//===- llvm/CodeGen/GlobalISel/Utils.cpp -------------------------*- C++ -*-==// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// /// \file This file implements the utility functions used by the GlobalISel /// pipeline. //===----------------------------------------------------------------------===// #include "llvm/CodeGen/GlobalISel/Utils.h" #include "llvm/ADT/APFloat.h" #include "llvm/ADT/APInt.h" #include "llvm/CodeGen/CodeGenCommonISel.h" #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" #include "llvm/CodeGen/GlobalISel/GISelKnownBits.h" #include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h" #include "llvm/CodeGen/GlobalISel/LostDebugLocObserver.h" #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h" #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/MachineSizeOpts.h" #include "llvm/CodeGen/RegisterBankInfo.h" #include "llvm/CodeGen/StackProtector.h" #include "llvm/CodeGen/TargetInstrInfo.h" #include "llvm/CodeGen/TargetLowering.h" #include "llvm/CodeGen/TargetPassConfig.h" #include "llvm/CodeGen/TargetRegisterInfo.h" #include "llvm/IR/Constants.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Transforms/Utils/SizeOpts.h" #include #include #define DEBUG_TYPE "globalisel-utils" using namespace llvm; using namespace MIPatternMatch; Register llvm::constrainRegToClass(MachineRegisterInfo &MRI, const TargetInstrInfo &TII, const RegisterBankInfo &RBI, Register Reg, const TargetRegisterClass &RegClass) { if (!RBI.constrainGenericRegister(Reg, RegClass, MRI)) return MRI.createVirtualRegister(&RegClass); return Reg; } Register llvm::constrainOperandRegClass( const MachineFunction &MF, const TargetRegisterInfo &TRI, MachineRegisterInfo &MRI, const TargetInstrInfo &TII, const RegisterBankInfo &RBI, MachineInstr &InsertPt, const TargetRegisterClass &RegClass, MachineOperand &RegMO) { Register Reg = RegMO.getReg(); // Assume physical registers are properly constrained. assert(Reg.isVirtual() && "PhysReg not implemented"); // Save the old register class to check whether // the change notifications will be required. // TODO: A better approach would be to pass // the observers to constrainRegToClass(). auto *OldRegClass = MRI.getRegClassOrNull(Reg); Register ConstrainedReg = constrainRegToClass(MRI, TII, RBI, Reg, RegClass); // If we created a new virtual register because the class is not compatible // then create a copy between the new and the old register. if (ConstrainedReg != Reg) { MachineBasicBlock::iterator InsertIt(&InsertPt); MachineBasicBlock &MBB = *InsertPt.getParent(); // FIXME: The copy needs to have the classes constrained for its operands. // Use operand's regbank to get the class for old register (Reg). if (RegMO.isUse()) { BuildMI(MBB, InsertIt, InsertPt.getDebugLoc(), TII.get(TargetOpcode::COPY), ConstrainedReg) .addReg(Reg); } else { assert(RegMO.isDef() && "Must be a definition"); BuildMI(MBB, std::next(InsertIt), InsertPt.getDebugLoc(), TII.get(TargetOpcode::COPY), Reg) .addReg(ConstrainedReg); } if (GISelChangeObserver *Observer = MF.getObserver()) { Observer->changingInstr(*RegMO.getParent()); } RegMO.setReg(ConstrainedReg); if (GISelChangeObserver *Observer = MF.getObserver()) { Observer->changedInstr(*RegMO.getParent()); } } else if (OldRegClass != MRI.getRegClassOrNull(Reg)) { if (GISelChangeObserver *Observer = MF.getObserver()) { if (!RegMO.isDef()) { MachineInstr *RegDef = MRI.getVRegDef(Reg); Observer->changedInstr(*RegDef); } Observer->changingAllUsesOfReg(MRI, Reg); Observer->finishedChangingAllUsesOfReg(); } } return ConstrainedReg; } Register llvm::constrainOperandRegClass( const MachineFunction &MF, const TargetRegisterInfo &TRI, MachineRegisterInfo &MRI, const TargetInstrInfo &TII, const RegisterBankInfo &RBI, MachineInstr &InsertPt, const MCInstrDesc &II, MachineOperand &RegMO, unsigned OpIdx) { Register Reg = RegMO.getReg(); // Assume physical registers are properly constrained. assert(Reg.isVirtual() && "PhysReg not implemented"); const TargetRegisterClass *OpRC = TII.getRegClass(II, OpIdx, &TRI, MF); // Some of the target independent instructions, like COPY, may not impose any // register class constraints on some of their operands: If it's a use, we can // skip constraining as the instruction defining the register would constrain // it. if (OpRC) { // Obtain the RC from incoming regbank if it is a proper sub-class. Operands // can have multiple regbanks for a superclass that combine different // register types (E.g., AMDGPU's VGPR and AGPR). The regbank ambiguity // resolved by targets during regbankselect should not be overridden. if (const auto *SubRC = TRI.getCommonSubClass( OpRC, TRI.getConstrainedRegClassForOperand(RegMO, MRI))) OpRC = SubRC; OpRC = TRI.getAllocatableClass(OpRC); } if (!OpRC) { assert((!isTargetSpecificOpcode(II.getOpcode()) || RegMO.isUse()) && "Register class constraint is required unless either the " "instruction is target independent or the operand is a use"); // FIXME: Just bailing out like this here could be not enough, unless we // expect the users of this function to do the right thing for PHIs and // COPY: // v1 = COPY v0 // v2 = COPY v1 // v1 here may end up not being constrained at all. Please notice that to // reproduce the issue we likely need a destination pattern of a selection // rule producing such extra copies, not just an input GMIR with them as // every existing target using selectImpl handles copies before calling it // and they never reach this function. return Reg; } return constrainOperandRegClass(MF, TRI, MRI, TII, RBI, InsertPt, *OpRC, RegMO); } bool llvm::constrainSelectedInstRegOperands(MachineInstr &I, const TargetInstrInfo &TII, const TargetRegisterInfo &TRI, const RegisterBankInfo &RBI) { assert(!isPreISelGenericOpcode(I.getOpcode()) && "A selected instruction is expected"); MachineBasicBlock &MBB = *I.getParent(); MachineFunction &MF = *MBB.getParent(); MachineRegisterInfo &MRI = MF.getRegInfo(); for (unsigned OpI = 0, OpE = I.getNumExplicitOperands(); OpI != OpE; ++OpI) { MachineOperand &MO = I.getOperand(OpI); // There's nothing to be done on non-register operands. if (!MO.isReg()) continue; LLVM_DEBUG(dbgs() << "Converting operand: " << MO << '\n'); assert(MO.isReg() && "Unsupported non-reg operand"); Register Reg = MO.getReg(); // Physical registers don't need to be constrained. if (Reg.isPhysical()) continue; // Register operands with a value of 0 (e.g. predicate operands) don't need // to be constrained. if (Reg == 0) continue; // If the operand is a vreg, we should constrain its regclass, and only // insert COPYs if that's impossible. // constrainOperandRegClass does that for us. constrainOperandRegClass(MF, TRI, MRI, TII, RBI, I, I.getDesc(), MO, OpI); // Tie uses to defs as indicated in MCInstrDesc if this hasn't already been // done. if (MO.isUse()) { int DefIdx = I.getDesc().getOperandConstraint(OpI, MCOI::TIED_TO); if (DefIdx != -1 && !I.isRegTiedToUseOperand(DefIdx)) I.tieOperands(DefIdx, OpI); } } return true; } bool llvm::canReplaceReg(Register DstReg, Register SrcReg, MachineRegisterInfo &MRI) { // Give up if either DstReg or SrcReg is a physical register. if (DstReg.isPhysical() || SrcReg.isPhysical()) return false; // Give up if the types don't match. if (MRI.getType(DstReg) != MRI.getType(SrcReg)) return false; // Replace if either DstReg has no constraints or the register // constraints match. const auto &DstRBC = MRI.getRegClassOrRegBank(DstReg); if (!DstRBC || DstRBC == MRI.getRegClassOrRegBank(SrcReg)) return true; // Otherwise match if the Src is already a regclass that is covered by the Dst // RegBank. return DstRBC.is() && MRI.getRegClassOrNull(SrcReg) && DstRBC.get()->covers( *MRI.getRegClassOrNull(SrcReg)); } bool llvm::isTriviallyDead(const MachineInstr &MI, const MachineRegisterInfo &MRI) { // FIXME: This logical is mostly duplicated with // DeadMachineInstructionElim::isDead. Why is LOCAL_ESCAPE not considered in // MachineInstr::isLabel? // Don't delete frame allocation labels. if (MI.getOpcode() == TargetOpcode::LOCAL_ESCAPE) return false; // LIFETIME markers should be preserved even if they seem dead. if (MI.getOpcode() == TargetOpcode::LIFETIME_START || MI.getOpcode() == TargetOpcode::LIFETIME_END) return false; // If we can move an instruction, we can remove it. Otherwise, it has // a side-effect of some sort. bool SawStore = false; if (!MI.isSafeToMove(/*AA=*/nullptr, SawStore) && !MI.isPHI()) return false; // Instructions without side-effects are dead iff they only define dead vregs. for (const auto &MO : MI.all_defs()) { Register Reg = MO.getReg(); if (Reg.isPhysical() || !MRI.use_nodbg_empty(Reg)) return false; } return true; } static void reportGISelDiagnostic(DiagnosticSeverity Severity, MachineFunction &MF, const TargetPassConfig &TPC, MachineOptimizationRemarkEmitter &MORE, MachineOptimizationRemarkMissed &R) { bool IsFatal = Severity == DS_Error && TPC.isGlobalISelAbortEnabled(); // Print the function name explicitly if we don't have a debug location (which // makes the diagnostic less useful) or if we're going to emit a raw error. if (!R.getLocation().isValid() || IsFatal) R << (" (in function: " + MF.getName() + ")").str(); if (IsFatal) report_fatal_error(Twine(R.getMsg())); else MORE.emit(R); } void llvm::reportGISelWarning(MachineFunction &MF, const TargetPassConfig &TPC, MachineOptimizationRemarkEmitter &MORE, MachineOptimizationRemarkMissed &R) { reportGISelDiagnostic(DS_Warning, MF, TPC, MORE, R); } void llvm::reportGISelFailure(MachineFunction &MF, const TargetPassConfig &TPC, MachineOptimizationRemarkEmitter &MORE, MachineOptimizationRemarkMissed &R) { MF.getProperties().set(MachineFunctionProperties::Property::FailedISel); reportGISelDiagnostic(DS_Error, MF, TPC, MORE, R); } void llvm::reportGISelFailure(MachineFunction &MF, const TargetPassConfig &TPC, MachineOptimizationRemarkEmitter &MORE, const char *PassName, StringRef Msg, const MachineInstr &MI) { MachineOptimizationRemarkMissed R(PassName, "GISelFailure: ", MI.getDebugLoc(), MI.getParent()); R << Msg; // Printing MI is expensive; only do it if expensive remarks are enabled. if (TPC.isGlobalISelAbortEnabled() || MORE.allowExtraAnalysis(PassName)) R << ": " << ore::MNV("Inst", MI); reportGISelFailure(MF, TPC, MORE, R); } std::optional llvm::getIConstantVRegVal(Register VReg, const MachineRegisterInfo &MRI) { std::optional ValAndVReg = getIConstantVRegValWithLookThrough( VReg, MRI, /*LookThroughInstrs*/ false); assert((!ValAndVReg || ValAndVReg->VReg == VReg) && "Value found while looking through instrs"); if (!ValAndVReg) return std::nullopt; return ValAndVReg->Value; } std::optional llvm::getIConstantVRegSExtVal(Register VReg, const MachineRegisterInfo &MRI) { std::optional Val = getIConstantVRegVal(VReg, MRI); if (Val && Val->getBitWidth() <= 64) return Val->getSExtValue(); return std::nullopt; } namespace { typedef std::function IsOpcodeFn; typedef std::function(const MachineInstr *MI)> GetAPCstFn; std::optional getConstantVRegValWithLookThrough( Register VReg, const MachineRegisterInfo &MRI, IsOpcodeFn IsConstantOpcode, GetAPCstFn getAPCstValue, bool LookThroughInstrs = true, bool LookThroughAnyExt = false) { SmallVector, 4> SeenOpcodes; MachineInstr *MI; while ((MI = MRI.getVRegDef(VReg)) && !IsConstantOpcode(MI) && LookThroughInstrs) { switch (MI->getOpcode()) { case TargetOpcode::G_ANYEXT: if (!LookThroughAnyExt) return std::nullopt; [[fallthrough]]; case TargetOpcode::G_TRUNC: case TargetOpcode::G_SEXT: case TargetOpcode::G_ZEXT: SeenOpcodes.push_back(std::make_pair( MI->getOpcode(), MRI.getType(MI->getOperand(0).getReg()).getSizeInBits())); VReg = MI->getOperand(1).getReg(); break; case TargetOpcode::COPY: VReg = MI->getOperand(1).getReg(); if (VReg.isPhysical()) return std::nullopt; break; case TargetOpcode::G_INTTOPTR: VReg = MI->getOperand(1).getReg(); break; default: return std::nullopt; } } if (!MI || !IsConstantOpcode(MI)) return std::nullopt; std::optional MaybeVal = getAPCstValue(MI); if (!MaybeVal) return std::nullopt; APInt &Val = *MaybeVal; for (auto [Opcode, Size] : reverse(SeenOpcodes)) { switch (Opcode) { case TargetOpcode::G_TRUNC: Val = Val.trunc(Size); break; case TargetOpcode::G_ANYEXT: case TargetOpcode::G_SEXT: Val = Val.sext(Size); break; case TargetOpcode::G_ZEXT: Val = Val.zext(Size); break; } } return ValueAndVReg{Val, VReg}; } bool isIConstant(const MachineInstr *MI) { if (!MI) return false; return MI->getOpcode() == TargetOpcode::G_CONSTANT; } bool isFConstant(const MachineInstr *MI) { if (!MI) return false; return MI->getOpcode() == TargetOpcode::G_FCONSTANT; } bool isAnyConstant(const MachineInstr *MI) { if (!MI) return false; unsigned Opc = MI->getOpcode(); return Opc == TargetOpcode::G_CONSTANT || Opc == TargetOpcode::G_FCONSTANT; } std::optional getCImmAsAPInt(const MachineInstr *MI) { const MachineOperand &CstVal = MI->getOperand(1); if (CstVal.isCImm()) return CstVal.getCImm()->getValue(); return std::nullopt; } std::optional getCImmOrFPImmAsAPInt(const MachineInstr *MI) { const MachineOperand &CstVal = MI->getOperand(1); if (CstVal.isCImm()) return CstVal.getCImm()->getValue(); if (CstVal.isFPImm()) return CstVal.getFPImm()->getValueAPF().bitcastToAPInt(); return std::nullopt; } } // end anonymous namespace std::optional llvm::getIConstantVRegValWithLookThrough( Register VReg, const MachineRegisterInfo &MRI, bool LookThroughInstrs) { return getConstantVRegValWithLookThrough(VReg, MRI, isIConstant, getCImmAsAPInt, LookThroughInstrs); } std::optional llvm::getAnyConstantVRegValWithLookThrough( Register VReg, const MachineRegisterInfo &MRI, bool LookThroughInstrs, bool LookThroughAnyExt) { return getConstantVRegValWithLookThrough( VReg, MRI, isAnyConstant, getCImmOrFPImmAsAPInt, LookThroughInstrs, LookThroughAnyExt); } std::optional llvm::getFConstantVRegValWithLookThrough( Register VReg, const MachineRegisterInfo &MRI, bool LookThroughInstrs) { auto Reg = getConstantVRegValWithLookThrough( VReg, MRI, isFConstant, getCImmOrFPImmAsAPInt, LookThroughInstrs); if (!Reg) return std::nullopt; return FPValueAndVReg{getConstantFPVRegVal(Reg->VReg, MRI)->getValueAPF(), Reg->VReg}; } const ConstantFP * llvm::getConstantFPVRegVal(Register VReg, const MachineRegisterInfo &MRI) { MachineInstr *MI = MRI.getVRegDef(VReg); if (TargetOpcode::G_FCONSTANT != MI->getOpcode()) return nullptr; return MI->getOperand(1).getFPImm(); } std::optional llvm::getDefSrcRegIgnoringCopies(Register Reg, const MachineRegisterInfo &MRI) { Register DefSrcReg = Reg; auto *DefMI = MRI.getVRegDef(Reg); auto DstTy = MRI.getType(DefMI->getOperand(0).getReg()); if (!DstTy.isValid()) return std::nullopt; unsigned Opc = DefMI->getOpcode(); while (Opc == TargetOpcode::COPY || isPreISelGenericOptimizationHint(Opc)) { Register SrcReg = DefMI->getOperand(1).getReg(); auto SrcTy = MRI.getType(SrcReg); if (!SrcTy.isValid()) break; DefMI = MRI.getVRegDef(SrcReg); DefSrcReg = SrcReg; Opc = DefMI->getOpcode(); } return DefinitionAndSourceRegister{DefMI, DefSrcReg}; } MachineInstr *llvm::getDefIgnoringCopies(Register Reg, const MachineRegisterInfo &MRI) { std::optional DefSrcReg = getDefSrcRegIgnoringCopies(Reg, MRI); return DefSrcReg ? DefSrcReg->MI : nullptr; } Register llvm::getSrcRegIgnoringCopies(Register Reg, const MachineRegisterInfo &MRI) { std::optional DefSrcReg = getDefSrcRegIgnoringCopies(Reg, MRI); return DefSrcReg ? DefSrcReg->Reg : Register(); } void llvm::extractParts(Register Reg, LLT Ty, int NumParts, SmallVectorImpl &VRegs, MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI) { for (int i = 0; i < NumParts; ++i) VRegs.push_back(MRI.createGenericVirtualRegister(Ty)); MIRBuilder.buildUnmerge(VRegs, Reg); } bool llvm::extractParts(Register Reg, LLT RegTy, LLT MainTy, LLT &LeftoverTy, SmallVectorImpl &VRegs, SmallVectorImpl &LeftoverRegs, MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI) { assert(!LeftoverTy.isValid() && "this is an out argument"); unsigned RegSize = RegTy.getSizeInBits(); unsigned MainSize = MainTy.getSizeInBits(); unsigned NumParts = RegSize / MainSize; unsigned LeftoverSize = RegSize - NumParts * MainSize; // Use an unmerge when possible. if (LeftoverSize == 0) { for (unsigned I = 0; I < NumParts; ++I) VRegs.push_back(MRI.createGenericVirtualRegister(MainTy)); MIRBuilder.buildUnmerge(VRegs, Reg); return true; } // Try to use unmerge for irregular vector split where possible // For example when splitting a <6 x i32> into <4 x i32> with <2 x i32> // leftover, it becomes: // <2 x i32> %2, <2 x i32>%3, <2 x i32> %4 = G_UNMERGE_VALUE <6 x i32> %1 // <4 x i32> %5 = G_CONCAT_VECTOR <2 x i32> %2, <2 x i32> %3 if (RegTy.isVector() && MainTy.isVector()) { unsigned RegNumElts = RegTy.getNumElements(); unsigned MainNumElts = MainTy.getNumElements(); unsigned LeftoverNumElts = RegNumElts % MainNumElts; // If can unmerge to LeftoverTy, do it if (MainNumElts % LeftoverNumElts == 0 && RegNumElts % LeftoverNumElts == 0 && RegTy.getScalarSizeInBits() == MainTy.getScalarSizeInBits() && LeftoverNumElts > 1) { LeftoverTy = LLT::fixed_vector(LeftoverNumElts, RegTy.getScalarSizeInBits()); // Unmerge the SrcReg to LeftoverTy vectors SmallVector UnmergeValues; extractParts(Reg, LeftoverTy, RegNumElts / LeftoverNumElts, UnmergeValues, MIRBuilder, MRI); // Find how many LeftoverTy makes one MainTy unsigned LeftoverPerMain = MainNumElts / LeftoverNumElts; unsigned NumOfLeftoverVal = ((RegNumElts % MainNumElts) / LeftoverNumElts); // Create as many MainTy as possible using unmerged value SmallVector MergeValues; for (unsigned I = 0; I < UnmergeValues.size() - NumOfLeftoverVal; I++) { MergeValues.push_back(UnmergeValues[I]); if (MergeValues.size() == LeftoverPerMain) { VRegs.push_back( MIRBuilder.buildMergeLikeInstr(MainTy, MergeValues).getReg(0)); MergeValues.clear(); } } // Populate LeftoverRegs with the leftovers for (unsigned I = UnmergeValues.size() - NumOfLeftoverVal; I < UnmergeValues.size(); I++) { LeftoverRegs.push_back(UnmergeValues[I]); } return true; } } // Perform irregular split. Leftover is last element of RegPieces. if (MainTy.isVector()) { SmallVector RegPieces; extractVectorParts(Reg, MainTy.getNumElements(), RegPieces, MIRBuilder, MRI); for (unsigned i = 0; i < RegPieces.size() - 1; ++i) VRegs.push_back(RegPieces[i]); LeftoverRegs.push_back(RegPieces[RegPieces.size() - 1]); LeftoverTy = MRI.getType(LeftoverRegs[0]); return true; } LeftoverTy = LLT::scalar(LeftoverSize); // For irregular sizes, extract the individual parts. for (unsigned I = 0; I != NumParts; ++I) { Register NewReg = MRI.createGenericVirtualRegister(MainTy); VRegs.push_back(NewReg); MIRBuilder.buildExtract(NewReg, Reg, MainSize * I); } for (unsigned Offset = MainSize * NumParts; Offset < RegSize; Offset += LeftoverSize) { Register NewReg = MRI.createGenericVirtualRegister(LeftoverTy); LeftoverRegs.push_back(NewReg); MIRBuilder.buildExtract(NewReg, Reg, Offset); } return true; } void llvm::extractVectorParts(Register Reg, unsigned NumElts, SmallVectorImpl &VRegs, MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI) { LLT RegTy = MRI.getType(Reg); assert(RegTy.isVector() && "Expected a vector type"); LLT EltTy = RegTy.getElementType(); LLT NarrowTy = (NumElts == 1) ? EltTy : LLT::fixed_vector(NumElts, EltTy); unsigned RegNumElts = RegTy.getNumElements(); unsigned LeftoverNumElts = RegNumElts % NumElts; unsigned NumNarrowTyPieces = RegNumElts / NumElts; // Perfect split without leftover if (LeftoverNumElts == 0) return extractParts(Reg, NarrowTy, NumNarrowTyPieces, VRegs, MIRBuilder, MRI); // Irregular split. Provide direct access to all elements for artifact // combiner using unmerge to elements. Then build vectors with NumElts // elements. Remaining element(s) will be (used to build vector) Leftover. SmallVector Elts; extractParts(Reg, EltTy, RegNumElts, Elts, MIRBuilder, MRI); unsigned Offset = 0; // Requested sub-vectors of NarrowTy. for (unsigned i = 0; i < NumNarrowTyPieces; ++i, Offset += NumElts) { ArrayRef Pieces(&Elts[Offset], NumElts); VRegs.push_back(MIRBuilder.buildMergeLikeInstr(NarrowTy, Pieces).getReg(0)); } // Leftover element(s). if (LeftoverNumElts == 1) { VRegs.push_back(Elts[Offset]); } else { LLT LeftoverTy = LLT::fixed_vector(LeftoverNumElts, EltTy); ArrayRef Pieces(&Elts[Offset], LeftoverNumElts); VRegs.push_back( MIRBuilder.buildMergeLikeInstr(LeftoverTy, Pieces).getReg(0)); } } MachineInstr *llvm::getOpcodeDef(unsigned Opcode, Register Reg, const MachineRegisterInfo &MRI) { MachineInstr *DefMI = getDefIgnoringCopies(Reg, MRI); return DefMI && DefMI->getOpcode() == Opcode ? DefMI : nullptr; } APFloat llvm::getAPFloatFromSize(double Val, unsigned Size) { if (Size == 32) return APFloat(float(Val)); if (Size == 64) return APFloat(Val); if (Size != 16) llvm_unreachable("Unsupported FPConstant size"); bool Ignored; APFloat APF(Val); APF.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &Ignored); return APF; } std::optional llvm::ConstantFoldBinOp(unsigned Opcode, const Register Op1, const Register Op2, const MachineRegisterInfo &MRI) { auto MaybeOp2Cst = getAnyConstantVRegValWithLookThrough(Op2, MRI, false); if (!MaybeOp2Cst) return std::nullopt; auto MaybeOp1Cst = getAnyConstantVRegValWithLookThrough(Op1, MRI, false); if (!MaybeOp1Cst) return std::nullopt; const APInt &C1 = MaybeOp1Cst->Value; const APInt &C2 = MaybeOp2Cst->Value; switch (Opcode) { default: break; case TargetOpcode::G_ADD: return C1 + C2; case TargetOpcode::G_PTR_ADD: // Types can be of different width here. // Result needs to be the same width as C1, so trunc or sext C2. return C1 + C2.sextOrTrunc(C1.getBitWidth()); case TargetOpcode::G_AND: return C1 & C2; case TargetOpcode::G_ASHR: return C1.ashr(C2); case TargetOpcode::G_LSHR: return C1.lshr(C2); case TargetOpcode::G_MUL: return C1 * C2; case TargetOpcode::G_OR: return C1 | C2; case TargetOpcode::G_SHL: return C1 << C2; case TargetOpcode::G_SUB: return C1 - C2; case TargetOpcode::G_XOR: return C1 ^ C2; case TargetOpcode::G_UDIV: if (!C2.getBoolValue()) break; return C1.udiv(C2); case TargetOpcode::G_SDIV: if (!C2.getBoolValue()) break; return C1.sdiv(C2); case TargetOpcode::G_UREM: if (!C2.getBoolValue()) break; return C1.urem(C2); case TargetOpcode::G_SREM: if (!C2.getBoolValue()) break; return C1.srem(C2); case TargetOpcode::G_SMIN: return APIntOps::smin(C1, C2); case TargetOpcode::G_SMAX: return APIntOps::smax(C1, C2); case TargetOpcode::G_UMIN: return APIntOps::umin(C1, C2); case TargetOpcode::G_UMAX: return APIntOps::umax(C1, C2); } return std::nullopt; } std::optional llvm::ConstantFoldFPBinOp(unsigned Opcode, const Register Op1, const Register Op2, const MachineRegisterInfo &MRI) { const ConstantFP *Op2Cst = getConstantFPVRegVal(Op2, MRI); if (!Op2Cst) return std::nullopt; const ConstantFP *Op1Cst = getConstantFPVRegVal(Op1, MRI); if (!Op1Cst) return std::nullopt; APFloat C1 = Op1Cst->getValueAPF(); const APFloat &C2 = Op2Cst->getValueAPF(); switch (Opcode) { case TargetOpcode::G_FADD: C1.add(C2, APFloat::rmNearestTiesToEven); return C1; case TargetOpcode::G_FSUB: C1.subtract(C2, APFloat::rmNearestTiesToEven); return C1; case TargetOpcode::G_FMUL: C1.multiply(C2, APFloat::rmNearestTiesToEven); return C1; case TargetOpcode::G_FDIV: C1.divide(C2, APFloat::rmNearestTiesToEven); return C1; case TargetOpcode::G_FREM: C1.mod(C2); return C1; case TargetOpcode::G_FCOPYSIGN: C1.copySign(C2); return C1; case TargetOpcode::G_FMINNUM: return minnum(C1, C2); case TargetOpcode::G_FMAXNUM: return maxnum(C1, C2); case TargetOpcode::G_FMINIMUM: return minimum(C1, C2); case TargetOpcode::G_FMAXIMUM: return maximum(C1, C2); case TargetOpcode::G_FMINNUM_IEEE: case TargetOpcode::G_FMAXNUM_IEEE: // FIXME: These operations were unfortunately named. fminnum/fmaxnum do not // follow the IEEE behavior for signaling nans and follow libm's fmin/fmax, // and currently there isn't a nice wrapper in APFloat for the version with // correct snan handling. break; default: break; } return std::nullopt; } SmallVector llvm::ConstantFoldVectorBinop(unsigned Opcode, const Register Op1, const Register Op2, const MachineRegisterInfo &MRI) { auto *SrcVec2 = getOpcodeDef(Op2, MRI); if (!SrcVec2) return SmallVector(); auto *SrcVec1 = getOpcodeDef(Op1, MRI); if (!SrcVec1) return SmallVector(); SmallVector FoldedElements; for (unsigned Idx = 0, E = SrcVec1->getNumSources(); Idx < E; ++Idx) { auto MaybeCst = ConstantFoldBinOp(Opcode, SrcVec1->getSourceReg(Idx), SrcVec2->getSourceReg(Idx), MRI); if (!MaybeCst) return SmallVector(); FoldedElements.push_back(*MaybeCst); } return FoldedElements; } bool llvm::isKnownNeverNaN(Register Val, const MachineRegisterInfo &MRI, bool SNaN) { const MachineInstr *DefMI = MRI.getVRegDef(Val); if (!DefMI) return false; const TargetMachine& TM = DefMI->getMF()->getTarget(); if (DefMI->getFlag(MachineInstr::FmNoNans) || TM.Options.NoNaNsFPMath) return true; // If the value is a constant, we can obviously see if it is a NaN or not. if (const ConstantFP *FPVal = getConstantFPVRegVal(Val, MRI)) { return !FPVal->getValueAPF().isNaN() || (SNaN && !FPVal->getValueAPF().isSignaling()); } if (DefMI->getOpcode() == TargetOpcode::G_BUILD_VECTOR) { for (const auto &Op : DefMI->uses()) if (!isKnownNeverNaN(Op.getReg(), MRI, SNaN)) return false; return true; } switch (DefMI->getOpcode()) { default: break; case TargetOpcode::G_FADD: case TargetOpcode::G_FSUB: case TargetOpcode::G_FMUL: case TargetOpcode::G_FDIV: case TargetOpcode::G_FREM: case TargetOpcode::G_FSIN: case TargetOpcode::G_FCOS: case TargetOpcode::G_FMA: case TargetOpcode::G_FMAD: if (SNaN) return true; // TODO: Need isKnownNeverInfinity return false; case TargetOpcode::G_FMINNUM_IEEE: case TargetOpcode::G_FMAXNUM_IEEE: { if (SNaN) return true; // This can return a NaN if either operand is an sNaN, or if both operands // are NaN. return (isKnownNeverNaN(DefMI->getOperand(1).getReg(), MRI) && isKnownNeverSNaN(DefMI->getOperand(2).getReg(), MRI)) || (isKnownNeverSNaN(DefMI->getOperand(1).getReg(), MRI) && isKnownNeverNaN(DefMI->getOperand(2).getReg(), MRI)); } case TargetOpcode::G_FMINNUM: case TargetOpcode::G_FMAXNUM: { // Only one needs to be known not-nan, since it will be returned if the // other ends up being one. return isKnownNeverNaN(DefMI->getOperand(1).getReg(), MRI, SNaN) || isKnownNeverNaN(DefMI->getOperand(2).getReg(), MRI, SNaN); } } if (SNaN) { // FP operations quiet. For now, just handle the ones inserted during // legalization. switch (DefMI->getOpcode()) { case TargetOpcode::G_FPEXT: case TargetOpcode::G_FPTRUNC: case TargetOpcode::G_FCANONICALIZE: return true; default: return false; } } return false; } Align llvm::inferAlignFromPtrInfo(MachineFunction &MF, const MachinePointerInfo &MPO) { auto PSV = dyn_cast_if_present(MPO.V); if (auto FSPV = dyn_cast_or_null(PSV)) { MachineFrameInfo &MFI = MF.getFrameInfo(); return commonAlignment(MFI.getObjectAlign(FSPV->getFrameIndex()), MPO.Offset); } if (const Value *V = dyn_cast_if_present(MPO.V)) { const Module *M = MF.getFunction().getParent(); return V->getPointerAlignment(M->getDataLayout()); } return Align(1); } Register llvm::getFunctionLiveInPhysReg(MachineFunction &MF, const TargetInstrInfo &TII, MCRegister PhysReg, const TargetRegisterClass &RC, const DebugLoc &DL, LLT RegTy) { MachineBasicBlock &EntryMBB = MF.front(); MachineRegisterInfo &MRI = MF.getRegInfo(); Register LiveIn = MRI.getLiveInVirtReg(PhysReg); if (LiveIn) { MachineInstr *Def = MRI.getVRegDef(LiveIn); if (Def) { // FIXME: Should the verifier check this is in the entry block? assert(Def->getParent() == &EntryMBB && "live-in copy not in entry block"); return LiveIn; } // It's possible the incoming argument register and copy was added during // lowering, but later deleted due to being/becoming dead. If this happens, // re-insert the copy. } else { // The live in register was not present, so add it. LiveIn = MF.addLiveIn(PhysReg, &RC); if (RegTy.isValid()) MRI.setType(LiveIn, RegTy); } BuildMI(EntryMBB, EntryMBB.begin(), DL, TII.get(TargetOpcode::COPY), LiveIn) .addReg(PhysReg); if (!EntryMBB.isLiveIn(PhysReg)) EntryMBB.addLiveIn(PhysReg); return LiveIn; } std::optional llvm::ConstantFoldExtOp(unsigned Opcode, const Register Op1, uint64_t Imm, const MachineRegisterInfo &MRI) { auto MaybeOp1Cst = getIConstantVRegVal(Op1, MRI); if (MaybeOp1Cst) { switch (Opcode) { default: break; case TargetOpcode::G_SEXT_INREG: { LLT Ty = MRI.getType(Op1); return MaybeOp1Cst->trunc(Imm).sext(Ty.getScalarSizeInBits()); } } } return std::nullopt; } std::optional llvm::ConstantFoldCastOp(unsigned Opcode, LLT DstTy, const Register Op0, const MachineRegisterInfo &MRI) { std::optional Val = getIConstantVRegVal(Op0, MRI); if (!Val) return Val; const unsigned DstSize = DstTy.getScalarSizeInBits(); switch (Opcode) { case TargetOpcode::G_SEXT: return Val->sext(DstSize); case TargetOpcode::G_ZEXT: case TargetOpcode::G_ANYEXT: // TODO: DAG considers target preference when constant folding any_extend. return Val->zext(DstSize); default: break; } llvm_unreachable("unexpected cast opcode to constant fold"); } std::optional llvm::ConstantFoldIntToFloat(unsigned Opcode, LLT DstTy, Register Src, const MachineRegisterInfo &MRI) { assert(Opcode == TargetOpcode::G_SITOFP || Opcode == TargetOpcode::G_UITOFP); if (auto MaybeSrcVal = getIConstantVRegVal(Src, MRI)) { APFloat DstVal(getFltSemanticForLLT(DstTy)); DstVal.convertFromAPInt(*MaybeSrcVal, Opcode == TargetOpcode::G_SITOFP, APFloat::rmNearestTiesToEven); return DstVal; } return std::nullopt; } std::optional> llvm::ConstantFoldCountZeros(Register Src, const MachineRegisterInfo &MRI, std::function CB) { LLT Ty = MRI.getType(Src); SmallVector FoldedCTLZs; auto tryFoldScalar = [&](Register R) -> std::optional { auto MaybeCst = getIConstantVRegVal(R, MRI); if (!MaybeCst) return std::nullopt; return CB(*MaybeCst); }; if (Ty.isVector()) { // Try to constant fold each element. auto *BV = getOpcodeDef(Src, MRI); if (!BV) return std::nullopt; for (unsigned SrcIdx = 0; SrcIdx < BV->getNumSources(); ++SrcIdx) { if (auto MaybeFold = tryFoldScalar(BV->getSourceReg(SrcIdx))) { FoldedCTLZs.emplace_back(*MaybeFold); continue; } return std::nullopt; } return FoldedCTLZs; } if (auto MaybeCst = tryFoldScalar(Src)) { FoldedCTLZs.emplace_back(*MaybeCst); return FoldedCTLZs; } return std::nullopt; } std::optional> llvm::ConstantFoldICmp(unsigned Pred, const Register Op1, const Register Op2, const MachineRegisterInfo &MRI) { LLT Ty = MRI.getType(Op1); if (Ty != MRI.getType(Op2)) return std::nullopt; auto TryFoldScalar = [&MRI, Pred](Register LHS, Register RHS) -> std::optional { auto LHSCst = getIConstantVRegVal(LHS, MRI); auto RHSCst = getIConstantVRegVal(RHS, MRI); if (!LHSCst || !RHSCst) return std::nullopt; switch (Pred) { case CmpInst::Predicate::ICMP_EQ: return APInt(/*numBits=*/1, LHSCst->eq(*RHSCst)); case CmpInst::Predicate::ICMP_NE: return APInt(/*numBits=*/1, LHSCst->ne(*RHSCst)); case CmpInst::Predicate::ICMP_UGT: return APInt(/*numBits=*/1, LHSCst->ugt(*RHSCst)); case CmpInst::Predicate::ICMP_UGE: return APInt(/*numBits=*/1, LHSCst->uge(*RHSCst)); case CmpInst::Predicate::ICMP_ULT: return APInt(/*numBits=*/1, LHSCst->ult(*RHSCst)); case CmpInst::Predicate::ICMP_ULE: return APInt(/*numBits=*/1, LHSCst->ule(*RHSCst)); case CmpInst::Predicate::ICMP_SGT: return APInt(/*numBits=*/1, LHSCst->sgt(*RHSCst)); case CmpInst::Predicate::ICMP_SGE: return APInt(/*numBits=*/1, LHSCst->sge(*RHSCst)); case CmpInst::Predicate::ICMP_SLT: return APInt(/*numBits=*/1, LHSCst->slt(*RHSCst)); case CmpInst::Predicate::ICMP_SLE: return APInt(/*numBits=*/1, LHSCst->sle(*RHSCst)); default: return std::nullopt; } }; SmallVector FoldedICmps; if (Ty.isVector()) { // Try to constant fold each element. auto *BV1 = getOpcodeDef(Op1, MRI); auto *BV2 = getOpcodeDef(Op2, MRI); if (!BV1 || !BV2) return std::nullopt; assert(BV1->getNumSources() == BV2->getNumSources() && "Invalid vectors"); for (unsigned I = 0; I < BV1->getNumSources(); ++I) { if (auto MaybeFold = TryFoldScalar(BV1->getSourceReg(I), BV2->getSourceReg(I))) { FoldedICmps.emplace_back(*MaybeFold); continue; } return std::nullopt; } return FoldedICmps; } if (auto MaybeCst = TryFoldScalar(Op1, Op2)) { FoldedICmps.emplace_back(*MaybeCst); return FoldedICmps; } return std::nullopt; } bool llvm::isKnownToBeAPowerOfTwo(Register Reg, const MachineRegisterInfo &MRI, GISelKnownBits *KB) { std::optional DefSrcReg = getDefSrcRegIgnoringCopies(Reg, MRI); if (!DefSrcReg) return false; const MachineInstr &MI = *DefSrcReg->MI; const LLT Ty = MRI.getType(Reg); switch (MI.getOpcode()) { case TargetOpcode::G_CONSTANT: { unsigned BitWidth = Ty.getScalarSizeInBits(); const ConstantInt *CI = MI.getOperand(1).getCImm(); return CI->getValue().zextOrTrunc(BitWidth).isPowerOf2(); } case TargetOpcode::G_SHL: { // A left-shift of a constant one will have exactly one bit set because // shifting the bit off the end is undefined. // TODO: Constant splat if (auto ConstLHS = getIConstantVRegVal(MI.getOperand(1).getReg(), MRI)) { if (*ConstLHS == 1) return true; } break; } case TargetOpcode::G_LSHR: { if (auto ConstLHS = getIConstantVRegVal(MI.getOperand(1).getReg(), MRI)) { if (ConstLHS->isSignMask()) return true; } break; } case TargetOpcode::G_BUILD_VECTOR: { // TODO: Probably should have a recursion depth guard since you could have // bitcasted vector elements. for (const MachineOperand &MO : llvm::drop_begin(MI.operands())) if (!isKnownToBeAPowerOfTwo(MO.getReg(), MRI, KB)) return false; return true; } case TargetOpcode::G_BUILD_VECTOR_TRUNC: { // Only handle constants since we would need to know if number of leading // zeros is greater than the truncation amount. const unsigned BitWidth = Ty.getScalarSizeInBits(); for (const MachineOperand &MO : llvm::drop_begin(MI.operands())) { auto Const = getIConstantVRegVal(MO.getReg(), MRI); if (!Const || !Const->zextOrTrunc(BitWidth).isPowerOf2()) return false; } return true; } default: break; } if (!KB) return false; // More could be done here, though the above checks are enough // to handle some common cases. // Fall back to computeKnownBits to catch other known cases. KnownBits Known = KB->getKnownBits(Reg); return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1); } void llvm::getSelectionDAGFallbackAnalysisUsage(AnalysisUsage &AU) { AU.addPreserved(); } LLT llvm::getLCMType(LLT OrigTy, LLT TargetTy) { if (OrigTy.getSizeInBits() == TargetTy.getSizeInBits()) return OrigTy; if (OrigTy.isVector() && TargetTy.isVector()) { LLT OrigElt = OrigTy.getElementType(); LLT TargetElt = TargetTy.getElementType(); // TODO: The docstring for this function says the intention is to use this // function to build MERGE/UNMERGE instructions. It won't be the case that // we generate a MERGE/UNMERGE between fixed and scalable vector types. We // could implement getLCMType between the two in the future if there was a // need, but it is not worth it now as this function should not be used in // that way. assert(((OrigTy.isScalableVector() && !TargetTy.isFixedVector()) || (OrigTy.isFixedVector() && !TargetTy.isScalableVector())) && "getLCMType not implemented between fixed and scalable vectors."); if (OrigElt.getSizeInBits() == TargetElt.getSizeInBits()) { int GCDMinElts = std::gcd(OrigTy.getElementCount().getKnownMinValue(), TargetTy.getElementCount().getKnownMinValue()); // Prefer the original element type. ElementCount Mul = OrigTy.getElementCount().multiplyCoefficientBy( TargetTy.getElementCount().getKnownMinValue()); return LLT::vector(Mul.divideCoefficientBy(GCDMinElts), OrigTy.getElementType()); } unsigned LCM = std::lcm(OrigTy.getSizeInBits().getKnownMinValue(), TargetTy.getSizeInBits().getKnownMinValue()); return LLT::vector( ElementCount::get(LCM / OrigElt.getSizeInBits(), OrigTy.isScalable()), OrigElt); } // One type is scalar, one type is vector if (OrigTy.isVector() || TargetTy.isVector()) { LLT VecTy = OrigTy.isVector() ? OrigTy : TargetTy; LLT ScalarTy = OrigTy.isVector() ? TargetTy : OrigTy; LLT EltTy = VecTy.getElementType(); LLT OrigEltTy = OrigTy.isVector() ? OrigTy.getElementType() : OrigTy; // Prefer scalar type from OrigTy. if (EltTy.getSizeInBits() == ScalarTy.getSizeInBits()) return LLT::vector(VecTy.getElementCount(), OrigEltTy); // Different size scalars. Create vector with the same total size. // LCM will take fixed/scalable from VecTy. unsigned LCM = std::lcm(EltTy.getSizeInBits().getFixedValue() * VecTy.getElementCount().getKnownMinValue(), ScalarTy.getSizeInBits().getFixedValue()); // Prefer type from OrigTy return LLT::vector(ElementCount::get(LCM / OrigEltTy.getSizeInBits(), VecTy.getElementCount().isScalable()), OrigEltTy); } // At this point, both types are scalars of different size unsigned LCM = std::lcm(OrigTy.getSizeInBits().getFixedValue(), TargetTy.getSizeInBits().getFixedValue()); // Preserve pointer types. if (LCM == OrigTy.getSizeInBits()) return OrigTy; if (LCM == TargetTy.getSizeInBits()) return TargetTy; return LLT::scalar(LCM); } LLT llvm::getCoverTy(LLT OrigTy, LLT TargetTy) { if ((OrigTy.isScalableVector() && TargetTy.isFixedVector()) || (OrigTy.isFixedVector() && TargetTy.isScalableVector())) llvm_unreachable( "getCoverTy not implemented between fixed and scalable vectors."); if (!OrigTy.isVector() || !TargetTy.isVector() || OrigTy == TargetTy || (OrigTy.getScalarSizeInBits() != TargetTy.getScalarSizeInBits())) return getLCMType(OrigTy, TargetTy); unsigned OrigTyNumElts = OrigTy.getElementCount().getKnownMinValue(); unsigned TargetTyNumElts = TargetTy.getElementCount().getKnownMinValue(); if (OrigTyNumElts % TargetTyNumElts == 0) return OrigTy; unsigned NumElts = alignTo(OrigTyNumElts, TargetTyNumElts); return LLT::scalarOrVector(ElementCount::getFixed(NumElts), OrigTy.getElementType()); } LLT llvm::getGCDType(LLT OrigTy, LLT TargetTy) { if (OrigTy.getSizeInBits() == TargetTy.getSizeInBits()) return OrigTy; if (OrigTy.isVector() && TargetTy.isVector()) { LLT OrigElt = OrigTy.getElementType(); // TODO: The docstring for this function says the intention is to use this // function to build MERGE/UNMERGE instructions. It won't be the case that // we generate a MERGE/UNMERGE between fixed and scalable vector types. We // could implement getGCDType between the two in the future if there was a // need, but it is not worth it now as this function should not be used in // that way. assert(((OrigTy.isScalableVector() && !TargetTy.isFixedVector()) || (OrigTy.isFixedVector() && !TargetTy.isScalableVector())) && "getGCDType not implemented between fixed and scalable vectors."); unsigned GCD = std::gcd(OrigTy.getSizeInBits().getKnownMinValue(), TargetTy.getSizeInBits().getKnownMinValue()); if (GCD == OrigElt.getSizeInBits()) return LLT::scalarOrVector(ElementCount::get(1, OrigTy.isScalable()), OrigElt); // Cannot produce original element type, but both have vscale in common. if (GCD < OrigElt.getSizeInBits()) return LLT::scalarOrVector(ElementCount::get(1, OrigTy.isScalable()), GCD); return LLT::vector( ElementCount::get(GCD / OrigElt.getSizeInBits().getFixedValue(), OrigTy.isScalable()), OrigElt); } // If one type is vector and the element size matches the scalar size, then // the gcd is the scalar type. if (OrigTy.isVector() && OrigTy.getElementType().getSizeInBits() == TargetTy.getSizeInBits()) return OrigTy.getElementType(); if (TargetTy.isVector() && TargetTy.getElementType().getSizeInBits() == OrigTy.getSizeInBits()) return OrigTy; // At this point, both types are either scalars of different type or one is a // vector and one is a scalar. If both types are scalars, the GCD type is the // GCD between the two scalar sizes. If one is vector and one is scalar, then // the GCD type is the GCD between the scalar and the vector element size. LLT OrigScalar = OrigTy.getScalarType(); LLT TargetScalar = TargetTy.getScalarType(); unsigned GCD = std::gcd(OrigScalar.getSizeInBits().getFixedValue(), TargetScalar.getSizeInBits().getFixedValue()); return LLT::scalar(GCD); } std::optional llvm::getSplatIndex(MachineInstr &MI) { assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR && "Only G_SHUFFLE_VECTOR can have a splat index!"); ArrayRef Mask = MI.getOperand(3).getShuffleMask(); auto FirstDefinedIdx = find_if(Mask, [](int Elt) { return Elt >= 0; }); // If all elements are undefined, this shuffle can be considered a splat. // Return 0 for better potential for callers to simplify. if (FirstDefinedIdx == Mask.end()) return 0; // Make sure all remaining elements are either undef or the same // as the first non-undef value. int SplatValue = *FirstDefinedIdx; if (any_of(make_range(std::next(FirstDefinedIdx), Mask.end()), [&SplatValue](int Elt) { return Elt >= 0 && Elt != SplatValue; })) return std::nullopt; return SplatValue; } static bool isBuildVectorOp(unsigned Opcode) { return Opcode == TargetOpcode::G_BUILD_VECTOR || Opcode == TargetOpcode::G_BUILD_VECTOR_TRUNC; } namespace { std::optional getAnyConstantSplat(Register VReg, const MachineRegisterInfo &MRI, bool AllowUndef) { MachineInstr *MI = getDefIgnoringCopies(VReg, MRI); if (!MI) return std::nullopt; bool isConcatVectorsOp = MI->getOpcode() == TargetOpcode::G_CONCAT_VECTORS; if (!isBuildVectorOp(MI->getOpcode()) && !isConcatVectorsOp) return std::nullopt; std::optional SplatValAndReg; for (MachineOperand &Op : MI->uses()) { Register Element = Op.getReg(); // If we have a G_CONCAT_VECTOR, we recursively look into the // vectors that we're concatenating to see if they're splats. auto ElementValAndReg = isConcatVectorsOp ? getAnyConstantSplat(Element, MRI, AllowUndef) : getAnyConstantVRegValWithLookThrough(Element, MRI, true, true); // If AllowUndef, treat undef as value that will result in a constant splat. if (!ElementValAndReg) { if (AllowUndef && isa(MRI.getVRegDef(Element))) continue; return std::nullopt; } // Record splat value if (!SplatValAndReg) SplatValAndReg = ElementValAndReg; // Different constant than the one already recorded, not a constant splat. if (SplatValAndReg->Value != ElementValAndReg->Value) return std::nullopt; } return SplatValAndReg; } } // end anonymous namespace bool llvm::isBuildVectorConstantSplat(const Register Reg, const MachineRegisterInfo &MRI, int64_t SplatValue, bool AllowUndef) { if (auto SplatValAndReg = getAnyConstantSplat(Reg, MRI, AllowUndef)) return mi_match(SplatValAndReg->VReg, MRI, m_SpecificICst(SplatValue)); return false; } bool llvm::isBuildVectorConstantSplat(const MachineInstr &MI, const MachineRegisterInfo &MRI, int64_t SplatValue, bool AllowUndef) { return isBuildVectorConstantSplat(MI.getOperand(0).getReg(), MRI, SplatValue, AllowUndef); } std::optional llvm::getIConstantSplatVal(const Register Reg, const MachineRegisterInfo &MRI) { if (auto SplatValAndReg = getAnyConstantSplat(Reg, MRI, /* AllowUndef */ false)) { if (std::optional ValAndVReg = getIConstantVRegValWithLookThrough(SplatValAndReg->VReg, MRI)) return ValAndVReg->Value; } return std::nullopt; } std::optional llvm::getIConstantSplatVal(const MachineInstr &MI, const MachineRegisterInfo &MRI) { return getIConstantSplatVal(MI.getOperand(0).getReg(), MRI); } std::optional llvm::getIConstantSplatSExtVal(const Register Reg, const MachineRegisterInfo &MRI) { if (auto SplatValAndReg = getAnyConstantSplat(Reg, MRI, /* AllowUndef */ false)) return getIConstantVRegSExtVal(SplatValAndReg->VReg, MRI); return std::nullopt; } std::optional llvm::getIConstantSplatSExtVal(const MachineInstr &MI, const MachineRegisterInfo &MRI) { return getIConstantSplatSExtVal(MI.getOperand(0).getReg(), MRI); } std::optional llvm::getFConstantSplat(Register VReg, const MachineRegisterInfo &MRI, bool AllowUndef) { if (auto SplatValAndReg = getAnyConstantSplat(VReg, MRI, AllowUndef)) return getFConstantVRegValWithLookThrough(SplatValAndReg->VReg, MRI); return std::nullopt; } bool llvm::isBuildVectorAllZeros(const MachineInstr &MI, const MachineRegisterInfo &MRI, bool AllowUndef) { return isBuildVectorConstantSplat(MI, MRI, 0, AllowUndef); } bool llvm::isBuildVectorAllOnes(const MachineInstr &MI, const MachineRegisterInfo &MRI, bool AllowUndef) { return isBuildVectorConstantSplat(MI, MRI, -1, AllowUndef); } std::optional llvm::getVectorSplat(const MachineInstr &MI, const MachineRegisterInfo &MRI) { unsigned Opc = MI.getOpcode(); if (!isBuildVectorOp(Opc)) return std::nullopt; if (auto Splat = getIConstantSplatSExtVal(MI, MRI)) return RegOrConstant(*Splat); auto Reg = MI.getOperand(1).getReg(); if (any_of(drop_begin(MI.operands(), 2), [&Reg](const MachineOperand &Op) { return Op.getReg() != Reg; })) return std::nullopt; return RegOrConstant(Reg); } static bool isConstantScalar(const MachineInstr &MI, const MachineRegisterInfo &MRI, bool AllowFP = true, bool AllowOpaqueConstants = true) { switch (MI.getOpcode()) { case TargetOpcode::G_CONSTANT: case TargetOpcode::G_IMPLICIT_DEF: return true; case TargetOpcode::G_FCONSTANT: return AllowFP; case TargetOpcode::G_GLOBAL_VALUE: case TargetOpcode::G_FRAME_INDEX: case TargetOpcode::G_BLOCK_ADDR: case TargetOpcode::G_JUMP_TABLE: return AllowOpaqueConstants; default: return false; } } bool llvm::isConstantOrConstantVector(MachineInstr &MI, const MachineRegisterInfo &MRI) { Register Def = MI.getOperand(0).getReg(); if (auto C = getIConstantVRegValWithLookThrough(Def, MRI)) return true; GBuildVector *BV = dyn_cast(&MI); if (!BV) return false; for (unsigned SrcIdx = 0; SrcIdx < BV->getNumSources(); ++SrcIdx) { if (getIConstantVRegValWithLookThrough(BV->getSourceReg(SrcIdx), MRI) || getOpcodeDef(BV->getSourceReg(SrcIdx), MRI)) continue; return false; } return true; } bool llvm::isConstantOrConstantVector(const MachineInstr &MI, const MachineRegisterInfo &MRI, bool AllowFP, bool AllowOpaqueConstants) { if (isConstantScalar(MI, MRI, AllowFP, AllowOpaqueConstants)) return true; if (!isBuildVectorOp(MI.getOpcode())) return false; const unsigned NumOps = MI.getNumOperands(); for (unsigned I = 1; I != NumOps; ++I) { const MachineInstr *ElementDef = MRI.getVRegDef(MI.getOperand(I).getReg()); if (!isConstantScalar(*ElementDef, MRI, AllowFP, AllowOpaqueConstants)) return false; } return true; } std::optional llvm::isConstantOrConstantSplatVector(MachineInstr &MI, const MachineRegisterInfo &MRI) { Register Def = MI.getOperand(0).getReg(); if (auto C = getIConstantVRegValWithLookThrough(Def, MRI)) return C->Value; auto MaybeCst = getIConstantSplatSExtVal(MI, MRI); if (!MaybeCst) return std::nullopt; const unsigned ScalarSize = MRI.getType(Def).getScalarSizeInBits(); return APInt(ScalarSize, *MaybeCst, true); } bool llvm::isNullOrNullSplat(const MachineInstr &MI, const MachineRegisterInfo &MRI, bool AllowUndefs) { switch (MI.getOpcode()) { case TargetOpcode::G_IMPLICIT_DEF: return AllowUndefs; case TargetOpcode::G_CONSTANT: return MI.getOperand(1).getCImm()->isNullValue(); case TargetOpcode::G_FCONSTANT: { const ConstantFP *FPImm = MI.getOperand(1).getFPImm(); return FPImm->isZero() && !FPImm->isNegative(); } default: if (!AllowUndefs) // TODO: isBuildVectorAllZeros assumes undef is OK already return false; return isBuildVectorAllZeros(MI, MRI); } } bool llvm::isAllOnesOrAllOnesSplat(const MachineInstr &MI, const MachineRegisterInfo &MRI, bool AllowUndefs) { switch (MI.getOpcode()) { case TargetOpcode::G_IMPLICIT_DEF: return AllowUndefs; case TargetOpcode::G_CONSTANT: return MI.getOperand(1).getCImm()->isAllOnesValue(); default: if (!AllowUndefs) // TODO: isBuildVectorAllOnes assumes undef is OK already return false; return isBuildVectorAllOnes(MI, MRI); } } bool llvm::matchUnaryPredicate( const MachineRegisterInfo &MRI, Register Reg, std::function Match, bool AllowUndefs) { const MachineInstr *Def = getDefIgnoringCopies(Reg, MRI); if (AllowUndefs && Def->getOpcode() == TargetOpcode::G_IMPLICIT_DEF) return Match(nullptr); // TODO: Also handle fconstant if (Def->getOpcode() == TargetOpcode::G_CONSTANT) return Match(Def->getOperand(1).getCImm()); if (Def->getOpcode() != TargetOpcode::G_BUILD_VECTOR) return false; for (unsigned I = 1, E = Def->getNumOperands(); I != E; ++I) { Register SrcElt = Def->getOperand(I).getReg(); const MachineInstr *SrcDef = getDefIgnoringCopies(SrcElt, MRI); if (AllowUndefs && SrcDef->getOpcode() == TargetOpcode::G_IMPLICIT_DEF) { if (!Match(nullptr)) return false; continue; } if (SrcDef->getOpcode() != TargetOpcode::G_CONSTANT || !Match(SrcDef->getOperand(1).getCImm())) return false; } return true; } bool llvm::isConstTrueVal(const TargetLowering &TLI, int64_t Val, bool IsVector, bool IsFP) { switch (TLI.getBooleanContents(IsVector, IsFP)) { case TargetLowering::UndefinedBooleanContent: return Val & 0x1; case TargetLowering::ZeroOrOneBooleanContent: return Val == 1; case TargetLowering::ZeroOrNegativeOneBooleanContent: return Val == -1; } llvm_unreachable("Invalid boolean contents"); } bool llvm::isConstFalseVal(const TargetLowering &TLI, int64_t Val, bool IsVector, bool IsFP) { switch (TLI.getBooleanContents(IsVector, IsFP)) { case TargetLowering::UndefinedBooleanContent: return ~Val & 0x1; case TargetLowering::ZeroOrOneBooleanContent: case TargetLowering::ZeroOrNegativeOneBooleanContent: return Val == 0; } llvm_unreachable("Invalid boolean contents"); } int64_t llvm::getICmpTrueVal(const TargetLowering &TLI, bool IsVector, bool IsFP) { switch (TLI.getBooleanContents(IsVector, IsFP)) { case TargetLowering::UndefinedBooleanContent: case TargetLowering::ZeroOrOneBooleanContent: return 1; case TargetLowering::ZeroOrNegativeOneBooleanContent: return -1; } llvm_unreachable("Invalid boolean contents"); } bool llvm::shouldOptForSize(const MachineBasicBlock &MBB, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) { const auto &F = MBB.getParent()->getFunction(); return F.hasOptSize() || F.hasMinSize() || llvm::shouldOptimizeForSize(MBB.getBasicBlock(), PSI, BFI); } void llvm::saveUsesAndErase(MachineInstr &MI, MachineRegisterInfo &MRI, LostDebugLocObserver *LocObserver, SmallInstListTy &DeadInstChain) { for (MachineOperand &Op : MI.uses()) { if (Op.isReg() && Op.getReg().isVirtual()) DeadInstChain.insert(MRI.getVRegDef(Op.getReg())); } LLVM_DEBUG(dbgs() << MI << "Is dead; erasing.\n"); DeadInstChain.remove(&MI); MI.eraseFromParent(); if (LocObserver) LocObserver->checkpoint(false); } void llvm::eraseInstrs(ArrayRef DeadInstrs, MachineRegisterInfo &MRI, LostDebugLocObserver *LocObserver) { SmallInstListTy DeadInstChain; for (MachineInstr *MI : DeadInstrs) saveUsesAndErase(*MI, MRI, LocObserver, DeadInstChain); while (!DeadInstChain.empty()) { MachineInstr *Inst = DeadInstChain.pop_back_val(); if (!isTriviallyDead(*Inst, MRI)) continue; saveUsesAndErase(*Inst, MRI, LocObserver, DeadInstChain); } } void llvm::eraseInstr(MachineInstr &MI, MachineRegisterInfo &MRI, LostDebugLocObserver *LocObserver) { return eraseInstrs({&MI}, MRI, LocObserver); } void llvm::salvageDebugInfo(const MachineRegisterInfo &MRI, MachineInstr &MI) { for (auto &Def : MI.defs()) { assert(Def.isReg() && "Must be a reg"); SmallVector DbgUsers; for (auto &MOUse : MRI.use_operands(Def.getReg())) { MachineInstr *DbgValue = MOUse.getParent(); // Ignore partially formed DBG_VALUEs. if (DbgValue->isNonListDebugValue() && DbgValue->getNumOperands() == 4) { DbgUsers.push_back(&MOUse); } } if (!DbgUsers.empty()) { salvageDebugInfoForDbgValue(MRI, MI, DbgUsers); } } }