfo( DeclaratorChunk::getArray(DS.getTypeQualifiers(), StaticLoc.isValid(), isStar, NumElements.get(), T.getOpenLocation(), T.getCloseLocation()), std::move(DS.getAttributes()), T.getCloseLocation()); } /// Diagnose brackets before an identifier. void Parser::ParseMisplacedBracketDeclarator(Declarator &D) { assert(Tok.is(tok::l_square) && "Missing opening bracket"); assert(!D.mayOmitIdentifier() && "Declarator cannot omit identifier"); SourceLocation StartBracketLoc = Tok.getLocation(); Declarator TempDeclarator(D.getDeclSpec(), ParsedAttributesView::none(), D.getContext()); while (Tok.is(tok::l_square)) { ParseBracketDeclarator(TempDeclarator); } // Stuff the location of the start of the brackets into the Declarator. // The diagnostics from ParseDirectDeclarator will make more sense if // they use this location instead. if (Tok.is(tok::semi)) D.getName().EndLocation = StartBracketLoc; SourceLocation SuggestParenLoc = Tok.getLocation(); // Now that the brackets are removed, try parsing the declarator again. ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator); // Something went wrong parsing the brackets, in which case, // ParseBracketDeclarator has emitted an error, and we don't need to emit // one here. if (TempDeclarator.getNumTypeObjects() == 0) return; // Determine if parens will need to be suggested in the diagnostic. bool NeedParens = false; if (D.getNumTypeObjects() != 0) { switch (D.getTypeObject(D.getNumTypeObjects() - 1).Kind) { case DeclaratorChunk::Pointer: case DeclaratorChunk::Reference: case DeclaratorChunk::BlockPointer: case DeclaratorChunk::MemberPointer: case DeclaratorChunk::Pipe: NeedParens = true; break; case DeclaratorChunk::Array: case DeclaratorChunk::Function: case DeclaratorChunk::Paren: break; } } if (NeedParens) { // Create a DeclaratorChunk for the inserted parens. SourceLocation EndLoc = PP.getLocForEndOfToken(D.getEndLoc()); D.AddTypeInfo(DeclaratorChunk::getParen(SuggestParenLoc, EndLoc), SourceLocation()); } // Adding back the bracket info to the end of the Declarator. for (unsigned i = 0, e = TempDeclarator.getNumTypeObjects(); i < e; ++i) { const DeclaratorChunk &Chunk = TempDeclarator.getTypeObject(i); D.AddTypeInfo(Chunk, TempDeclarator.getAttributePool(), SourceLocation()); } // The missing identifier would have been diagnosed in ParseDirectDeclarator. // If parentheses are required, always suggest them. if (!D.getIdentifier() && !NeedParens) return; SourceLocation EndBracketLoc = TempDeclarator.getEndLoc(); // Generate the move bracket error message. SourceRange BracketRange(StartBracketLoc, EndBracketLoc); SourceLocation EndLoc = PP.getLocForEndOfToken(D.getEndLoc()); if (NeedParens) { Diag(EndLoc, diag::err_brackets_go_after_unqualified_id) << getLangOpts().CPlusPlus << FixItHint::CreateInsertion(SuggestParenLoc, "(") << FixItHint::CreateInsertion(EndLoc, ")") << FixItHint::CreateInsertionFromRange( EndLoc, CharSourceRange(BracketRange, true)) << FixItHint::CreateRemoval(BracketRange); } else { Diag(EndLoc, diag::err_brackets_go_after_unqualified_id) << getLangOpts().CPlusPlus << FixItHint::CreateInsertionFromRange( EndLoc, CharSourceRange(BracketRange, true)) << FixItHint::CreateRemoval(BracketRange); } } /// [GNU] typeof-specifier: /// typeof ( expressions ) /// typeof ( type-name ) /// [GNU/C++] typeof unary-expression /// [C23] typeof-specifier: /// typeof '(' typeof-specifier-argument ')' /// typeof_unqual '(' typeof-specifier-argument ')' /// /// typeof-specifier-argument: /// expression /// type-name /// void Parser::ParseTypeofSpecifier(DeclSpec &DS) { assert(Tok.isOneOf(tok::kw_typeof, tok::kw_typeof_unqual) && "Not a typeof specifier"); bool IsUnqual = Tok.is(tok::kw_typeof_unqual); const IdentifierInfo *II = Tok.getIdentifierInfo(); if (getLangOpts().C23 && !II->getName().starts_with("__")) Diag(Tok.getLocation(), diag::warn_c23_compat_keyword) << Tok.getName(); Token OpTok = Tok; SourceLocation StartLoc = ConsumeToken(); bool HasParens = Tok.is(tok::l_paren); EnterExpressionEvaluationContext Unevaluated( Actions, Sema::ExpressionEvaluationContext::Unevaluated, Sema::ReuseLambdaContextDecl); bool isCastExpr; ParsedType CastTy; SourceRange CastRange; ExprResult Operand = Actions.CorrectDelayedTyposInExpr( ParseExprAfterUnaryExprOrTypeTrait(OpTok, isCastExpr, CastTy, CastRange)); if (HasParens) DS.setTypeArgumentRange(CastRange); if (CastRange.getEnd().isInvalid()) // FIXME: Not accurate, the range gets one token more than it should. DS.SetRangeEnd(Tok.getLocation()); else DS.SetRangeEnd(CastRange.getEnd()); if (isCastExpr) { if (!CastTy) { DS.SetTypeSpecError(); return; } const char *PrevSpec = nullptr; unsigned DiagID; // Check for duplicate type specifiers (e.g. "int typeof(int)"). if (DS.SetTypeSpecType(IsUnqual ? DeclSpec::TST_typeof_unqualType : DeclSpec::TST_typeofType, StartLoc, PrevSpec, DiagID, CastTy, Actions.getASTContext().getPrintingPolicy())) Diag(StartLoc, DiagID) << PrevSpec; return; } // If we get here, the operand to the typeof was an expression. if (Operand.isInvalid()) { DS.SetTypeSpecError(); return; } // We might need to transform the operand if it is potentially evaluated. Operand = Actions.HandleExprEvaluationContextForTypeof(Operand.get()); if (Operand.isInvalid()) { DS.SetTypeSpecError(); return; } const char *PrevSpec = nullptr; unsigned DiagID; // Check for duplicate type specifiers (e.g. "int typeof(int)"). if (DS.SetTypeSpecType(IsUnqual ? DeclSpec::TST_typeof_unqualExpr : DeclSpec::TST_typeofExpr, StartLoc, PrevSpec, DiagID, Operand.get(), Actions.getASTContext().getPrintingPolicy())) Diag(StartLoc, DiagID) << PrevSpec; } /// [C11] atomic-specifier: /// _Atomic ( type-name ) /// void Parser::ParseAtomicSpecifier(DeclSpec &DS) { assert(Tok.is(tok::kw__Atomic) && NextToken().is(tok::l_paren) && "Not an atomic specifier"); SourceLocation StartLoc = ConsumeToken(); BalancedDelimiterTracker T(*this, tok::l_paren); if (T.consumeOpen()) return; TypeResult Result = ParseTypeName(); if (Result.isInvalid()) { SkipUntil(tok::r_paren, StopAtSemi); return; } // Match the ')' T.consumeClose(); if (T.getCloseLocation().isInvalid()) return; DS.setTypeArgumentRange(T.getRange()); DS.SetRangeEnd(T.getCloseLocation()); const char *PrevSpec = nullptr; unsigned DiagID; if (DS.SetTypeSpecType(DeclSpec::TST_atomic, StartLoc, PrevSpec, DiagID, Result.get(), Actions.getASTContext().getPrintingPolicy())) Diag(StartLoc, DiagID) << PrevSpec; } /// TryAltiVecVectorTokenOutOfLine - Out of line body that should only be called /// from TryAltiVecVectorToken. bool Parser::TryAltiVecVectorTokenOutOfLine() { Token Next = NextToken(); switch (Next.getKind()) { default: return false; case tok::kw_short: case tok::kw_long: case tok::kw_signed: case tok::kw_unsigned: case tok::kw_void: case tok::kw_char: case tok::kw_int: case tok::kw_float: case tok::kw_double: case tok::kw_bool: case tok::kw__Bool: case tok::kw___bool: case tok::kw___pixel: Tok.setKind(tok::kw___vector); return true; case tok::identifier: if (Next.getIdentifierInfo() == Ident_pixel) { Tok.setKind(tok::kw___vector); return true; } if (Next.getIdentifierInfo() == Ident_bool || Next.getIdentifierInfo() == Ident_Bool) { Tok.setKind(tok::kw___vector); return true; } return false; } } bool Parser::TryAltiVecTokenOutOfLine(DeclSpec &DS, SourceLocation Loc, const char *&PrevSpec, unsigned &DiagID, bool &isInvalid) { const PrintingPolicy &Policy = Actions.getASTContext().getPrintingPolicy(); if (Tok.getIdentifierInfo() == Ident_vector) { Token Next = NextToken(); switch (Next.getKind()) { case tok::kw_short: case tok::kw_long: case tok::kw_signed: case tok::kw_unsigned: case tok::kw_void: case tok::kw_char: case tok::kw_int: case tok::kw_float: case tok::kw_double: case tok::kw_bool: case tok::kw__Bool: case tok::kw___bool: case tok::kw___pixel: isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID, Policy); return true; case tok::identifier: if (Next.getIdentifierInfo() == Ident_pixel) { isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID,Policy); return true; } if (Next.getIdentifierInfo() == Ident_bool || Next.getIdentifierInfo() == Ident_Bool) { isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID, Policy); return true; } break; default: break; } } else if ((Tok.getIdentifierInfo() == Ident_pixel) && DS.isTypeAltiVecVector()) { isInvalid = DS.SetTypeAltiVecPixel(true, Loc, PrevSpec, DiagID, Policy); return true; } else if ((Tok.getIdentifierInfo() == Ident_bool) && DS.isTypeAltiVecVector()) { isInvalid = DS.SetTypeAltiVecBool(true, Loc, PrevSpec, DiagID, Policy); return true; } return false; } TypeResult Parser::ParseTypeFromString(StringRef TypeStr, StringRef Context, SourceLocation IncludeLoc) { // Consume (unexpanded) tokens up to the end-of-directive. SmallVector Tokens; { // Create a new buffer from which we will parse the type. auto &SourceMgr = PP.getSourceManager(); FileID FID = SourceMgr.createFileID( llvm::MemoryBuffer::getMemBufferCopy(TypeStr, Context), SrcMgr::C_User, 0, 0, IncludeLoc); // Form a new lexer that references the buffer. Lexer L(FID, SourceMgr.getBufferOrFake(FID), PP); L.setParsingPreprocessorDirective(true); // Lex the tokens from that buffer. Token Tok; do { L.Lex(Tok); Tokens.push_back(Tok); } while (Tok.isNot(tok::eod)); } // Replace the "eod" token with an "eof" token identifying the end of // the provided string. Token &EndToken = Tokens.back(); EndToken.startToken(); EndToken.setKind(tok::eof); EndToken.setLocation(Tok.getLocation()); EndToken.setEofData(TypeStr.data()); // Add the current token back. Tokens.push_back(Tok); // Enter the tokens into the token stream. PP.EnterTokenStream(Tokens, /*DisableMacroExpansion=*/false, /*IsReinject=*/false); // Consume the current token so that we'll start parsing the tokens we // added to the stream. ConsumeAnyToken(); // Enter a new scope. ParseScope LocalScope(this, 0); // Parse the type. TypeResult Result = ParseTypeName(nullptr); // Check if we parsed the whole thing. if (Result.isUsable() && (Tok.isNot(tok::eof) || Tok.getEofData() != TypeStr.data())) { Diag(Tok.getLocation(), diag::err_type_unparsed); } // There could be leftover tokens (e.g. because of an error). // Skip through until we reach the 'end of directive' token. while (Tok.isNot(tok::eof)) ConsumeAnyToken(); // Consume the end token. if (Tok.is(tok::eof) && Tok.getEofData() == TypeStr.data()) ConsumeAnyToken(); return Result; } void Parser::DiagnoseBitIntUse(const Token &Tok) { // If the token is for _ExtInt, diagnose it as being deprecated. Otherwise, // the token is about _BitInt and gets (potentially) diagnosed as use of an // extension. assert(Tok.isOneOf(tok::kw__ExtInt, tok::kw__BitInt) && "expected either an _ExtInt or _BitInt token!"); SourceLocation Loc = Tok.getLocation(); if (Tok.is(tok::kw__ExtInt)) { Diag(Loc, diag::warn_ext_int_deprecated) << FixItHint::CreateReplacement(Loc, "_BitInt"); } else { // In C23 mode, diagnose that the use is not compatible with pre-C23 modes. // Otherwise, diagnose that the use is a Clang extension. if (getLangOpts().C23) Diag(Loc, diag::warn_c23_compat_keyword) << Tok.getName(); else Diag(Loc, diag::ext_bit_int) << getLangOpts().CPlusPlus; } }