//===-- AArch64ISelLowering.cpp - AArch64 DAG Lowering Implementation ----===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements the AArch64TargetLowering class. // //===----------------------------------------------------------------------===// #include "AArch64ISelLowering.h" #include "AArch64CallingConvention.h" #include "AArch64ExpandImm.h" #include "AArch64MachineFunctionInfo.h" #include "AArch64PerfectShuffle.h" #include "AArch64RegisterInfo.h" #include "AArch64Subtarget.h" #include "MCTargetDesc/AArch64AddressingModes.h" #include "Utils/AArch64BaseInfo.h" #include "llvm/ADT/APFloat.h" #include "llvm/ADT/APInt.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/StringRef.h" #include "llvm/ADT/Twine.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/Analysis/MemoryLocation.h" #include "llvm/Analysis/ObjCARCUtil.h" #include "llvm/Analysis/OptimizationRemarkEmitter.h" #include "llvm/Analysis/TargetTransformInfo.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/Analysis/VectorUtils.h" #include "llvm/CodeGen/Analysis.h" #include "llvm/CodeGen/CallingConvLower.h" #include "llvm/CodeGen/ComplexDeinterleavingPass.h" #include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h" #include "llvm/CodeGen/GlobalISel/Utils.h" #include "llvm/CodeGen/ISDOpcodes.h" #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineMemOperand.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/RuntimeLibcalls.h" #include "llvm/CodeGen/SelectionDAG.h" #include "llvm/CodeGen/SelectionDAGNodes.h" #include "llvm/CodeGen/TargetCallingConv.h" #include "llvm/CodeGen/TargetInstrInfo.h" #include "llvm/CodeGen/TargetOpcodes.h" #include "llvm/CodeGen/ValueTypes.h" #include "llvm/CodeGenTypes/MachineValueType.h" #include "llvm/IR/Attributes.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DebugLoc.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/Function.h" #include "llvm/IR/GetElementPtrTypeIterator.h" #include "llvm/IR/GlobalValue.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/Instruction.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/Intrinsics.h" #include "llvm/IR/IntrinsicsAArch64.h" #include "llvm/IR/Module.h" #include "llvm/IR/PatternMatch.h" #include "llvm/IR/Type.h" #include "llvm/IR/Use.h" #include "llvm/IR/Value.h" #include "llvm/MC/MCRegisterInfo.h" #include "llvm/Support/AtomicOrdering.h" #include "llvm/Support/Casting.h" #include "llvm/Support/CodeGen.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/InstructionCost.h" #include "llvm/Support/KnownBits.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetOptions.h" #include "llvm/TargetParser/Triple.h" #include #include #include #include #include #include #include #include #include #include #include #include using namespace llvm; using namespace llvm::PatternMatch; #define DEBUG_TYPE "aarch64-lower" STATISTIC(NumTailCalls, "Number of tail calls"); STATISTIC(NumShiftInserts, "Number of vector shift inserts"); STATISTIC(NumOptimizedImms, "Number of times immediates were optimized"); // FIXME: The necessary dtprel relocations don't seem to be supported // well in the GNU bfd and gold linkers at the moment. Therefore, by // default, for now, fall back to GeneralDynamic code generation. cl::opt EnableAArch64ELFLocalDynamicTLSGeneration( "aarch64-elf-ldtls-generation", cl::Hidden, cl::desc("Allow AArch64 Local Dynamic TLS code generation"), cl::init(false)); static cl::opt EnableOptimizeLogicalImm("aarch64-enable-logical-imm", cl::Hidden, cl::desc("Enable AArch64 logical imm instruction " "optimization"), cl::init(true)); // Temporary option added for the purpose of testing functionality added // to DAGCombiner.cpp in D92230. It is expected that this can be removed // in future when both implementations will be based off MGATHER rather // than the GLD1 nodes added for the SVE gather load intrinsics. static cl::opt EnableCombineMGatherIntrinsics("aarch64-enable-mgather-combine", cl::Hidden, cl::desc("Combine extends of AArch64 masked " "gather intrinsics"), cl::init(true)); static cl::opt EnableExtToTBL("aarch64-enable-ext-to-tbl", cl::Hidden, cl::desc("Combine ext and trunc to TBL"), cl::init(true)); // All of the XOR, OR and CMP use ALU ports, and data dependency will become the // bottleneck after this transform on high end CPU. So this max leaf node // limitation is guard cmp+ccmp will be profitable. static cl::opt MaxXors("aarch64-max-xors", cl::init(16), cl::Hidden, cl::desc("Maximum of xors")); /// Value type used for condition codes. static const MVT MVT_CC = MVT::i32; static const MCPhysReg GPRArgRegs[] = {AArch64::X0, AArch64::X1, AArch64::X2, AArch64::X3, AArch64::X4, AArch64::X5, AArch64::X6, AArch64::X7}; static const MCPhysReg FPRArgRegs[] = {AArch64::Q0, AArch64::Q1, AArch64::Q2, AArch64::Q3, AArch64::Q4, AArch64::Q5, AArch64::Q6, AArch64::Q7}; ArrayRef llvm::AArch64::getGPRArgRegs() { return GPRArgRegs; } ArrayRef llvm::AArch64::getFPRArgRegs() { return FPRArgRegs; } static inline EVT getPackedSVEVectorVT(EVT VT) { switch (VT.getSimpleVT().SimpleTy) { default: llvm_unreachable("unexpected element type for vector"); case MVT::i8: return MVT::nxv16i8; case MVT::i16: return MVT::nxv8i16; case MVT::i32: return MVT::nxv4i32; case MVT::i64: return MVT::nxv2i64; case MVT::f16: return MVT::nxv8f16; case MVT::f32: return MVT::nxv4f32; case MVT::f64: return MVT::nxv2f64; case MVT::bf16: return MVT::nxv8bf16; } } // NOTE: Currently there's only a need to return integer vector types. If this // changes then just add an extra "type" parameter. static inline EVT getPackedSVEVectorVT(ElementCount EC) { switch (EC.getKnownMinValue()) { default: llvm_unreachable("unexpected element count for vector"); case 16: return MVT::nxv16i8; case 8: return MVT::nxv8i16; case 4: return MVT::nxv4i32; case 2: return MVT::nxv2i64; } } static inline EVT getPromotedVTForPredicate(EVT VT) { assert(VT.isScalableVector() && (VT.getVectorElementType() == MVT::i1) && "Expected scalable predicate vector type!"); switch (VT.getVectorMinNumElements()) { default: llvm_unreachable("unexpected element count for vector"); case 2: return MVT::nxv2i64; case 4: return MVT::nxv4i32; case 8: return MVT::nxv8i16; case 16: return MVT::nxv16i8; } } /// Returns true if VT's elements occupy the lowest bit positions of its /// associated register class without any intervening space. /// /// For example, nxv2f16, nxv4f16 and nxv8f16 are legal types that belong to the /// same register class, but only nxv8f16 can be treated as a packed vector. static inline bool isPackedVectorType(EVT VT, SelectionDAG &DAG) { assert(VT.isVector() && DAG.getTargetLoweringInfo().isTypeLegal(VT) && "Expected legal vector type!"); return VT.isFixedLengthVector() || VT.getSizeInBits().getKnownMinValue() == AArch64::SVEBitsPerBlock; } // Returns true for ####_MERGE_PASSTHRU opcodes, whose operands have a leading // predicate and end with a passthru value matching the result type. static bool isMergePassthruOpcode(unsigned Opc) { switch (Opc) { default: return false; case AArch64ISD::BITREVERSE_MERGE_PASSTHRU: case AArch64ISD::BSWAP_MERGE_PASSTHRU: case AArch64ISD::REVH_MERGE_PASSTHRU: case AArch64ISD::REVW_MERGE_PASSTHRU: case AArch64ISD::REVD_MERGE_PASSTHRU: case AArch64ISD::CTLZ_MERGE_PASSTHRU: case AArch64ISD::CTPOP_MERGE_PASSTHRU: case AArch64ISD::DUP_MERGE_PASSTHRU: case AArch64ISD::ABS_MERGE_PASSTHRU: case AArch64ISD::NEG_MERGE_PASSTHRU: case AArch64ISD::FNEG_MERGE_PASSTHRU: case AArch64ISD::SIGN_EXTEND_INREG_MERGE_PASSTHRU: case AArch64ISD::ZERO_EXTEND_INREG_MERGE_PASSTHRU: case AArch64ISD::FCEIL_MERGE_PASSTHRU: case AArch64ISD::FFLOOR_MERGE_PASSTHRU: case AArch64ISD::FNEARBYINT_MERGE_PASSTHRU: case AArch64ISD::FRINT_MERGE_PASSTHRU: case AArch64ISD::FROUND_MERGE_PASSTHRU: case AArch64ISD::FROUNDEVEN_MERGE_PASSTHRU: case AArch64ISD::FTRUNC_MERGE_PASSTHRU: case AArch64ISD::FP_ROUND_MERGE_PASSTHRU: case AArch64ISD::FP_EXTEND_MERGE_PASSTHRU: case AArch64ISD::SINT_TO_FP_MERGE_PASSTHRU: case AArch64ISD::UINT_TO_FP_MERGE_PASSTHRU: case AArch64ISD::FCVTZU_MERGE_PASSTHRU: case AArch64ISD::FCVTZS_MERGE_PASSTHRU: case AArch64ISD::FSQRT_MERGE_PASSTHRU: case AArch64ISD::FRECPX_MERGE_PASSTHRU: case AArch64ISD::FABS_MERGE_PASSTHRU: return true; } } // Returns true if inactive lanes are known to be zeroed by construction. static bool isZeroingInactiveLanes(SDValue Op) { switch (Op.getOpcode()) { default: return false; // We guarantee i1 splat_vectors to zero the other lanes case ISD::SPLAT_VECTOR: case AArch64ISD::PTRUE: case AArch64ISD::SETCC_MERGE_ZERO: return true; case ISD::INTRINSIC_WO_CHAIN: switch (Op.getConstantOperandVal(0)) { default: return false; case Intrinsic::aarch64_sve_ptrue: case Intrinsic::aarch64_sve_pnext: case Intrinsic::aarch64_sve_cmpeq: case Intrinsic::aarch64_sve_cmpne: case Intrinsic::aarch64_sve_cmpge: case Intrinsic::aarch64_sve_cmpgt: case Intrinsic::aarch64_sve_cmphs: case Intrinsic::aarch64_sve_cmphi: case Intrinsic::aarch64_sve_cmpeq_wide: case Intrinsic::aarch64_sve_cmpne_wide: case Intrinsic::aarch64_sve_cmpge_wide: case Intrinsic::aarch64_sve_cmpgt_wide: case Intrinsic::aarch64_sve_cmplt_wide: case Intrinsic::aarch64_sve_cmple_wide: case Intrinsic::aarch64_sve_cmphs_wide: case Intrinsic::aarch64_sve_cmphi_wide: case Intrinsic::aarch64_sve_cmplo_wide: case Intrinsic::aarch64_sve_cmpls_wide: case Intrinsic::aarch64_sve_fcmpeq: case Intrinsic::aarch64_sve_fcmpne: case Intrinsic::aarch64_sve_fcmpge: case Intrinsic::aarch64_sve_fcmpgt: case Intrinsic::aarch64_sve_fcmpuo: case Intrinsic::aarch64_sve_facgt: case Intrinsic::aarch64_sve_facge: case Intrinsic::aarch64_sve_whilege: case Intrinsic::aarch64_sve_whilegt: case Intrinsic::aarch64_sve_whilehi: case Intrinsic::aarch64_sve_whilehs: case Intrinsic::aarch64_sve_whilele: case Intrinsic::aarch64_sve_whilelo: case Intrinsic::aarch64_sve_whilels: case Intrinsic::aarch64_sve_whilelt: case Intrinsic::aarch64_sve_match: case Intrinsic::aarch64_sve_nmatch: case Intrinsic::aarch64_sve_whilege_x2: case Intrinsic::aarch64_sve_whilegt_x2: case Intrinsic::aarch64_sve_whilehi_x2: case Intrinsic::aarch64_sve_whilehs_x2: case Intrinsic::aarch64_sve_whilele_x2: case Intrinsic::aarch64_sve_whilelo_x2: case Intrinsic::aarch64_sve_whilels_x2: case Intrinsic::aarch64_sve_whilelt_x2: return true; } } } AArch64TargetLowering::AArch64TargetLowering(const TargetMachine &TM, const AArch64Subtarget &STI) : TargetLowering(TM), Subtarget(&STI) { // AArch64 doesn't have comparisons which set GPRs or setcc instructions, so // we have to make something up. Arbitrarily, choose ZeroOrOne. setBooleanContents(ZeroOrOneBooleanContent); // When comparing vectors the result sets the different elements in the // vector to all-one or all-zero. setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); // Set up the register classes. addRegisterClass(MVT::i32, &AArch64::GPR32allRegClass); addRegisterClass(MVT::i64, &AArch64::GPR64allRegClass); if (Subtarget->hasLS64()) { addRegisterClass(MVT::i64x8, &AArch64::GPR64x8ClassRegClass); setOperationAction(ISD::LOAD, MVT::i64x8, Custom); setOperationAction(ISD::STORE, MVT::i64x8, Custom); } if (Subtarget->hasFPARMv8()) { addRegisterClass(MVT::f16, &AArch64::FPR16RegClass); addRegisterClass(MVT::bf16, &AArch64::FPR16RegClass); addRegisterClass(MVT::f32, &AArch64::FPR32RegClass); addRegisterClass(MVT::f64, &AArch64::FPR64RegClass); addRegisterClass(MVT::f128, &AArch64::FPR128RegClass); } if (Subtarget->hasNEON()) { addRegisterClass(MVT::v16i8, &AArch64::FPR8RegClass); addRegisterClass(MVT::v8i16, &AArch64::FPR16RegClass); // Someone set us up the NEON. addDRTypeForNEON(MVT::v2f32); addDRTypeForNEON(MVT::v8i8); addDRTypeForNEON(MVT::v4i16); addDRTypeForNEON(MVT::v2i32); addDRTypeForNEON(MVT::v1i64); addDRTypeForNEON(MVT::v1f64); addDRTypeForNEON(MVT::v4f16); addDRTypeForNEON(MVT::v4bf16); addQRTypeForNEON(MVT::v4f32); addQRTypeForNEON(MVT::v2f64); addQRTypeForNEON(MVT::v16i8); addQRTypeForNEON(MVT::v8i16); addQRTypeForNEON(MVT::v4i32); addQRTypeForNEON(MVT::v2i64); addQRTypeForNEON(MVT::v8f16); addQRTypeForNEON(MVT::v8bf16); } if (Subtarget->hasSVEorSME()) { // Add legal sve predicate types addRegisterClass(MVT::nxv1i1, &AArch64::PPRRegClass); addRegisterClass(MVT::nxv2i1, &AArch64::PPRRegClass); addRegisterClass(MVT::nxv4i1, &AArch64::PPRRegClass); addRegisterClass(MVT::nxv8i1, &AArch64::PPRRegClass); addRegisterClass(MVT::nxv16i1, &AArch64::PPRRegClass); // Add legal sve data types addRegisterClass(MVT::nxv16i8, &AArch64::ZPRRegClass); addRegisterClass(MVT::nxv8i16, &AArch64::ZPRRegClass); addRegisterClass(MVT::nxv4i32, &AArch64::ZPRRegClass); addRegisterClass(MVT::nxv2i64, &AArch64::ZPRRegClass); addRegisterClass(MVT::nxv2f16, &AArch64::ZPRRegClass); addRegisterClass(MVT::nxv4f16, &AArch64::ZPRRegClass); addRegisterClass(MVT::nxv8f16, &AArch64::ZPRRegClass); addRegisterClass(MVT::nxv2f32, &AArch64::ZPRRegClass); addRegisterClass(MVT::nxv4f32, &AArch64::ZPRRegClass); addRegisterClass(MVT::nxv2f64, &AArch64::ZPRRegClass); addRegisterClass(MVT::nxv2bf16, &AArch64::ZPRRegClass); addRegisterClass(MVT::nxv4bf16, &AArch64::ZPRRegClass); addRegisterClass(MVT::nxv8bf16, &AArch64::ZPRRegClass); if (Subtarget->useSVEForFixedLengthVectors()) { for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) if (useSVEForFixedLengthVectorVT(VT)) addRegisterClass(VT, &AArch64::ZPRRegClass); for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) if (useSVEForFixedLengthVectorVT(VT)) addRegisterClass(VT, &AArch64::ZPRRegClass); } } if (Subtarget->hasSVE2p1() || Subtarget->hasSME2()) { addRegisterClass(MVT::aarch64svcount, &AArch64::PPRRegClass); setOperationPromotedToType(ISD::LOAD, MVT::aarch64svcount, MVT::nxv16i1); setOperationPromotedToType(ISD::STORE, MVT::aarch64svcount, MVT::nxv16i1); setOperationAction(ISD::SELECT, MVT::aarch64svcount, Custom); setOperationAction(ISD::SELECT_CC, MVT::aarch64svcount, Expand); } // Compute derived properties from the register classes computeRegisterProperties(Subtarget->getRegisterInfo()); // Provide all sorts of operation actions setOperationAction(ISD::GlobalAddress, MVT::i64, Custom); setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom); setOperationAction(ISD::SETCC, MVT::i32, Custom); setOperationAction(ISD::SETCC, MVT::i64, Custom); setOperationAction(ISD::SETCC, MVT::bf16, Custom); setOperationAction(ISD::SETCC, MVT::f16, Custom); setOperationAction(ISD::SETCC, MVT::f32, Custom); setOperationAction(ISD::SETCC, MVT::f64, Custom); setOperationAction(ISD::STRICT_FSETCC, MVT::bf16, Custom); setOperationAction(ISD::STRICT_FSETCC, MVT::f16, Custom); setOperationAction(ISD::STRICT_FSETCC, MVT::f32, Custom); setOperationAction(ISD::STRICT_FSETCC, MVT::f64, Custom); setOperationAction(ISD::STRICT_FSETCCS, MVT::f16, Custom); setOperationAction(ISD::STRICT_FSETCCS, MVT::f32, Custom); setOperationAction(ISD::STRICT_FSETCCS, MVT::f64, Custom); setOperationAction(ISD::BITREVERSE, MVT::i32, Legal); setOperationAction(ISD::BITREVERSE, MVT::i64, Legal); setOperationAction(ISD::BRCOND, MVT::Other, Custom); setOperationAction(ISD::BR_CC, MVT::i32, Custom); setOperationAction(ISD::BR_CC, MVT::i64, Custom); setOperationAction(ISD::BR_CC, MVT::f16, Custom); setOperationAction(ISD::BR_CC, MVT::f32, Custom); setOperationAction(ISD::BR_CC, MVT::f64, Custom); setOperationAction(ISD::SELECT, MVT::i32, Custom); setOperationAction(ISD::SELECT, MVT::i64, Custom); setOperationAction(ISD::SELECT, MVT::f16, Custom); setOperationAction(ISD::SELECT, MVT::bf16, Custom); setOperationAction(ISD::SELECT, MVT::f32, Custom); setOperationAction(ISD::SELECT, MVT::f64, Custom); setOperationAction(ISD::SELECT_CC, MVT::i32, Custom); setOperationAction(ISD::SELECT_CC, MVT::i64, Custom); setOperationAction(ISD::SELECT_CC, MVT::f16, Custom); setOperationAction(ISD::SELECT_CC, MVT::bf16, Custom); setOperationAction(ISD::SELECT_CC, MVT::f32, Custom); setOperationAction(ISD::SELECT_CC, MVT::f64, Custom); setOperationAction(ISD::BR_JT, MVT::Other, Custom); setOperationAction(ISD::JumpTable, MVT::i64, Custom); setOperationAction(ISD::SETCCCARRY, MVT::i64, Custom); setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom); setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom); setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom); setOperationAction(ISD::FREM, MVT::f32, Expand); setOperationAction(ISD::FREM, MVT::f64, Expand); setOperationAction(ISD::FREM, MVT::f80, Expand); setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); // Custom lowering hooks are needed for XOR // to fold it into CSINC/CSINV. setOperationAction(ISD::XOR, MVT::i32, Custom); setOperationAction(ISD::XOR, MVT::i64, Custom); // Virtually no operation on f128 is legal, but LLVM can't expand them when // there's a valid register class, so we need custom operations in most cases. setOperationAction(ISD::FABS, MVT::f128, Expand); setOperationAction(ISD::FADD, MVT::f128, LibCall); setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand); setOperationAction(ISD::FCOS, MVT::f128, Expand); setOperationAction(ISD::FDIV, MVT::f128, LibCall); setOperationAction(ISD::FMA, MVT::f128, Expand); setOperationAction(ISD::FMUL, MVT::f128, LibCall); setOperationAction(ISD::FNEG, MVT::f128, Expand); setOperationAction(ISD::FPOW, MVT::f128, Expand); setOperationAction(ISD::FREM, MVT::f128, Expand); setOperationAction(ISD::FRINT, MVT::f128, Expand); setOperationAction(ISD::FSIN, MVT::f128, Expand); setOperationAction(ISD::FSINCOS, MVT::f128, Expand); setOperationAction(ISD::FSQRT, MVT::f128, Expand); setOperationAction(ISD::FSUB, MVT::f128, LibCall); setOperationAction(ISD::FTRUNC, MVT::f128, Expand); setOperationAction(ISD::SETCC, MVT::f128, Custom); setOperationAction(ISD::STRICT_FSETCC, MVT::f128, Custom); setOperationAction(ISD::STRICT_FSETCCS, MVT::f128, Custom); setOperationAction(ISD::BR_CC, MVT::f128, Custom); setOperationAction(ISD::SELECT, MVT::f128, Custom); setOperationAction(ISD::SELECT_CC, MVT::f128, Custom); setOperationAction(ISD::FP_EXTEND, MVT::f128, Custom); // FIXME: f128 FMINIMUM and FMAXIMUM (including STRICT versions) currently // aren't handled. // Lowering for many of the conversions is actually specified by the non-f128 // type. The LowerXXX function will be trivial when f128 isn't involved. setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); setOperationAction(ISD::FP_TO_SINT, MVT::i128, Custom); setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom); setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i64, Custom); setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i128, Custom); setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); setOperationAction(ISD::FP_TO_UINT, MVT::i128, Custom); setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom); setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i64, Custom); setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i128, Custom); setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); setOperationAction(ISD::SINT_TO_FP, MVT::i128, Custom); setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Custom); setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i64, Custom); setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i128, Custom); setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom); setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); setOperationAction(ISD::UINT_TO_FP, MVT::i128, Custom); setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Custom); setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Custom); setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i128, Custom); if (Subtarget->hasFPARMv8()) { setOperationAction(ISD::FP_ROUND, MVT::f16, Custom); setOperationAction(ISD::FP_ROUND, MVT::bf16, Custom); } setOperationAction(ISD::FP_ROUND, MVT::f32, Custom); setOperationAction(ISD::FP_ROUND, MVT::f64, Custom); if (Subtarget->hasFPARMv8()) { setOperationAction(ISD::STRICT_FP_ROUND, MVT::f16, Custom); setOperationAction(ISD::STRICT_FP_ROUND, MVT::bf16, Custom); } setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Custom); setOperationAction(ISD::STRICT_FP_ROUND, MVT::f64, Custom); setOperationAction(ISD::FP_TO_UINT_SAT, MVT::i32, Custom); setOperationAction(ISD::FP_TO_UINT_SAT, MVT::i64, Custom); setOperationAction(ISD::FP_TO_SINT_SAT, MVT::i32, Custom); setOperationAction(ISD::FP_TO_SINT_SAT, MVT::i64, Custom); // Variable arguments. setOperationAction(ISD::VASTART, MVT::Other, Custom); setOperationAction(ISD::VAARG, MVT::Other, Custom); setOperationAction(ISD::VACOPY, MVT::Other, Custom); setOperationAction(ISD::VAEND, MVT::Other, Expand); // Variable-sized objects. setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); // Lowering Funnel Shifts to EXTR setOperationAction(ISD::FSHR, MVT::i32, Custom); setOperationAction(ISD::FSHR, MVT::i64, Custom); setOperationAction(ISD::FSHL, MVT::i32, Custom); setOperationAction(ISD::FSHL, MVT::i64, Custom); setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Custom); // Constant pool entries setOperationAction(ISD::ConstantPool, MVT::i64, Custom); // BlockAddress setOperationAction(ISD::BlockAddress, MVT::i64, Custom); // AArch64 lacks both left-rotate and popcount instructions. setOperationAction(ISD::ROTL, MVT::i32, Expand); setOperationAction(ISD::ROTL, MVT::i64, Expand); for (MVT VT : MVT::fixedlen_vector_valuetypes()) { setOperationAction(ISD::ROTL, VT, Expand); setOperationAction(ISD::ROTR, VT, Expand); } // AArch64 doesn't have i32 MULH{S|U}. setOperationAction(ISD::MULHU, MVT::i32, Expand); setOperationAction(ISD::MULHS, MVT::i32, Expand); // AArch64 doesn't have {U|S}MUL_LOHI. setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand); setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand); setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand); setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand); if (Subtarget->hasCSSC()) { setOperationAction(ISD::CTPOP, MVT::i32, Legal); setOperationAction(ISD::CTPOP, MVT::i64, Legal); setOperationAction(ISD::CTPOP, MVT::i128, Expand); setOperationAction(ISD::PARITY, MVT::i128, Expand); setOperationAction(ISD::CTTZ, MVT::i32, Legal); setOperationAction(ISD::CTTZ, MVT::i64, Legal); setOperationAction(ISD::CTTZ, MVT::i128, Expand); setOperationAction(ISD::ABS, MVT::i32, Legal); setOperationAction(ISD::ABS, MVT::i64, Legal); setOperationAction(ISD::SMAX, MVT::i32, Legal); setOperationAction(ISD::SMAX, MVT::i64, Legal); setOperationAction(ISD::UMAX, MVT::i32, Legal); setOperationAction(ISD::UMAX, MVT::i64, Legal); setOperationAction(ISD::SMIN, MVT::i32, Legal); setOperationAction(ISD::SMIN, MVT::i64, Legal); setOperationAction(ISD::UMIN, MVT::i32, Legal); setOperationAction(ISD::UMIN, MVT::i64, Legal); } else { setOperationAction(ISD::CTPOP, MVT::i32, Custom); setOperationAction(ISD::CTPOP, MVT::i64, Custom); setOperationAction(ISD::CTPOP, MVT::i128, Custom); setOperationAction(ISD::PARITY, MVT::i64, Custom); setOperationAction(ISD::PARITY, MVT::i128, Custom); setOperationAction(ISD::ABS, MVT::i32, Custom); setOperationAction(ISD::ABS, MVT::i64, Custom); } setOperationAction(ISD::SDIVREM, MVT::i32, Expand); setOperationAction(ISD::SDIVREM, MVT::i64, Expand); for (MVT VT : MVT::fixedlen_vector_valuetypes()) { setOperationAction(ISD::SDIVREM, VT, Expand); setOperationAction(ISD::UDIVREM, VT, Expand); } setOperationAction(ISD::SREM, MVT::i32, Expand); setOperationAction(ISD::SREM, MVT::i64, Expand); setOperationAction(ISD::UDIVREM, MVT::i32, Expand); setOperationAction(ISD::UDIVREM, MVT::i64, Expand); setOperationAction(ISD::UREM, MVT::i32, Expand); setOperationAction(ISD::UREM, MVT::i64, Expand); // Custom lower Add/Sub/Mul with overflow. setOperationAction(ISD::SADDO, MVT::i32, Custom); setOperationAction(ISD::SADDO, MVT::i64, Custom); setOperationAction(ISD::UADDO, MVT::i32, Custom); setOperationAction(ISD::UADDO, MVT::i64, Custom); setOperationAction(ISD::SSUBO, MVT::i32, Custom); setOperationAction(ISD::SSUBO, MVT::i64, Custom); setOperationAction(ISD::USUBO, MVT::i32, Custom); setOperationAction(ISD::USUBO, MVT::i64, Custom); setOperationAction(ISD::SMULO, MVT::i32, Custom); setOperationAction(ISD::SMULO, MVT::i64, Custom); setOperationAction(ISD::UMULO, MVT::i32, Custom); setOperationAction(ISD::UMULO, MVT::i64, Custom); setOperationAction(ISD::UADDO_CARRY, MVT::i32, Custom); setOperationAction(ISD::UADDO_CARRY, MVT::i64, Custom); setOperationAction(ISD::USUBO_CARRY, MVT::i32, Custom); setOperationAction(ISD::USUBO_CARRY, MVT::i64, Custom); setOperationAction(ISD::SADDO_CARRY, MVT::i32, Custom); setOperationAction(ISD::SADDO_CARRY, MVT::i64, Custom); setOperationAction(ISD::SSUBO_CARRY, MVT::i32, Custom); setOperationAction(ISD::SSUBO_CARRY, MVT::i64, Custom); setOperationAction(ISD::FSIN, MVT::f32, Expand); setOperationAction(ISD::FSIN, MVT::f64, Expand); setOperationAction(ISD::FCOS, MVT::f32, Expand); setOperationAction(ISD::FCOS, MVT::f64, Expand); setOperationAction(ISD::FPOW, MVT::f32, Expand); setOperationAction(ISD::FPOW, MVT::f64, Expand); setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom); setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom); if (Subtarget->hasFullFP16()) { setOperationAction(ISD::FCOPYSIGN, MVT::f16, Custom); setOperationAction(ISD::FCOPYSIGN, MVT::bf16, Custom); } else { setOperationAction(ISD::FCOPYSIGN, MVT::f16, Promote); setOperationAction(ISD::FCOPYSIGN, MVT::bf16, Promote); } for (auto Op : {ISD::FREM, ISD::FPOW, ISD::FPOWI, ISD::FCOS, ISD::FSIN, ISD::FSINCOS, ISD::FEXP, ISD::FEXP2, ISD::FEXP10, ISD::FLOG, ISD::FLOG2, ISD::FLOG10, ISD::STRICT_FREM, ISD::STRICT_FPOW, ISD::STRICT_FPOWI, ISD::STRICT_FCOS, ISD::STRICT_FSIN, ISD::STRICT_FEXP, ISD::STRICT_FEXP2, ISD::STRICT_FLOG, ISD::STRICT_FLOG2, ISD::STRICT_FLOG10}) { setOperationAction(Op, MVT::f16, Promote); setOperationAction(Op, MVT::v4f16, Expand); setOperationAction(Op, MVT::v8f16, Expand); setOperationAction(Op, MVT::bf16, Promote); setOperationAction(Op, MVT::v4bf16, Expand); setOperationAction(Op, MVT::v8bf16, Expand); } auto LegalizeNarrowFP = [this](MVT ScalarVT) { for (auto Op : { ISD::SETCC, ISD::SELECT_CC, ISD::BR_CC, ISD::FADD, ISD::FSUB, ISD::FMUL, ISD::FDIV, ISD::FMA, ISD::FCEIL, ISD::FSQRT, ISD::FFLOOR, ISD::FNEARBYINT, ISD::FRINT, ISD::FROUND, ISD::FROUNDEVEN, ISD::FTRUNC, ISD::FMINNUM, ISD::FMAXNUM, ISD::FMINIMUM, ISD::FMAXIMUM, ISD::STRICT_FADD, ISD::STRICT_FSUB, ISD::STRICT_FMUL, ISD::STRICT_FDIV, ISD::STRICT_FMA, ISD::STRICT_FCEIL, ISD::STRICT_FFLOOR, ISD::STRICT_FSQRT, ISD::STRICT_FRINT, ISD::STRICT_FNEARBYINT, ISD::STRICT_FROUND, ISD::STRICT_FTRUNC, ISD::STRICT_FROUNDEVEN, ISD::STRICT_FMINNUM, ISD::STRICT_FMAXNUM, ISD::STRICT_FMINIMUM, ISD::STRICT_FMAXIMUM, }) setOperationAction(Op, ScalarVT, Promote); for (auto Op : {ISD::FNEG, ISD::FABS}) setOperationAction(Op, ScalarVT, Legal); // Round-to-integer need custom lowering for fp16, as Promote doesn't work // because the result type is integer. for (auto Op : {ISD::LROUND, ISD::LLROUND, ISD::LRINT, ISD::LLRINT, ISD::STRICT_LROUND, ISD::STRICT_LLROUND, ISD::STRICT_LRINT, ISD::STRICT_LLRINT}) setOperationAction(Op, ScalarVT, Custom); // promote v4f16 to v4f32 when that is known to be safe. auto V4Narrow = MVT::getVectorVT(ScalarVT, 4); setOperationPromotedToType(ISD::FADD, V4Narrow, MVT::v4f32); setOperationPromotedToType(ISD::FSUB, V4Narrow, MVT::v4f32); setOperationPromotedToType(ISD::FMUL, V4Narrow, MVT::v4f32); setOperationPromotedToType(ISD::FDIV, V4Narrow, MVT::v4f32); setOperationPromotedToType(ISD::FCEIL, V4Narrow, MVT::v4f32); setOperationPromotedToType(ISD::FFLOOR, V4Narrow, MVT::v4f32); setOperationPromotedToType(ISD::FROUND, V4Narrow, MVT::v4f32); setOperationPromotedToType(ISD::FTRUNC, V4Narrow, MVT::v4f32); setOperationPromotedToType(ISD::FROUNDEVEN, V4Narrow, MVT::v4f32); setOperationPromotedToType(ISD::FRINT, V4Narrow, MVT::v4f32); setOperationPromotedToType(ISD::FNEARBYINT, V4Narrow, MVT::v4f32); setOperationAction(ISD::FABS, V4Narrow, Legal); setOperationAction(ISD::FNEG, V4Narrow, Legal); setOperationAction(ISD::FMA, V4Narrow, Expand); setOperationAction(ISD::SETCC, V4Narrow, Custom); setOperationAction(ISD::BR_CC, V4Narrow, Expand); setOperationAction(ISD::SELECT, V4Narrow, Expand); setOperationAction(ISD::SELECT_CC, V4Narrow, Expand); setOperationAction(ISD::FCOPYSIGN, V4Narrow, Custom); setOperationAction(ISD::FSQRT, V4Narrow, Expand); auto V8Narrow = MVT::getVectorVT(ScalarVT, 8); setOperationAction(ISD::FABS, V8Narrow, Legal); setOperationAction(ISD::FADD, V8Narrow, Legal); setOperationAction(ISD::FCEIL, V8Narrow, Legal); setOperationAction(ISD::FCOPYSIGN, V8Narrow, Custom); setOperationAction(ISD::FDIV, V8Narrow, Legal); setOperationAction(ISD::FFLOOR, V8Narrow, Legal); setOperationAction(ISD::FMA, V8Narrow, Expand); setOperationAction(ISD::FMUL, V8Narrow, Legal); setOperationAction(ISD::FNEARBYINT, V8Narrow, Legal); setOperationAction(ISD::FNEG, V8Narrow, Legal); setOperationAction(ISD::FROUND, V8Narrow, Legal); setOperationAction(ISD::FROUNDEVEN, V8Narrow, Legal); setOperationAction(ISD::FRINT, V8Narrow, Legal); setOperationAction(ISD::FSQRT, V8Narrow, Expand); setOperationAction(ISD::FSUB, V8Narrow, Legal); setOperationAction(ISD::FTRUNC, V8Narrow, Legal); setOperationAction(ISD::SETCC, V8Narrow, Expand); setOperationAction(ISD::BR_CC, V8Narrow, Expand); setOperationAction(ISD::SELECT, V8Narrow, Expand); setOperationAction(ISD::SELECT_CC, V8Narrow, Expand); setOperationAction(ISD::FP_EXTEND, V8Narrow, Expand); }; if (!Subtarget->hasFullFP16()) { LegalizeNarrowFP(MVT::f16); } LegalizeNarrowFP(MVT::bf16); setOperationAction(ISD::FP_ROUND, MVT::v4f32, Custom); setOperationAction(ISD::FP_ROUND, MVT::v4bf16, Custom); // AArch64 has implementations of a lot of rounding-like FP operations. for (auto Op : {ISD::FFLOOR, ISD::FNEARBYINT, ISD::FCEIL, ISD::FRINT, ISD::FTRUNC, ISD::FROUND, ISD::FROUNDEVEN, ISD::FMINNUM, ISD::FMAXNUM, ISD::FMINIMUM, ISD::FMAXIMUM, ISD::LROUND, ISD::LLROUND, ISD::LRINT, ISD::LLRINT, ISD::STRICT_FFLOOR, ISD::STRICT_FCEIL, ISD::STRICT_FNEARBYINT, ISD::STRICT_FRINT, ISD::STRICT_FTRUNC, ISD::STRICT_FROUNDEVEN, ISD::STRICT_FROUND, ISD::STRICT_FMINNUM, ISD::STRICT_FMAXNUM, ISD::STRICT_FMINIMUM, ISD::STRICT_FMAXIMUM, ISD::STRICT_LROUND, ISD::STRICT_LLROUND, ISD::STRICT_LRINT, ISD::STRICT_LLRINT}) { for (MVT Ty : {MVT::f32, MVT::f64}) setOperationAction(Op, Ty, Legal); if (Subtarget->hasFullFP16()) setOperationAction(Op, MVT::f16, Legal); } // Basic strict FP operations are legal for (auto Op : {ISD::STRICT_FADD, ISD::STRICT_FSUB, ISD::STRICT_FMUL, ISD::STRICT_FDIV, ISD::STRICT_FMA, ISD::STRICT_FSQRT}) { for (MVT Ty : {MVT::f32, MVT::f64}) setOperationAction(Op, Ty, Legal); if (Subtarget->hasFullFP16()) setOperationAction(Op, MVT::f16, Legal); } // Strict conversion to a larger type is legal for (auto VT : {MVT::f32, MVT::f64}) setOperationAction(ISD::STRICT_FP_EXTEND, VT, Legal); setOperationAction(ISD::PREFETCH, MVT::Other, Custom); setOperationAction(ISD::GET_ROUNDING, MVT::i32, Custom); setOperationAction(ISD::SET_ROUNDING, MVT::Other, Custom); setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i128, Custom); if (!Subtarget->hasLSE() && !Subtarget->outlineAtomics()) { setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, LibCall); setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, LibCall); } else { setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Expand); setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Expand); } setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i32, Custom); setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom); // Generate outline atomics library calls only if LSE was not specified for // subtarget if (Subtarget->outlineAtomics() && !Subtarget->hasLSE()) { setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i8, LibCall); setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i16, LibCall); setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, LibCall); setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, LibCall); setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i128, LibCall); setOperationAction(ISD::ATOMIC_SWAP, MVT::i8, LibCall); setOperationAction(ISD::ATOMIC_SWAP, MVT::i16, LibCall); setOperationAction(ISD::ATOMIC_SWAP, MVT::i32, LibCall); setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, LibCall); setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i8, LibCall); setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i16, LibCall); setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i32, LibCall); setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, LibCall); setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i8, LibCall); setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i16, LibCall); setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i32, LibCall); setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, LibCall); setOperationAction(ISD::ATOMIC_LOAD_CLR, MVT::i8, LibCall); setOperationAction(ISD::ATOMIC_LOAD_CLR, MVT::i16, LibCall); setOperationAction(ISD::ATOMIC_LOAD_CLR, MVT::i32, LibCall); setOperationAction(ISD::ATOMIC_LOAD_CLR, MVT::i64, LibCall); setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i8, LibCall); setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i16, LibCall); setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i32, LibCall); setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, LibCall); #define LCALLNAMES(A, B, N) \ setLibcallName(A##N##_RELAX, #B #N "_relax"); \ setLibcallName(A##N##_ACQ, #B #N "_acq"); \ setLibcallName(A##N##_REL, #B #N "_rel"); \ setLibcallName(A##N##_ACQ_REL, #B #N "_acq_rel"); #define LCALLNAME4(A, B) \ LCALLNAMES(A, B, 1) \ LCALLNAMES(A, B, 2) LCALLNAMES(A, B, 4) LCALLNAMES(A, B, 8) #define LCALLNAME5(A, B) \ LCALLNAMES(A, B, 1) \ LCALLNAMES(A, B, 2) \ LCALLNAMES(A, B, 4) LCALLNAMES(A, B, 8) LCALLNAMES(A, B, 16) LCALLNAME5(RTLIB::OUTLINE_ATOMIC_CAS, __aarch64_cas) LCALLNAME4(RTLIB::OUTLINE_ATOMIC_SWP, __aarch64_swp) LCALLNAME4(RTLIB::OUTLINE_ATOMIC_LDADD, __aarch64_ldadd) LCALLNAME4(RTLIB::OUTLINE_ATOMIC_LDSET, __aarch64_ldset) LCALLNAME4(RTLIB::OUTLINE_ATOMIC_LDCLR, __aarch64_ldclr) LCALLNAME4(RTLIB::OUTLINE_ATOMIC_LDEOR, __aarch64_ldeor) #undef LCALLNAMES #undef LCALLNAME4 #undef LCALLNAME5 } if (Subtarget->hasLSE128()) { // Custom lowering because i128 is not legal. Must be replaced by 2x64 // values. ATOMIC_LOAD_AND also needs op legalisation to emit LDCLRP. setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i128, Custom); setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i128, Custom); setOperationAction(ISD::ATOMIC_SWAP, MVT::i128, Custom); } // 128-bit loads and stores can be done without expanding setOperationAction(ISD::LOAD, MVT::i128, Custom); setOperationAction(ISD::STORE, MVT::i128, Custom); // Aligned 128-bit loads and stores are single-copy atomic according to the // v8.4a spec. LRCPC3 introduces 128-bit STILP/LDIAPP but still requires LSE2. if (Subtarget->hasLSE2()) { setOperationAction(ISD::ATOMIC_LOAD, MVT::i128, Custom); setOperationAction(ISD::ATOMIC_STORE, MVT::i128, Custom); } // 256 bit non-temporal stores can be lowered to STNP. Do this as part of the // custom lowering, as there are no un-paired non-temporal stores and // legalization will break up 256 bit inputs. setOperationAction(ISD::STORE, MVT::v32i8, Custom); setOperationAction(ISD::STORE, MVT::v16i16, Custom); setOperationAction(ISD::STORE, MVT::v16f16, Custom); setOperationAction(ISD::STORE, MVT::v16bf16, Custom); setOperationAction(ISD::STORE, MVT::v8i32, Custom); setOperationAction(ISD::STORE, MVT::v8f32, Custom); setOperationAction(ISD::STORE, MVT::v4f64, Custom); setOperationAction(ISD::STORE, MVT::v4i64, Custom); // 256 bit non-temporal loads can be lowered to LDNP. This is done using // custom lowering, as there are no un-paired non-temporal loads legalization // will break up 256 bit inputs. setOperationAction(ISD::LOAD, MVT::v32i8, Custom); setOperationAction(ISD::LOAD, MVT::v16i16, Custom); setOperationAction(ISD::LOAD, MVT::v16f16, Custom); setOperationAction(ISD::LOAD, MVT::v16bf16, Custom); setOperationAction(ISD::LOAD, MVT::v8i32, Custom); setOperationAction(ISD::LOAD, MVT::v8f32, Custom); setOperationAction(ISD::LOAD, MVT::v4f64, Custom); setOperationAction(ISD::LOAD, MVT::v4i64, Custom); // Lower READCYCLECOUNTER using an mrs from CNTVCT_EL0. setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Legal); if (getLibcallName(RTLIB::SINCOS_STRET_F32) != nullptr && getLibcallName(RTLIB::SINCOS_STRET_F64) != nullptr) { // Issue __sincos_stret if available. setOperationAction(ISD::FSINCOS, MVT::f64, Custom); setOperationAction(ISD::FSINCOS, MVT::f32, Custom); } else { setOperationAction(ISD::FSINCOS, MVT::f64, Expand); setOperationAction(ISD::FSINCOS, MVT::f32, Expand); } if (Subtarget->getTargetTriple().isOSMSVCRT()) { // MSVCRT doesn't have powi; fall back to pow setLibcallName(RTLIB::POWI_F32, nullptr); setLibcallName(RTLIB::POWI_F64, nullptr); } // Make floating-point constants legal for the large code model, so they don't // become loads from the constant pool. if (Subtarget->isTargetMachO() && TM.getCodeModel() == CodeModel::Large) { setOperationAction(ISD::ConstantFP, MVT::f32, Legal); setOperationAction(ISD::ConstantFP, MVT::f64, Legal); } // AArch64 does not have floating-point extending loads, i1 sign-extending // load, floating-point truncating stores, or v2i32->v2i16 truncating store. for (MVT VT : MVT::fp_valuetypes()) { setLoadExtAction(ISD::EXTLOAD, VT, MVT::bf16, Expand); setLoadExtAction(ISD::EXTLOAD, VT, MVT::f16, Expand); setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand); setLoadExtAction(ISD::EXTLOAD, VT, MVT::f64, Expand); setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand); } for (MVT VT : MVT::integer_valuetypes()) setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Expand); for (MVT WideVT : MVT::fp_valuetypes()) { for (MVT NarrowVT : MVT::fp_valuetypes()) { if (WideVT.getScalarSizeInBits() > NarrowVT.getScalarSizeInBits()) { setTruncStoreAction(WideVT, NarrowVT, Expand); } } } if (Subtarget->hasFPARMv8()) { setOperationAction(ISD::BITCAST, MVT::i16, Custom); setOperationAction(ISD::BITCAST, MVT::f16, Custom); setOperationAction(ISD::BITCAST, MVT::bf16, Custom); } // Indexed loads and stores are supported. for (unsigned im = (unsigned)ISD::PRE_INC; im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) { setIndexedLoadAction(im, MVT::i8, Legal); setIndexedLoadAction(im, MVT::i16, Legal); setIndexedLoadAction(im, MVT::i32, Legal); setIndexedLoadAction(im, MVT::i64, Legal); setIndexedLoadAction(im, MVT::f64, Legal); setIndexedLoadAction(im, MVT::f32, Legal); setIndexedLoadAction(im, MVT::f16, Legal); setIndexedLoadAction(im, MVT::bf16, Legal); setIndexedStoreAction(im, MVT::i8, Legal); setIndexedStoreAction(im, MVT::i16, Legal); setIndexedStoreAction(im, MVT::i32, Legal); setIndexedStoreAction(im, MVT::i64, Legal); setIndexedStoreAction(im, MVT::f64, Legal); setIndexedStoreAction(im, MVT::f32, Legal); setIndexedStoreAction(im, MVT::f16, Legal); setIndexedStoreAction(im, MVT::bf16, Legal); } // Trap. setOperationAction(ISD::TRAP, MVT::Other, Legal); setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal); setOperationAction(ISD::UBSANTRAP, MVT::Other, Legal); // We combine OR nodes for bitfield operations. setTargetDAGCombine(ISD::OR); // Try to create BICs for vector ANDs. setTargetDAGCombine(ISD::AND); // Vector add and sub nodes may conceal a high-half opportunity. // Also, try to fold ADD into CSINC/CSINV.. setTargetDAGCombine({ISD::ADD, ISD::ABS, ISD::SUB, ISD::XOR, ISD::SINT_TO_FP, ISD::UINT_TO_FP}); setTargetDAGCombine({ISD::FP_TO_SINT, ISD::FP_TO_UINT, ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT, ISD::FADD, ISD::FDIV}); // Try and combine setcc with csel setTargetDAGCombine(ISD::SETCC); setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN); setTargetDAGCombine({ISD::ANY_EXTEND, ISD::ZERO_EXTEND, ISD::SIGN_EXTEND, ISD::VECTOR_SPLICE, ISD::SIGN_EXTEND_INREG, ISD::CONCAT_VECTORS, ISD::EXTRACT_SUBVECTOR, ISD::INSERT_SUBVECTOR, ISD::STORE, ISD::BUILD_VECTOR}); setTargetDAGCombine(ISD::TRUNCATE); setTargetDAGCombine(ISD::LOAD); setTargetDAGCombine(ISD::MSTORE); setTargetDAGCombine(ISD::MUL); setTargetDAGCombine({ISD::SELECT, ISD::VSELECT}); setTargetDAGCombine({ISD::INTRINSIC_VOID, ISD::INTRINSIC_W_CHAIN, ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT, ISD::VECREDUCE_ADD, ISD::STEP_VECTOR}); setTargetDAGCombine({ISD::MGATHER, ISD::MSCATTER}); setTargetDAGCombine(ISD::FP_EXTEND); setTargetDAGCombine(ISD::GlobalAddress); setTargetDAGCombine(ISD::CTLZ); setTargetDAGCombine(ISD::VECREDUCE_AND); setTargetDAGCombine(ISD::VECREDUCE_OR); setTargetDAGCombine(ISD::VECREDUCE_XOR); setTargetDAGCombine(ISD::SCALAR_TO_VECTOR); // In case of strict alignment, avoid an excessive number of byte wide stores. MaxStoresPerMemsetOptSize = 8; MaxStoresPerMemset = Subtarget->requiresStrictAlign() ? MaxStoresPerMemsetOptSize : 32; MaxGluedStoresPerMemcpy = 4; MaxStoresPerMemcpyOptSize = 4; MaxStoresPerMemcpy = Subtarget->requiresStrictAlign() ? MaxStoresPerMemcpyOptSize : 16; MaxStoresPerMemmoveOptSize = 4; MaxStoresPerMemmove = 4; MaxLoadsPerMemcmpOptSize = 4; MaxLoadsPerMemcmp = Subtarget->requiresStrictAlign() ? MaxLoadsPerMemcmpOptSize : 8; setStackPointerRegisterToSaveRestore(AArch64::SP); setSchedulingPreference(Sched::Hybrid); EnableExtLdPromotion = true; // Set required alignment. setMinFunctionAlignment(Align(4)); // Set preferred alignments. // Don't align loops on Windows. The SEH unwind info generation needs to // know the exact length of functions before the alignments have been // expanded. if (!Subtarget->isTargetWindows()) setPrefLoopAlignment(STI.getPrefLoopAlignment()); setMaxBytesForAlignment(STI.getMaxBytesForLoopAlignment()); setPrefFunctionAlignment(STI.getPrefFunctionAlignment()); // Only change the limit for entries in a jump table if specified by // the sub target, but not at the command line. unsigned MaxJT = STI.getMaximumJumpTableSize(); if (MaxJT && getMaximumJumpTableSize() == UINT_MAX) setMaximumJumpTableSize(MaxJT); setHasExtractBitsInsn(true); setMaxDivRemBitWidthSupported(128); setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); if (Subtarget->hasNEON()) { // FIXME: v1f64 shouldn't be legal if we can avoid it, because it leads to // silliness like this: for (auto Op : {ISD::SELECT, ISD::SELECT_CC, ISD::BR_CC, ISD::FADD, ISD::FSUB, ISD::FMUL, ISD::FDIV, ISD::FMA, ISD::FNEG, ISD::FABS, ISD::FCEIL, ISD::FSQRT, ISD::FFLOOR, ISD::FNEARBYINT, ISD::FSIN, ISD::FCOS, ISD::FPOW, ISD::FLOG, ISD::FLOG2, ISD::FLOG10, ISD::FEXP, ISD::FEXP2, ISD::FEXP10, ISD::FRINT, ISD::FROUND, ISD::FROUNDEVEN, ISD::FTRUNC, ISD::FMINNUM, ISD::FMAXNUM, ISD::FMINIMUM, ISD::FMAXIMUM, ISD::STRICT_FADD, ISD::STRICT_FSUB, ISD::STRICT_FMUL, ISD::STRICT_FDIV, ISD::STRICT_FMA, ISD::STRICT_FCEIL, ISD::STRICT_FFLOOR, ISD::STRICT_FSQRT, ISD::STRICT_FRINT, ISD::STRICT_FNEARBYINT, ISD::STRICT_FROUND, ISD::STRICT_FTRUNC, ISD::STRICT_FROUNDEVEN, ISD::STRICT_FMINNUM, ISD::STRICT_FMAXNUM, ISD::STRICT_FMINIMUM, ISD::STRICT_FMAXIMUM}) setOperationAction(Op, MVT::v1f64, Expand); for (auto Op : {ISD::FP_TO_SINT, ISD::FP_TO_UINT, ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_ROUND, ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT, ISD::MUL, ISD::STRICT_FP_TO_SINT, ISD::STRICT_FP_TO_UINT, ISD::STRICT_SINT_TO_FP, ISD::STRICT_UINT_TO_FP, ISD::STRICT_FP_ROUND}) setOperationAction(Op, MVT::v1i64, Expand); // AArch64 doesn't have a direct vector ->f32 conversion instructions for // elements smaller than i32, so promote the input to i32 first. setOperationPromotedToType(ISD::UINT_TO_FP, MVT::v4i8, MVT::v4i32); setOperationPromotedToType(ISD::SINT_TO_FP, MVT::v4i8, MVT::v4i32); // Similarly, there is no direct i32 -> f64 vector conversion instruction. // Or, direct i32 -> f16 vector conversion. Set it so custom, so the // conversion happens in two steps: v4i32 -> v4f32 -> v4f16 for (auto Op : {ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::STRICT_SINT_TO_FP, ISD::STRICT_UINT_TO_FP}) for (auto VT : {MVT::v2i32, MVT::v2i64, MVT::v4i32}) setOperationAction(Op, VT, Custom); if (Subtarget->hasFullFP16()) { setOperationAction(ISD::ConstantFP, MVT::f16, Legal); setOperationAction(ISD::ConstantFP, MVT::bf16, Legal); setOperationAction(ISD::SINT_TO_FP, MVT::v8i8, Custom); setOperationAction(ISD::UINT_TO_FP, MVT::v8i8, Custom); setOperationAction(ISD::SINT_TO_FP, MVT::v16i8, Custom); setOperationAction(ISD::UINT_TO_FP, MVT::v16i8, Custom); setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom); setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom); setOperationAction(ISD::SINT_TO_FP, MVT::v8i16, Custom); setOperationAction(ISD::UINT_TO_FP, MVT::v8i16, Custom); } else { // when AArch64 doesn't have fullfp16 support, promote the input // to i32 first. setOperationPromotedToType(ISD::SINT_TO_FP, MVT::v8i8, MVT::v8i32); setOperationPromotedToType(ISD::UINT_TO_FP, MVT::v8i8, MVT::v8i32); setOperationPromotedToType(ISD::UINT_TO_FP, MVT::v16i8, MVT::v16i32); setOperationPromotedToType(ISD::SINT_TO_FP, MVT::v16i8, MVT::v16i32); setOperationPromotedToType(ISD::UINT_TO_FP, MVT::v4i16, MVT::v4i32); setOperationPromotedToType(ISD::SINT_TO_FP, MVT::v4i16, MVT::v4i32); setOperationPromotedToType(ISD::SINT_TO_FP, MVT::v8i16, MVT::v8i32); setOperationPromotedToType(ISD::UINT_TO_FP, MVT::v8i16, MVT::v8i32); } setOperationAction(ISD::CTLZ, MVT::v1i64, Expand); setOperationAction(ISD::CTLZ, MVT::v2i64, Expand); setOperationAction(ISD::BITREVERSE, MVT::v8i8, Legal); setOperationAction(ISD::BITREVERSE, MVT::v16i8, Legal); setOperationAction(ISD::BITREVERSE, MVT::v2i32, Custom); setOperationAction(ISD::BITREVERSE, MVT::v4i32, Custom); setOperationAction(ISD::BITREVERSE, MVT::v1i64, Custom); setOperationAction(ISD::BITREVERSE, MVT::v2i64, Custom); for (auto VT : {MVT::v1i64, MVT::v2i64}) { setOperationAction(ISD::UMAX, VT, Custom); setOperationAction(ISD::SMAX, VT, Custom); setOperationAction(ISD::UMIN, VT, Custom); setOperationAction(ISD::SMIN, VT, Custom); } // Custom handling for some quad-vector types to detect MULL. setOperationAction(ISD::MUL, MVT::v8i16, Custom); setOperationAction(ISD::MUL, MVT::v4i32, Custom); setOperationAction(ISD::MUL, MVT::v2i64, Custom); setOperationAction(ISD::MUL, MVT::v4i16, Custom); setOperationAction(ISD::MUL, MVT::v2i32, Custom); setOperationAction(ISD::MUL, MVT::v1i64, Custom); // Saturates for (MVT VT : { MVT::v8i8, MVT::v4i16, MVT::v2i32, MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64 }) { setOperationAction(ISD::SADDSAT, VT, Legal); setOperationAction(ISD::UADDSAT, VT, Legal); setOperationAction(ISD::SSUBSAT, VT, Legal); setOperationAction(ISD::USUBSAT, VT, Legal); } for (MVT VT : {MVT::v8i8, MVT::v4i16, MVT::v2i32, MVT::v16i8, MVT::v8i16, MVT::v4i32}) { setOperationAction(ISD::AVGFLOORS, VT, Legal); setOperationAction(ISD::AVGFLOORU, VT, Legal); setOperationAction(ISD::AVGCEILS, VT, Legal); setOperationAction(ISD::AVGCEILU, VT, Legal); setOperationAction(ISD::ABDS, VT, Legal); setOperationAction(ISD::ABDU, VT, Legal); } // Vector reductions for (MVT VT : { MVT::v4f16, MVT::v2f32, MVT::v8f16, MVT::v4f32, MVT::v2f64 }) { if (VT.getVectorElementType() != MVT::f16 || Subtarget->hasFullFP16()) { setOperationAction(ISD::VECREDUCE_FMAX, VT, Legal); setOperationAction(ISD::VECREDUCE_FMIN, VT, Legal); setOperationAction(ISD::VECREDUCE_FMAXIMUM, VT, Legal); setOperationAction(ISD::VECREDUCE_FMINIMUM, VT, Legal); setOperationAction(ISD::VECREDUCE_FADD, VT, Legal); } } for (MVT VT : { MVT::v8i8, MVT::v4i16, MVT::v2i32, MVT::v16i8, MVT::v8i16, MVT::v4i32 }) { setOperationAction(ISD::VECREDUCE_ADD, VT, Custom); setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom); setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom); setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom); setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom); setOperationAction(ISD::VECREDUCE_AND, VT, Custom); setOperationAction(ISD::VECREDUCE_OR, VT, Custom); setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); } setOperationAction(ISD::VECREDUCE_ADD, MVT::v2i64, Custom); setOperationAction(ISD::VECREDUCE_AND, MVT::v2i64, Custom); setOperationAction(ISD::VECREDUCE_OR, MVT::v2i64, Custom); setOperationAction(ISD::VECREDUCE_XOR, MVT::v2i64, Custom); setOperationAction(ISD::ANY_EXTEND, MVT::v4i32, Legal); setTruncStoreAction(MVT::v2i32, MVT::v2i16, Expand); // Likewise, narrowing and extending vector loads/stores aren't handled // directly. for (MVT VT : MVT::fixedlen_vector_valuetypes()) { setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand); if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32) { setOperationAction(ISD::MULHS, VT, Legal); setOperationAction(ISD::MULHU, VT, Legal); } else { setOperationAction(ISD::MULHS, VT, Expand); setOperationAction(ISD::MULHU, VT, Expand); } setOperationAction(ISD::SMUL_LOHI, VT, Expand); setOperationAction(ISD::UMUL_LOHI, VT, Expand); setOperationAction(ISD::BSWAP, VT, Expand); setOperationAction(ISD::CTTZ, VT, Expand); for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) { setTruncStoreAction(VT, InnerVT, Expand); setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand); setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand); setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand); } } // AArch64 has implementations of a lot of rounding-like FP operations. for (auto Op : {ISD::FFLOOR, ISD::FNEARBYINT, ISD::FCEIL, ISD::FRINT, ISD::FTRUNC, ISD::FROUND, ISD::FROUNDEVEN, ISD::STRICT_FFLOOR, ISD::STRICT_FNEARBYINT, ISD::STRICT_FCEIL, ISD::STRICT_FRINT, ISD::STRICT_FTRUNC, ISD::STRICT_FROUND, ISD::STRICT_FROUNDEVEN}) { for (MVT Ty : {MVT::v2f32, MVT::v4f32, MVT::v2f64}) setOperationAction(Op, Ty, Legal); if (Subtarget->hasFullFP16()) for (MVT Ty : {MVT::v4f16, MVT::v8f16}) setOperationAction(Op, Ty, Legal); } setTruncStoreAction(MVT::v4i16, MVT::v4i8, Custom); setOperationAction(ISD::BITCAST, MVT::i2, Custom); setOperationAction(ISD::BITCAST, MVT::i4, Custom); setOperationAction(ISD::BITCAST, MVT::i8, Custom); setOperationAction(ISD::BITCAST, MVT::i16, Custom); setOperationAction(ISD::BITCAST, MVT::v2i8, Custom); setOperationAction(ISD::BITCAST, MVT::v2i16, Custom); setOperationAction(ISD::BITCAST, MVT::v4i8, Custom); setLoadExtAction(ISD::EXTLOAD, MVT::v4i16, MVT::v4i8, Custom); setLoadExtAction(ISD::SEXTLOAD, MVT::v4i16, MVT::v4i8, Custom); setLoadExtAction(ISD::ZEXTLOAD, MVT::v4i16, MVT::v4i8, Custom); setLoadExtAction(ISD::EXTLOAD, MVT::v4i32, MVT::v4i8, Custom); setLoadExtAction(ISD::SEXTLOAD, MVT::v4i32, MVT::v4i8, Custom); setLoadExtAction(ISD::ZEXTLOAD, MVT::v4i32, MVT::v4i8, Custom); // ADDP custom lowering for (MVT VT : { MVT::v32i8, MVT::v16i16, MVT::v8i32, MVT::v4i64 }) setOperationAction(ISD::ADD, VT, Custom); // FADDP custom lowering for (MVT VT : { MVT::v16f16, MVT::v8f32, MVT::v4f64 }) setOperationAction(ISD::FADD, VT, Custom); } if (Subtarget->hasSME()) { setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); } // FIXME: Move lowering for more nodes here if those are common between // SVE and SME. if (Subtarget->hasSVEorSME()) { for (auto VT : {MVT::nxv16i1, MVT::nxv8i1, MVT::nxv4i1, MVT::nxv2i1, MVT::nxv1i1}) { setOperationAction(ISD::SPLAT_VECTOR, VT, Custom); setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); setOperationAction(ISD::VECTOR_DEINTERLEAVE, VT, Custom); setOperationAction(ISD::VECTOR_INTERLEAVE, VT, Custom); } } if (Subtarget->hasSVEorSME()) { for (auto VT : {MVT::nxv16i8, MVT::nxv8i16, MVT::nxv4i32, MVT::nxv2i64}) { setOperationAction(ISD::BITREVERSE, VT, Custom); setOperationAction(ISD::BSWAP, VT, Custom); setOperationAction(ISD::CTLZ, VT, Custom); setOperationAction(ISD::CTPOP, VT, Custom); setOperationAction(ISD::CTTZ, VT, Custom); setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); setOperationAction(ISD::UINT_TO_FP, VT, Custom); setOperationAction(ISD::SINT_TO_FP, VT, Custom); setOperationAction(ISD::FP_TO_UINT, VT, Custom); setOperationAction(ISD::FP_TO_SINT, VT, Custom); setOperationAction(ISD::MGATHER, VT, Custom); setOperationAction(ISD::MSCATTER, VT, Custom); setOperationAction(ISD::MLOAD, VT, Custom); setOperationAction(ISD::MUL, VT, Custom); setOperationAction(ISD::MULHS, VT, Custom); setOperationAction(ISD::MULHU, VT, Custom); setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); setOperationAction(ISD::VECTOR_SPLICE, VT, Custom); setOperationAction(ISD::SELECT, VT, Custom); setOperationAction(ISD::SETCC, VT, Custom); setOperationAction(ISD::SDIV, VT, Custom); setOperationAction(ISD::UDIV, VT, Custom); setOperationAction(ISD::SMIN, VT, Custom); setOperationAction(ISD::UMIN, VT, Custom); setOperationAction(ISD::SMAX, VT, Custom); setOperationAction(ISD::UMAX, VT, Custom); setOperationAction(ISD::SHL, VT, Custom); setOperationAction(ISD::SRL, VT, Custom); setOperationAction(ISD::SRA, VT, Custom); setOperationAction(ISD::ABS, VT, Custom); setOperationAction(ISD::ABDS, VT, Custom); setOperationAction(ISD::ABDU, VT, Custom); setOperationAction(ISD::VECREDUCE_ADD, VT, Custom); setOperationAction(ISD::VECREDUCE_AND, VT, Custom); setOperationAction(ISD::VECREDUCE_OR, VT, Custom); setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom); setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom); setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom); setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom); setOperationAction(ISD::VECTOR_DEINTERLEAVE, VT, Custom); setOperationAction(ISD::VECTOR_INTERLEAVE, VT, Custom); setOperationAction(ISD::UMUL_LOHI, VT, Expand); setOperationAction(ISD::SMUL_LOHI, VT, Expand); setOperationAction(ISD::SELECT_CC, VT, Expand); setOperationAction(ISD::ROTL, VT, Expand); setOperationAction(ISD::ROTR, VT, Expand); setOperationAction(ISD::SADDSAT, VT, Legal); setOperationAction(ISD::UADDSAT, VT, Legal); setOperationAction(ISD::SSUBSAT, VT, Legal); setOperationAction(ISD::USUBSAT, VT, Legal); setOperationAction(ISD::UREM, VT, Expand); setOperationAction(ISD::SREM, VT, Expand); setOperationAction(ISD::SDIVREM, VT, Expand); setOperationAction(ISD::UDIVREM, VT, Expand); setOperationAction(ISD::AVGFLOORS, VT, Custom); setOperationAction(ISD::AVGFLOORU, VT, Custom); setOperationAction(ISD::AVGCEILS, VT, Custom); setOperationAction(ISD::AVGCEILU, VT, Custom); if (!Subtarget->isLittleEndian()) setOperationAction(ISD::BITCAST, VT, Expand); if (Subtarget->hasSVE2orSME()) // For SLI/SRI. setOperationAction(ISD::OR, VT, Custom); } // Illegal unpacked integer vector types. for (auto VT : {MVT::nxv8i8, MVT::nxv4i16, MVT::nxv2i32}) { setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); } // Legalize unpacked bitcasts to REINTERPRET_CAST. for (auto VT : {MVT::nxv2i16, MVT::nxv4i16, MVT::nxv2i32, MVT::nxv2bf16, MVT::nxv4bf16, MVT::nxv2f16, MVT::nxv4f16, MVT::nxv2f32}) setOperationAction(ISD::BITCAST, VT, Custom); for (auto VT : { MVT::nxv2i8, MVT::nxv2i16, MVT::nxv2i32, MVT::nxv2i64, MVT::nxv4i8, MVT::nxv4i16, MVT::nxv4i32, MVT::nxv8i8, MVT::nxv8i16 }) setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Legal); for (auto VT : {MVT::nxv16i1, MVT::nxv8i1, MVT::nxv4i1, MVT::nxv2i1, MVT::nxv1i1}) { setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); setOperationAction(ISD::SELECT, VT, Custom); setOperationAction(ISD::SETCC, VT, Custom); setOperationAction(ISD::TRUNCATE, VT, Custom); setOperationAction(ISD::VECREDUCE_AND, VT, Custom); setOperationAction(ISD::VECREDUCE_OR, VT, Custom); setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); setOperationAction(ISD::SELECT_CC, VT, Expand); setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); // There are no legal MVT::nxv16f## based types. if (VT != MVT::nxv16i1) { setOperationAction(ISD::SINT_TO_FP, VT, Custom); setOperationAction(ISD::UINT_TO_FP, VT, Custom); } } // NEON doesn't support masked loads/stores/gathers/scatters, but SVE does for (auto VT : {MVT::v4f16, MVT::v8f16, MVT::v2f32, MVT::v4f32, MVT::v1f64, MVT::v2f64, MVT::v8i8, MVT::v16i8, MVT::v4i16, MVT::v8i16, MVT::v2i32, MVT::v4i32, MVT::v1i64, MVT::v2i64}) { setOperationAction(ISD::MLOAD, VT, Custom); setOperationAction(ISD::MSTORE, VT, Custom); setOperationAction(ISD::MGATHER, VT, Custom); setOperationAction(ISD::MSCATTER, VT, Custom); } // Firstly, exclude all scalable vector extending loads/truncating stores, // include both integer and floating scalable vector. for (MVT VT : MVT::scalable_vector_valuetypes()) { for (MVT InnerVT : MVT::scalable_vector_valuetypes()) { setTruncStoreAction(VT, InnerVT, Expand); setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand); setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand); setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand); } } // Then, selectively enable those which we directly support. setTruncStoreAction(MVT::nxv2i64, MVT::nxv2i8, Legal); setTruncStoreAction(MVT::nxv2i64, MVT::nxv2i16, Legal); setTruncStoreAction(MVT::nxv2i64, MVT::nxv2i32, Legal); setTruncStoreAction(MVT::nxv4i32, MVT::nxv4i8, Legal); setTruncStoreAction(MVT::nxv4i32, MVT::nxv4i16, Legal); setTruncStoreAction(MVT::nxv8i16, MVT::nxv8i8, Legal); for (auto Op : {ISD::ZEXTLOAD, ISD::SEXTLOAD, ISD::EXTLOAD}) { setLoadExtAction(Op, MVT::nxv2i64, MVT::nxv2i8, Legal); setLoadExtAction(Op, MVT::nxv2i64, MVT::nxv2i16, Legal); setLoadExtAction(Op, MVT::nxv2i64, MVT::nxv2i32, Legal); setLoadExtAction(Op, MVT::nxv4i32, MVT::nxv4i8, Legal); setLoadExtAction(Op, MVT::nxv4i32, MVT::nxv4i16, Legal); setLoadExtAction(Op, MVT::nxv8i16, MVT::nxv8i8, Legal); } // SVE supports truncating stores of 64 and 128-bit vectors setTruncStoreAction(MVT::v2i64, MVT::v2i8, Custom); setTruncStoreAction(MVT::v2i64, MVT::v2i16, Custom); setTruncStoreAction(MVT::v2i64, MVT::v2i32, Custom); setTruncStoreAction(MVT::v2i32, MVT::v2i8, Custom); setTruncStoreAction(MVT::v2i32, MVT::v2i16, Custom); for (auto VT : {MVT::nxv2f16, MVT::nxv4f16, MVT::nxv8f16, MVT::nxv2f32, MVT::nxv4f32, MVT::nxv2f64}) { setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); setOperationAction(ISD::MGATHER, VT, Custom); setOperationAction(ISD::MSCATTER, VT, Custom); setOperationAction(ISD::MLOAD, VT, Custom); setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); setOperationAction(ISD::SELECT, VT, Custom); setOperationAction(ISD::SETCC, VT, Custom); setOperationAction(ISD::FADD, VT, Custom); setOperationAction(ISD::FCOPYSIGN, VT, Custom); setOperationAction(ISD::FDIV, VT, Custom); setOperationAction(ISD::FMA, VT, Custom); setOperationAction(ISD::FMAXIMUM, VT, Custom); setOperationAction(ISD::FMAXNUM, VT, Custom); setOperationAction(ISD::FMINIMUM, VT, Custom); setOperationAction(ISD::FMINNUM, VT, Custom); setOperationAction(ISD::FMUL, VT, Custom); setOperationAction(ISD::FNEG, VT, Custom); setOperationAction(ISD::FSUB, VT, Custom); setOperationAction(ISD::FCEIL, VT, Custom); setOperationAction(ISD::FFLOOR, VT, Custom); setOperationAction(ISD::FNEARBYINT, VT, Custom); setOperationAction(ISD::FRINT, VT, Custom); setOperationAction(ISD::FROUND, VT, Custom); setOperationAction(ISD::FROUNDEVEN, VT, Custom); setOperationAction(ISD::FTRUNC, VT, Custom); setOperationAction(ISD::FSQRT, VT, Custom); setOperationAction(ISD::FABS, VT, Custom); setOperationAction(ISD::FP_EXTEND, VT, Custom); setOperationAction(ISD::FP_ROUND, VT, Custom); setOperationAction(ISD::VECREDUCE_FADD, VT, Custom); setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom); setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom); setOperationAction(ISD::VECREDUCE_FMAXIMUM, VT, Custom); setOperationAction(ISD::VECREDUCE_FMINIMUM, VT, Custom); if (Subtarget->isSVEAvailable()) setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom); setOperationAction(ISD::VECTOR_SPLICE, VT, Custom); setOperationAction(ISD::VECTOR_DEINTERLEAVE, VT, Custom); setOperationAction(ISD::VECTOR_INTERLEAVE, VT, Custom); setOperationAction(ISD::SELECT_CC, VT, Expand); setOperationAction(ISD::FREM, VT, Expand); setOperationAction(ISD::FPOW, VT, Expand); setOperationAction(ISD::FPOWI, VT, Expand); setOperationAction(ISD::FCOS, VT, Expand); setOperationAction(ISD::FSIN, VT, Expand); setOperationAction(ISD::FSINCOS, VT, Expand); setOperationAction(ISD::FEXP, VT, Expand); setOperationAction(ISD::FEXP2, VT, Expand); setOperationAction(ISD::FEXP10, VT, Expand); setOperationAction(ISD::FLOG, VT, Expand); setOperationAction(ISD::FLOG2, VT, Expand); setOperationAction(ISD::FLOG10, VT, Expand); setCondCodeAction(ISD::SETO, VT, Expand); setCondCodeAction(ISD::SETOLT, VT, Expand); setCondCodeAction(ISD::SETLT, VT, Expand); setCondCodeAction(ISD::SETOLE, VT, Expand); setCondCodeAction(ISD::SETLE, VT, Expand); setCondCodeAction(ISD::SETULT, VT, Expand); setCondCodeAction(ISD::SETULE, VT, Expand); setCondCodeAction(ISD::SETUGE, VT, Expand); setCondCodeAction(ISD::SETUGT, VT, Expand); setCondCodeAction(ISD::SETUEQ, VT, Expand); setCondCodeAction(ISD::SETONE, VT, Expand); if (!Subtarget->isLittleEndian()) setOperationAction(ISD::BITCAST, VT, Expand); } for (auto VT : {MVT::nxv2bf16, MVT::nxv4bf16, MVT::nxv8bf16}) { setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); setOperationAction(ISD::MGATHER, VT, Custom); setOperationAction(ISD::MSCATTER, VT, Custom); setOperationAction(ISD::MLOAD, VT, Custom); setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); if (!Subtarget->isLittleEndian()) setOperationAction(ISD::BITCAST, VT, Expand); } setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i8, Custom); setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i16, Custom); // NEON doesn't support integer divides, but SVE does for (auto VT : {MVT::v8i8, MVT::v16i8, MVT::v4i16, MVT::v8i16, MVT::v2i32, MVT::v4i32, MVT::v1i64, MVT::v2i64}) { setOperationAction(ISD::SDIV, VT, Custom); setOperationAction(ISD::UDIV, VT, Custom); } // NEON doesn't support 64-bit vector integer muls, but SVE does. setOperationAction(ISD::MUL, MVT::v1i64, Custom); setOperationAction(ISD::MUL, MVT::v2i64, Custom); if (Subtarget->isSVEAvailable()) { // NEON doesn't support across-vector reductions, but SVE does. for (auto VT : {MVT::v4f16, MVT::v8f16, MVT::v2f32, MVT::v4f32, MVT::v2f64}) setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom); } if (!Subtarget->isNeonAvailable()) { setTruncStoreAction(MVT::v2f32, MVT::v2bf16, Custom); setTruncStoreAction(MVT::v4f32, MVT::v4bf16, Custom); setTruncStoreAction(MVT::v8f32, MVT::v8bf16, Custom); setTruncStoreAction(MVT::v2f64, MVT::v2bf16, Custom); setTruncStoreAction(MVT::v4f64, MVT::v4bf16, Custom); setTruncStoreAction(MVT::v2f32, MVT::v2f16, Custom); setTruncStoreAction(MVT::v4f32, MVT::v4f16, Custom); setTruncStoreAction(MVT::v8f32, MVT::v8f16, Custom); setTruncStoreAction(MVT::v1f64, MVT::v1f16, Custom); setTruncStoreAction(MVT::v2f64, MVT::v2f16, Custom); setTruncStoreAction(MVT::v4f64, MVT::v4f16, Custom); setTruncStoreAction(MVT::v1f64, MVT::v1f32, Custom); setTruncStoreAction(MVT::v2f64, MVT::v2f32, Custom); setTruncStoreAction(MVT::v4f64, MVT::v4f32, Custom); for (MVT VT : {MVT::v8i8, MVT::v16i8, MVT::v4i16, MVT::v8i16, MVT::v2i32, MVT::v4i32, MVT::v1i64, MVT::v2i64}) addTypeForFixedLengthSVE(VT, /*StreamingSVE=*/ true); for (MVT VT : {MVT::v4f16, MVT::v8f16, MVT::v2f32, MVT::v4f32, MVT::v2f64}) addTypeForFixedLengthSVE(VT, /*StreamingSVE=*/ true); } // NOTE: Currently this has to happen after computeRegisterProperties rather // than the preferred option of combining it with the addRegisterClass call. if (Subtarget->useSVEForFixedLengthVectors()) { for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) if (useSVEForFixedLengthVectorVT(VT)) addTypeForFixedLengthSVE(VT, /*StreamingSVE=*/ false); for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) if (useSVEForFixedLengthVectorVT(VT)) addTypeForFixedLengthSVE(VT, /*StreamingSVE=*/ false); // 64bit results can mean a bigger than NEON input. for (auto VT : {MVT::v8i8, MVT::v4i16}) setOperationAction(ISD::TRUNCATE, VT, Custom); setOperationAction(ISD::FP_ROUND, MVT::v4f16, Custom); // 128bit results imply a bigger than NEON input. for (auto VT : {MVT::v16i8, MVT::v8i16, MVT::v4i32}) setOperationAction(ISD::TRUNCATE, VT, Custom); for (auto VT : {MVT::v8f16, MVT::v4f32}) setOperationAction(ISD::FP_ROUND, VT, Custom); // These operations are not supported on NEON but SVE can do them. setOperationAction(ISD::BITREVERSE, MVT::v1i64, Custom); setOperationAction(ISD::CTLZ, MVT::v1i64, Custom); setOperationAction(ISD::CTLZ, MVT::v2i64, Custom); setOperationAction(ISD::CTTZ, MVT::v1i64, Custom); setOperationAction(ISD::MULHS, MVT::v1i64, Custom); setOperationAction(ISD::MULHS, MVT::v2i64, Custom); setOperationAction(ISD::MULHU, MVT::v1i64, Custom); setOperationAction(ISD::MULHU, MVT::v2i64, Custom); setOperationAction(ISD::SMAX, MVT::v1i64, Custom); setOperationAction(ISD::SMAX, MVT::v2i64, Custom); setOperationAction(ISD::SMIN, MVT::v1i64, Custom); setOperationAction(ISD::SMIN, MVT::v2i64, Custom); setOperationAction(ISD::UMAX, MVT::v1i64, Custom); setOperationAction(ISD::UMAX, MVT::v2i64, Custom); setOperationAction(ISD::UMIN, MVT::v1i64, Custom); setOperationAction(ISD::UMIN, MVT::v2i64, Custom); setOperationAction(ISD::VECREDUCE_SMAX, MVT::v2i64, Custom); setOperationAction(ISD::VECREDUCE_SMIN, MVT::v2i64, Custom); setOperationAction(ISD::VECREDUCE_UMAX, MVT::v2i64, Custom); setOperationAction(ISD::VECREDUCE_UMIN, MVT::v2i64, Custom); // Int operations with no NEON support. for (auto VT : {MVT::v8i8, MVT::v16i8, MVT::v4i16, MVT::v8i16, MVT::v2i32, MVT::v4i32, MVT::v2i64}) { setOperationAction(ISD::BITREVERSE, VT, Custom); setOperationAction(ISD::CTTZ, VT, Custom); setOperationAction(ISD::VECREDUCE_AND, VT, Custom); setOperationAction(ISD::VECREDUCE_OR, VT, Custom); setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); setOperationAction(ISD::MULHS, VT, Custom); setOperationAction(ISD::MULHU, VT, Custom); } // Use SVE for vectors with more than 2 elements. for (auto VT : {MVT::v4f16, MVT::v8f16, MVT::v4f32}) setOperationAction(ISD::VECREDUCE_FADD, VT, Custom); } setOperationPromotedToType(ISD::VECTOR_SPLICE, MVT::nxv2i1, MVT::nxv2i64); setOperationPromotedToType(ISD::VECTOR_SPLICE, MVT::nxv4i1, MVT::nxv4i32); setOperationPromotedToType(ISD::VECTOR_SPLICE, MVT::nxv8i1, MVT::nxv8i16); setOperationPromotedToType(ISD::VECTOR_SPLICE, MVT::nxv16i1, MVT::nxv16i8); setOperationAction(ISD::VSCALE, MVT::i32, Custom); } if (Subtarget->hasMOPS() && Subtarget->hasMTE()) { // Only required for llvm.aarch64.mops.memset.tag setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom); } setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); if (Subtarget->hasSVE()) { setOperationAction(ISD::FLDEXP, MVT::f64, Custom); setOperationAction(ISD::FLDEXP, MVT::f32, Custom); setOperationAction(ISD::FLDEXP, MVT::f16, Custom); setOperationAction(ISD::FLDEXP, MVT::bf16, Custom); } PredictableSelectIsExpensive = Subtarget->predictableSelectIsExpensive(); IsStrictFPEnabled = true; setMaxAtomicSizeInBitsSupported(128); if (Subtarget->isWindowsArm64EC()) { // FIXME: are there other intrinsics we need to add here? setLibcallName(RTLIB::MEMCPY, "#memcpy"); setLibcallName(RTLIB::MEMSET, "#memset"); setLibcallName(RTLIB::MEMMOVE, "#memmove"); setLibcallName(RTLIB::REM_F32, "#fmodf"); setLibcallName(RTLIB::REM_F64, "#fmod"); setLibcallName(RTLIB::FMA_F32, "#fmaf"); setLibcallName(RTLIB::FMA_F64, "#fma"); setLibcallName(RTLIB::SQRT_F32, "#sqrtf"); setLibcallName(RTLIB::SQRT_F64, "#sqrt"); setLibcallName(RTLIB::CBRT_F32, "#cbrtf"); setLibcallName(RTLIB::CBRT_F64, "#cbrt"); setLibcallName(RTLIB::LOG_F32, "#logf"); setLibcallName(RTLIB::LOG_F64, "#log"); setLibcallName(RTLIB::LOG2_F32, "#log2f"); setLibcallName(RTLIB::LOG2_F64, "#log2"); setLibcallName(RTLIB::LOG10_F32, "#log10f"); setLibcallName(RTLIB::LOG10_F64, "#log10"); setLibcallName(RTLIB::EXP_F32, "#expf"); setLibcallName(RTLIB::EXP_F64, "#exp"); setLibcallName(RTLIB::EXP2_F32, "#exp2f"); setLibcallName(RTLIB::EXP2_F64, "#exp2"); setLibcallName(RTLIB::EXP10_F32, "#exp10f"); setLibcallName(RTLIB::EXP10_F64, "#exp10"); setLibcallName(RTLIB::SIN_F32, "#sinf"); setLibcallName(RTLIB::SIN_F64, "#sin"); setLibcallName(RTLIB::COS_F32, "#cosf"); setLibcallName(RTLIB::COS_F64, "#cos"); setLibcallName(RTLIB::POW_F32, "#powf"); setLibcallName(RTLIB::POW_F64, "#pow"); setLibcallName(RTLIB::LDEXP_F32, "#ldexpf"); setLibcallName(RTLIB::LDEXP_F64, "#ldexp"); setLibcallName(RTLIB::FREXP_F32, "#frexpf"); setLibcallName(RTLIB::FREXP_F64, "#frexp"); } } void AArch64TargetLowering::addTypeForNEON(MVT VT) { assert(VT.isVector() && "VT should be a vector type"); if (VT.isFloatingPoint()) { MVT PromoteTo = EVT(VT).changeVectorElementTypeToInteger().getSimpleVT(); setOperationPromotedToType(ISD::LOAD, VT, PromoteTo); setOperationPromotedToType(ISD::STORE, VT, PromoteTo); } // Mark vector float intrinsics as expand. if (VT == MVT::v2f32 || VT == MVT::v4f32 || VT == MVT::v2f64) { setOperationAction(ISD::FSIN, VT, Expand); setOperationAction(ISD::FCOS, VT, Expand); setOperationAction(ISD::FPOW, VT, Expand); setOperationAction(ISD::FLOG, VT, Expand); setOperationAction(ISD::FLOG2, VT, Expand); setOperationAction(ISD::FLOG10, VT, Expand); setOperationAction(ISD::FEXP, VT, Expand); setOperationAction(ISD::FEXP2, VT, Expand); setOperationAction(ISD::FEXP10, VT, Expand); } // But we do support custom-lowering for FCOPYSIGN. if (VT == MVT::v2f32 || VT == MVT::v4f32 || VT == MVT::v2f64 || ((VT == MVT::v4bf16 || VT == MVT::v8bf16 || VT == MVT::v4f16 || VT == MVT::v8f16) && Subtarget->hasFullFP16())) setOperationAction(ISD::FCOPYSIGN, VT, Custom); setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); setOperationAction(ISD::BUILD_VECTOR, VT, Custom); setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Custom); setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); setOperationAction(ISD::SRA, VT, Custom); setOperationAction(ISD::SRL, VT, Custom); setOperationAction(ISD::SHL, VT, Custom); setOperationAction(ISD::OR, VT, Custom); setOperationAction(ISD::SETCC, VT, Custom); setOperationAction(ISD::CONCAT_VECTORS, VT, Legal); setOperationAction(ISD::SELECT, VT, Expand); setOperationAction(ISD::SELECT_CC, VT, Expand); setOperationAction(ISD::VSELECT, VT, Expand); for (MVT InnerVT : MVT::all_valuetypes()) setLoadExtAction(ISD::EXTLOAD, InnerVT, VT, Expand); // CNT supports only B element sizes, then use UADDLP to widen. if (VT != MVT::v8i8 && VT != MVT::v16i8) setOperationAction(ISD::CTPOP, VT, Custom); setOperationAction(ISD::UDIV, VT, Expand); setOperationAction(ISD::SDIV, VT, Expand); setOperationAction(ISD::UREM, VT, Expand); setOperationAction(ISD::SREM, VT, Expand); setOperationAction(ISD::FREM, VT, Expand); for (unsigned Opcode : {ISD::FP_TO_SINT, ISD::FP_TO_UINT, ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT, ISD::STRICT_FP_TO_SINT, ISD::STRICT_FP_TO_UINT}) setOperationAction(Opcode, VT, Custom); if (!VT.isFloatingPoint()) setOperationAction(ISD::ABS, VT, Legal); // [SU][MIN|MAX] are available for all NEON types apart from i64. if (!VT.isFloatingPoint() && VT != MVT::v2i64 && VT != MVT::v1i64) for (unsigned Opcode : {ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX}) setOperationAction(Opcode, VT, Legal); // F[MIN|MAX][NUM|NAN] and simple strict operations are available for all FP // NEON types. if (VT.isFloatingPoint() && VT.getVectorElementType() != MVT::bf16 && (VT.getVectorElementType() != MVT::f16 || Subtarget->hasFullFP16())) for (unsigned Opcode : {ISD::FMINIMUM, ISD::FMAXIMUM, ISD::FMINNUM, ISD::FMAXNUM, ISD::STRICT_FMINIMUM, ISD::STRICT_FMAXIMUM, ISD::STRICT_FMINNUM, ISD::STRICT_FMAXNUM, ISD::STRICT_FADD, ISD::STRICT_FSUB, ISD::STRICT_FMUL, ISD::STRICT_FDIV, ISD::STRICT_FMA, ISD::STRICT_FSQRT}) setOperationAction(Opcode, VT, Legal); // Strict fp extend and trunc are legal if (VT.isFloatingPoint() && VT.getScalarSizeInBits() != 16) setOperationAction(ISD::STRICT_FP_EXTEND, VT, Legal); if (VT.isFloatingPoint() && VT.getScalarSizeInBits() != 64) setOperationAction(ISD::STRICT_FP_ROUND, VT, Legal); // FIXME: We could potentially make use of the vector comparison instructions // for STRICT_FSETCC and STRICT_FSETCSS, but there's a number of // complications: // * FCMPEQ/NE are quiet comparisons, the rest are signalling comparisons, // so we would need to expand when the condition code doesn't match the // kind of comparison. // * Some kinds of comparison require more than one FCMXY instruction so // would need to be expanded instead. // * The lowering of the non-strict versions involves target-specific ISD // nodes so we would likely need to add strict versions of all of them and // handle them appropriately. setOperationAction(ISD::STRICT_FSETCC, VT, Expand); setOperationAction(ISD::STRICT_FSETCCS, VT, Expand); if (Subtarget->isLittleEndian()) { for (unsigned im = (unsigned)ISD::PRE_INC; im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) { setIndexedLoadAction(im, VT, Legal); setIndexedStoreAction(im, VT, Legal); } } if (Subtarget->hasD128()) { setOperationAction(ISD::READ_REGISTER, MVT::i128, Custom); setOperationAction(ISD::WRITE_REGISTER, MVT::i128, Custom); } } bool AArch64TargetLowering::shouldExpandGetActiveLaneMask(EVT ResVT, EVT OpVT) const { // Only SVE has a 1:1 mapping from intrinsic -> instruction (whilelo). if (!Subtarget->hasSVE()) return true; // We can only support legal predicate result types. We can use the SVE // whilelo instruction for generating fixed-width predicates too. if (ResVT != MVT::nxv2i1 && ResVT != MVT::nxv4i1 && ResVT != MVT::nxv8i1 && ResVT != MVT::nxv16i1 && ResVT != MVT::v2i1 && ResVT != MVT::v4i1 && ResVT != MVT::v8i1 && ResVT != MVT::v16i1) return true; // The whilelo instruction only works with i32 or i64 scalar inputs. if (OpVT != MVT::i32 && OpVT != MVT::i64) return true; return false; } bool AArch64TargetLowering::shouldExpandCttzElements(EVT VT) const { return !Subtarget->hasSVEorSME() || VT != MVT::nxv16i1; } void AArch64TargetLowering::addTypeForFixedLengthSVE(MVT VT, bool StreamingSVE) { assert(VT.isFixedLengthVector() && "Expected fixed length vector type!"); // By default everything must be expanded. for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) setOperationAction(Op, VT, Expand); if (VT.isFloatingPoint()) { setCondCodeAction(ISD::SETO, VT, Expand); setCondCodeAction(ISD::SETOLT, VT, Expand); setCondCodeAction(ISD::SETOLE, VT, Expand); setCondCodeAction(ISD::SETULT, VT, Expand); setCondCodeAction(ISD::SETULE, VT, Expand); setCondCodeAction(ISD::SETUGE, VT, Expand); setCondCodeAction(ISD::SETUGT, VT, Expand); setCondCodeAction(ISD::SETUEQ, VT, Expand); setCondCodeAction(ISD::SETONE, VT, Expand); } // Mark integer truncating stores/extending loads as having custom lowering if (VT.isInteger()) { MVT InnerVT = VT.changeVectorElementType(MVT::i8); while (InnerVT != VT) { setTruncStoreAction(VT, InnerVT, Custom); setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Custom); setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Custom); InnerVT = InnerVT.changeVectorElementType( MVT::getIntegerVT(2 * InnerVT.getScalarSizeInBits())); } } // Mark floating-point truncating stores/extending loads as having custom // lowering if (VT.isFloatingPoint()) { MVT InnerVT = VT.changeVectorElementType(MVT::f16); while (InnerVT != VT) { setTruncStoreAction(VT, InnerVT, Custom); setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Custom); InnerVT = InnerVT.changeVectorElementType( MVT::getFloatingPointVT(2 * InnerVT.getScalarSizeInBits())); } } // Lower fixed length vector operations to scalable equivalents. setOperationAction(ISD::ABS, VT, Custom); setOperationAction(ISD::ADD, VT, Custom); setOperationAction(ISD::AND, VT, Custom); setOperationAction(ISD::ANY_EXTEND, VT, Custom); setOperationAction(ISD::BITCAST, VT, StreamingSVE ? Legal : Custom); setOperationAction(ISD::BITREVERSE, VT, Custom); setOperationAction(ISD::BSWAP, VT, Custom); setOperationAction(ISD::BUILD_VECTOR, VT, Custom); setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); setOperationAction(ISD::CTLZ, VT, Custom); setOperationAction(ISD::CTPOP, VT, Custom); setOperationAction(ISD::CTTZ, VT, Custom); setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); setOperationAction(ISD::FABS, VT, Custom); setOperationAction(ISD::FADD, VT, Custom); setOperationAction(ISD::FCEIL, VT, Custom); setOperationAction(ISD::FCOPYSIGN, VT, Custom); setOperationAction(ISD::FDIV, VT, Custom); setOperationAction(ISD::FFLOOR, VT, Custom); setOperationAction(ISD::FMA, VT, Custom); setOperationAction(ISD::FMAXIMUM, VT, Custom); setOperationAction(ISD::FMAXNUM, VT, Custom); setOperationAction(ISD::FMINIMUM, VT, Custom); setOperationAction(ISD::FMINNUM, VT, Custom); setOperationAction(ISD::FMUL, VT, Custom); setOperationAction(ISD::FNEARBYINT, VT, Custom); setOperationAction(ISD::FNEG, VT, Custom); setOperationAction(ISD::FP_EXTEND, VT, Custom); setOperationAction(ISD::FP_ROUND, VT, Custom); setOperationAction(ISD::FP_TO_SINT, VT, Custom); setOperationAction(ISD::FP_TO_UINT, VT, Custom); setOperationAction(ISD::FRINT, VT, Custom); setOperationAction(ISD::FROUND, VT, Custom); setOperationAction(ISD::FROUNDEVEN, VT, Custom); setOperationAction(ISD::FSQRT, VT, Custom); setOperationAction(ISD::FSUB, VT, Custom); setOperationAction(ISD::FTRUNC, VT, Custom); setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); setOperationAction(ISD::LOAD, VT, StreamingSVE ? Legal : Custom); setOperationAction(ISD::MGATHER, VT, StreamingSVE ? Expand : Custom); setOperationAction(ISD::MLOAD, VT, Custom); setOperationAction(ISD::MSCATTER, VT, StreamingSVE ? Expand : Custom); setOperationAction(ISD::MSTORE, VT, Custom); setOperationAction(ISD::MUL, VT, Custom); setOperationAction(ISD::MULHS, VT, Custom); setOperationAction(ISD::MULHU, VT, Custom); setOperationAction(ISD::OR, VT, Custom); setOperationAction(ISD::SCALAR_TO_VECTOR, VT, StreamingSVE ? Legal : Expand); setOperationAction(ISD::SDIV, VT, Custom); setOperationAction(ISD::SELECT, VT, Custom); setOperationAction(ISD::SETCC, VT, Custom); setOperationAction(ISD::SHL, VT, Custom); setOperationAction(ISD::SIGN_EXTEND, VT, Custom); setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Custom); setOperationAction(ISD::SINT_TO_FP, VT, Custom); setOperationAction(ISD::SMAX, VT, Custom); setOperationAction(ISD::SMIN, VT, Custom); setOperationAction(ISD::SPLAT_VECTOR, VT, Custom); setOperationAction(ISD::SRA, VT, Custom); setOperationAction(ISD::SRL, VT, Custom); setOperationAction(ISD::STORE, VT, StreamingSVE ? Legal : Custom); setOperationAction(ISD::SUB, VT, Custom); setOperationAction(ISD::TRUNCATE, VT, Custom); setOperationAction(ISD::UDIV, VT, Custom); setOperationAction(ISD::UINT_TO_FP, VT, Custom); setOperationAction(ISD::UMAX, VT, Custom); setOperationAction(ISD::UMIN, VT, Custom); setOperationAction(ISD::VECREDUCE_ADD, VT, Custom); setOperationAction(ISD::VECREDUCE_AND, VT, Custom); setOperationAction(ISD::VECREDUCE_FADD, VT, Custom); setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom); setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom); setOperationAction(ISD::VECREDUCE_FMAXIMUM, VT, Custom); setOperationAction(ISD::VECREDUCE_FMINIMUM, VT, Custom); setOperationAction(ISD::VECREDUCE_OR, VT, Custom); setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, StreamingSVE ? Expand : Custom); setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom); setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom); setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom); setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom); setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); setOperationAction(ISD::VECTOR_SPLICE, VT, Custom); setOperationAction(ISD::VSELECT, VT, Custom); setOperationAction(ISD::XOR, VT, Custom); setOperationAction(ISD::ZERO_EXTEND, VT, Custom); } void AArch64TargetLowering::addDRTypeForNEON(MVT VT) { addRegisterClass(VT, &AArch64::FPR64RegClass); addTypeForNEON(VT); } void AArch64TargetLowering::addQRTypeForNEON(MVT VT) { addRegisterClass(VT, &AArch64::FPR128RegClass); addTypeForNEON(VT); } EVT AArch64TargetLowering::getSetCCResultType(const DataLayout &, LLVMContext &C, EVT VT) const { if (!VT.isVector()) return MVT::i32; if (VT.isScalableVector()) return EVT::getVectorVT(C, MVT::i1, VT.getVectorElementCount()); return VT.changeVectorElementTypeToInteger(); } // isIntImmediate - This method tests to see if the node is a constant // operand. If so Imm will receive the value. static bool isIntImmediate(const SDNode *N, uint64_t &Imm) { if (const ConstantSDNode *C = dyn_cast(N)) { Imm = C->getZExtValue(); return true; } return false; } // isOpcWithIntImmediate - This method tests to see if the node is a specific // opcode and that it has a immediate integer right operand. // If so Imm will receive the value. static bool isOpcWithIntImmediate(const SDNode *N, unsigned Opc, uint64_t &Imm) { return N->getOpcode() == Opc && isIntImmediate(N->getOperand(1).getNode(), Imm); } static bool optimizeLogicalImm(SDValue Op, unsigned Size, uint64_t Imm, const APInt &Demanded, TargetLowering::TargetLoweringOpt &TLO, unsigned NewOpc) { uint64_t OldImm = Imm, NewImm, Enc; uint64_t Mask = ((uint64_t)(-1LL) >> (64 - Size)), OrigMask = Mask; // Return if the immediate is already all zeros, all ones, a bimm32 or a // bimm64. if (Imm == 0 || Imm == Mask || AArch64_AM::isLogicalImmediate(Imm & Mask, Size)) return false; unsigned EltSize = Size; uint64_t DemandedBits = Demanded.getZExtValue(); // Clear bits that are not demanded. Imm &= DemandedBits; while (true) { // The goal here is to set the non-demanded bits in a way that minimizes // the number of switching between 0 and 1. In order to achieve this goal, // we set the non-demanded bits to the value of the preceding demanded bits. // For example, if we have an immediate 0bx10xx0x1 ('x' indicates a // non-demanded bit), we copy bit0 (1) to the least significant 'x', // bit2 (0) to 'xx', and bit6 (1) to the most significant 'x'. // The final result is 0b11000011. uint64_t NonDemandedBits = ~DemandedBits; uint64_t InvertedImm = ~Imm & DemandedBits; uint64_t RotatedImm = ((InvertedImm << 1) | (InvertedImm >> (EltSize - 1) & 1)) & NonDemandedBits; uint64_t Sum = RotatedImm + NonDemandedBits; bool Carry = NonDemandedBits & ~Sum & (1ULL << (EltSize - 1)); uint64_t Ones = (Sum + Carry) & NonDemandedBits; NewImm = (Imm | Ones) & Mask; // If NewImm or its bitwise NOT is a shifted mask, it is a bitmask immediate // or all-ones or all-zeros, in which case we can stop searching. Otherwise, // we halve the element size and continue the search. if (isShiftedMask_64(NewImm) || isShiftedMask_64(~(NewImm | ~Mask))) break; // We cannot shrink the element size any further if it is 2-bits. if (EltSize == 2) return false; EltSize /= 2; Mask >>= EltSize; uint64_t Hi = Imm >> EltSize, DemandedBitsHi = DemandedBits >> EltSize; // Return if there is mismatch in any of the demanded bits of Imm and Hi. if (((Imm ^ Hi) & (DemandedBits & DemandedBitsHi) & Mask) != 0) return false; // Merge the upper and lower halves of Imm and DemandedBits. Imm |= Hi; DemandedBits |= DemandedBitsHi; } ++NumOptimizedImms; // Replicate the element across the register width. while (EltSize < Size) { NewImm |= NewImm << EltSize; EltSize *= 2; } (void)OldImm; assert(((OldImm ^ NewImm) & Demanded.getZExtValue()) == 0 && "demanded bits should never be altered"); assert(OldImm != NewImm && "the new imm shouldn't be equal to the old imm"); // Create the new constant immediate node. EVT VT = Op.getValueType(); SDLoc DL(Op); SDValue New; // If the new constant immediate is all-zeros or all-ones, let the target // independent DAG combine optimize this node. if (NewImm == 0 || NewImm == OrigMask) { New = TLO.DAG.getNode(Op.getOpcode(), DL, VT, Op.getOperand(0), TLO.DAG.getConstant(NewImm, DL, VT)); // Otherwise, create a machine node so that target independent DAG combine // doesn't undo this optimization. } else { Enc = AArch64_AM::encodeLogicalImmediate(NewImm, Size); SDValue EncConst = TLO.DAG.getTargetConstant(Enc, DL, VT); New = SDValue( TLO.DAG.getMachineNode(NewOpc, DL, VT, Op.getOperand(0), EncConst), 0); } return TLO.CombineTo(Op, New); } bool AArch64TargetLowering::targetShrinkDemandedConstant( SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, TargetLoweringOpt &TLO) const { // Delay this optimization to as late as possible. if (!TLO.LegalOps) return false; if (!EnableOptimizeLogicalImm) return false; EVT VT = Op.getValueType(); if (VT.isVector()) return false; unsigned Size = VT.getSizeInBits(); assert((Size == 32 || Size == 64) && "i32 or i64 is expected after legalization."); // Exit early if we demand all bits. if (DemandedBits.popcount() == Size) return false; unsigned NewOpc; switch (Op.getOpcode()) { default: return false; case ISD::AND: NewOpc = Size == 32 ? AArch64::ANDWri : AArch64::ANDXri; break; case ISD::OR: NewOpc = Size == 32 ? AArch64::ORRWri : AArch64::ORRXri; break; case ISD::XOR: NewOpc = Size == 32 ? AArch64::EORWri : AArch64::EORXri; break; } ConstantSDNode *C = dyn_cast(Op.getOperand(1)); if (!C) return false; uint64_t Imm = C->getZExtValue(); return optimizeLogicalImm(Op, Size, Imm, DemandedBits, TLO, NewOpc); } /// computeKnownBitsForTargetNode - Determine which of the bits specified in /// Mask are known to be either zero or one and return them Known. void AArch64TargetLowering::computeKnownBitsForTargetNode( const SDValue Op, KnownBits &Known, const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth) const { switch (Op.getOpcode()) { default: break; case AArch64ISD::DUP: { SDValue SrcOp = Op.getOperand(0); Known = DAG.computeKnownBits(SrcOp, Depth + 1); if (SrcOp.getValueSizeInBits() != Op.getScalarValueSizeInBits()) { assert(SrcOp.getValueSizeInBits() > Op.getScalarValueSizeInBits() && "Expected DUP implicit truncation"); Known = Known.trunc(Op.getScalarValueSizeInBits()); } break; } case AArch64ISD::CSEL: { KnownBits Known2; Known = DAG.computeKnownBits(Op->getOperand(0), Depth + 1); Known2 = DAG.computeKnownBits(Op->getOperand(1), Depth + 1); Known = Known.intersectWith(Known2); break; } case AArch64ISD::BICi: { // Compute the bit cleared value. uint64_t Mask = ~(Op->getConstantOperandVal(1) << Op->getConstantOperandVal(2)); Known = DAG.computeKnownBits(Op->getOperand(0), Depth + 1); Known &= KnownBits::makeConstant(APInt(Known.getBitWidth(), Mask)); break; } case AArch64ISD::VLSHR: { KnownBits Known2; Known = DAG.computeKnownBits(Op->getOperand(0), Depth + 1); Known2 = DAG.computeKnownBits(Op->getOperand(1), Depth + 1); Known = KnownBits::lshr(Known, Known2); break; } case AArch64ISD::VASHR: { KnownBits Known2; Known = DAG.computeKnownBits(Op->getOperand(0), Depth + 1); Known2 = DAG.computeKnownBits(Op->getOperand(1), Depth + 1); Known = KnownBits::ashr(Known, Known2); break; } case AArch64ISD::VSHL: { KnownBits Known2; Known = DAG.computeKnownBits(Op->getOperand(0), Depth + 1); Known2 = DAG.computeKnownBits(Op->getOperand(1), Depth + 1); Known = KnownBits::shl(Known, Known2); break; } case AArch64ISD::MOVI: { Known = KnownBits::makeConstant( APInt(Known.getBitWidth(), Op->getConstantOperandVal(0))); break; } case AArch64ISD::LOADgot: case AArch64ISD::ADDlow: { if (!Subtarget->isTargetILP32()) break; // In ILP32 mode all valid pointers are in the low 4GB of the address-space. Known.Zero = APInt::getHighBitsSet(64, 32); break; } case AArch64ISD::ASSERT_ZEXT_BOOL: { Known = DAG.computeKnownBits(Op->getOperand(0), Depth + 1); Known.Zero |= APInt(Known.getBitWidth(), 0xFE); break; } case ISD::INTRINSIC_W_CHAIN: { Intrinsic::ID IntID = static_cast(Op->getConstantOperandVal(1)); switch (IntID) { default: return; case Intrinsic::aarch64_ldaxr: case Intrinsic::aarch64_ldxr: { unsigned BitWidth = Known.getBitWidth(); EVT VT = cast(Op)->getMemoryVT(); unsigned MemBits = VT.getScalarSizeInBits(); Known.Zero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits); return; } } break; } case ISD::INTRINSIC_WO_CHAIN: case ISD::INTRINSIC_VOID: { unsigned IntNo = Op.getConstantOperandVal(0); switch (IntNo) { default: break; case Intrinsic::aarch64_neon_uaddlv: { MVT VT = Op.getOperand(1).getValueType().getSimpleVT(); unsigned BitWidth = Known.getBitWidth(); if (VT == MVT::v8i8 || VT == MVT::v16i8) { unsigned Bound = (VT == MVT::v8i8) ? 11 : 12; assert(BitWidth >= Bound && "Unexpected width!"); APInt Mask = APInt::getHighBitsSet(BitWidth, BitWidth - Bound); Known.Zero |= Mask; } break; } case Intrinsic::aarch64_neon_umaxv: case Intrinsic::aarch64_neon_uminv: { // Figure out the datatype of the vector operand. The UMINV instruction // will zero extend the result, so we can mark as known zero all the // bits larger than the element datatype. 32-bit or larget doesn't need // this as those are legal types and will be handled by isel directly. MVT VT = Op.getOperand(1).getValueType().getSimpleVT(); unsigned BitWidth = Known.getBitWidth(); if (VT == MVT::v8i8 || VT == MVT::v16i8) { assert(BitWidth >= 8 && "Unexpected width!"); APInt Mask = APInt::getHighBitsSet(BitWidth, BitWidth - 8); Known.Zero |= Mask; } else if (VT == MVT::v4i16 || VT == MVT::v8i16) { assert(BitWidth >= 16 && "Unexpected width!"); APInt Mask = APInt::getHighBitsSet(BitWidth, BitWidth - 16); Known.Zero |= Mask; } break; } break; } } } } unsigned AArch64TargetLowering::ComputeNumSignBitsForTargetNode( SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth) const { EVT VT = Op.getValueType(); unsigned VTBits = VT.getScalarSizeInBits(); unsigned Opcode = Op.getOpcode(); switch (Opcode) { case AArch64ISD::CMEQ: case AArch64ISD::CMGE: case AArch64ISD::CMGT: case AArch64ISD::CMHI: case AArch64ISD::CMHS: case AArch64ISD::FCMEQ: case AArch64ISD::FCMGE: case AArch64ISD::FCMGT: case AArch64ISD::CMEQz: case AArch64ISD::CMGEz: case AArch64ISD::CMGTz: case AArch64ISD::CMLEz: case AArch64ISD::CMLTz: case AArch64ISD::FCMEQz: case AArch64ISD::FCMGEz: case AArch64ISD::FCMGTz: case AArch64ISD::FCMLEz: case AArch64ISD::FCMLTz: // Compares return either 0 or all-ones return VTBits; } return 1; } MVT AArch64TargetLowering::getScalarShiftAmountTy(const DataLayout &DL, EVT) const { return MVT::i64; } bool AArch64TargetLowering::allowsMisalignedMemoryAccesses( EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags, unsigned *Fast) const { if (Subtarget->requiresStrictAlign()) return false; if (Fast) { // Some CPUs are fine with unaligned stores except for 128-bit ones. *Fast = !Subtarget->isMisaligned128StoreSlow() || VT.getStoreSize() != 16 || // See comments in performSTORECombine() for more details about // these conditions. // Code that uses clang vector extensions can mark that it // wants unaligned accesses to be treated as fast by // underspecifying alignment to be 1 or 2. Alignment <= 2 || // Disregard v2i64. Memcpy lowering produces those and splitting // them regresses performance on micro-benchmarks and olden/bh. VT == MVT::v2i64; } return true; } // Same as above but handling LLTs instead. bool AArch64TargetLowering::allowsMisalignedMemoryAccesses( LLT Ty, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags, unsigned *Fast) const { if (Subtarget->requiresStrictAlign()) return false; if (Fast) { // Some CPUs are fine with unaligned stores except for 128-bit ones. *Fast = !Subtarget->isMisaligned128StoreSlow() || Ty.getSizeInBytes() != 16 || // See comments in performSTORECombine() for more details about // these conditions. // Code that uses clang vector extensions can mark that it // wants unaligned accesses to be treated as fast by // underspecifying alignment to be 1 or 2. Alignment <= 2 || // Disregard v2i64. Memcpy lowering produces those and splitting // them regresses performance on micro-benchmarks and olden/bh. Ty == LLT::fixed_vector(2, 64); } return true; } FastISel * AArch64TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo, const TargetLibraryInfo *libInfo) const { return AArch64::createFastISel(funcInfo, libInfo); } const char *AArch64TargetLowering::getTargetNodeName(unsigned Opcode) const { #define MAKE_CASE(V) \ case V: \ return #V; switch ((AArch64ISD::NodeType)Opcode) { case AArch64ISD::FIRST_NUMBER: break; MAKE_CASE(AArch64ISD::COALESCER_BARRIER) MAKE_CASE(AArch64ISD::SMSTART) MAKE_CASE(AArch64ISD::SMSTOP) MAKE_CASE(AArch64ISD::RESTORE_ZA) MAKE_CASE(AArch64ISD::RESTORE_ZT) MAKE_CASE(AArch64ISD::SAVE_ZT) MAKE_CASE(AArch64ISD::CALL) MAKE_CASE(AArch64ISD::ADRP) MAKE_CASE(AArch64ISD::ADR) MAKE_CASE(AArch64ISD::ADDlow) MAKE_CASE(AArch64ISD::LOADgot) MAKE_CASE(AArch64ISD::RET_GLUE) MAKE_CASE(AArch64ISD::BRCOND) MAKE_CASE(AArch64ISD::CSEL) MAKE_CASE(AArch64ISD::CSINV) MAKE_CASE(AArch64ISD::CSNEG) MAKE_CASE(AArch64ISD::CSINC) MAKE_CASE(AArch64ISD::THREAD_POINTER) MAKE_CASE(AArch64ISD::TLSDESC_CALLSEQ) MAKE_CASE(AArch64ISD::PROBED_ALLOCA) MAKE_CASE(AArch64ISD::ABDS_PRED) MAKE_CASE(AArch64ISD::ABDU_PRED) MAKE_CASE(AArch64ISD::HADDS_PRED) MAKE_CASE(AArch64ISD::HADDU_PRED) MAKE_CASE(AArch64ISD::MUL_PRED) MAKE_CASE(AArch64ISD::MULHS_PRED) MAKE_CASE(AArch64ISD::MULHU_PRED) MAKE_CASE(AArch64ISD::RHADDS_PRED) MAKE_CASE(AArch64ISD::RHADDU_PRED) MAKE_CASE(AArch64ISD::SDIV_PRED) MAKE_CASE(AArch64ISD::SHL_PRED) MAKE_CASE(AArch64ISD::SMAX_PRED) MAKE_CASE(AArch64ISD::SMIN_PRED) MAKE_CASE(AArch64ISD::SRA_PRED) MAKE_CASE(AArch64ISD::SRL_PRED) MAKE_CASE(AArch64ISD::UDIV_PRED) MAKE_CASE(AArch64ISD::UMAX_PRED) MAKE_CASE(AArch64ISD::UMIN_PRED) MAKE_CASE(AArch64ISD::SRAD_MERGE_OP1) MAKE_CASE(AArch64ISD::FNEG_MERGE_PASSTHRU) MAKE_CASE(AArch64ISD::SIGN_EXTEND_INREG_MERGE_PASSTHRU) MAKE_CASE(AArch64ISD::ZERO_EXTEND_INREG_MERGE_PASSTHRU) MAKE_CASE(AArch64ISD::FCEIL_MERGE_PASSTHRU) MAKE_CASE(AArch64ISD::FFLOOR_MERGE_PASSTHRU) MAKE_CASE(AArch64ISD::FNEARBYINT_MERGE_PASSTHRU) MAKE_CASE(AArch64ISD::FRINT_MERGE_PASSTHRU) MAKE_CASE(AArch64ISD::FROUND_MERGE_PASSTHRU) MAKE_CASE(AArch64ISD::FROUNDEVEN_MERGE_PASSTHRU) MAKE_CASE(AArch64ISD::FTRUNC_MERGE_PASSTHRU) MAKE_CASE(AArch64ISD::FP_ROUND_MERGE_PASSTHRU) MAKE_CASE(AArch64ISD::FP_EXTEND_MERGE_PASSTHRU) MAKE_CASE(AArch64ISD::SINT_TO_FP_MERGE_PASSTHRU) MAKE_CASE(AArch64ISD::UINT_TO_FP_MERGE_PASSTHRU) MAKE_CASE(AArch64ISD::FCVTZU_MERGE_PASSTHRU) MAKE_CASE(AArch64ISD::FCVTZS_MERGE_PASSTHRU) MAKE_CASE(AArch64ISD::FSQRT_MERGE_PASSTHRU) MAKE_CASE(AArch64ISD::FRECPX_MERGE_PASSTHRU) MAKE_CASE(AArch64ISD::FABS_MERGE_PASSTHRU) MAKE_CASE(AArch64ISD::ABS_MERGE_PASSTHRU) MAKE_CASE(AArch64ISD::NEG_MERGE_PASSTHRU) MAKE_CASE(AArch64ISD::SETCC_MERGE_ZERO) MAKE_CASE(AArch64ISD::ADC) MAKE_CASE(AArch64ISD::SBC) MAKE_CASE(AArch64ISD::ADDS) MAKE_CASE(AArch64ISD::SUBS) MAKE_CASE(AArch64ISD::ADCS) MAKE_CASE(AArch64ISD::SBCS) MAKE_CASE(AArch64ISD::ANDS) MAKE_CASE(AArch64ISD::CCMP) MAKE_CASE(AArch64ISD::CCMN) MAKE_CASE(AArch64ISD::FCCMP) MAKE_CASE(AArch64ISD::FCMP) MAKE_CASE(AArch64ISD::STRICT_FCMP) MAKE_CASE(AArch64ISD::STRICT_FCMPE) MAKE_CASE(AArch64ISD::FCVTXN) MAKE_CASE(AArch64ISD::SME_ZA_LDR) MAKE_CASE(AArch64ISD::SME_ZA_STR) MAKE_CASE(AArch64ISD::DUP) MAKE_CASE(AArch64ISD::DUPLANE8) MAKE_CASE(AArch64ISD::DUPLANE16) MAKE_CASE(AArch64ISD::DUPLANE32) MAKE_CASE(AArch64ISD::DUPLANE64) MAKE_CASE(AArch64ISD::DUPLANE128) MAKE_CASE(AArch64ISD::MOVI) MAKE_CASE(AArch64ISD::MOVIshift) MAKE_CASE(AArch64ISD::MOVIedit) MAKE_CASE(AArch64ISD::MOVImsl) MAKE_CASE(AArch64ISD::FMOV) MAKE_CASE(AArch64ISD::MVNIshift) MAKE_CASE(AArch64ISD::MVNImsl) MAKE_CASE(AArch64ISD::BICi) MAKE_CASE(AArch64ISD::ORRi) MAKE_CASE(AArch64ISD::BSP) MAKE_CASE(AArch64ISD::ZIP1) MAKE_CASE(AArch64ISD::ZIP2) MAKE_CASE(AArch64ISD::UZP1) MAKE_CASE(AArch64ISD::UZP2) MAKE_CASE(AArch64ISD::TRN1) MAKE_CASE(AArch64ISD::TRN2) MAKE_CASE(AArch64ISD::REV16) MAKE_CASE(AArch64ISD::REV32) MAKE_CASE(AArch64ISD::REV64) MAKE_CASE(AArch64ISD::EXT) MAKE_CASE(AArch64ISD::SPLICE) MAKE_CASE(AArch64ISD::VSHL) MAKE_CASE(AArch64ISD::VLSHR) MAKE_CASE(AArch64ISD::VASHR) MAKE_CASE(AArch64ISD::VSLI) MAKE_CASE(AArch64ISD::VSRI) MAKE_CASE(AArch64ISD::CMEQ) MAKE_CASE(AArch64ISD::CMGE) MAKE_CASE(AArch64ISD::CMGT) MAKE_CASE(AArch64ISD::CMHI) MAKE_CASE(AArch64ISD::CMHS) MAKE_CASE(AArch64ISD::FCMEQ) MAKE_CASE(AArch64ISD::FCMGE) MAKE_CASE(AArch64ISD::FCMGT) MAKE_CASE(AArch64ISD::CMEQz) MAKE_CASE(AArch64ISD::CMGEz) MAKE_CASE(AArch64ISD::CMGTz) MAKE_CASE(AArch64ISD::CMLEz) MAKE_CASE(AArch64ISD::CMLTz) MAKE_CASE(AArch64ISD::FCMEQz) MAKE_CASE(AArch64ISD::FCMGEz) MAKE_CASE(AArch64ISD::FCMGTz) MAKE_CASE(AArch64ISD::FCMLEz) MAKE_CASE(AArch64ISD::FCMLTz) MAKE_CASE(AArch64ISD::SADDV) MAKE_CASE(AArch64ISD::UADDV) MAKE_CASE(AArch64ISD::UADDLV) MAKE_CASE(AArch64ISD::SADDLV) MAKE_CASE(AArch64ISD::SDOT) MAKE_CASE(AArch64ISD::UDOT) MAKE_CASE(AArch64ISD::SMINV) MAKE_CASE(AArch64ISD::UMINV) MAKE_CASE(AArch64ISD::SMAXV) MAKE_CASE(AArch64ISD::UMAXV) MAKE_CASE(AArch64ISD::SADDV_PRED) MAKE_CASE(AArch64ISD::UADDV_PRED) MAKE_CASE(AArch64ISD::SMAXV_PRED) MAKE_CASE(AArch64ISD::UMAXV_PRED) MAKE_CASE(AArch64ISD::SMINV_PRED) MAKE_CASE(AArch64ISD::UMINV_PRED) MAKE_CASE(AArch64ISD::ORV_PRED) MAKE_CASE(AArch64ISD::EORV_PRED) MAKE_CASE(AArch64ISD::ANDV_PRED) MAKE_CASE(AArch64ISD::CLASTA_N) MAKE_CASE(AArch64ISD::CLASTB_N) MAKE_CASE(AArch64ISD::LASTA) MAKE_CASE(AArch64ISD::LASTB) MAKE_CASE(AArch64ISD::REINTERPRET_CAST) MAKE_CASE(AArch64ISD::LS64_BUILD) MAKE_CASE(AArch64ISD::LS64_EXTRACT) MAKE_CASE(AArch64ISD::TBL) MAKE_CASE(AArch64ISD::FADD_PRED) MAKE_CASE(AArch64ISD::FADDA_PRED) MAKE_CASE(AArch64ISD::FADDV_PRED) MAKE_CASE(AArch64ISD::FDIV_PRED) MAKE_CASE(AArch64ISD::FMA_PRED) MAKE_CASE(AArch64ISD::FMAX_PRED) MAKE_CASE(AArch64ISD::FMAXV_PRED) MAKE_CASE(AArch64ISD::FMAXNM_PRED) MAKE_CASE(AArch64ISD::FMAXNMV_PRED) MAKE_CASE(AArch64ISD::FMIN_PRED) MAKE_CASE(AArch64ISD::FMINV_PRED) MAKE_CASE(AArch64ISD::FMINNM_PRED) MAKE_CASE(AArch64ISD::FMINNMV_PRED) MAKE_CASE(AArch64ISD::FMUL_PRED) MAKE_CASE(AArch64ISD::FSUB_PRED) MAKE_CASE(AArch64ISD::RDSVL) MAKE_CASE(AArch64ISD::BIC) MAKE_CASE(AArch64ISD::CBZ) MAKE_CASE(AArch64ISD::CBNZ) MAKE_CASE(AArch64ISD::TBZ) MAKE_CASE(AArch64ISD::TBNZ) MAKE_CASE(AArch64ISD::TC_RETURN) MAKE_CASE(AArch64ISD::PREFETCH) MAKE_CASE(AArch64ISD::SITOF) MAKE_CASE(AArch64ISD::UITOF) MAKE_CASE(AArch64ISD::NVCAST) MAKE_CASE(AArch64ISD::MRS) MAKE_CASE(AArch64ISD::SQSHL_I) MAKE_CASE(AArch64ISD::UQSHL_I) MAKE_CASE(AArch64ISD::SRSHR_I) MAKE_CASE(AArch64ISD::URSHR_I) MAKE_CASE(AArch64ISD::SQSHLU_I) MAKE_CASE(AArch64ISD::WrapperLarge) MAKE_CASE(AArch64ISD::LD2post) MAKE_CASE(AArch64ISD::LD3post) MAKE_CASE(AArch64ISD::LD4post) MAKE_CASE(AArch64ISD::ST2post) MAKE_CASE(AArch64ISD::ST3post) MAKE_CASE(AArch64ISD::ST4post) MAKE_CASE(AArch64ISD::LD1x2post) MAKE_CASE(AArch64ISD::LD1x3post) MAKE_CASE(AArch64ISD::LD1x4post) MAKE_CASE(AArch64ISD::ST1x2post) MAKE_CASE(AArch64ISD::ST1x3post) MAKE_CASE(AArch64ISD::ST1x4post) MAKE_CASE(AArch64ISD::LD1DUPpost) MAKE_CASE(AArch64ISD::LD2DUPpost) MAKE_CASE(AArch64ISD::LD3DUPpost) MAKE_CASE(AArch64ISD::LD4DUPpost) MAKE_CASE(AArch64ISD::LD1LANEpost) MAKE_CASE(AArch64ISD::LD2LANEpost) MAKE_CASE(AArch64ISD::LD3LANEpost) MAKE_CASE(AArch64ISD::LD4LANEpost) MAKE_CASE(AArch64ISD::ST2LANEpost) MAKE_CASE(AArch64ISD::ST3LANEpost) MAKE_CASE(AArch64ISD::ST4LANEpost) MAKE_CASE(AArch64ISD::SMULL) MAKE_CASE(AArch64ISD::UMULL) MAKE_CASE(AArch64ISD::PMULL) MAKE_CASE(AArch64ISD::FRECPE) MAKE_CASE(AArch64ISD::FRECPS) MAKE_CASE(AArch64ISD::FRSQRTE) MAKE_CASE(AArch64ISD::FRSQRTS) MAKE_CASE(AArch64ISD::STG) MAKE_CASE(AArch64ISD::STZG) MAKE_CASE(AArch64ISD::ST2G) MAKE_CASE(AArch64ISD::STZ2G) MAKE_CASE(AArch64ISD::SUNPKHI) MAKE_CASE(AArch64ISD::SUNPKLO) MAKE_CASE(AArch64ISD::UUNPKHI) MAKE_CASE(AArch64ISD::UUNPKLO) MAKE_CASE(AArch64ISD::INSR) MAKE_CASE(AArch64ISD::PTEST) MAKE_CASE(AArch64ISD::PTEST_ANY) MAKE_CASE(AArch64ISD::PTRUE) MAKE_CASE(AArch64ISD::LD1_MERGE_ZERO) MAKE_CASE(AArch64ISD::LD1S_MERGE_ZERO) MAKE_CASE(AArch64ISD::LDNF1_MERGE_ZERO) MAKE_CASE(AArch64ISD::LDNF1S_MERGE_ZERO) MAKE_CASE(AArch64ISD::LDFF1_MERGE_ZERO) MAKE_CASE(AArch64ISD::LDFF1S_MERGE_ZERO) MAKE_CASE(AArch64ISD::LD1RQ_MERGE_ZERO) MAKE_CASE(AArch64ISD::LD1RO_MERGE_ZERO) MAKE_CASE(AArch64ISD::SVE_LD2_MERGE_ZERO) MAKE_CASE(AArch64ISD::SVE_LD3_MERGE_ZERO) MAKE_CASE(AArch64ISD::SVE_LD4_MERGE_ZERO) MAKE_CASE(AArch64ISD::GLD1_MERGE_ZERO) MAKE_CASE(AArch64ISD::GLD1_SCALED_MERGE_ZERO) MAKE_CASE(AArch64ISD::GLD1_SXTW_MERGE_ZERO) MAKE_CASE(AArch64ISD::GLD1_UXTW_MERGE_ZERO) MAKE_CASE(AArch64ISD::GLD1_SXTW_SCALED_MERGE_ZERO) MAKE_CASE(AArch64ISD::GLD1_UXTW_SCALED_MERGE_ZERO) MAKE_CASE(AArch64ISD::GLD1_IMM_MERGE_ZERO) MAKE_CASE(AArch64ISD::GLD1Q_MERGE_ZERO) MAKE_CASE(AArch64ISD::GLD1Q_INDEX_MERGE_ZERO) MAKE_CASE(AArch64ISD::GLD1S_MERGE_ZERO) MAKE_CASE(AArch64ISD::GLD1S_SCALED_MERGE_ZERO) MAKE_CASE(AArch64ISD::GLD1S_SXTW_MERGE_ZERO) MAKE_CASE(AArch64ISD::GLD1S_UXTW_MERGE_ZERO) MAKE_CASE(AArch64ISD::GLD1S_SXTW_SCALED_MERGE_ZERO) MAKE_CASE(AArch64ISD::GLD1S_UXTW_SCALED_MERGE_ZERO) MAKE_CASE(AArch64ISD::GLD1S_IMM_MERGE_ZERO) MAKE_CASE(AArch64ISD::GLDFF1_MERGE_ZERO) MAKE_CASE(AArch64ISD::GLDFF1_SCALED_MERGE_ZERO) MAKE_CASE(AArch64ISD::GLDFF1_SXTW_MERGE_ZERO) MAKE_CASE(AArch64ISD::GLDFF1_UXTW_MERGE_ZERO) MAKE_CASE(AArch64ISD::GLDFF1_SXTW_SCALED_MERGE_ZERO) MAKE_CASE(AArch64ISD::GLDFF1_UXTW_SCALED_MERGE_ZERO) MAKE_CASE(AArch64ISD::GLDFF1_IMM_MERGE_ZERO) MAKE_CASE(AArch64ISD::GLDFF1S_MERGE_ZERO) MAKE_CASE(AArch64ISD::GLDFF1S_SCALED_MERGE_ZERO) MAKE_CASE(AArch64ISD::GLDFF1S_SXTW_MERGE_ZERO) MAKE_CASE(AArch64ISD::GLDFF1S_UXTW_MERGE_ZERO) MAKE_CASE(AArch64ISD::GLDFF1S_SXTW_SCALED_MERGE_ZERO) MAKE_CASE(AArch64ISD::GLDFF1S_UXTW_SCALED_MERGE_ZERO) MAKE_CASE(AArch64ISD::GLDFF1S_IMM_MERGE_ZERO) MAKE_CASE(AArch64ISD::GLDNT1_MERGE_ZERO) MAKE_CASE(AArch64ISD::GLDNT1_INDEX_MERGE_ZERO) MAKE_CASE(AArch64ISD::GLDNT1S_MERGE_ZERO) MAKE_CASE(AArch64ISD::SST1Q_PRED) MAKE_CASE(AArch64ISD::SST1Q_INDEX_PRED) MAKE_CASE(AArch64ISD::ST1_PRED) MAKE_CASE(AArch64ISD::SST1_PRED) MAKE_CASE(AArch64ISD::SST1_SCALED_PRED) MAKE_CASE(AArch64ISD::SST1_SXTW_PRED) MAKE_CASE(AArch64ISD::SST1_UXTW_PRED) MAKE_CASE(AArch64ISD::SST1_SXTW_SCALED_PRED) MAKE_CASE(AArch64ISD::SST1_UXTW_SCALED_PRED) MAKE_CASE(AArch64ISD::SST1_IMM_PRED) MAKE_CASE(AArch64ISD::SSTNT1_PRED) MAKE_CASE(AArch64ISD::SSTNT1_INDEX_PRED) MAKE_CASE(AArch64ISD::LDP) MAKE_CASE(AArch64ISD::LDIAPP) MAKE_CASE(AArch64ISD::LDNP) MAKE_CASE(AArch64ISD::STP) MAKE_CASE(AArch64ISD::STILP) MAKE_CASE(AArch64ISD::STNP) MAKE_CASE(AArch64ISD::BITREVERSE_MERGE_PASSTHRU) MAKE_CASE(AArch64ISD::BSWAP_MERGE_PASSTHRU) MAKE_CASE(AArch64ISD::REVH_MERGE_PASSTHRU) MAKE_CASE(AArch64ISD::REVW_MERGE_PASSTHRU) MAKE_CASE(AArch64ISD::REVD_MERGE_PASSTHRU) MAKE_CASE(AArch64ISD::CTLZ_MERGE_PASSTHRU) MAKE_CASE(AArch64ISD::CTPOP_MERGE_PASSTHRU) MAKE_CASE(AArch64ISD::DUP_MERGE_PASSTHRU) MAKE_CASE(AArch64ISD::INDEX_VECTOR) MAKE_CASE(AArch64ISD::ADDP) MAKE_CASE(AArch64ISD::SADDLP) MAKE_CASE(AArch64ISD::UADDLP) MAKE_CASE(AArch64ISD::CALL_RVMARKER) MAKE_CASE(AArch64ISD::ASSERT_ZEXT_BOOL) MAKE_CASE(AArch64ISD::MOPS_MEMSET) MAKE_CASE(AArch64ISD::MOPS_MEMSET_TAGGING) MAKE_CASE(AArch64ISD::MOPS_MEMCOPY) MAKE_CASE(AArch64ISD::MOPS_MEMMOVE) MAKE_CASE(AArch64ISD::CALL_BTI) MAKE_CASE(AArch64ISD::MRRS) MAKE_CASE(AArch64ISD::MSRR) MAKE_CASE(AArch64ISD::RSHRNB_I) MAKE_CASE(AArch64ISD::CTTZ_ELTS) MAKE_CASE(AArch64ISD::CALL_ARM64EC_TO_X64) MAKE_CASE(AArch64ISD::URSHR_I_PRED) } #undef MAKE_CASE return nullptr; } MachineBasicBlock * AArch64TargetLowering::EmitF128CSEL(MachineInstr &MI, MachineBasicBlock *MBB) const { // We materialise the F128CSEL pseudo-instruction as some control flow and a // phi node: // OrigBB: // [... previous instrs leading to comparison ...] // b.ne TrueBB // b EndBB // TrueBB: // ; Fallthrough // EndBB: // Dest = PHI [IfTrue, TrueBB], [IfFalse, OrigBB] MachineFunction *MF = MBB->getParent(); const TargetInstrInfo *TII = Subtarget->getInstrInfo(); const BasicBlock *LLVM_BB = MBB->getBasicBlock(); DebugLoc DL = MI.getDebugLoc(); MachineFunction::iterator It = ++MBB->getIterator(); Register DestReg = MI.getOperand(0).getReg(); Register IfTrueReg = MI.getOperand(1).getReg(); Register IfFalseReg = MI.getOperand(2).getReg(); unsigned CondCode = MI.getOperand(3).getImm(); bool NZCVKilled = MI.getOperand(4).isKill(); MachineBasicBlock *TrueBB = MF->CreateMachineBasicBlock(LLVM_BB); MachineBasicBlock *EndBB = MF->CreateMachineBasicBlock(LLVM_BB); MF->insert(It, TrueBB); MF->insert(It, EndBB); // Transfer rest of current basic-block to EndBB EndBB->splice(EndBB->begin(), MBB, std::next(MachineBasicBlock::iterator(MI)), MBB->end()); EndBB->transferSuccessorsAndUpdatePHIs(MBB); BuildMI(MBB, DL, TII->get(AArch64::Bcc)).addImm(CondCode).addMBB(TrueBB); BuildMI(MBB, DL, TII->get(AArch64::B)).addMBB(EndBB); MBB->addSuccessor(TrueBB); MBB->addSuccessor(EndBB); // TrueBB falls through to the end. TrueBB->addSuccessor(EndBB); if (!NZCVKilled) { TrueBB->addLiveIn(AArch64::NZCV); EndBB->addLiveIn(AArch64::NZCV); } BuildMI(*EndBB, EndBB->begin(), DL, TII->get(AArch64::PHI), DestReg) .addReg(IfTrueReg) .addMBB(TrueBB) .addReg(IfFalseReg) .addMBB(MBB); MI.eraseFromParent(); return EndBB; } MachineBasicBlock *AArch64TargetLowering::EmitLoweredCatchRet( MachineInstr &MI, MachineBasicBlock *BB) const { assert(!isAsynchronousEHPersonality(classifyEHPersonality( BB->getParent()->getFunction().getPersonalityFn())) && "SEH does not use catchret!"); return BB; } MachineBasicBlock * AArch64TargetLowering::EmitDynamicProbedAlloc(MachineInstr &MI, MachineBasicBlock *MBB) const { MachineFunction &MF = *MBB->getParent(); MachineBasicBlock::iterator MBBI = MI.getIterator(); DebugLoc DL = MBB->findDebugLoc(MBBI); const AArch64InstrInfo &TII = *MF.getSubtarget().getInstrInfo(); Register TargetReg = MI.getOperand(0).getReg(); MachineBasicBlock::iterator NextInst = TII.probedStackAlloc(MBBI, TargetReg, false); MI.eraseFromParent(); return NextInst->getParent(); } MachineBasicBlock * AArch64TargetLowering::EmitTileLoad(unsigned Opc, unsigned BaseReg, MachineInstr &MI, MachineBasicBlock *BB) const { const TargetInstrInfo *TII = Subtarget->getInstrInfo(); MachineInstrBuilder MIB = BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(Opc)); MIB.addReg(BaseReg + MI.getOperand(0).getImm(), RegState::Define); MIB.add(MI.getOperand(1)); // slice index register MIB.add(MI.getOperand(2)); // slice index offset MIB.add(MI.getOperand(3)); // pg MIB.add(MI.getOperand(4)); // base MIB.add(MI.getOperand(5)); // offset MI.eraseFromParent(); // The pseudo is gone now. return BB; } MachineBasicBlock * AArch64TargetLowering::EmitFill(MachineInstr &MI, MachineBasicBlock *BB) const { const TargetInstrInfo *TII = Subtarget->getInstrInfo(); MachineInstrBuilder MIB = BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(AArch64::LDR_ZA)); MIB.addReg(AArch64::ZA, RegState::Define); MIB.add(MI.getOperand(0)); // Vector select register MIB.add(MI.getOperand(1)); // Vector select offset MIB.add(MI.getOperand(2)); // Base MIB.add(MI.getOperand(1)); // Offset, same as vector select offset MI.eraseFromParent(); // The pseudo is gone now. return BB; } MachineBasicBlock *AArch64TargetLowering::EmitZTInstr(MachineInstr &MI, MachineBasicBlock *BB, unsigned Opcode, bool Op0IsDef) const { const TargetInstrInfo *TII = Subtarget->getInstrInfo(); MachineInstrBuilder MIB; MIB = BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(Opcode)) .addReg(MI.getOperand(0).getReg(), Op0IsDef ? RegState::Define : 0); for (unsigned I = 1; I < MI.getNumOperands(); ++I) MIB.add(MI.getOperand(I)); MI.eraseFromParent(); // The pseudo is gone now. return BB; } MachineBasicBlock * AArch64TargetLowering::EmitZAInstr(unsigned Opc, unsigned BaseReg, MachineInstr &MI, MachineBasicBlock *BB, bool HasTile) const { const TargetInstrInfo *TII = Subtarget->getInstrInfo(); MachineInstrBuilder MIB = BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(Opc)); unsigned StartIdx = 0; if (HasTile) { MIB.addReg(BaseReg + MI.getOperand(0).getImm(), RegState::Define); MIB.addReg(BaseReg + MI.getOperand(0).getImm()); StartIdx = 1; } else MIB.addReg(BaseReg, RegState::Define).addReg(BaseReg); for (unsigned I = StartIdx; I < MI.getNumOperands(); ++I) MIB.add(MI.getOperand(I)); MI.eraseFromParent(); // The pseudo is gone now. return BB; } MachineBasicBlock * AArch64TargetLowering::EmitZero(MachineInstr &MI, MachineBasicBlock *BB) const { const TargetInstrInfo *TII = Subtarget->getInstrInfo(); MachineInstrBuilder MIB = BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(AArch64::ZERO_M)); MIB.add(MI.getOperand(0)); // Mask unsigned Mask = MI.getOperand(0).getImm(); for (unsigned I = 0; I < 8; I++) { if (Mask & (1 << I)) MIB.addDef(AArch64::ZAD0 + I, RegState::ImplicitDefine); } MI.eraseFromParent(); // The pseudo is gone now. return BB; } MachineBasicBlock *AArch64TargetLowering::EmitInstrWithCustomInserter( MachineInstr &MI, MachineBasicBlock *BB) const { int SMEOrigInstr = AArch64::getSMEPseudoMap(MI.getOpcode()); if (SMEOrigInstr != -1) { const TargetInstrInfo *TII = Subtarget->getInstrInfo(); uint64_t SMEMatrixType = TII->get(MI.getOpcode()).TSFlags & AArch64::SMEMatrixTypeMask; switch (SMEMatrixType) { case (AArch64::SMEMatrixArray): return EmitZAInstr(SMEOrigInstr, AArch64::ZA, MI, BB, /*HasTile*/ false); case (AArch64::SMEMatrixTileB): return EmitZAInstr(SMEOrigInstr, AArch64::ZAB0, MI, BB, /*HasTile*/ true); case (AArch64::SMEMatrixTileH): return EmitZAInstr(SMEOrigInstr, AArch64::ZAH0, MI, BB, /*HasTile*/ true); case (AArch64::SMEMatrixTileS): return EmitZAInstr(SMEOrigInstr, AArch64::ZAS0, MI, BB, /*HasTile*/ true); case (AArch64::SMEMatrixTileD): return EmitZAInstr(SMEOrigInstr, AArch64::ZAD0, MI, BB, /*HasTile*/ true); case (AArch64::SMEMatrixTileQ): return EmitZAInstr(SMEOrigInstr, AArch64::ZAQ0, MI, BB, /*HasTile*/ true); } } switch (MI.getOpcode()) { default: #ifndef NDEBUG MI.dump(); #endif llvm_unreachable("Unexpected instruction for custom inserter!"); case AArch64::F128CSEL: return EmitF128CSEL(MI, BB); case TargetOpcode::STATEPOINT: // STATEPOINT is a pseudo instruction which has no implicit defs/uses // while bl call instruction (where statepoint will be lowered at the end) // has implicit def. This def is early-clobber as it will be set at // the moment of the call and earlier than any use is read. // Add this implicit dead def here as a workaround. MI.addOperand(*MI.getMF(), MachineOperand::CreateReg( AArch64::LR, /*isDef*/ true, /*isImp*/ true, /*isKill*/ false, /*isDead*/ true, /*isUndef*/ false, /*isEarlyClobber*/ true)); [[fallthrough]]; case TargetOpcode::STACKMAP: case TargetOpcode::PATCHPOINT: return emitPatchPoint(MI, BB); case TargetOpcode::PATCHABLE_EVENT_CALL: case TargetOpcode::PATCHABLE_TYPED_EVENT_CALL: return BB; case AArch64::CATCHRET: return EmitLoweredCatchRet(MI, BB); case AArch64::PROBED_STACKALLOC_DYN: return EmitDynamicProbedAlloc(MI, BB); case AArch64::LD1_MXIPXX_H_PSEUDO_B: return EmitTileLoad(AArch64::LD1_MXIPXX_H_B, AArch64::ZAB0, MI, BB); case AArch64::LD1_MXIPXX_H_PSEUDO_H: return EmitTileLoad(AArch64::LD1_MXIPXX_H_H, AArch64::ZAH0, MI, BB); case AArch64::LD1_MXIPXX_H_PSEUDO_S: return EmitTileLoad(AArch64::LD1_MXIPXX_H_S, AArch64::ZAS0, MI, BB); case AArch64::LD1_MXIPXX_H_PSEUDO_D: return EmitTileLoad(AArch64::LD1_MXIPXX_H_D, AArch64::ZAD0, MI, BB); case AArch64::LD1_MXIPXX_H_PSEUDO_Q: return EmitTileLoad(AArch64::LD1_MXIPXX_H_Q, AArch64::ZAQ0, MI, BB); case AArch64::LD1_MXIPXX_V_PSEUDO_B: return EmitTileLoad(AArch64::LD1_MXIPXX_V_B, AArch64::ZAB0, MI, BB); case AArch64::LD1_MXIPXX_V_PSEUDO_H: return EmitTileLoad(AArch64::LD1_MXIPXX_V_H, AArch64::ZAH0, MI, BB); case AArch64::LD1_MXIPXX_V_PSEUDO_S: return EmitTileLoad(AArch64::LD1_MXIPXX_V_S, AArch64::ZAS0, MI, BB); case AArch64::LD1_MXIPXX_V_PSEUDO_D: return EmitTileLoad(AArch64::LD1_MXIPXX_V_D, AArch64::ZAD0, MI, BB); case AArch64::LD1_MXIPXX_V_PSEUDO_Q: return EmitTileLoad(AArch64::LD1_MXIPXX_V_Q, AArch64::ZAQ0, MI, BB); case AArch64::LDR_ZA_PSEUDO: return EmitFill(MI, BB); case AArch64::LDR_TX_PSEUDO: return EmitZTInstr(MI, BB, AArch64::LDR_TX, /*Op0IsDef=*/true); case AArch64::STR_TX_PSEUDO: return EmitZTInstr(MI, BB, AArch64::STR_TX, /*Op0IsDef=*/false); case AArch64::ZERO_M_PSEUDO: return EmitZero(MI, BB); case AArch64::ZERO_T_PSEUDO: return EmitZTInstr(MI, BB, AArch64::ZERO_T, /*Op0IsDef=*/true); } } //===----------------------------------------------------------------------===// // AArch64 Lowering private implementation. //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // Lowering Code //===----------------------------------------------------------------------===// // Forward declarations of SVE fixed length lowering helpers static EVT getContainerForFixedLengthVector(SelectionDAG &DAG, EVT VT); static SDValue convertToScalableVector(SelectionDAG &DAG, EVT VT, SDValue V); static SDValue convertFromScalableVector(SelectionDAG &DAG, EVT VT, SDValue V); static SDValue convertFixedMaskToScalableVector(SDValue Mask, SelectionDAG &DAG); static SDValue getPredicateForVector(SelectionDAG &DAG, SDLoc &DL, EVT VT); static SDValue getPredicateForScalableVector(SelectionDAG &DAG, SDLoc &DL, EVT VT); /// isZerosVector - Check whether SDNode N is a zero-filled vector. static bool isZerosVector(const SDNode *N) { // Look through a bit convert. while (N->getOpcode() == ISD::BITCAST) N = N->getOperand(0).getNode(); if (ISD::isConstantSplatVectorAllZeros(N)) return true; if (N->getOpcode() != AArch64ISD::DUP) return false; auto Opnd0 = N->getOperand(0); return isNullConstant(Opnd0) || isNullFPConstant(Opnd0); } /// changeIntCCToAArch64CC - Convert a DAG integer condition code to an AArch64 /// CC static AArch64CC::CondCode changeIntCCToAArch64CC(ISD::CondCode CC) { switch (CC) { default: llvm_unreachable("Unknown condition code!"); case ISD::SETNE: return AArch64CC::NE; case ISD::SETEQ: return AArch64CC::EQ; case ISD::SETGT: return AArch64CC::GT; case ISD::SETGE: return AArch64CC::GE; case ISD::SETLT: return AArch64CC::LT; case ISD::SETLE: return AArch64CC::LE; case ISD::SETUGT: return AArch64CC::HI; case ISD::SETUGE: return AArch64CC::HS; case ISD::SETULT: return AArch64CC::LO; case ISD::SETULE: return AArch64CC::LS; } } /// changeFPCCToAArch64CC - Convert a DAG fp condition code to an AArch64 CC. static void changeFPCCToAArch64CC(ISD::CondCode CC, AArch64CC::CondCode &CondCode, AArch64CC::CondCode &CondCode2) { CondCode2 = AArch64CC::AL; switch (CC) { default: llvm_unreachable("Unknown FP condition!"); case ISD::SETEQ: case ISD::SETOEQ: CondCode = AArch64CC::EQ; break; case ISD::SETGT: case ISD::SETOGT: CondCode = AArch64CC::GT; break; case ISD::SETGE: case ISD::SETOGE: CondCode = AArch64CC::GE; break; case ISD::SETOLT: CondCode = AArch64CC::MI; break; case ISD::SETOLE: CondCode = AArch64CC::LS; break; case ISD::SETONE: CondCode = AArch64CC::MI; CondCode2 = AArch64CC::GT; break; case ISD::SETO: CondCode = AArch64CC::VC; break; case ISD::SETUO: CondCode = AArch64CC::VS; break; case ISD::SETUEQ: CondCode = AArch64CC::EQ; CondCode2 = AArch64CC::VS; break; case ISD::SETUGT: CondCode = AArch64CC::HI; break; case ISD::SETUGE: CondCode = AArch64CC::PL; break; case ISD::SETLT: case ISD::SETULT: CondCode = AArch64CC::LT; break; case ISD::SETLE: case ISD::SETULE: CondCode = AArch64CC::LE; break; case ISD::SETNE: case ISD::SETUNE: CondCode = AArch64CC::NE; break; } } /// Convert a DAG fp condition code to an AArch64 CC. /// This differs from changeFPCCToAArch64CC in that it returns cond codes that /// should be AND'ed instead of OR'ed. static void changeFPCCToANDAArch64CC(ISD::CondCode CC, AArch64CC::CondCode &CondCode, AArch64CC::CondCode &CondCode2) { CondCode2 = AArch64CC::AL; switch (CC) { default: changeFPCCToAArch64CC(CC, CondCode, CondCode2); assert(CondCode2 == AArch64CC::AL); break; case ISD::SETONE: // (a one b) // == ((a olt b) || (a ogt b)) // == ((a ord b) && (a une b)) CondCode = AArch64CC::VC; CondCode2 = AArch64CC::NE; break; case ISD::SETUEQ: // (a ueq b) // == ((a uno b) || (a oeq b)) // == ((a ule b) && (a uge b)) CondCode = AArch64CC::PL; CondCode2 = AArch64CC::LE; break; } } /// changeVectorFPCCToAArch64CC - Convert a DAG fp condition code to an AArch64 /// CC usable with the vector instructions. Fewer operations are available /// without a real NZCV register, so we have to use less efficient combinations /// to get the same effect. static void changeVectorFPCCToAArch64CC(ISD::CondCode CC, AArch64CC::CondCode &CondCode, AArch64CC::CondCode &CondCode2, bool &Invert) { Invert = false; switch (CC) { default: // Mostly the scalar mappings work fine. changeFPCCToAArch64CC(CC, CondCode, CondCode2); break; case ISD::SETUO: Invert = true; [[fallthrough]]; case ISD::SETO: CondCode = AArch64CC::MI; CondCode2 = AArch64CC::GE; break; case ISD::SETUEQ: case ISD::SETULT: case ISD::SETULE: case ISD::SETUGT: case ISD::SETUGE: // All of the compare-mask comparisons are ordered, but we can switch // between the two by a double inversion. E.g. ULE == !OGT. Invert = true; changeFPCCToAArch64CC(getSetCCInverse(CC, /* FP inverse */ MVT::f32), CondCode, CondCode2); break; } } static bool isLegalArithImmed(uint64_t C) { // Matches AArch64DAGToDAGISel::SelectArithImmed(). bool IsLegal = (C >> 12 == 0) || ((C & 0xFFFULL) == 0 && C >> 24 == 0); LLVM_DEBUG(dbgs() << "Is imm " << C << " legal: " << (IsLegal ? "yes\n" : "no\n")); return IsLegal; } // Can a (CMP op1, (sub 0, op2) be turned into a CMN instruction on // the grounds that "op1 - (-op2) == op1 + op2" ? Not always, the C and V flags // can be set differently by this operation. It comes down to whether // "SInt(~op2)+1 == SInt(~op2+1)" (and the same for UInt). If they are then // everything is fine. If not then the optimization is wrong. Thus general // comparisons are only valid if op2 != 0. // // So, finally, the only LLVM-native comparisons that don't mention C and V // are SETEQ and SETNE. They're the only ones we can safely use CMN for in // the absence of information about op2. static bool isCMN(SDValue Op, ISD::CondCode CC) { return Op.getOpcode() == ISD::SUB && isNullConstant(Op.getOperand(0)) && (CC == ISD::SETEQ || CC == ISD::SETNE); } static SDValue emitStrictFPComparison(SDValue LHS, SDValue RHS, const SDLoc &dl, SelectionDAG &DAG, SDValue Chain, bool IsSignaling) { EVT VT = LHS.getValueType(); assert(VT != MVT::f128); const bool FullFP16 = DAG.getSubtarget().hasFullFP16(); if ((VT == MVT::f16 && !FullFP16) || VT == MVT::bf16) { LHS = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {MVT::f32, MVT::Other}, {Chain, LHS}); RHS = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {MVT::f32, MVT::Other}, {LHS.getValue(1), RHS}); Chain = RHS.getValue(1); VT = MVT::f32; } unsigned Opcode = IsSignaling ? AArch64ISD::STRICT_FCMPE : AArch64ISD::STRICT_FCMP; return DAG.getNode(Opcode, dl, {VT, MVT::Other}, {Chain, LHS, RHS}); } static SDValue emitComparison(SDValue LHS, SDValue RHS, ISD::CondCode CC, const SDLoc &dl, SelectionDAG &DAG) { EVT VT = LHS.getValueType(); const bool FullFP16 = DAG.getSubtarget().hasFullFP16(); if (VT.isFloatingPoint()) { assert(VT != MVT::f128); if ((VT == MVT::f16 && !FullFP16) || VT == MVT::bf16) { LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, LHS); RHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, RHS); VT = MVT::f32; } return DAG.getNode(AArch64ISD::FCMP, dl, VT, LHS, RHS); } // The CMP instruction is just an alias for SUBS, and representing it as // SUBS means that it's possible to get CSE with subtract operations. // A later phase can perform the optimization of setting the destination // register to WZR/XZR if it ends up being unused. unsigned Opcode = AArch64ISD::SUBS; if (isCMN(RHS, CC)) { // Can we combine a (CMP op1, (sub 0, op2) into a CMN instruction ? Opcode = AArch64ISD::ADDS; RHS = RHS.getOperand(1); } else if (isCMN(LHS, CC)) { // As we are looking for EQ/NE compares, the operands can be commuted ; can // we combine a (CMP (sub 0, op1), op2) into a CMN instruction ? Opcode = AArch64ISD::ADDS; LHS = LHS.getOperand(1); } else if (isNullConstant(RHS) && !isUnsignedIntSetCC(CC)) { if (LHS.getOpcode() == ISD::AND) { // Similarly, (CMP (and X, Y), 0) can be implemented with a TST // (a.k.a. ANDS) except that the flags are only guaranteed to work for one // of the signed comparisons. const SDValue ANDSNode = DAG.getNode(AArch64ISD::ANDS, dl, DAG.getVTList(VT, MVT_CC), LHS.getOperand(0), LHS.getOperand(1)); // Replace all users of (and X, Y) with newly generated (ands X, Y) DAG.ReplaceAllUsesWith(LHS, ANDSNode); return ANDSNode.getValue(1); } else if (LHS.getOpcode() == AArch64ISD::ANDS) { // Use result of ANDS return LHS.getValue(1); } } return DAG.getNode(Opcode, dl, DAG.getVTList(VT, MVT_CC), LHS, RHS) .getValue(1); } /// \defgroup AArch64CCMP CMP;CCMP matching /// /// These functions deal with the formation of CMP;CCMP;... sequences. /// The CCMP/CCMN/FCCMP/FCCMPE instructions allow the conditional execution of /// a comparison. They set the NZCV flags to a predefined value if their /// predicate is false. This allows to express arbitrary conjunctions, for /// example "cmp 0 (and (setCA (cmp A)) (setCB (cmp B)))" /// expressed as: /// cmp A /// ccmp B, inv(CB), CA /// check for CB flags /// /// This naturally lets us implement chains of AND operations with SETCC /// operands. And we can even implement some other situations by transforming /// them: /// - We can implement (NEG SETCC) i.e. negating a single comparison by /// negating the flags used in a CCMP/FCCMP operations. /// - We can negate the result of a whole chain of CMP/CCMP/FCCMP operations /// by negating the flags we test for afterwards. i.e. /// NEG (CMP CCMP CCCMP ...) can be implemented. /// - Note that we can only ever negate all previously processed results. /// What we can not implement by flipping the flags to test is a negation /// of two sub-trees (because the negation affects all sub-trees emitted so /// far, so the 2nd sub-tree we emit would also affect the first). /// With those tools we can implement some OR operations: /// - (OR (SETCC A) (SETCC B)) can be implemented via: /// NEG (AND (NEG (SETCC A)) (NEG (SETCC B))) /// - After transforming OR to NEG/AND combinations we may be able to use NEG /// elimination rules from earlier to implement the whole thing as a /// CCMP/FCCMP chain. /// /// As complete example: /// or (or (setCA (cmp A)) (setCB (cmp B))) /// (and (setCC (cmp C)) (setCD (cmp D)))" /// can be reassociated to: /// or (and (setCC (cmp C)) setCD (cmp D)) // (or (setCA (cmp A)) (setCB (cmp B))) /// can be transformed to: /// not (and (not (and (setCC (cmp C)) (setCD (cmp D)))) /// (and (not (setCA (cmp A)) (not (setCB (cmp B))))))" /// which can be implemented as: /// cmp C /// ccmp D, inv(CD), CC /// ccmp A, CA, inv(CD) /// ccmp B, CB, inv(CA) /// check for CB flags /// /// A counterexample is "or (and A B) (and C D)" which translates to /// not (and (not (and (not A) (not B))) (not (and (not C) (not D)))), we /// can only implement 1 of the inner (not) operations, but not both! /// @{ /// Create a conditional comparison; Use CCMP, CCMN or FCCMP as appropriate. static SDValue emitConditionalComparison(SDValue LHS, SDValue RHS, ISD::CondCode CC, SDValue CCOp, AArch64CC::CondCode Predicate, AArch64CC::CondCode OutCC, const SDLoc &DL, SelectionDAG &DAG) { unsigned Opcode = 0; const bool FullFP16 = DAG.getSubtarget().hasFullFP16(); if (LHS.getValueType().isFloatingPoint()) { assert(LHS.getValueType() != MVT::f128); if ((LHS.getValueType() == MVT::f16 && !FullFP16) || LHS.getValueType() == MVT::bf16) { LHS = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, LHS); RHS = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, RHS); } Opcode = AArch64ISD::FCCMP; } else if (RHS.getOpcode() == ISD::SUB) { SDValue SubOp0 = RHS.getOperand(0); if (isNullConstant(SubOp0) && (CC == ISD::SETEQ || CC == ISD::SETNE)) { // See emitComparison() on why we can only do this for SETEQ and SETNE. Opcode = AArch64ISD::CCMN; RHS = RHS.getOperand(1); } } if (Opcode == 0) Opcode = AArch64ISD::CCMP; SDValue Condition = DAG.getConstant(Predicate, DL, MVT_CC); AArch64CC::CondCode InvOutCC = AArch64CC::getInvertedCondCode(OutCC); unsigned NZCV = AArch64CC::getNZCVToSatisfyCondCode(InvOutCC); SDValue NZCVOp = DAG.getConstant(NZCV, DL, MVT::i32); return DAG.getNode(Opcode, DL, MVT_CC, LHS, RHS, NZCVOp, Condition, CCOp); } /// Returns true if @p Val is a tree of AND/OR/SETCC operations that can be /// expressed as a conjunction. See \ref AArch64CCMP. /// \param CanNegate Set to true if we can negate the whole sub-tree just by /// changing the conditions on the SETCC tests. /// (this means we can call emitConjunctionRec() with /// Negate==true on this sub-tree) /// \param MustBeFirst Set to true if this subtree needs to be negated and we /// cannot do the negation naturally. We are required to /// emit the subtree first in this case. /// \param WillNegate Is true if are called when the result of this /// subexpression must be negated. This happens when the /// outer expression is an OR. We can use this fact to know /// that we have a double negation (or (or ...) ...) that /// can be implemented for free. static bool canEmitConjunction(const SDValue Val, bool &CanNegate, bool &MustBeFirst, bool WillNegate, unsigned Depth = 0) { if (!Val.hasOneUse()) return false; unsigned Opcode = Val->getOpcode(); if (Opcode == ISD::SETCC) { if (Val->getOperand(0).getValueType() == MVT::f128) return false; CanNegate = true; MustBeFirst = false; return true; } // Protect against exponential runtime and stack overflow. if (Depth > 6) return false; if (Opcode == ISD::AND || Opcode == ISD::OR) { bool IsOR = Opcode == ISD::OR; SDValue O0 = Val->getOperand(0); SDValue O1 = Val->getOperand(1); bool CanNegateL; bool MustBeFirstL; if (!canEmitConjunction(O0, CanNegateL, MustBeFirstL, IsOR, Depth+1)) return false; bool CanNegateR; bool MustBeFirstR; if (!canEmitConjunction(O1, CanNegateR, MustBeFirstR, IsOR, Depth+1)) return false; if (MustBeFirstL && MustBeFirstR) return false; if (IsOR) { // For an OR expression we need to be able to naturally negate at least // one side or we cannot do the transformation at all. if (!CanNegateL && !CanNegateR) return false; // If we the result of the OR will be negated and we can naturally negate // the leafs, then this sub-tree as a whole negates naturally. CanNegate = WillNegate && CanNegateL && CanNegateR; // If we cannot naturally negate the whole sub-tree, then this must be // emitted first. MustBeFirst = !CanNegate; } else { assert(Opcode == ISD::AND && "Must be OR or AND"); // We cannot naturally negate an AND operation. CanNegate = false; MustBeFirst = MustBeFirstL || MustBeFirstR; } return true; } return false; } /// Emit conjunction or disjunction tree with the CMP/FCMP followed by a chain /// of CCMP/CFCMP ops. See @ref AArch64CCMP. /// Tries to transform the given i1 producing node @p Val to a series compare /// and conditional compare operations. @returns an NZCV flags producing node /// and sets @p OutCC to the flags that should be tested or returns SDValue() if /// transformation was not possible. /// \p Negate is true if we want this sub-tree being negated just by changing /// SETCC conditions. static SDValue emitConjunctionRec(SelectionDAG &DAG, SDValue Val, AArch64CC::CondCode &OutCC, bool Negate, SDValue CCOp, AArch64CC::CondCode Predicate) { // We're at a tree leaf, produce a conditional comparison operation. unsigned Opcode = Val->getOpcode(); if (Opcode == ISD::SETCC) { SDValue LHS = Val->getOperand(0); SDValue RHS = Val->getOperand(1); ISD::CondCode CC = cast(Val->getOperand(2))->get(); bool isInteger = LHS.getValueType().isInteger(); if (Negate) CC = getSetCCInverse(CC, LHS.getValueType()); SDLoc DL(Val); // Determine OutCC and handle FP special case. if (isInteger) { OutCC = changeIntCCToAArch64CC(CC); } else { assert(LHS.getValueType().isFloatingPoint()); AArch64CC::CondCode ExtraCC; changeFPCCToANDAArch64CC(CC, OutCC, ExtraCC); // Some floating point conditions can't be tested with a single condition // code. Construct an additional comparison in this case. if (ExtraCC != AArch64CC::AL) { SDValue ExtraCmp; if (!CCOp.getNode()) ExtraCmp = emitComparison(LHS, RHS, CC, DL, DAG); else ExtraCmp = emitConditionalComparison(LHS, RHS, CC, CCOp, Predicate, ExtraCC, DL, DAG); CCOp = ExtraCmp; Predicate = ExtraCC; } } // Produce a normal comparison if we are first in the chain if (!CCOp) return emitComparison(LHS, RHS, CC, DL, DAG); // Otherwise produce a ccmp. return emitConditionalComparison(LHS, RHS, CC, CCOp, Predicate, OutCC, DL, DAG); } assert(Val->hasOneUse() && "Valid conjunction/disjunction tree"); bool IsOR = Opcode == ISD::OR; SDValue LHS = Val->getOperand(0); bool CanNegateL; bool MustBeFirstL; bool ValidL = canEmitConjunction(LHS, CanNegateL, MustBeFirstL, IsOR); assert(ValidL && "Valid conjunction/disjunction tree"); (void)ValidL; SDValue RHS = Val->getOperand(1); bool CanNegateR; bool MustBeFirstR; bool ValidR = canEmitConjunction(RHS, CanNegateR, MustBeFirstR, IsOR); assert(ValidR && "Valid conjunction/disjunction tree"); (void)ValidR; // Swap sub-tree that must come first to the right side. if (MustBeFirstL) { assert(!MustBeFirstR && "Valid conjunction/disjunction tree"); std::swap(LHS, RHS); std::swap(CanNegateL, CanNegateR); std::swap(MustBeFirstL, MustBeFirstR); } bool NegateR; bool NegateAfterR; bool NegateL; bool NegateAfterAll; if (Opcode == ISD::OR) { // Swap the sub-tree that we can negate naturally to the left. if (!CanNegateL) { assert(CanNegateR && "at least one side must be negatable"); assert(!MustBeFirstR && "invalid conjunction/disjunction tree"); assert(!Negate); std::swap(LHS, RHS); NegateR = false; NegateAfterR = true; } else { // Negate the left sub-tree if possible, otherwise negate the result. NegateR = CanNegateR; NegateAfterR = !CanNegateR; } NegateL = true; NegateAfterAll = !Negate; } else { assert(Opcode == ISD::AND && "Valid conjunction/disjunction tree"); assert(!Negate && "Valid conjunction/disjunction tree"); NegateL = false; NegateR = false; NegateAfterR = false; NegateAfterAll = false; } // Emit sub-trees. AArch64CC::CondCode RHSCC; SDValue CmpR = emitConjunctionRec(DAG, RHS, RHSCC, NegateR, CCOp, Predicate); if (NegateAfterR) RHSCC = AArch64CC::getInvertedCondCode(RHSCC); SDValue CmpL = emitConjunctionRec(DAG, LHS, OutCC, NegateL, CmpR, RHSCC); if (NegateAfterAll) OutCC = AArch64CC::getInvertedCondCode(OutCC); return CmpL; } /// Emit expression as a conjunction (a series of CCMP/CFCMP ops). /// In some cases this is even possible with OR operations in the expression. /// See \ref AArch64CCMP. /// \see emitConjunctionRec(). static SDValue emitConjunction(SelectionDAG &DAG, SDValue Val, AArch64CC::CondCode &OutCC) { bool DummyCanNegate; bool DummyMustBeFirst; if (!canEmitConjunction(Val, DummyCanNegate, DummyMustBeFirst, false)) return SDValue(); return emitConjunctionRec(DAG, Val, OutCC, false, SDValue(), AArch64CC::AL); } /// @} /// Returns how profitable it is to fold a comparison's operand's shift and/or /// extension operations. static unsigned getCmpOperandFoldingProfit(SDValue Op) { auto isSupportedExtend = [&](SDValue V) { if (V.getOpcode() == ISD::SIGN_EXTEND_INREG) return true; if (V.getOpcode() == ISD::AND) if (ConstantSDNode *MaskCst = dyn_cast(V.getOperand(1))) { uint64_t Mask = MaskCst->getZExtValue(); return (Mask == 0xFF || Mask == 0xFFFF || Mask == 0xFFFFFFFF); } return false; }; if (!Op.hasOneUse()) return 0; if (isSupportedExtend(Op)) return 1; unsigned Opc = Op.getOpcode(); if (Opc == ISD::SHL || Opc == ISD::SRL || Opc == ISD::SRA) if (ConstantSDNode *ShiftCst = dyn_cast(Op.getOperand(1))) { uint64_t Shift = ShiftCst->getZExtValue(); if (isSupportedExtend(Op.getOperand(0))) return (Shift <= 4) ? 2 : 1; EVT VT = Op.getValueType(); if ((VT == MVT::i32 && Shift <= 31) || (VT == MVT::i64 && Shift <= 63)) return 1; } return 0; } static SDValue getAArch64Cmp(SDValue LHS, SDValue RHS, ISD::CondCode CC, SDValue &AArch64cc, SelectionDAG &DAG, const SDLoc &dl) { if (ConstantSDNode *RHSC = dyn_cast(RHS.getNode())) { EVT VT = RHS.getValueType(); uint64_t C = RHSC->getZExtValue(); if (!isLegalArithImmed(C)) { // Constant does not fit, try adjusting it by one? switch (CC) { default: break; case ISD::SETLT: case ISD::SETGE: if ((VT == MVT::i32 && C != 0x80000000 && isLegalArithImmed((uint32_t)(C - 1))) || (VT == MVT::i64 && C != 0x80000000ULL && isLegalArithImmed(C - 1ULL))) { CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT; C = (VT == MVT::i32) ? (uint32_t)(C - 1) : C - 1; RHS = DAG.getConstant(C, dl, VT); } break; case ISD::SETULT: case ISD::SETUGE: if ((VT == MVT::i32 && C != 0 && isLegalArithImmed((uint32_t)(C - 1))) || (VT == MVT::i64 && C != 0ULL && isLegalArithImmed(C - 1ULL))) { CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT; C = (VT == MVT::i32) ? (uint32_t)(C - 1) : C - 1; RHS = DAG.getConstant(C, dl, VT); } break; case ISD::SETLE: case ISD::SETGT: if ((VT == MVT::i32 && C != INT32_MAX && isLegalArithImmed((uint32_t)(C + 1))) || (VT == MVT::i64 && C != INT64_MAX && isLegalArithImmed(C + 1ULL))) { CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE; C = (VT == MVT::i32) ? (uint32_t)(C + 1) : C + 1; RHS = DAG.getConstant(C, dl, VT); } break; case ISD::SETULE: case ISD::SETUGT: if ((VT == MVT::i32 && C != UINT32_MAX && isLegalArithImmed((uint32_t)(C + 1))) || (VT == MVT::i64 && C != UINT64_MAX && isLegalArithImmed(C + 1ULL))) { CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; C = (VT == MVT::i32) ? (uint32_t)(C + 1) : C + 1; RHS = DAG.getConstant(C, dl, VT); } break; } } } // Comparisons are canonicalized so that the RHS operand is simpler than the // LHS one, the extreme case being when RHS is an immediate. However, AArch64 // can fold some shift+extend operations on the RHS operand, so swap the // operands if that can be done. // // For example: // lsl w13, w11, #1 // cmp w13, w12 // can be turned into: // cmp w12, w11, lsl #1 if (!isa(RHS) || !isLegalArithImmed(RHS->getAsZExtVal())) { SDValue TheLHS = isCMN(LHS, CC) ? LHS.getOperand(1) : LHS; if (getCmpOperandFoldingProfit(TheLHS) > getCmpOperandFoldingProfit(RHS)) { std::swap(LHS, RHS); CC = ISD::getSetCCSwappedOperands(CC); } } SDValue Cmp; AArch64CC::CondCode AArch64CC; if ((CC == ISD::SETEQ || CC == ISD::SETNE) && isa(RHS)) { const ConstantSDNode *RHSC = cast(RHS); // The imm operand of ADDS is an unsigned immediate, in the range 0 to 4095. // For the i8 operand, the largest immediate is 255, so this can be easily // encoded in the compare instruction. For the i16 operand, however, the // largest immediate cannot be encoded in the compare. // Therefore, use a sign extending load and cmn to avoid materializing the // -1 constant. For example, // movz w1, #65535 // ldrh w0, [x0, #0] // cmp w0, w1 // > // ldrsh w0, [x0, #0] // cmn w0, #1 // Fundamental, we're relying on the property that (zext LHS) == (zext RHS) // if and only if (sext LHS) == (sext RHS). The checks are in place to // ensure both the LHS and RHS are truly zero extended and to make sure the // transformation is profitable. if ((RHSC->getZExtValue() >> 16 == 0) && isa(LHS) && cast(LHS)->getExtensionType() == ISD::ZEXTLOAD && cast(LHS)->getMemoryVT() == MVT::i16 && LHS.getNode()->hasNUsesOfValue(1, 0)) { int16_t ValueofRHS = RHS->getAsZExtVal(); if (ValueofRHS < 0 && isLegalArithImmed(-ValueofRHS)) { SDValue SExt = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, LHS.getValueType(), LHS, DAG.getValueType(MVT::i16)); Cmp = emitComparison(SExt, DAG.getConstant(ValueofRHS, dl, RHS.getValueType()), CC, dl, DAG); AArch64CC = changeIntCCToAArch64CC(CC); } } if (!Cmp && (RHSC->isZero() || RHSC->isOne())) { if ((Cmp = emitConjunction(DAG, LHS, AArch64CC))) { if ((CC == ISD::SETNE) ^ RHSC->isZero()) AArch64CC = AArch64CC::getInvertedCondCode(AArch64CC); } } } if (!Cmp) { Cmp = emitComparison(LHS, RHS, CC, dl, DAG); AArch64CC = changeIntCCToAArch64CC(CC); } AArch64cc = DAG.getConstant(AArch64CC, dl, MVT_CC); return Cmp; } static std::pair getAArch64XALUOOp(AArch64CC::CondCode &CC, SDValue Op, SelectionDAG &DAG) { assert((Op.getValueType() == MVT::i32 || Op.getValueType() == MVT::i64) && "Unsupported value type"); SDValue Value, Overflow; SDLoc DL(Op); SDValue LHS = Op.getOperand(0); SDValue RHS = Op.getOperand(1); unsigned Opc = 0; switch (Op.getOpcode()) { default: llvm_unreachable("Unknown overflow instruction!"); case ISD::SADDO: Opc = AArch64ISD::ADDS; CC = AArch64CC::VS; break; case ISD::UADDO: Opc = AArch64ISD::ADDS; CC = AArch64CC::HS; break; case ISD::SSUBO: Opc = AArch64ISD::SUBS; CC = AArch64CC::VS; break; case ISD::USUBO: Opc = AArch64ISD::SUBS; CC = AArch64CC::LO; break; // Multiply needs a little bit extra work. case ISD::SMULO: case ISD::UMULO: { CC = AArch64CC::NE; bool IsSigned = Op.getOpcode() == ISD::SMULO; if (Op.getValueType() == MVT::i32) { // Extend to 64-bits, then perform a 64-bit multiply. unsigned ExtendOpc = IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; LHS = DAG.getNode(ExtendOpc, DL, MVT::i64, LHS); RHS = DAG.getNode(ExtendOpc, DL, MVT::i64, RHS); SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, LHS, RHS); Value = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mul); // Check that the result fits into a 32-bit integer. SDVTList VTs = DAG.getVTList(MVT::i64, MVT_CC); if (IsSigned) { // cmp xreg, wreg, sxtw SDValue SExtMul = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Value); Overflow = DAG.getNode(AArch64ISD::SUBS, DL, VTs, Mul, SExtMul).getValue(1); } else { // tst xreg, #0xffffffff00000000 SDValue UpperBits = DAG.getConstant(0xFFFFFFFF00000000, DL, MVT::i64); Overflow = DAG.getNode(AArch64ISD::ANDS, DL, VTs, Mul, UpperBits).getValue(1); } break; } assert(Op.getValueType() == MVT::i64 && "Expected an i64 value type"); // For the 64 bit multiply Value = DAG.getNode(ISD::MUL, DL, MVT::i64, LHS, RHS); if (IsSigned) { SDValue UpperBits = DAG.getNode(ISD::MULHS, DL, MVT::i64, LHS, RHS); SDValue LowerBits = DAG.getNode(ISD::SRA, DL, MVT::i64, Value, DAG.getConstant(63, DL, MVT::i64)); // It is important that LowerBits is last, otherwise the arithmetic // shift will not be folded into the compare (SUBS). SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32); Overflow = DAG.getNode(AArch64ISD::SUBS, DL, VTs, UpperBits, LowerBits) .getValue(1); } else { SDValue UpperBits = DAG.getNode(ISD::MULHU, DL, MVT::i64, LHS, RHS); SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32); Overflow = DAG.getNode(AArch64ISD::SUBS, DL, VTs, DAG.getConstant(0, DL, MVT::i64), UpperBits).getValue(1); } break; } } // switch (...) if (Opc) { SDVTList VTs = DAG.getVTList(Op->getValueType(0), MVT::i32); // Emit the AArch64 operation with overflow check. Value = DAG.getNode(Opc, DL, VTs, LHS, RHS); Overflow = Value.getValue(1); } return std::make_pair(Value, Overflow); } SDValue AArch64TargetLowering::LowerXOR(SDValue Op, SelectionDAG &DAG) const { if (useSVEForFixedLengthVectorVT(Op.getValueType(), !Subtarget->isNeonAvailable())) return LowerToScalableOp(Op, DAG); SDValue Sel = Op.getOperand(0); SDValue Other = Op.getOperand(1); SDLoc dl(Sel); // If the operand is an overflow checking operation, invert the condition // code and kill the Not operation. I.e., transform: // (xor (overflow_op_bool, 1)) // --> // (csel 1, 0, invert(cc), overflow_op_bool) // ... which later gets transformed to just a cset instruction with an // inverted condition code, rather than a cset + eor sequence. if (isOneConstant(Other) && ISD::isOverflowIntrOpRes(Sel)) { // Only lower legal XALUO ops. if (!DAG.getTargetLoweringInfo().isTypeLegal(Sel->getValueType(0))) return SDValue(); SDValue TVal = DAG.getConstant(1, dl, MVT::i32); SDValue FVal = DAG.getConstant(0, dl, MVT::i32); AArch64CC::CondCode CC; SDValue Value, Overflow; std::tie(Value, Overflow) = getAArch64XALUOOp(CC, Sel.getValue(0), DAG); SDValue CCVal = DAG.getConstant(getInvertedCondCode(CC), dl, MVT::i32); return DAG.getNode(AArch64ISD::CSEL, dl, Op.getValueType(), TVal, FVal, CCVal, Overflow); } // If neither operand is a SELECT_CC, give up. if (Sel.getOpcode() != ISD::SELECT_CC) std::swap(Sel, Other); if (Sel.getOpcode() != ISD::SELECT_CC) return Op; // The folding we want to perform is: // (xor x, (select_cc a, b, cc, 0, -1) ) // --> // (csel x, (xor x, -1), cc ...) // // The latter will get matched to a CSINV instruction. ISD::CondCode CC = cast(Sel.getOperand(4))->get(); SDValue LHS = Sel.getOperand(0); SDValue RHS = Sel.getOperand(1); SDValue TVal = Sel.getOperand(2); SDValue FVal = Sel.getOperand(3); // FIXME: This could be generalized to non-integer comparisons. if (LHS.getValueType() != MVT::i32 && LHS.getValueType() != MVT::i64) return Op; ConstantSDNode *CFVal = dyn_cast(FVal); ConstantSDNode *CTVal = dyn_cast(TVal); // The values aren't constants, this isn't the pattern we're looking for. if (!CFVal || !CTVal) return Op; // We can commute the SELECT_CC by inverting the condition. This // might be needed to make this fit into a CSINV pattern. if (CTVal->isAllOnes() && CFVal->isZero()) { std::swap(TVal, FVal); std::swap(CTVal, CFVal); CC = ISD::getSetCCInverse(CC, LHS.getValueType()); } // If the constants line up, perform the transform! if (CTVal->isZero() && CFVal->isAllOnes()) { SDValue CCVal; SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl); FVal = Other; TVal = DAG.getNode(ISD::XOR, dl, Other.getValueType(), Other, DAG.getConstant(-1ULL, dl, Other.getValueType())); return DAG.getNode(AArch64ISD::CSEL, dl, Sel.getValueType(), FVal, TVal, CCVal, Cmp); } return Op; } // If Invert is false, sets 'C' bit of NZCV to 0 if value is 0, else sets 'C' // bit to 1. If Invert is true, sets 'C' bit of NZCV to 1 if value is 0, else // sets 'C' bit to 0. static SDValue valueToCarryFlag(SDValue Value, SelectionDAG &DAG, bool Invert) { SDLoc DL(Value); EVT VT = Value.getValueType(); SDValue Op0 = Invert ? DAG.getConstant(0, DL, VT) : Value; SDValue Op1 = Invert ? Value : DAG.getConstant(1, DL, VT); SDValue Cmp = DAG.getNode(AArch64ISD::SUBS, DL, DAG.getVTList(VT, MVT::Glue), Op0, Op1); return Cmp.getValue(1); } // If Invert is false, value is 1 if 'C' bit of NZCV is 1, else 0. // If Invert is true, value is 0 if 'C' bit of NZCV is 1, else 1. static SDValue carryFlagToValue(SDValue Glue, EVT VT, SelectionDAG &DAG, bool Invert) { assert(Glue.getResNo() == 1); SDLoc DL(Glue); SDValue Zero = DAG.getConstant(0, DL, VT); SDValue One = DAG.getConstant(1, DL, VT); unsigned Cond = Invert ? AArch64CC::LO : AArch64CC::HS; SDValue CC = DAG.getConstant(Cond, DL, MVT::i32); return DAG.getNode(AArch64ISD::CSEL, DL, VT, One, Zero, CC, Glue); } // Value is 1 if 'V' bit of NZCV is 1, else 0 static SDValue overflowFlagToValue(SDValue Glue, EVT VT, SelectionDAG &DAG) { assert(Glue.getResNo() == 1); SDLoc DL(Glue); SDValue Zero = DAG.getConstant(0, DL, VT); SDValue One = DAG.getConstant(1, DL, VT); SDValue CC = DAG.getConstant(AArch64CC::VS, DL, MVT::i32); return DAG.getNode(AArch64ISD::CSEL, DL, VT, One, Zero, CC, Glue); } // This lowering is inefficient, but it will get cleaned up by // `foldOverflowCheck` static SDValue lowerADDSUBO_CARRY(SDValue Op, SelectionDAG &DAG, unsigned Opcode, bool IsSigned) { EVT VT0 = Op.getValue(0).getValueType(); EVT VT1 = Op.getValue(1).getValueType(); if (VT0 != MVT::i32 && VT0 != MVT::i64) return SDValue(); bool InvertCarry = Opcode == AArch64ISD::SBCS; SDValue OpLHS = Op.getOperand(0); SDValue OpRHS = Op.getOperand(1); SDValue OpCarryIn = valueToCarryFlag(Op.getOperand(2), DAG, InvertCarry); SDLoc DL(Op); SDVTList VTs = DAG.getVTList(VT0, VT1); SDValue Sum = DAG.getNode(Opcode, DL, DAG.getVTList(VT0, MVT::Glue), OpLHS, OpRHS, OpCarryIn); SDValue OutFlag = IsSigned ? overflowFlagToValue(Sum.getValue(1), VT1, DAG) : carryFlagToValue(Sum.getValue(1), VT1, DAG, InvertCarry); return DAG.getNode(ISD::MERGE_VALUES, DL, VTs, Sum, OutFlag); } static SDValue LowerXALUO(SDValue Op, SelectionDAG &DAG) { // Let legalize expand this if it isn't a legal type yet. if (!DAG.getTargetLoweringInfo().isTypeLegal(Op.getValueType())) return SDValue(); SDLoc dl(Op); AArch64CC::CondCode CC; // The actual operation that sets the overflow or carry flag. SDValue Value, Overflow; std::tie(Value, Overflow) = getAArch64XALUOOp(CC, Op, DAG); // We use 0 and 1 as false and true values. SDValue TVal = DAG.getConstant(1, dl, MVT::i32); SDValue FVal = DAG.getConstant(0, dl, MVT::i32); // We use an inverted condition, because the conditional select is inverted // too. This will allow it to be selected to a single instruction: // CSINC Wd, WZR, WZR, invert(cond). SDValue CCVal = DAG.getConstant(getInvertedCondCode(CC), dl, MVT::i32); Overflow = DAG.getNode(AArch64ISD::CSEL, dl, MVT::i32, FVal, TVal, CCVal, Overflow); SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32); return DAG.getNode(ISD::MERGE_VALUES, dl, VTs, Value, Overflow); } // Prefetch operands are: // 1: Address to prefetch // 2: bool isWrite // 3: int locality (0 = no locality ... 3 = extreme locality) // 4: bool isDataCache static SDValue LowerPREFETCH(SDValue Op, SelectionDAG &DAG) { SDLoc DL(Op); unsigned IsWrite = Op.getConstantOperandVal(2); unsigned Locality = Op.getConstantOperandVal(3); unsigned IsData = Op.getConstantOperandVal(4); bool IsStream = !Locality; // When the locality number is set if (Locality) { // The front-end should have filtered out the out-of-range values assert(Locality <= 3 && "Prefetch locality out-of-range"); // The locality degree is the opposite of the cache speed. // Put the number the other way around. // The encoding starts at 0 for level 1 Locality = 3 - Locality; } // built the mask value encoding the expected behavior. unsigned PrfOp = (IsWrite << 4) | // Load/Store bit (!IsData << 3) | // IsDataCache bit (Locality << 1) | // Cache level bits (unsigned)IsStream; // Stream bit return DAG.getNode(AArch64ISD::PREFETCH, DL, MVT::Other, Op.getOperand(0), DAG.getTargetConstant(PrfOp, DL, MVT::i32), Op.getOperand(1)); } SDValue AArch64TargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const { EVT VT = Op.getValueType(); if (VT.isScalableVector()) return LowerToPredicatedOp(Op, DAG, AArch64ISD::FP_EXTEND_MERGE_PASSTHRU); if (useSVEForFixedLengthVectorVT(VT, !Subtarget->isNeonAvailable())) return LowerFixedLengthFPExtendToSVE(Op, DAG); assert(Op.getValueType() == MVT::f128 && "Unexpected lowering"); return SDValue(); } SDValue AArch64TargetLowering::LowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const { EVT VT = Op.getValueType(); if (VT.isScalableVector()) return LowerToPredicatedOp(Op, DAG, AArch64ISD::FP_ROUND_MERGE_PASSTHRU); bool IsStrict = Op->isStrictFPOpcode(); SDValue SrcVal = Op.getOperand(IsStrict ? 1 : 0); EVT SrcVT = SrcVal.getValueType(); bool Trunc = Op.getConstantOperandVal(IsStrict ? 2 : 1) == 1; if (useSVEForFixedLengthVectorVT(SrcVT, !Subtarget->isNeonAvailable())) return LowerFixedLengthFPRoundToSVE(Op, DAG); // Expand cases where the result type is BF16 but we don't have hardware // instructions to lower it. if (VT.getScalarType() == MVT::bf16 && !((Subtarget->hasNEON() || Subtarget->hasSME()) && Subtarget->hasBF16())) { SDLoc dl(Op); SDValue Narrow = SrcVal; SDValue NaN; EVT I32 = SrcVT.changeElementType(MVT::i32); EVT F32 = SrcVT.changeElementType(MVT::f32); if (SrcVT.getScalarType() == MVT::f32) { bool NeverSNaN = DAG.isKnownNeverSNaN(Narrow); Narrow = DAG.getNode(ISD::BITCAST, dl, I32, Narrow); if (!NeverSNaN) { // Set the quiet bit. NaN = DAG.getNode(ISD::OR, dl, I32, Narrow, DAG.getConstant(0x400000, dl, I32)); } } else if (SrcVT.getScalarType() == MVT::f64) { Narrow = DAG.getNode(AArch64ISD::FCVTXN, dl, F32, Narrow); Narrow = DAG.getNode(ISD::BITCAST, dl, I32, Narrow); } else { return SDValue(); } if (!Trunc) { SDValue One = DAG.getConstant(1, dl, I32); SDValue Lsb = DAG.getNode(ISD::SRL, dl, I32, Narrow, DAG.getShiftAmountConstant(16, I32, dl)); Lsb = DAG.getNode(ISD::AND, dl, I32, Lsb, One); SDValue RoundingBias = DAG.getNode(ISD::ADD, dl, I32, DAG.getConstant(0x7fff, dl, I32), Lsb); Narrow = DAG.getNode(ISD::ADD, dl, I32, Narrow, RoundingBias); } // Don't round if we had a NaN, we don't want to turn 0x7fffffff into // 0x80000000. if (NaN) { SDValue IsNaN = DAG.getSetCC( dl, getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT), SrcVal, SrcVal, ISD::SETUO); Narrow = DAG.getSelect(dl, I32, IsNaN, NaN, Narrow); } // Now that we have rounded, shift the bits into position. Narrow = DAG.getNode(ISD::SRL, dl, I32, Narrow, DAG.getShiftAmountConstant(16, I32, dl)); if (VT.isVector()) { EVT I16 = I32.changeVectorElementType(MVT::i16); Narrow = DAG.getNode(ISD::TRUNCATE, dl, I16, Narrow); return DAG.getNode(ISD::BITCAST, dl, VT, Narrow); } Narrow = DAG.getNode(ISD::BITCAST, dl, F32, Narrow); SDValue Result = DAG.getTargetExtractSubreg(AArch64::hsub, dl, VT, Narrow); return IsStrict ? DAG.getMergeValues({Result, Op.getOperand(0)}, dl) : Result; } if (SrcVT != MVT::f128) { // Expand cases where the input is a vector bigger than NEON. if (useSVEForFixedLengthVectorVT(SrcVT)) return SDValue(); // It's legal except when f128 is involved return Op; } return SDValue(); } SDValue AArch64TargetLowering::LowerVectorFP_TO_INT(SDValue Op, SelectionDAG &DAG) const { // Warning: We maintain cost tables in AArch64TargetTransformInfo.cpp. // Any additional optimization in this function should be recorded // in the cost tables. bool IsStrict = Op->isStrictFPOpcode(); EVT InVT = Op.getOperand(IsStrict ? 1 : 0).getValueType(); EVT VT = Op.getValueType(); if (VT.isScalableVector()) { unsigned Opcode = Op.getOpcode() == ISD::FP_TO_UINT ? AArch64ISD::FCVTZU_MERGE_PASSTHRU : AArch64ISD::FCVTZS_MERGE_PASSTHRU; return LowerToPredicatedOp(Op, DAG, Opcode); } if (useSVEForFixedLengthVectorVT(VT, !Subtarget->isNeonAvailable()) || useSVEForFixedLengthVectorVT(InVT, !Subtarget->isNeonAvailable())) return LowerFixedLengthFPToIntToSVE(Op, DAG); unsigned NumElts = InVT.getVectorNumElements(); // f16 conversions are promoted to f32 when full fp16 is not supported. if ((InVT.getVectorElementType() == MVT::f16 && !Subtarget->hasFullFP16()) || InVT.getVectorElementType() == MVT::bf16) { MVT NewVT = MVT::getVectorVT(MVT::f32, NumElts); SDLoc dl(Op); if (IsStrict) { SDValue Ext = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {NewVT, MVT::Other}, {Op.getOperand(0), Op.getOperand(1)}); return DAG.getNode(Op.getOpcode(), dl, {VT, MVT::Other}, {Ext.getValue(1), Ext.getValue(0)}); } return DAG.getNode( Op.getOpcode(), dl, Op.getValueType(), DAG.getNode(ISD::FP_EXTEND, dl, NewVT, Op.getOperand(0))); } uint64_t VTSize = VT.getFixedSizeInBits(); uint64_t InVTSize = InVT.getFixedSizeInBits(); if (VTSize < InVTSize) { SDLoc dl(Op); if (IsStrict) { InVT = InVT.changeVectorElementTypeToInteger(); SDValue Cv = DAG.getNode(Op.getOpcode(), dl, {InVT, MVT::Other}, {Op.getOperand(0), Op.getOperand(1)}); SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, VT, Cv); return DAG.getMergeValues({Trunc, Cv.getValue(1)}, dl); } SDValue Cv = DAG.getNode(Op.getOpcode(), dl, InVT.changeVectorElementTypeToInteger(), Op.getOperand(0)); return DAG.getNode(ISD::TRUNCATE, dl, VT, Cv); } if (VTSize > InVTSize) { SDLoc dl(Op); MVT ExtVT = MVT::getVectorVT(MVT::getFloatingPointVT(VT.getScalarSizeInBits()), VT.getVectorNumElements()); if (IsStrict) { SDValue Ext = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {ExtVT, MVT::Other}, {Op.getOperand(0), Op.getOperand(1)}); return DAG.getNode(Op.getOpcode(), dl, {VT, MVT::Other}, {Ext.getValue(1), Ext.getValue(0)}); } SDValue Ext = DAG.getNode(ISD::FP_EXTEND, dl, ExtVT, Op.getOperand(0)); return DAG.getNode(Op.getOpcode(), dl, VT, Ext); } // Use a scalar operation for conversions between single-element vectors of // the same size. if (NumElts == 1) { SDLoc dl(Op); SDValue Extract = DAG.getNode( ISD::EXTRACT_VECTOR_ELT, dl, InVT.getScalarType(), Op.getOperand(IsStrict ? 1 : 0), DAG.getConstant(0, dl, MVT::i64)); EVT ScalarVT = VT.getScalarType(); if (IsStrict) return DAG.getNode(Op.getOpcode(), dl, {ScalarVT, MVT::Other}, {Op.getOperand(0), Extract}); return DAG.getNode(Op.getOpcode(), dl, ScalarVT, Extract); } // Type changing conversions are illegal. return Op; } SDValue AArch64TargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) const { bool IsStrict = Op->isStrictFPOpcode(); SDValue SrcVal = Op.getOperand(IsStrict ? 1 : 0); if (SrcVal.getValueType().isVector()) return LowerVectorFP_TO_INT(Op, DAG); // f16 conversions are promoted to f32 when full fp16 is not supported. if ((SrcVal.getValueType() == MVT::f16 && !Subtarget->hasFullFP16()) || SrcVal.getValueType() == MVT::bf16) { SDLoc dl(Op); if (IsStrict) { SDValue Ext = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {MVT::f32, MVT::Other}, {Op.getOperand(0), SrcVal}); return DAG.getNode(Op.getOpcode(), dl, {Op.getValueType(), MVT::Other}, {Ext.getValue(1), Ext.getValue(0)}); } return DAG.getNode( Op.getOpcode(), dl, Op.getValueType(), DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, SrcVal)); } if (SrcVal.getValueType() != MVT::f128) { // It's legal except when f128 is involved return Op; } return SDValue(); } SDValue AArch64TargetLowering::LowerVectorFP_TO_INT_SAT(SDValue Op, SelectionDAG &DAG) const { // AArch64 FP-to-int conversions saturate to the destination element size, so // we can lower common saturating conversions to simple instructions. SDValue SrcVal = Op.getOperand(0); EVT SrcVT = SrcVal.getValueType(); EVT DstVT = Op.getValueType(); EVT SatVT = cast(Op.getOperand(1))->getVT(); uint64_t SrcElementWidth = SrcVT.getScalarSizeInBits(); uint64_t DstElementWidth = DstVT.getScalarSizeInBits(); uint64_t SatWidth = SatVT.getScalarSizeInBits(); assert(SatWidth <= DstElementWidth && "Saturation width cannot exceed result width"); // TODO: Consider lowering to SVE operations, as in LowerVectorFP_TO_INT. // Currently, the `llvm.fpto[su]i.sat.*` intrinsics don't accept scalable // types, so this is hard to reach. if (DstVT.isScalableVector()) return SDValue(); EVT SrcElementVT = SrcVT.getVectorElementType(); // In the absence of FP16 support, promote f16 to f32 and saturate the result. if ((SrcElementVT == MVT::f16 && (!Subtarget->hasFullFP16() || DstElementWidth > 16)) || SrcElementVT == MVT::bf16) { MVT F32VT = MVT::getVectorVT(MVT::f32, SrcVT.getVectorNumElements()); SrcVal = DAG.getNode(ISD::FP_EXTEND, SDLoc(Op), F32VT, SrcVal); SrcVT = F32VT; SrcElementVT = MVT::f32; SrcElementWidth = 32; } else if (SrcElementVT != MVT::f64 && SrcElementVT != MVT::f32 && SrcElementVT != MVT::f16 && SrcElementVT != MVT::bf16) return SDValue(); SDLoc DL(Op); // Cases that we can emit directly. if (SrcElementWidth == DstElementWidth && SrcElementWidth == SatWidth) return DAG.getNode(Op.getOpcode(), DL, DstVT, SrcVal, DAG.getValueType(DstVT.getScalarType())); // Otherwise we emit a cvt that saturates to a higher BW, and saturate the // result. This is only valid if the legal cvt is larger than the saturate // width. For double, as we don't have MIN/MAX, it can be simpler to scalarize // (at least until sqxtn is selected). if (SrcElementWidth < SatWidth || SrcElementVT == MVT::f64) return SDValue(); EVT IntVT = SrcVT.changeVectorElementTypeToInteger(); SDValue NativeCvt = DAG.getNode(Op.getOpcode(), DL, IntVT, SrcVal, DAG.getValueType(IntVT.getScalarType())); SDValue Sat; if (Op.getOpcode() == ISD::FP_TO_SINT_SAT) { SDValue MinC = DAG.getConstant( APInt::getSignedMaxValue(SatWidth).sext(SrcElementWidth), DL, IntVT); SDValue Min = DAG.getNode(ISD::SMIN, DL, IntVT, NativeCvt, MinC); SDValue MaxC = DAG.getConstant( APInt::getSignedMinValue(SatWidth).sext(SrcElementWidth), DL, IntVT); Sat = DAG.getNode(ISD::SMAX, DL, IntVT, Min, MaxC); } else { SDValue MinC = DAG.getConstant( APInt::getAllOnes(SatWidth).zext(SrcElementWidth), DL, IntVT); Sat = DAG.getNode(ISD::UMIN, DL, IntVT, NativeCvt, MinC); } return DAG.getNode(ISD::TRUNCATE, DL, DstVT, Sat); } SDValue AArch64TargetLowering::LowerFP_TO_INT_SAT(SDValue Op, SelectionDAG &DAG) const { // AArch64 FP-to-int conversions saturate to the destination register size, so // we can lower common saturating conversions to simple instructions. SDValue SrcVal = Op.getOperand(0); EVT SrcVT = SrcVal.getValueType(); if (SrcVT.isVector()) return LowerVectorFP_TO_INT_SAT(Op, DAG); EVT DstVT = Op.getValueType(); EVT SatVT = cast(Op.getOperand(1))->getVT(); uint64_t SatWidth = SatVT.getScalarSizeInBits(); uint64_t DstWidth = DstVT.getScalarSizeInBits(); assert(SatWidth <= DstWidth && "Saturation width cannot exceed result width"); // In the absence of FP16 support, promote f16 to f32 and saturate the result. if ((SrcVT == MVT::f16 && !Subtarget->hasFullFP16()) || SrcVT == MVT::bf16) { SrcVal = DAG.getNode(ISD::FP_EXTEND, SDLoc(Op), MVT::f32, SrcVal); SrcVT = MVT::f32; } else if (SrcVT != MVT::f64 && SrcVT != MVT::f32 && SrcVT != MVT::f16 && SrcVT != MVT::bf16) return SDValue(); SDLoc DL(Op); // Cases that we can emit directly. if ((SrcVT == MVT::f64 || SrcVT == MVT::f32 || (SrcVT == MVT::f16 && Subtarget->hasFullFP16())) && DstVT == SatVT && (DstVT == MVT::i64 || DstVT == MVT::i32)) return DAG.getNode(Op.getOpcode(), DL, DstVT, SrcVal, DAG.getValueType(DstVT)); // Otherwise we emit a cvt that saturates to a higher BW, and saturate the // result. This is only valid if the legal cvt is larger than the saturate // width. if (DstWidth < SatWidth) return SDValue(); SDValue NativeCvt = DAG.getNode(Op.getOpcode(), DL, DstVT, SrcVal, DAG.getValueType(DstVT)); SDValue Sat; if (Op.getOpcode() == ISD::FP_TO_SINT_SAT) { SDValue MinC = DAG.getConstant( APInt::getSignedMaxValue(SatWidth).sext(DstWidth), DL, DstVT); SDValue Min = DAG.getNode(ISD::SMIN, DL, DstVT, NativeCvt, MinC); SDValue MaxC = DAG.getConstant( APInt::getSignedMinValue(SatWidth).sext(DstWidth), DL, DstVT); Sat = DAG.getNode(ISD::SMAX, DL, DstVT, Min, MaxC); } else { SDValue MinC = DAG.getConstant( APInt::getAllOnes(SatWidth).zext(DstWidth), DL, DstVT); Sat = DAG.getNode(ISD::UMIN, DL, DstVT, NativeCvt, MinC); } return DAG.getNode(ISD::TRUNCATE, DL, DstVT, Sat); } SDValue AArch64TargetLowering::LowerVectorINT_TO_FP(SDValue Op, SelectionDAG &DAG) const { // Warning: We maintain cost tables in AArch64TargetTransformInfo.cpp. // Any additional optimization in this function should be recorded // in the cost tables. bool IsStrict = Op->isStrictFPOpcode(); EVT VT = Op.getValueType(); SDLoc dl(Op); SDValue In = Op.getOperand(IsStrict ? 1 : 0); EVT InVT = In.getValueType(); unsigned Opc = Op.getOpcode(); bool IsSigned = Opc == ISD::SINT_TO_FP || Opc == ISD::STRICT_SINT_TO_FP; if (VT.isScalableVector()) { if (InVT.getVectorElementType() == MVT::i1) { // We can't directly extend an SVE predicate; extend it first. unsigned CastOpc = IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; EVT CastVT = getPromotedVTForPredicate(InVT); In = DAG.getNode(CastOpc, dl, CastVT, In); return DAG.getNode(Opc, dl, VT, In); } unsigned Opcode = IsSigned ? AArch64ISD::SINT_TO_FP_MERGE_PASSTHRU : AArch64ISD::UINT_TO_FP_MERGE_PASSTHRU; return LowerToPredicatedOp(Op, DAG, Opcode); } if (useSVEForFixedLengthVectorVT(VT, !Subtarget->isNeonAvailable()) || useSVEForFixedLengthVectorVT(InVT, !Subtarget->isNeonAvailable())) return LowerFixedLengthIntToFPToSVE(Op, DAG); // Promote bf16 conversions to f32. if (VT.getVectorElementType() == MVT::bf16) { EVT F32 = VT.changeElementType(MVT::f32); if (IsStrict) { SDValue Val = DAG.getNode(Op.getOpcode(), dl, {F32, MVT::Other}, {Op.getOperand(0), In}); return DAG.getNode( ISD::STRICT_FP_ROUND, dl, {Op.getValueType(), MVT::Other}, {Val.getValue(1), Val.getValue(0), DAG.getIntPtrConstant(0, dl)}); } return DAG.getNode(ISD::FP_ROUND, dl, Op.getValueType(), DAG.getNode(Op.getOpcode(), dl, F32, In), DAG.getIntPtrConstant(0, dl)); } uint64_t VTSize = VT.getFixedSizeInBits(); uint64_t InVTSize = InVT.getFixedSizeInBits(); if (VTSize < InVTSize) { MVT CastVT = MVT::getVectorVT(MVT::getFloatingPointVT(InVT.getScalarSizeInBits()), InVT.getVectorNumElements()); if (IsStrict) { In = DAG.getNode(Opc, dl, {CastVT, MVT::Other}, {Op.getOperand(0), In}); return DAG.getNode( ISD::STRICT_FP_ROUND, dl, {VT, MVT::Other}, {In.getValue(1), In.getValue(0), DAG.getIntPtrConstant(0, dl)}); } In = DAG.getNode(Opc, dl, CastVT, In); return DAG.getNode(ISD::FP_ROUND, dl, VT, In, DAG.getIntPtrConstant(0, dl, /*isTarget=*/true)); } if (VTSize > InVTSize) { unsigned CastOpc = IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; EVT CastVT = VT.changeVectorElementTypeToInteger(); In = DAG.getNode(CastOpc, dl, CastVT, In); if (IsStrict) return DAG.getNode(Opc, dl, {VT, MVT::Other}, {Op.getOperand(0), In}); return DAG.getNode(Opc, dl, VT, In); } // Use a scalar operation for conversions between single-element vectors of // the same size. if (VT.getVectorNumElements() == 1) { SDValue Extract = DAG.getNode( ISD::EXTRACT_VECTOR_ELT, dl, InVT.getScalarType(), In, DAG.getConstant(0, dl, MVT::i64)); EVT ScalarVT = VT.getScalarType(); if (IsStrict) return DAG.getNode(Op.getOpcode(), dl, {ScalarVT, MVT::Other}, {Op.getOperand(0), Extract}); return DAG.getNode(Op.getOpcode(), dl, ScalarVT, Extract); } return Op; } SDValue AArch64TargetLowering::LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) const { if (Op.getValueType().isVector()) return LowerVectorINT_TO_FP(Op, DAG); bool IsStrict = Op->isStrictFPOpcode(); SDValue SrcVal = Op.getOperand(IsStrict ? 1 : 0); bool IsSigned = Op->getOpcode() == ISD::STRICT_SINT_TO_FP || Op->getOpcode() == ISD::SINT_TO_FP; auto IntToFpViaPromotion = [&](EVT PromoteVT) { SDLoc dl(Op); if (IsStrict) { SDValue Val = DAG.getNode(Op.getOpcode(), dl, {PromoteVT, MVT::Other}, {Op.getOperand(0), SrcVal}); return DAG.getNode( ISD::STRICT_FP_ROUND, dl, {Op.getValueType(), MVT::Other}, {Val.getValue(1), Val.getValue(0), DAG.getIntPtrConstant(0, dl)}); } return DAG.getNode(ISD::FP_ROUND, dl, Op.getValueType(), DAG.getNode(Op.getOpcode(), dl, PromoteVT, SrcVal), DAG.getIntPtrConstant(0, dl)); }; if (Op.getValueType() == MVT::bf16) { unsigned MaxWidth = IsSigned ? DAG.ComputeMaxSignificantBits(SrcVal) : DAG.computeKnownBits(SrcVal).countMaxActiveBits(); // bf16 conversions are promoted to f32 when converting from i16. if (MaxWidth <= 24) { return IntToFpViaPromotion(MVT::f32); } // bf16 conversions are promoted to f64 when converting from i32. if (MaxWidth <= 53) { return IntToFpViaPromotion(MVT::f64); } // We need to be careful about i64 -> bf16. // Consider an i32 22216703. // This number cannot be represented exactly as an f32 and so a itofp will // turn it into 22216704.0 fptrunc to bf16 will turn this into 22282240.0 // However, the correct bf16 was supposed to be 22151168.0 // We need to use sticky rounding to get this correct. if (SrcVal.getValueType() == MVT::i64) { SDLoc DL(Op); // This algorithm is equivalent to the following: // uint64_t SrcHi = SrcVal & ~0xfffull; // uint64_t SrcLo = SrcVal & 0xfffull; // uint64_t Highest = SrcVal >> 53; // bool HasHighest = Highest != 0; // uint64_t ToRound = HasHighest ? SrcHi : SrcVal; // double Rounded = static_cast(ToRound); // uint64_t RoundedBits = std::bit_cast(Rounded); // uint64_t HasLo = SrcLo != 0; // bool NeedsAdjustment = HasHighest & HasLo; // uint64_t AdjustedBits = RoundedBits | uint64_t{NeedsAdjustment}; // double Adjusted = std::bit_cast(AdjustedBits); // return static_cast<__bf16>(Adjusted); // // Essentially, what happens is that SrcVal either fits perfectly in a // double-precision value or it is too big. If it is sufficiently small, // we should just go u64 -> double -> bf16 in a naive way. Otherwise, we // ensure that u64 -> double has no rounding error by only using the 52 // MSB of the input. The low order bits will get merged into a sticky bit // which will avoid issues incurred by double rounding. // Signed conversion is more or less like so: // copysign((__bf16)abs(SrcVal), SrcVal) SDValue SignBit; if (IsSigned) { SignBit = DAG.getNode(ISD::AND, DL, MVT::i64, SrcVal, DAG.getConstant(1ull << 63, DL, MVT::i64)); SrcVal = DAG.getNode(ISD::ABS, DL, MVT::i64, SrcVal); } SDValue SrcHi = DAG.getNode(ISD::AND, DL, MVT::i64, SrcVal, DAG.getConstant(~0xfffull, DL, MVT::i64)); SDValue SrcLo = DAG.getNode(ISD::AND, DL, MVT::i64, SrcVal, DAG.getConstant(0xfffull, DL, MVT::i64)); SDValue Highest = DAG.getNode(ISD::SRL, DL, MVT::i64, SrcVal, DAG.getShiftAmountConstant(53, MVT::i64, DL)); SDValue Zero64 = DAG.getConstant(0, DL, MVT::i64); SDValue ToRound = DAG.getSelectCC(DL, Highest, Zero64, SrcHi, SrcVal, ISD::SETNE); SDValue Rounded = IsStrict ? DAG.getNode(Op.getOpcode(), DL, {MVT::f64, MVT::Other}, {Op.getOperand(0), ToRound}) : DAG.getNode(Op.getOpcode(), DL, MVT::f64, ToRound); SDValue RoundedBits = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Rounded); if (SignBit) { RoundedBits = DAG.getNode(ISD::OR, DL, MVT::i64, RoundedBits, SignBit); } SDValue HasHighest = DAG.getSetCC( DL, getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i64), Highest, Zero64, ISD::SETNE); SDValue HasLo = DAG.getSetCC( DL, getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i64), SrcLo, Zero64, ISD::SETNE); SDValue NeedsAdjustment = DAG.getNode(ISD::AND, DL, HasLo.getValueType(), HasHighest, HasLo); NeedsAdjustment = DAG.getZExtOrTrunc(NeedsAdjustment, DL, MVT::i64); SDValue AdjustedBits = DAG.getNode(ISD::OR, DL, MVT::i64, RoundedBits, NeedsAdjustment); SDValue Adjusted = DAG.getNode(ISD::BITCAST, DL, MVT::f64, AdjustedBits); return IsStrict ? DAG.getNode(ISD::STRICT_FP_ROUND, DL, {Op.getValueType(), MVT::Other}, {Rounded.getValue(1), Adjusted, DAG.getIntPtrConstant(0, DL)}) : DAG.getNode(ISD::FP_ROUND, DL, Op.getValueType(), Adjusted, DAG.getIntPtrConstant(0, DL, true)); } } // f16 conversions are promoted to f32 when full fp16 is not supported. if (Op.getValueType() == MVT::f16 && !Subtarget->hasFullFP16()) { return IntToFpViaPromotion(MVT::f32); } // i128 conversions are libcalls. if (SrcVal.getValueType() == MVT::i128) return SDValue(); // Other conversions are legal, unless it's to the completely software-based // fp128. if (Op.getValueType() != MVT::f128) return Op; return SDValue(); } SDValue AArch64TargetLowering::LowerFSINCOS(SDValue Op, SelectionDAG &DAG) const { // For iOS, we want to call an alternative entry point: __sincos_stret, // which returns the values in two S / D registers. SDLoc dl(Op); SDValue Arg = Op.getOperand(0); EVT ArgVT = Arg.getValueType(); Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); ArgListTy Args; ArgListEntry Entry; Entry.Node = Arg; Entry.Ty = ArgTy; Entry.IsSExt = false; Entry.IsZExt = false; Args.push_back(Entry); RTLIB::Libcall LC = ArgVT == MVT::f64 ? RTLIB::SINCOS_STRET_F64 : RTLIB::SINCOS_STRET_F32; const char *LibcallName = getLibcallName(LC); SDValue Callee = DAG.getExternalSymbol(LibcallName, getPointerTy(DAG.getDataLayout())); StructType *RetTy = StructType::get(ArgTy, ArgTy); TargetLowering::CallLoweringInfo CLI(DAG); CLI.setDebugLoc(dl) .setChain(DAG.getEntryNode()) .setLibCallee(CallingConv::Fast, RetTy, Callee, std::move(Args)); std::pair CallResult = LowerCallTo(CLI); return CallResult.first; } static MVT getSVEContainerType(EVT ContentTy); SDValue AArch64TargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const { EVT OpVT = Op.getValueType(); EVT ArgVT = Op.getOperand(0).getValueType(); if (useSVEForFixedLengthVectorVT(OpVT)) return LowerFixedLengthBitcastToSVE(Op, DAG); if (OpVT.isScalableVector()) { // Bitcasting between unpacked vector types of different element counts is // not a NOP because the live elements are laid out differently. // 01234567 // e.g. nxv2i32 = XX??XX?? // nxv4f16 = X?X?X?X? if (OpVT.getVectorElementCount() != ArgVT.getVectorElementCount()) return SDValue(); if (isTypeLegal(OpVT) && !isTypeLegal(ArgVT)) { assert(OpVT.isFloatingPoint() && !ArgVT.isFloatingPoint() && "Expected int->fp bitcast!"); SDValue ExtResult = DAG.getNode(ISD::ANY_EXTEND, SDLoc(Op), getSVEContainerType(ArgVT), Op.getOperand(0)); return getSVESafeBitCast(OpVT, ExtResult, DAG); } return getSVESafeBitCast(OpVT, Op.getOperand(0), DAG); } if (OpVT != MVT::f16 && OpVT != MVT::bf16) return SDValue(); // Bitcasts between f16 and bf16 are legal. if (ArgVT == MVT::f16 || ArgVT == MVT::bf16) return Op; assert(ArgVT == MVT::i16); SDLoc DL(Op); Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Op.getOperand(0)); Op = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Op); return DAG.getTargetExtractSubreg(AArch64::hsub, DL, OpVT, Op); } static EVT getExtensionTo64Bits(const EVT &OrigVT) { if (OrigVT.getSizeInBits() >= 64) return OrigVT; assert(OrigVT.isSimple() && "Expecting a simple value type"); MVT::SimpleValueType OrigSimpleTy = OrigVT.getSimpleVT().SimpleTy; switch (OrigSimpleTy) { default: llvm_unreachable("Unexpected Vector Type"); case MVT::v2i8: case MVT::v2i16: return MVT::v2i32; case MVT::v4i8: return MVT::v4i16; } } static SDValue addRequiredExtensionForVectorMULL(SDValue N, SelectionDAG &DAG, const EVT &OrigTy, const EVT &ExtTy, unsigned ExtOpcode) { // The vector originally had a size of OrigTy. It was then extended to ExtTy. // We expect the ExtTy to be 128-bits total. If the OrigTy is less than // 64-bits we need to insert a new extension so that it will be 64-bits. assert(ExtTy.is128BitVector() && "Unexpected extension size"); if (OrigTy.getSizeInBits() >= 64) return N; // Must extend size to at least 64 bits to be used as an operand for VMULL. EVT NewVT = getExtensionTo64Bits(OrigTy); return DAG.getNode(ExtOpcode, SDLoc(N), NewVT, N); } // Returns lane if Op extracts from a two-element vector and lane is constant // (i.e., extractelt(<2 x Ty> %v, ConstantLane)), and std::nullopt otherwise. static std::optional getConstantLaneNumOfExtractHalfOperand(SDValue &Op) { SDNode *OpNode = Op.getNode(); if (OpNode->getOpcode() != ISD::EXTRACT_VECTOR_ELT) return std::nullopt; EVT VT = OpNode->getOperand(0).getValueType(); ConstantSDNode *C = dyn_cast(OpNode->getOperand(1)); if (!VT.isFixedLengthVector() || VT.getVectorNumElements() != 2 || !C) return std::nullopt; return C->getZExtValue(); } static bool isExtendedBUILD_VECTOR(SDValue N, SelectionDAG &DAG, bool isSigned) { EVT VT = N.getValueType(); if (N.getOpcode() != ISD::BUILD_VECTOR) return false; for (const SDValue &Elt : N->op_values()) { if (ConstantSDNode *C = dyn_cast(Elt)) { unsigned EltSize = VT.getScalarSizeInBits(); unsigned HalfSize = EltSize / 2; if (isSigned) { if (!isIntN(HalfSize, C->getSExtValue())) return false; } else { if (!isUIntN(HalfSize, C->getZExtValue())) return false; } continue; } return false; } return true; } static SDValue skipExtensionForVectorMULL(SDValue N, SelectionDAG &DAG) { EVT VT = N.getValueType(); assert(VT.is128BitVector() && "Unexpected vector MULL size"); unsigned NumElts = VT.getVectorNumElements(); unsigned OrigEltSize = VT.getScalarSizeInBits(); unsigned EltSize = OrigEltSize / 2; MVT TruncVT = MVT::getVectorVT(MVT::getIntegerVT(EltSize), NumElts); APInt HiBits = APInt::getHighBitsSet(OrigEltSize, EltSize); if (DAG.MaskedValueIsZero(N, HiBits)) return DAG.getNode(ISD::TRUNCATE, SDLoc(N), TruncVT, N); if (ISD::isExtOpcode(N.getOpcode())) return addRequiredExtensionForVectorMULL(N.getOperand(0), DAG, N.getOperand(0).getValueType(), VT, N.getOpcode()); assert(N.getOpcode() == ISD::BUILD_VECTOR && "expected BUILD_VECTOR"); SDLoc dl(N); SmallVector Ops; for (unsigned i = 0; i != NumElts; ++i) { const APInt &CInt = N.getConstantOperandAPInt(i); // Element types smaller than 32 bits are not legal, so use i32 elements. // The values are implicitly truncated so sext vs. zext doesn't matter. Ops.push_back(DAG.getConstant(CInt.zextOrTrunc(32), dl, MVT::i32)); } return DAG.getBuildVector(TruncVT, dl, Ops); } static bool isSignExtended(SDValue N, SelectionDAG &DAG) { return N.getOpcode() == ISD::SIGN_EXTEND || N.getOpcode() == ISD::ANY_EXTEND || isExtendedBUILD_VECTOR(N, DAG, true); } static bool isZeroExtended(SDValue N, SelectionDAG &DAG) { return N.getOpcode() == ISD::ZERO_EXTEND || N.getOpcode() == ISD::ANY_EXTEND || isExtendedBUILD_VECTOR(N, DAG, false); } static bool isAddSubSExt(SDValue N, SelectionDAG &DAG) { unsigned Opcode = N.getOpcode(); if (Opcode == ISD::ADD || Opcode == ISD::SUB) { SDValue N0 = N.getOperand(0); SDValue N1 = N.getOperand(1); return N0->hasOneUse() && N1->hasOneUse() && isSignExtended(N0, DAG) && isSignExtended(N1, DAG); } return false; } static bool isAddSubZExt(SDValue N, SelectionDAG &DAG) { unsigned Opcode = N.getOpcode(); if (Opcode == ISD::ADD || Opcode == ISD::SUB) { SDValue N0 = N.getOperand(0); SDValue N1 = N.getOperand(1); return N0->hasOneUse() && N1->hasOneUse() && isZeroExtended(N0, DAG) && isZeroExtended(N1, DAG); } return false; } SDValue AArch64TargetLowering::LowerGET_ROUNDING(SDValue Op, SelectionDAG &DAG) const { // The rounding mode is in bits 23:22 of the FPSCR. // The ARM rounding mode value to FLT_ROUNDS mapping is 0->1, 1->2, 2->3, 3->0 // The formula we use to implement this is (((FPSCR + 1 << 22) >> 22) & 3) // so that the shift + and get folded into a bitfield extract. SDLoc dl(Op); SDValue Chain = Op.getOperand(0); SDValue FPCR_64 = DAG.getNode( ISD::INTRINSIC_W_CHAIN, dl, {MVT::i64, MVT::Other}, {Chain, DAG.getConstant(Intrinsic::aarch64_get_fpcr, dl, MVT::i64)}); Chain = FPCR_64.getValue(1); SDValue FPCR_32 = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, FPCR_64); SDValue FltRounds = DAG.getNode(ISD::ADD, dl, MVT::i32, FPCR_32, DAG.getConstant(1U << 22, dl, MVT::i32)); SDValue RMODE = DAG.getNode(ISD::SRL, dl, MVT::i32, FltRounds, DAG.getConstant(22, dl, MVT::i32)); SDValue AND = DAG.getNode(ISD::AND, dl, MVT::i32, RMODE, DAG.getConstant(3, dl, MVT::i32)); return DAG.getMergeValues({AND, Chain}, dl); } SDValue AArch64TargetLowering::LowerSET_ROUNDING(SDValue Op, SelectionDAG &DAG) const { SDLoc DL(Op); SDValue Chain = Op->getOperand(0); SDValue RMValue = Op->getOperand(1); // The rounding mode is in bits 23:22 of the FPCR. // The llvm.set.rounding argument value to the rounding mode in FPCR mapping // is 0->3, 1->0, 2->1, 3->2. The formula we use to implement this is // ((arg - 1) & 3) << 22). // // The argument of llvm.set.rounding must be within the segment [0, 3], so // NearestTiesToAway (4) is not handled here. It is responsibility of the code // generated llvm.set.rounding to ensure this condition. // Calculate new value of FPCR[23:22]. RMValue = DAG.getNode(ISD::SUB, DL, MVT::i32, RMValue, DAG.getConstant(1, DL, MVT::i32)); RMValue = DAG.getNode(ISD::AND, DL, MVT::i32, RMValue, DAG.getConstant(0x3, DL, MVT::i32)); RMValue = DAG.getNode(ISD::SHL, DL, MVT::i32, RMValue, DAG.getConstant(AArch64::RoundingBitsPos, DL, MVT::i32)); RMValue = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, RMValue); // Get current value of FPCR. SDValue Ops[] = { Chain, DAG.getTargetConstant(Intrinsic::aarch64_get_fpcr, DL, MVT::i64)}; SDValue FPCR = DAG.getNode(ISD::INTRINSIC_W_CHAIN, DL, {MVT::i64, MVT::Other}, Ops); Chain = FPCR.getValue(1); FPCR = FPCR.getValue(0); // Put new rounding mode into FPSCR[23:22]. const int RMMask = ~(AArch64::Rounding::rmMask << AArch64::RoundingBitsPos); FPCR = DAG.getNode(ISD::AND, DL, MVT::i64, FPCR, DAG.getConstant(RMMask, DL, MVT::i64)); FPCR = DAG.getNode(ISD::OR, DL, MVT::i64, FPCR, RMValue); SDValue Ops2[] = { Chain, DAG.getTargetConstant(Intrinsic::aarch64_set_fpcr, DL, MVT::i64), FPCR}; return DAG.getNode(ISD::INTRINSIC_VOID, DL, MVT::Other, Ops2); } static unsigned selectUmullSmull(SDValue &N0, SDValue &N1, SelectionDAG &DAG, SDLoc DL, bool &IsMLA) { bool IsN0SExt = isSignExtended(N0, DAG); bool IsN1SExt = isSignExtended(N1, DAG); if (IsN0SExt && IsN1SExt) return AArch64ISD::SMULL; bool IsN0ZExt = isZeroExtended(N0, DAG); bool IsN1ZExt = isZeroExtended(N1, DAG); if (IsN0ZExt && IsN1ZExt) return AArch64ISD::UMULL; // Select SMULL if we can replace zext with sext. if (((IsN0SExt && IsN1ZExt) || (IsN0ZExt && IsN1SExt)) && !isExtendedBUILD_VECTOR(N0, DAG, false) && !isExtendedBUILD_VECTOR(N1, DAG, false)) { SDValue ZextOperand; if (IsN0ZExt) ZextOperand = N0.getOperand(0); else ZextOperand = N1.getOperand(0); if (DAG.SignBitIsZero(ZextOperand)) { SDValue NewSext = DAG.getSExtOrTrunc(ZextOperand, DL, N0.getValueType()); if (IsN0ZExt) N0 = NewSext; else N1 = NewSext; return AArch64ISD::SMULL; } } // Select UMULL if we can replace the other operand with an extend. if (IsN0ZExt || IsN1ZExt) { EVT VT = N0.getValueType(); APInt Mask = APInt::getHighBitsSet(VT.getScalarSizeInBits(), VT.getScalarSizeInBits() / 2); if (DAG.MaskedValueIsZero(IsN0ZExt ? N1 : N0, Mask)) return AArch64ISD::UMULL; } if (!IsN1SExt && !IsN1ZExt) return 0; // Look for (s/zext A + s/zext B) * (s/zext C). We want to turn these // into (s/zext A * s/zext C) + (s/zext B * s/zext C) if (IsN1SExt && isAddSubSExt(N0, DAG)) { IsMLA = true; return AArch64ISD::SMULL; } if (IsN1ZExt && isAddSubZExt(N0, DAG)) { IsMLA = true; return AArch64ISD::UMULL; } if (IsN0ZExt && isAddSubZExt(N1, DAG)) { std::swap(N0, N1); IsMLA = true; return AArch64ISD::UMULL; } return 0; } SDValue AArch64TargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const { EVT VT = Op.getValueType(); bool OverrideNEON = !Subtarget->isNeonAvailable(); if (VT.isScalableVector() || useSVEForFixedLengthVectorVT(VT, OverrideNEON)) return LowerToPredicatedOp(Op, DAG, AArch64ISD::MUL_PRED); // Multiplications are only custom-lowered for 128-bit and 64-bit vectors so // that VMULL can be detected. Otherwise v2i64 multiplications are not legal. assert((VT.is128BitVector() || VT.is64BitVector()) && VT.isInteger() && "unexpected type for custom-lowering ISD::MUL"); SDValue N0 = Op.getOperand(0); SDValue N1 = Op.getOperand(1); bool isMLA = false; EVT OVT = VT; if (VT.is64BitVector()) { if (N0.getOpcode() == ISD::EXTRACT_SUBVECTOR && isNullConstant(N0.getOperand(1)) && N1.getOpcode() == ISD::EXTRACT_SUBVECTOR && isNullConstant(N1.getOperand(1))) { N0 = N0.getOperand(0); N1 = N1.getOperand(0); VT = N0.getValueType(); } else { if (VT == MVT::v1i64) { if (Subtarget->hasSVE()) return LowerToPredicatedOp(Op, DAG, AArch64ISD::MUL_PRED); // Fall through to expand this. It is not legal. return SDValue(); } else // Other vector multiplications are legal. return Op; } } SDLoc DL(Op); unsigned NewOpc = selectUmullSmull(N0, N1, DAG, DL, isMLA); if (!NewOpc) { if (VT.getVectorElementType() == MVT::i64) { // If SVE is available then i64 vector multiplications can also be made // legal. if (Subtarget->hasSVE()) return LowerToPredicatedOp(Op, DAG, AArch64ISD::MUL_PRED); // Fall through to expand this. It is not legal. return SDValue(); } else // Other vector multiplications are legal. return Op; } // Legalize to a S/UMULL instruction SDValue Op0; SDValue Op1 = skipExtensionForVectorMULL(N1, DAG); if (!isMLA) { Op0 = skipExtensionForVectorMULL(N0, DAG); assert(Op0.getValueType().is64BitVector() && Op1.getValueType().is64BitVector() && "unexpected types for extended operands to VMULL"); return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OVT, DAG.getNode(NewOpc, DL, VT, Op0, Op1), DAG.getConstant(0, DL, MVT::i64)); } // Optimizing (zext A + zext B) * C, to (S/UMULL A, C) + (S/UMULL B, C) during // isel lowering to take advantage of no-stall back to back s/umul + s/umla. // This is true for CPUs with accumulate forwarding such as Cortex-A53/A57 SDValue N00 = skipExtensionForVectorMULL(N0.getOperand(0), DAG); SDValue N01 = skipExtensionForVectorMULL(N0.getOperand(1), DAG); EVT Op1VT = Op1.getValueType(); return DAG.getNode( ISD::EXTRACT_SUBVECTOR, DL, OVT, DAG.getNode(N0.getOpcode(), DL, VT, DAG.getNode(NewOpc, DL, VT, DAG.getNode(ISD::BITCAST, DL, Op1VT, N00), Op1), DAG.getNode(NewOpc, DL, VT, DAG.getNode(ISD::BITCAST, DL, Op1VT, N01), Op1)), DAG.getConstant(0, DL, MVT::i64)); } static inline SDValue getPTrue(SelectionDAG &DAG, SDLoc DL, EVT VT, int Pattern) { if (VT == MVT::nxv1i1 && Pattern == AArch64SVEPredPattern::all) return DAG.getConstant(1, DL, MVT::nxv1i1); return DAG.getNode(AArch64ISD::PTRUE, DL, VT, DAG.getTargetConstant(Pattern, DL, MVT::i32)); } static SDValue optimizeWhile(SDValue Op, SelectionDAG &DAG, bool IsSigned, bool IsLess, bool IsEqual) { if (!isa(Op.getOperand(1)) || !isa(Op.getOperand(2))) return SDValue(); SDLoc dl(Op); APInt X = Op.getConstantOperandAPInt(1); APInt Y = Op.getConstantOperandAPInt(2); APInt NumActiveElems; bool Overflow; if (IsLess) NumActiveElems = IsSigned ? Y.ssub_ov(X, Overflow) : Y.usub_ov(X, Overflow); else NumActiveElems = IsSigned ? X.ssub_ov(Y, Overflow) : X.usub_ov(Y, Overflow); if (Overflow) return SDValue(); if (IsEqual) { APInt One(NumActiveElems.getBitWidth(), 1, IsSigned); NumActiveElems = IsSigned ? NumActiveElems.sadd_ov(One, Overflow) : NumActiveElems.uadd_ov(One, Overflow); if (Overflow) return SDValue(); } std::optional PredPattern = getSVEPredPatternFromNumElements(NumActiveElems.getZExtValue()); unsigned MinSVEVectorSize = std::max( DAG.getSubtarget().getMinSVEVectorSizeInBits(), 128u); unsigned ElementSize = 128 / Op.getValueType().getVectorMinNumElements(); if (PredPattern != std::nullopt && NumActiveElems.getZExtValue() <= (MinSVEVectorSize / ElementSize)) return getPTrue(DAG, dl, Op.getValueType(), *PredPattern); return SDValue(); } // Returns a safe bitcast between two scalable vector predicates, where // any newly created lanes from a widening bitcast are defined as zero. static SDValue getSVEPredicateBitCast(EVT VT, SDValue Op, SelectionDAG &DAG) { SDLoc DL(Op); EVT InVT = Op.getValueType(); assert(InVT.getVectorElementType() == MVT::i1 && VT.getVectorElementType() == MVT::i1 && "Expected a predicate-to-predicate bitcast"); assert(VT.isScalableVector() && DAG.getTargetLoweringInfo().isTypeLegal(VT) && InVT.isScalableVector() && DAG.getTargetLoweringInfo().isTypeLegal(InVT) && "Only expect to cast between legal scalable predicate types!"); // Return the operand if the cast isn't changing type, // e.g. -> if (InVT == VT) return Op; SDValue Reinterpret = DAG.getNode(AArch64ISD::REINTERPRET_CAST, DL, VT, Op); // We only have to zero the lanes if new lanes are being defined, e.g. when // casting from to . If this is not the // case (e.g. when casting from -> ) then // we can return here. if (InVT.bitsGT(VT)) return Reinterpret; // Check if the other lanes are already known to be zeroed by // construction. if (isZeroingInactiveLanes(Op)) return Reinterpret; // Zero the newly introduced lanes. SDValue Mask = DAG.getConstant(1, DL, InVT); Mask = DAG.getNode(AArch64ISD::REINTERPRET_CAST, DL, VT, Mask); return DAG.getNode(ISD::AND, DL, VT, Reinterpret, Mask); } SDValue AArch64TargetLowering::getRuntimePStateSM(SelectionDAG &DAG, SDValue Chain, SDLoc DL, EVT VT) const { SDValue Callee = DAG.getExternalSymbol("__arm_sme_state", getPointerTy(DAG.getDataLayout())); Type *Int64Ty = Type::getInt64Ty(*DAG.getContext()); Type *RetTy = StructType::get(Int64Ty, Int64Ty); TargetLowering::CallLoweringInfo CLI(DAG); ArgListTy Args; CLI.setDebugLoc(DL).setChain(Chain).setLibCallee( CallingConv::AArch64_SME_ABI_Support_Routines_PreserveMost_From_X2, RetTy, Callee, std::move(Args)); std::pair CallResult = LowerCallTo(CLI); SDValue Mask = DAG.getConstant(/*PSTATE.SM*/ 1, DL, MVT::i64); return DAG.getNode(ISD::AND, DL, MVT::i64, CallResult.first.getOperand(0), Mask); } // Lower an SME LDR/STR ZA intrinsic // Case 1: If the vector number (vecnum) is an immediate in range, it gets // folded into the instruction // ldr(%tileslice, %ptr, 11) -> ldr [%tileslice, 11], [%ptr, 11] // Case 2: If the vecnum is not an immediate, then it is used to modify the base // and tile slice registers // ldr(%tileslice, %ptr, %vecnum) // -> // %svl = rdsvl // %ptr2 = %ptr + %svl * %vecnum // %tileslice2 = %tileslice + %vecnum // ldr [%tileslice2, 0], [%ptr2, 0] // Case 3: If the vecnum is an immediate out of range, then the same is done as // case 2, but the base and slice registers are modified by the greatest // multiple of 15 lower than the vecnum and the remainder is folded into the // instruction. This means that successive loads and stores that are offset from // each other can share the same base and slice register updates. // ldr(%tileslice, %ptr, 22) // ldr(%tileslice, %ptr, 23) // -> // %svl = rdsvl // %ptr2 = %ptr + %svl * 15 // %tileslice2 = %tileslice + 15 // ldr [%tileslice2, 7], [%ptr2, 7] // ldr [%tileslice2, 8], [%ptr2, 8] // Case 4: If the vecnum is an add of an immediate, then the non-immediate // operand and the immediate can be folded into the instruction, like case 2. // ldr(%tileslice, %ptr, %vecnum + 7) // ldr(%tileslice, %ptr, %vecnum + 8) // -> // %svl = rdsvl // %ptr2 = %ptr + %svl * %vecnum // %tileslice2 = %tileslice + %vecnum // ldr [%tileslice2, 7], [%ptr2, 7] // ldr [%tileslice2, 8], [%ptr2, 8] // Case 5: The vecnum being an add of an immediate out of range is also handled, // in which case the same remainder logic as case 3 is used. SDValue LowerSMELdrStr(SDValue N, SelectionDAG &DAG, bool IsLoad) { SDLoc DL(N); SDValue TileSlice = N->getOperand(2); SDValue Base = N->getOperand(3); SDValue VecNum = N->getOperand(4); int32_t ConstAddend = 0; SDValue VarAddend = VecNum; // If the vnum is an add of an immediate, we can fold it into the instruction if (VecNum.getOpcode() == ISD::ADD && isa(VecNum.getOperand(1))) { ConstAddend = cast(VecNum.getOperand(1))->getSExtValue(); VarAddend = VecNum.getOperand(0); } else if (auto ImmNode = dyn_cast(VecNum)) { ConstAddend = ImmNode->getSExtValue(); VarAddend = SDValue(); } int32_t ImmAddend = ConstAddend % 16; if (int32_t C = (ConstAddend - ImmAddend)) { SDValue CVal = DAG.getTargetConstant(C, DL, MVT::i32); VarAddend = VarAddend ? DAG.getNode(ISD::ADD, DL, MVT::i32, {VarAddend, CVal}) : CVal; } if (VarAddend) { // Get the vector length that will be multiplied by vnum auto SVL = DAG.getNode(AArch64ISD::RDSVL, DL, MVT::i64, DAG.getConstant(1, DL, MVT::i32)); // Multiply SVL and vnum then add it to the base SDValue Mul = DAG.getNode( ISD::MUL, DL, MVT::i64, {SVL, DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, VarAddend)}); Base = DAG.getNode(ISD::ADD, DL, MVT::i64, {Base, Mul}); // Just add vnum to the tileslice TileSlice = DAG.getNode(ISD::ADD, DL, MVT::i32, {TileSlice, VarAddend}); } return DAG.getNode(IsLoad ? AArch64ISD::SME_ZA_LDR : AArch64ISD::SME_ZA_STR, DL, MVT::Other, {/*Chain=*/N.getOperand(0), TileSlice, Base, DAG.getTargetConstant(ImmAddend, DL, MVT::i32)}); } SDValue AArch64TargetLowering::LowerINTRINSIC_VOID(SDValue Op, SelectionDAG &DAG) const { unsigned IntNo = Op.getConstantOperandVal(1); SDLoc DL(Op); switch (IntNo) { default: return SDValue(); // Don't custom lower most intrinsics. case Intrinsic::aarch64_prefetch: { SDValue Chain = Op.getOperand(0); SDValue Addr = Op.getOperand(2); unsigned IsWrite = Op.getConstantOperandVal(3); unsigned Locality = Op.getConstantOperandVal(4); unsigned IsStream = Op.getConstantOperandVal(5); unsigned IsData = Op.getConstantOperandVal(6); unsigned PrfOp = (IsWrite << 4) | // Load/Store bit (!IsData << 3) | // IsDataCache bit (Locality << 1) | // Cache level bits (unsigned)IsStream; // Stream bit return DAG.getNode(AArch64ISD::PREFETCH, DL, MVT::Other, Chain, DAG.getTargetConstant(PrfOp, DL, MVT::i32), Addr); } case Intrinsic::aarch64_sme_str: case Intrinsic::aarch64_sme_ldr: { return LowerSMELdrStr(Op, DAG, IntNo == Intrinsic::aarch64_sme_ldr); } case Intrinsic::aarch64_sme_za_enable: return DAG.getNode( AArch64ISD::SMSTART, DL, MVT::Other, Op->getOperand(0), // Chain DAG.getTargetConstant((int32_t)(AArch64SVCR::SVCRZA), DL, MVT::i32), DAG.getConstant(AArch64SME::Always, DL, MVT::i64)); case Intrinsic::aarch64_sme_za_disable: return DAG.getNode( AArch64ISD::SMSTOP, DL, MVT::Other, Op->getOperand(0), // Chain DAG.getTargetConstant((int32_t)(AArch64SVCR::SVCRZA), DL, MVT::i32), DAG.getConstant(AArch64SME::Always, DL, MVT::i64)); } } SDValue AArch64TargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op, SelectionDAG &DAG) const { unsigned IntNo = Op.getConstantOperandVal(1); SDLoc DL(Op); switch (IntNo) { default: return SDValue(); // Don't custom lower most intrinsics. case Intrinsic::aarch64_mops_memset_tag: { auto Node = cast(Op.getNode()); SDValue Chain = Node->getChain(); SDValue Dst = Op.getOperand(2); SDValue Val = Op.getOperand(3); Val = DAG.getAnyExtOrTrunc(Val, DL, MVT::i64); SDValue Size = Op.getOperand(4); auto Alignment = Node->getMemOperand()->getAlign(); bool IsVol = Node->isVolatile(); auto DstPtrInfo = Node->getPointerInfo(); const auto &SDI = static_cast(DAG.getSelectionDAGInfo()); SDValue MS = SDI.EmitMOPS(AArch64ISD::MOPS_MEMSET_TAGGING, DAG, DL, Chain, Dst, Val, Size, Alignment, IsVol, DstPtrInfo, MachinePointerInfo{}); // MOPS_MEMSET_TAGGING has 3 results (DstWb, SizeWb, Chain) whereas the // intrinsic has 2. So hide SizeWb using MERGE_VALUES. Otherwise // LowerOperationWrapper will complain that the number of results has // changed. return DAG.getMergeValues({MS.getValue(0), MS.getValue(2)}, DL); } } } SDValue AArch64TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const { unsigned IntNo = Op.getConstantOperandVal(0); SDLoc dl(Op); switch (IntNo) { default: return SDValue(); // Don't custom lower most intrinsics. case Intrinsic::thread_pointer: { EVT PtrVT = getPointerTy(DAG.getDataLayout()); return DAG.getNode(AArch64ISD::THREAD_POINTER, dl, PtrVT); } case Intrinsic::aarch64_neon_abs: { EVT Ty = Op.getValueType(); if (Ty == MVT::i64) { SDValue Result = DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, Op.getOperand(1)); Result = DAG.getNode(ISD::ABS, dl, MVT::v1i64, Result); return DAG.getNode(ISD::BITCAST, dl, MVT::i64, Result); } else if (Ty.isVector() && Ty.isInteger() && isTypeLegal(Ty)) { return DAG.getNode(ISD::ABS, dl, Ty, Op.getOperand(1)); } else { report_fatal_error("Unexpected type for AArch64 NEON intrinic"); } } case Intrinsic::aarch64_neon_pmull64: { SDValue LHS = Op.getOperand(1); SDValue RHS = Op.getOperand(2); std::optional LHSLane = getConstantLaneNumOfExtractHalfOperand(LHS); std::optional RHSLane = getConstantLaneNumOfExtractHalfOperand(RHS); assert((!LHSLane || *LHSLane < 2) && "Expect lane to be None or 0 or 1"); assert((!RHSLane || *RHSLane < 2) && "Expect lane to be None or 0 or 1"); // 'aarch64_neon_pmull64' takes i64 parameters; while pmull/pmull2 // instructions execute on SIMD registers. So canonicalize i64 to v1i64, // which ISel recognizes better. For example, generate a ldr into d* // registers as opposed to a GPR load followed by a fmov. auto TryVectorizeOperand = [](SDValue N, std::optional NLane, std::optional OtherLane, const SDLoc &dl, SelectionDAG &DAG) -> SDValue { // If the operand is an higher half itself, rewrite it to // extract_high_v2i64; this way aarch64_neon_pmull64 could // re-use the dag-combiner function with aarch64_neon_{pmull,smull,umull}. if (NLane && *NLane == 1) return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v1i64, N.getOperand(0), DAG.getConstant(1, dl, MVT::i64)); // Operand N is not a higher half but the other operand is. if (OtherLane && *OtherLane == 1) { // If this operand is a lower half, rewrite it to // extract_high_v2i64(duplane(<2 x Ty>, 0)). This saves a roundtrip to // align lanes of two operands. A roundtrip sequence (to move from lane // 1 to lane 0) is like this: // mov x8, v0.d[1] // fmov d0, x8 if (NLane && *NLane == 0) return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v1i64, DAG.getNode(AArch64ISD::DUPLANE64, dl, MVT::v2i64, N.getOperand(0), DAG.getConstant(0, dl, MVT::i64)), DAG.getConstant(1, dl, MVT::i64)); // Otherwise just dup from main to all lanes. return DAG.getNode(AArch64ISD::DUP, dl, MVT::v1i64, N); } // Neither operand is an extract of higher half, so codegen may just use // the non-high version of PMULL instruction. Use v1i64 to represent i64. assert(N.getValueType() == MVT::i64 && "Intrinsic aarch64_neon_pmull64 requires i64 parameters"); return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, N); }; LHS = TryVectorizeOperand(LHS, LHSLane, RHSLane, dl, DAG); RHS = TryVectorizeOperand(RHS, RHSLane, LHSLane, dl, DAG); return DAG.getNode(AArch64ISD::PMULL, dl, Op.getValueType(), LHS, RHS); } case Intrinsic::aarch64_neon_smax: return DAG.getNode(ISD::SMAX, dl, Op.getValueType(), Op.getOperand(1), Op.getOperand(2)); case Intrinsic::aarch64_neon_umax: return DAG.getNode(ISD::UMAX, dl, Op.getValueType(), Op.getOperand(1), Op.getOperand(2)); case Intrinsic::aarch64_neon_smin: return DAG.getNode(ISD::SMIN, dl, Op.getValueType(), Op.getOperand(1), Op.getOperand(2)); case Intrinsic::aarch64_neon_umin: return DAG.getNode(ISD::UMIN, dl, Op.getValueType(), Op.getOperand(1), Op.getOperand(2)); case Intrinsic::aarch64_neon_scalar_sqxtn: case Intrinsic::aarch64_neon_scalar_sqxtun: case Intrinsic::aarch64_neon_scalar_uqxtn: { assert(Op.getValueType() == MVT::i32 || Op.getValueType() == MVT::f32); if (Op.getValueType() == MVT::i32) return DAG.getNode(ISD::BITCAST, dl, MVT::i32, DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::f32, Op.getOperand(0), DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op.getOperand(1)))); return SDValue(); } case Intrinsic::aarch64_sve_whilelo: return optimizeWhile(Op, DAG, /*IsSigned=*/false, /*IsLess=*/true, /*IsEqual=*/false); case Intrinsic::aarch64_sve_whilelt: return optimizeWhile(Op, DAG, /*IsSigned=*/true, /*IsLess=*/true, /*IsEqual=*/false); case Intrinsic::aarch64_sve_whilels: return optimizeWhile(Op, DAG, /*IsSigned=*/false, /*IsLess=*/true, /*IsEqual=*/true); case Intrinsic::aarch64_sve_whilele: return optimizeWhile(Op, DAG, /*IsSigned=*/true, /*IsLess=*/true, /*IsEqual=*/true); case Intrinsic::aarch64_sve_whilege: return optimizeWhile(Op, DAG, /*IsSigned=*/true, /*IsLess=*/false, /*IsEqual=*/true); case Intrinsic::aarch64_sve_whilegt: return optimizeWhile(Op, DAG, /*IsSigned=*/true, /*IsLess=*/false, /*IsEqual=*/false); case Intrinsic::aarch64_sve_whilehs: return optimizeWhile(Op, DAG, /*IsSigned=*/false, /*IsLess=*/false, /*IsEqual=*/true); case Intrinsic::aarch64_sve_whilehi: return optimizeWhile(Op, DAG, /*IsSigned=*/false, /*IsLess=*/false, /*IsEqual=*/false); case Intrinsic::aarch64_sve_sunpkhi: return DAG.getNode(AArch64ISD::SUNPKHI, dl, Op.getValueType(), Op.getOperand(1)); case Intrinsic::aarch64_sve_sunpklo: return DAG.getNode(AArch64ISD::SUNPKLO, dl, Op.getValueType(), Op.getOperand(1)); case Intrinsic::aarch64_sve_uunpkhi: return DAG.getNode(AArch64ISD::UUNPKHI, dl, Op.getValueType(), Op.getOperand(1)); case Intrinsic::aarch64_sve_uunpklo: return DAG.getNode(AArch64ISD::UUNPKLO, dl, Op.getValueType(), Op.getOperand(1)); case Intrinsic::aarch64_sve_clasta_n: return DAG.getNode(AArch64ISD::CLASTA_N, dl, Op.getValueType(), Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); case Intrinsic::aarch64_sve_clastb_n: return DAG.getNode(AArch64ISD::CLASTB_N, dl, Op.getValueType(), Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); case Intrinsic::aarch64_sve_lasta: return DAG.getNode(AArch64ISD::LASTA, dl, Op.getValueType(), Op.getOperand(1), Op.getOperand(2)); case Intrinsic::aarch64_sve_lastb: return DAG.getNode(AArch64ISD::LASTB, dl, Op.getValueType(), Op.getOperand(1), Op.getOperand(2)); case Intrinsic::aarch64_sve_rev: return DAG.getNode(ISD::VECTOR_REVERSE, dl, Op.getValueType(), Op.getOperand(1)); case Intrinsic::aarch64_sve_tbl: return DAG.getNode(AArch64ISD::TBL, dl, Op.getValueType(), Op.getOperand(1), Op.getOperand(2)); case Intrinsic::aarch64_sve_trn1: return DAG.getNode(AArch64ISD::TRN1, dl, Op.getValueType(), Op.getOperand(1), Op.getOperand(2)); case Intrinsic::aarch64_sve_trn2: return DAG.getNode(AArch64ISD::TRN2, dl, Op.getValueType(), Op.getOperand(1), Op.getOperand(2)); case Intrinsic::aarch64_sve_uzp1: return DAG.getNode(AArch64ISD::UZP1, dl, Op.getValueType(), Op.getOperand(1), Op.getOperand(2)); case Intrinsic::aarch64_sve_uzp2: return DAG.getNode(AArch64ISD::UZP2, dl, Op.getValueType(), Op.getOperand(1), Op.getOperand(2)); case Intrinsic::aarch64_sve_zip1: return DAG.getNode(AArch64ISD::ZIP1, dl, Op.getValueType(), Op.getOperand(1), Op.getOperand(2)); case Intrinsic::aarch64_sve_zip2: return DAG.getNode(AArch64ISD::ZIP2, dl, Op.getValueType(), Op.getOperand(1), Op.getOperand(2)); case Intrinsic::aarch64_sve_splice: return DAG.getNode(AArch64ISD::SPLICE, dl, Op.getValueType(), Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); case Intrinsic::aarch64_sve_ptrue: return getPTrue(DAG, dl, Op.getValueType(), Op.getConstantOperandVal(1)); case Intrinsic::aarch64_sve_clz: return DAG.getNode(AArch64ISD::CTLZ_MERGE_PASSTHRU, dl, Op.getValueType(), Op.getOperand(2), Op.getOperand(3), Op.getOperand(1)); case Intrinsic::aarch64_sme_cntsb: return DAG.getNode(AArch64ISD::RDSVL, dl, Op.getValueType(), DAG.getConstant(1, dl, MVT::i32)); case Intrinsic::aarch64_sme_cntsh: { SDValue One = DAG.getConstant(1, dl, MVT::i32); SDValue Bytes = DAG.getNode(AArch64ISD::RDSVL, dl, Op.getValueType(), One); return DAG.getNode(ISD::SRL, dl, Op.getValueType(), Bytes, One); } case Intrinsic::aarch64_sme_cntsw: { SDValue Bytes = DAG.getNode(AArch64ISD::RDSVL, dl, Op.getValueType(), DAG.getConstant(1, dl, MVT::i32)); return DAG.getNode(ISD::SRL, dl, Op.getValueType(), Bytes, DAG.getConstant(2, dl, MVT::i32)); } case Intrinsic::aarch64_sme_cntsd: { SDValue Bytes = DAG.getNode(AArch64ISD::RDSVL, dl, Op.getValueType(), DAG.getConstant(1, dl, MVT::i32)); return DAG.getNode(ISD::SRL, dl, Op.getValueType(), Bytes, DAG.getConstant(3, dl, MVT::i32)); } case Intrinsic::aarch64_sve_cnt: { SDValue Data = Op.getOperand(3); // CTPOP only supports integer operands. if (Data.getValueType().isFloatingPoint()) Data = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Data); return DAG.getNode(AArch64ISD::CTPOP_MERGE_PASSTHRU, dl, Op.getValueType(), Op.getOperand(2), Data, Op.getOperand(1)); } case Intrinsic::aarch64_sve_dupq_lane: return LowerDUPQLane(Op, DAG); case Intrinsic::aarch64_sve_convert_from_svbool: if (Op.getValueType() == MVT::aarch64svcount) return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Op.getOperand(1)); return getSVEPredicateBitCast(Op.getValueType(), Op.getOperand(1), DAG); case Intrinsic::aarch64_sve_convert_to_svbool: if (Op.getOperand(1).getValueType() == MVT::aarch64svcount) return DAG.getNode(ISD::BITCAST, dl, MVT::nxv16i1, Op.getOperand(1)); return getSVEPredicateBitCast(MVT::nxv16i1, Op.getOperand(1), DAG); case Intrinsic::aarch64_sve_fneg: return DAG.getNode(AArch64ISD::FNEG_MERGE_PASSTHRU, dl, Op.getValueType(), Op.getOperand(2), Op.getOperand(3), Op.getOperand(1)); case Intrinsic::aarch64_sve_frintp: return DAG.getNode(AArch64ISD::FCEIL_MERGE_PASSTHRU, dl, Op.getValueType(), Op.getOperand(2), Op.getOperand(3), Op.getOperand(1)); case Intrinsic::aarch64_sve_frintm: return DAG.getNode(AArch64ISD::FFLOOR_MERGE_PASSTHRU, dl, Op.getValueType(), Op.getOperand(2), Op.getOperand(3), Op.getOperand(1)); case Intrinsic::aarch64_sve_frinti: return DAG.getNode(AArch64ISD::FNEARBYINT_MERGE_PASSTHRU, dl, Op.getValueType(), Op.getOperand(2), Op.getOperand(3), Op.getOperand(1)); case Intrinsic::aarch64_sve_frintx: return DAG.getNode(AArch64ISD::FRINT_MERGE_PASSTHRU, dl, Op.getValueType(), Op.getOperand(2), Op.getOperand(3), Op.getOperand(1)); case Intrinsic::aarch64_sve_frinta: return DAG.getNode(AArch64ISD::FROUND_MERGE_PASSTHRU, dl, Op.getValueType(), Op.getOperand(2), Op.getOperand(3), Op.getOperand(1)); case Intrinsic::aarch64_sve_frintn: return DAG.getNode(AArch64ISD::FROUNDEVEN_MERGE_PASSTHRU, dl, Op.getValueType(), Op.getOperand(2), Op.getOperand(3), Op.getOperand(1)); case Intrinsic::aarch64_sve_frintz: return DAG.getNode(AArch64ISD::FTRUNC_MERGE_PASSTHRU, dl, Op.getValueType(), Op.getOperand(2), Op.getOperand(3), Op.getOperand(1)); case Intrinsic::aarch64_sve_ucvtf: return DAG.getNode(AArch64ISD::UINT_TO_FP_MERGE_PASSTHRU, dl, Op.getValueType(), Op.getOperand(2), Op.getOperand(3), Op.getOperand(1)); case Intrinsic::aarch64_sve_scvtf: return DAG.getNode(AArch64ISD::SINT_TO_FP_MERGE_PASSTHRU, dl, Op.getValueType(), Op.getOperand(2), Op.getOperand(3), Op.getOperand(1)); case Intrinsic::aarch64_sve_fcvtzu: return DAG.getNode(AArch64ISD::FCVTZU_MERGE_PASSTHRU, dl, Op.getValueType(), Op.getOperand(2), Op.getOperand(3), Op.getOperand(1)); case Intrinsic::aarch64_sve_fcvtzs: return DAG.getNode(AArch64ISD::FCVTZS_MERGE_PASSTHRU, dl, Op.getValueType(), Op.getOperand(2), Op.getOperand(3), Op.getOperand(1)); case Intrinsic::aarch64_sve_fsqrt: return DAG.getNode(AArch64ISD::FSQRT_MERGE_PASSTHRU, dl, Op.getValueType(), Op.getOperand(2), Op.getOperand(3), Op.getOperand(1)); case Intrinsic::aarch64_sve_frecpx: return DAG.getNode(AArch64ISD::FRECPX_MERGE_PASSTHRU, dl, Op.getValueType(), Op.getOperand(2), Op.getOperand(3), Op.getOperand(1)); case Intrinsic::aarch64_sve_frecpe_x: return DAG.getNode(AArch64ISD::FRECPE, dl, Op.getValueType(), Op.getOperand(1)); case Intrinsic::aarch64_sve_frecps_x: return DAG.getNode(AArch64ISD::FRECPS, dl, Op.getValueType(), Op.getOperand(1), Op.getOperand(2)); case Intrinsic::aarch64_sve_frsqrte_x: return DAG.getNode(AArch64ISD::FRSQRTE, dl, Op.getValueType(), Op.getOperand(1)); case Intrinsic::aarch64_sve_frsqrts_x: return DAG.getNode(AArch64ISD::FRSQRTS, dl, Op.getValueType(), Op.getOperand(1), Op.getOperand(2)); case Intrinsic::aarch64_sve_fabs: return DAG.getNode(AArch64ISD::FABS_MERGE_PASSTHRU, dl, Op.getValueType(), Op.getOperand(2), Op.getOperand(3), Op.getOperand(1)); case Intrinsic::aarch64_sve_abs: return DAG.getNode(AArch64ISD::ABS_MERGE_PASSTHRU, dl, Op.getValueType(), Op.getOperand(2), Op.getOperand(3), Op.getOperand(1)); case Intrinsic::aarch64_sve_neg: return DAG.getNode(AArch64ISD::NEG_MERGE_PASSTHRU, dl, Op.getValueType(), Op.getOperand(2), Op.getOperand(3), Op.getOperand(1)); case Intrinsic::aarch64_sve_insr: { SDValue Scalar = Op.getOperand(2); EVT ScalarTy = Scalar.getValueType(); if ((ScalarTy == MVT::i8) || (ScalarTy == MVT::i16)) Scalar = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Scalar); return DAG.getNode(AArch64ISD::INSR, dl, Op.getValueType(), Op.getOperand(1), Scalar); } case Intrinsic::aarch64_sve_rbit: return DAG.getNode(AArch64ISD::BITREVERSE_MERGE_PASSTHRU, dl, Op.getValueType(), Op.getOperand(2), Op.getOperand(3), Op.getOperand(1)); case Intrinsic::aarch64_sve_revb: return DAG.getNode(AArch64ISD::BSWAP_MERGE_PASSTHRU, dl, Op.getValueType(), Op.getOperand(2), Op.getOperand(3), Op.getOperand(1)); case Intrinsic::aarch64_sve_revh: return DAG.getNode(AArch64ISD::REVH_MERGE_PASSTHRU, dl, Op.getValueType(), Op.getOperand(2), Op.getOperand(3), Op.getOperand(1)); case Intrinsic::aarch64_sve_revw: return DAG.getNode(AArch64ISD::REVW_MERGE_PASSTHRU, dl, Op.getValueType(), Op.getOperand(2), Op.getOperand(3), Op.getOperand(1)); case Intrinsic::aarch64_sve_revd: return DAG.getNode(AArch64ISD::REVD_MERGE_PASSTHRU, dl, Op.getValueType(), Op.getOperand(2), Op.getOperand(3), Op.getOperand(1)); case Intrinsic::aarch64_sve_sxtb: return DAG.getNode( AArch64ISD::SIGN_EXTEND_INREG_MERGE_PASSTHRU, dl, Op.getValueType(), Op.getOperand(2), Op.getOperand(3), DAG.getValueType(Op.getValueType().changeVectorElementType(MVT::i8)), Op.getOperand(1)); case Intrinsic::aarch64_sve_sxth: return DAG.getNode( AArch64ISD::SIGN_EXTEND_INREG_MERGE_PASSTHRU, dl, Op.getValueType(), Op.getOperand(2), Op.getOperand(3), DAG.getValueType(Op.getValueType().changeVectorElementType(MVT::i16)), Op.getOperand(1)); case Intrinsic::aarch64_sve_sxtw: return DAG.getNode( AArch64ISD::SIGN_EXTEND_INREG_MERGE_PASSTHRU, dl, Op.getValueType(), Op.getOperand(2), Op.getOperand(3), DAG.getValueType(Op.getValueType().changeVectorElementType(MVT::i32)), Op.getOperand(1)); case Intrinsic::aarch64_sve_uxtb: return DAG.getNode( AArch64ISD::ZERO_EXTEND_INREG_MERGE_PASSTHRU, dl, Op.getValueType(), Op.getOperand(2), Op.getOperand(3), DAG.getValueType(Op.getValueType().changeVectorElementType(MVT::i8)), Op.getOperand(1)); case Intrinsic::aarch64_sve_uxth: return DAG.getNode( AArch64ISD::ZERO_EXTEND_INREG_MERGE_PASSTHRU, dl, Op.getValueType(), Op.getOperand(2), Op.getOperand(3), DAG.getValueType(Op.getValueType().changeVectorElementType(MVT::i16)), Op.getOperand(1)); case Intrinsic::aarch64_sve_uxtw: return DAG.getNode( AArch64ISD::ZERO_EXTEND_INREG_MERGE_PASSTHRU, dl, Op.getValueType(), Op.getOperand(2), Op.getOperand(3), DAG.getValueType(Op.getValueType().changeVectorElementType(MVT::i32)), Op.getOperand(1)); case Intrinsic::localaddress: { const auto &MF = DAG.getMachineFunction(); const auto *RegInfo = Subtarget->getRegisterInfo(); unsigned Reg = RegInfo->getLocalAddressRegister(MF); return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, Op.getSimpleValueType()); } case Intrinsic::eh_recoverfp: { // FIXME: This needs to be implemented to correctly handle highly aligned // stack objects. For now we simply return the incoming FP. Refer D53541 // for more details. SDValue FnOp = Op.getOperand(1); SDValue IncomingFPOp = Op.getOperand(2); GlobalAddressSDNode *GSD = dyn_cast(FnOp); auto *Fn = dyn_cast_or_null(GSD ? GSD->getGlobal() : nullptr); if (!Fn) report_fatal_error( "llvm.eh.recoverfp must take a function as the first argument"); return IncomingFPOp; } case Intrinsic::aarch64_neon_vsri: case Intrinsic::aarch64_neon_vsli: case Intrinsic::aarch64_sve_sri: case Intrinsic::aarch64_sve_sli: { EVT Ty = Op.getValueType(); if (!Ty.isVector()) report_fatal_error("Unexpected type for aarch64_neon_vsli"); assert(Op.getConstantOperandVal(3) <= Ty.getScalarSizeInBits()); bool IsShiftRight = IntNo == Intrinsic::aarch64_neon_vsri || IntNo == Intrinsic::aarch64_sve_sri; unsigned Opcode = IsShiftRight ? AArch64ISD::VSRI : AArch64ISD::VSLI; return DAG.getNode(Opcode, dl, Ty, Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); } case Intrinsic::aarch64_neon_srhadd: case Intrinsic::aarch64_neon_urhadd: case Intrinsic::aarch64_neon_shadd: case Intrinsic::aarch64_neon_uhadd: { bool IsSignedAdd = (IntNo == Intrinsic::aarch64_neon_srhadd || IntNo == Intrinsic::aarch64_neon_shadd); bool IsRoundingAdd = (IntNo == Intrinsic::aarch64_neon_srhadd || IntNo == Intrinsic::aarch64_neon_urhadd); unsigned Opcode = IsSignedAdd ? (IsRoundingAdd ? ISD::AVGCEILS : ISD::AVGFLOORS) : (IsRoundingAdd ? ISD::AVGCEILU : ISD::AVGFLOORU); return DAG.getNode(Opcode, dl, Op.getValueType(), Op.getOperand(1), Op.getOperand(2)); } case Intrinsic::aarch64_neon_saddlp: case Intrinsic::aarch64_neon_uaddlp: { unsigned Opcode = IntNo == Intrinsic::aarch64_neon_uaddlp ? AArch64ISD::UADDLP : AArch64ISD::SADDLP; return DAG.getNode(Opcode, dl, Op.getValueType(), Op.getOperand(1)); } case Intrinsic::aarch64_neon_sdot: case Intrinsic::aarch64_neon_udot: case Intrinsic::aarch64_sve_sdot: case Intrinsic::aarch64_sve_udot: { unsigned Opcode = (IntNo == Intrinsic::aarch64_neon_udot || IntNo == Intrinsic::aarch64_sve_udot) ? AArch64ISD::UDOT : AArch64ISD::SDOT; return DAG.getNode(Opcode, dl, Op.getValueType(), Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); } case Intrinsic::get_active_lane_mask: { SDValue ID = DAG.getTargetConstant(Intrinsic::aarch64_sve_whilelo, dl, MVT::i64); return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, Op.getValueType(), ID, Op.getOperand(1), Op.getOperand(2)); } case Intrinsic::aarch64_neon_uaddlv: { EVT OpVT = Op.getOperand(1).getValueType(); EVT ResVT = Op.getValueType(); if (ResVT == MVT::i32 && (OpVT == MVT::v8i8 || OpVT == MVT::v16i8 || OpVT == MVT::v8i16 || OpVT == MVT::v4i16)) { // In order to avoid insert_subvector, used v4i32 than v2i32. SDValue UADDLV = DAG.getNode(AArch64ISD::UADDLV, dl, MVT::v4i32, Op.getOperand(1)); SDValue EXTRACT_VEC_ELT = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32, UADDLV, DAG.getConstant(0, dl, MVT::i64)); return EXTRACT_VEC_ELT; } return SDValue(); } case Intrinsic::experimental_cttz_elts: { SDValue NewCttzElts = DAG.getNode(AArch64ISD::CTTZ_ELTS, dl, MVT::i64, Op.getOperand(1)); return DAG.getZExtOrTrunc(NewCttzElts, dl, Op.getValueType()); } } } bool AArch64TargetLowering::shouldExtendGSIndex(EVT VT, EVT &EltTy) const { if (VT.getVectorElementType() == MVT::i8 || VT.getVectorElementType() == MVT::i16) { EltTy = MVT::i32; return true; } return false; } bool AArch64TargetLowering::shouldRemoveExtendFromGSIndex(SDValue Extend, EVT DataVT) const { const EVT IndexVT = Extend.getOperand(0).getValueType(); // SVE only supports implicit extension of 32-bit indices. if (!Subtarget->hasSVE() || IndexVT.getVectorElementType() != MVT::i32) return false; // Indices cannot be smaller than the main data type. if (IndexVT.getScalarSizeInBits() < DataVT.getScalarSizeInBits()) return false; // Scalable vectors with "vscale * 2" or fewer elements sit within a 64-bit // element container type, which would violate the previous clause. return DataVT.isFixedLengthVector() || DataVT.getVectorMinNumElements() > 2; } bool AArch64TargetLowering::isVectorLoadExtDesirable(SDValue ExtVal) const { EVT ExtVT = ExtVal.getValueType(); if (!ExtVT.isScalableVector() && !Subtarget->useSVEForFixedLengthVectors()) return false; // It may be worth creating extending masked loads if there are multiple // masked loads using the same predicate. That way we'll end up creating // extending masked loads that may then get split by the legaliser. This // results in just one set of predicate unpacks at the start, instead of // multiple sets of vector unpacks after each load. if (auto *Ld = dyn_cast(ExtVal->getOperand(0))) { if (!isLoadExtLegalOrCustom(ISD::ZEXTLOAD, ExtVT, Ld->getValueType(0))) { // Disable extending masked loads for fixed-width for now, since the code // quality doesn't look great. if (!ExtVT.isScalableVector()) return false; unsigned NumExtMaskedLoads = 0; for (auto *U : Ld->getMask()->uses()) if (isa(U)) NumExtMaskedLoads++; if (NumExtMaskedLoads <= 1) return false; } } return true; } unsigned getGatherVecOpcode(bool IsScaled, bool IsSigned, bool NeedsExtend) { std::map, unsigned> AddrModes = { {std::make_tuple(/*Scaled*/ false, /*Signed*/ false, /*Extend*/ false), AArch64ISD::GLD1_MERGE_ZERO}, {std::make_tuple(/*Scaled*/ false, /*Signed*/ false, /*Extend*/ true), AArch64ISD::GLD1_UXTW_MERGE_ZERO}, {std::make_tuple(/*Scaled*/ false, /*Signed*/ true, /*Extend*/ false), AArch64ISD::GLD1_MERGE_ZERO}, {std::make_tuple(/*Scaled*/ false, /*Signed*/ true, /*Extend*/ true), AArch64ISD::GLD1_SXTW_MERGE_ZERO}, {std::make_tuple(/*Scaled*/ true, /*Signed*/ false, /*Extend*/ false), AArch64ISD::GLD1_SCALED_MERGE_ZERO}, {std::make_tuple(/*Scaled*/ true, /*Signed*/ false, /*Extend*/ true), AArch64ISD::GLD1_UXTW_SCALED_MERGE_ZERO}, {std::make_tuple(/*Scaled*/ true, /*Signed*/ true, /*Extend*/ false), AArch64ISD::GLD1_SCALED_MERGE_ZERO}, {std::make_tuple(/*Scaled*/ true, /*Signed*/ true, /*Extend*/ true), AArch64ISD::GLD1_SXTW_SCALED_MERGE_ZERO}, }; auto Key = std::make_tuple(IsScaled, IsSigned, NeedsExtend); return AddrModes.find(Key)->second; } unsigned getSignExtendedGatherOpcode(unsigned Opcode) { switch (Opcode) { default: llvm_unreachable("unimplemented opcode"); return Opcode; case AArch64ISD::GLD1_MERGE_ZERO: return AArch64ISD::GLD1S_MERGE_ZERO; case AArch64ISD::GLD1_IMM_MERGE_ZERO: return AArch64ISD::GLD1S_IMM_MERGE_ZERO; case AArch64ISD::GLD1_UXTW_MERGE_ZERO: return AArch64ISD::GLD1S_UXTW_MERGE_ZERO; case AArch64ISD::GLD1_SXTW_MERGE_ZERO: return AArch64ISD::GLD1S_SXTW_MERGE_ZERO; case AArch64ISD::GLD1_SCALED_MERGE_ZERO: return AArch64ISD::GLD1S_SCALED_MERGE_ZERO; case AArch64ISD::GLD1_UXTW_SCALED_MERGE_ZERO: return AArch64ISD::GLD1S_UXTW_SCALED_MERGE_ZERO; case AArch64ISD::GLD1_SXTW_SCALED_MERGE_ZERO: return AArch64ISD::GLD1S_SXTW_SCALED_MERGE_ZERO; } } SDValue AArch64TargetLowering::LowerMGATHER(SDValue Op, SelectionDAG &DAG) const { MaskedGatherSDNode *MGT = cast(Op); SDLoc DL(Op); SDValue Chain = MGT->getChain(); SDValue PassThru = MGT->getPassThru(); SDValue Mask = MGT->getMask(); SDValue BasePtr = MGT->getBasePtr(); SDValue Index = MGT->getIndex(); SDValue Scale = MGT->getScale(); EVT VT = Op.getValueType(); EVT MemVT = MGT->getMemoryVT(); ISD::LoadExtType ExtType = MGT->getExtensionType(); ISD::MemIndexType IndexType = MGT->getIndexType(); // SVE supports zero (and so undef) passthrough values only, everything else // must be handled manually by an explicit select on the load's output. if (!PassThru->isUndef() && !isZerosVector(PassThru.getNode())) { SDValue Ops[] = {Chain, DAG.getUNDEF(VT), Mask, BasePtr, Index, Scale}; SDValue Load = DAG.getMaskedGather(MGT->getVTList(), MemVT, DL, Ops, MGT->getMemOperand(), IndexType, ExtType); SDValue Select = DAG.getSelect(DL, VT, Mask, Load, PassThru); return DAG.getMergeValues({Select, Load.getValue(1)}, DL); } bool IsScaled = MGT->isIndexScaled(); bool IsSigned = MGT->isIndexSigned(); // SVE supports an index scaled by sizeof(MemVT.elt) only, everything else // must be calculated before hand. uint64_t ScaleVal = Scale->getAsZExtVal(); if (IsScaled && ScaleVal != MemVT.getScalarStoreSize()) { assert(isPowerOf2_64(ScaleVal) && "Expecting power-of-two types"); EVT IndexVT = Index.getValueType(); Index = DAG.getNode(ISD::SHL, DL, IndexVT, Index, DAG.getConstant(Log2_32(ScaleVal), DL, IndexVT)); Scale = DAG.getTargetConstant(1, DL, Scale.getValueType()); SDValue Ops[] = {Chain, PassThru, Mask, BasePtr, Index, Scale}; return DAG.getMaskedGather(MGT->getVTList(), MemVT, DL, Ops, MGT->getMemOperand(), IndexType, ExtType); } // Lower fixed length gather to a scalable equivalent. if (VT.isFixedLengthVector()) { assert(Subtarget->useSVEForFixedLengthVectors() && "Cannot lower when not using SVE for fixed vectors!"); // NOTE: Handle floating-point as if integer then bitcast the result. EVT DataVT = VT.changeVectorElementTypeToInteger(); MemVT = MemVT.changeVectorElementTypeToInteger(); // Find the smallest integer fixed length vector we can use for the gather. EVT PromotedVT = VT.changeVectorElementType(MVT::i32); if (DataVT.getVectorElementType() == MVT::i64 || Index.getValueType().getVectorElementType() == MVT::i64 || Mask.getValueType().getVectorElementType() == MVT::i64) PromotedVT = VT.changeVectorElementType(MVT::i64); // Promote vector operands except for passthrough, which we know is either // undef or zero, and thus best constructed directly. unsigned ExtOpcode = IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; Index = DAG.getNode(ExtOpcode, DL, PromotedVT, Index); Mask = DAG.getNode(ISD::SIGN_EXTEND, DL, PromotedVT, Mask); // A promoted result type forces the need for an extending load. if (PromotedVT != DataVT && ExtType == ISD::NON_EXTLOAD) ExtType = ISD::EXTLOAD; EVT ContainerVT = getContainerForFixedLengthVector(DAG, PromotedVT); // Convert fixed length vector operands to scalable. MemVT = ContainerVT.changeVectorElementType(MemVT.getVectorElementType()); Index = convertToScalableVector(DAG, ContainerVT, Index); Mask = convertFixedMaskToScalableVector(Mask, DAG); PassThru = PassThru->isUndef() ? DAG.getUNDEF(ContainerVT) : DAG.getConstant(0, DL, ContainerVT); // Emit equivalent scalable vector gather. SDValue Ops[] = {Chain, PassThru, Mask, BasePtr, Index, Scale}; SDValue Load = DAG.getMaskedGather(DAG.getVTList(ContainerVT, MVT::Other), MemVT, DL, Ops, MGT->getMemOperand(), IndexType, ExtType); // Extract fixed length data then convert to the required result type. SDValue Result = convertFromScalableVector(DAG, PromotedVT, Load); Result = DAG.getNode(ISD::TRUNCATE, DL, DataVT, Result); if (VT.isFloatingPoint()) Result = DAG.getNode(ISD::BITCAST, DL, VT, Result); return DAG.getMergeValues({Result, Load.getValue(1)}, DL); } // Everything else is legal. return Op; } SDValue AArch64TargetLowering::LowerMSCATTER(SDValue Op, SelectionDAG &DAG) const { MaskedScatterSDNode *MSC = cast(Op); SDLoc DL(Op); SDValue Chain = MSC->getChain(); SDValue StoreVal = MSC->getValue(); SDValue Mask = MSC->getMask(); SDValue BasePtr = MSC->getBasePtr(); SDValue Index = MSC->getIndex(); SDValue Scale = MSC->getScale(); EVT VT = StoreVal.getValueType(); EVT MemVT = MSC->getMemoryVT(); ISD::MemIndexType IndexType = MSC->getIndexType(); bool Truncating = MSC->isTruncatingStore(); bool IsScaled = MSC->isIndexScaled(); bool IsSigned = MSC->isIndexSigned(); // SVE supports an index scaled by sizeof(MemVT.elt) only, everything else // must be calculated before hand. uint64_t ScaleVal = Scale->getAsZExtVal(); if (IsScaled && ScaleVal != MemVT.getScalarStoreSize()) { assert(isPowerOf2_64(ScaleVal) && "Expecting power-of-two types"); EVT IndexVT = Index.getValueType(); Index = DAG.getNode(ISD::SHL, DL, IndexVT, Index, DAG.getConstant(Log2_32(ScaleVal), DL, IndexVT)); Scale = DAG.getTargetConstant(1, DL, Scale.getValueType()); SDValue Ops[] = {Chain, StoreVal, Mask, BasePtr, Index, Scale}; return DAG.getMaskedScatter(MSC->getVTList(), MemVT, DL, Ops, MSC->getMemOperand(), IndexType, Truncating); } // Lower fixed length scatter to a scalable equivalent. if (VT.isFixedLengthVector()) { assert(Subtarget->useSVEForFixedLengthVectors() && "Cannot lower when not using SVE for fixed vectors!"); // Once bitcast we treat floating-point scatters as if integer. if (VT.isFloatingPoint()) { VT = VT.changeVectorElementTypeToInteger(); MemVT = MemVT.changeVectorElementTypeToInteger(); StoreVal = DAG.getNode(ISD::BITCAST, DL, VT, StoreVal); } // Find the smallest integer fixed length vector we can use for the scatter. EVT PromotedVT = VT.changeVectorElementType(MVT::i32); if (VT.getVectorElementType() == MVT::i64 || Index.getValueType().getVectorElementType() == MVT::i64 || Mask.getValueType().getVectorElementType() == MVT::i64) PromotedVT = VT.changeVectorElementType(MVT::i64); // Promote vector operands. unsigned ExtOpcode = IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; Index = DAG.getNode(ExtOpcode, DL, PromotedVT, Index); Mask = DAG.getNode(ISD::SIGN_EXTEND, DL, PromotedVT, Mask); StoreVal = DAG.getNode(ISD::ANY_EXTEND, DL, PromotedVT, StoreVal); // A promoted value type forces the need for a truncating store. if (PromotedVT != VT) Truncating = true; EVT ContainerVT = getContainerForFixedLengthVector(DAG, PromotedVT); // Convert fixed length vector operands to scalable. MemVT = ContainerVT.changeVectorElementType(MemVT.getVectorElementType()); Index = convertToScalableVector(DAG, ContainerVT, Index); Mask = convertFixedMaskToScalableVector(Mask, DAG); StoreVal = convertToScalableVector(DAG, ContainerVT, StoreVal); // Emit equivalent scalable vector scatter. SDValue Ops[] = {Chain, StoreVal, Mask, BasePtr, Index, Scale}; return DAG.getMaskedScatter(MSC->getVTList(), MemVT, DL, Ops, MSC->getMemOperand(), IndexType, Truncating); } // Everything else is legal. return Op; } SDValue AArch64TargetLowering::LowerMLOAD(SDValue Op, SelectionDAG &DAG) const { SDLoc DL(Op); MaskedLoadSDNode *LoadNode = cast(Op); assert(LoadNode && "Expected custom lowering of a masked load node"); EVT VT = Op->getValueType(0); if (useSVEForFixedLengthVectorVT(VT, /*OverrideNEON=*/true)) return LowerFixedLengthVectorMLoadToSVE(Op, DAG); SDValue PassThru = LoadNode->getPassThru(); SDValue Mask = LoadNode->getMask(); if (PassThru->isUndef() || isZerosVector(PassThru.getNode())) return Op; SDValue Load = DAG.getMaskedLoad( VT, DL, LoadNode->getChain(), LoadNode->getBasePtr(), LoadNode->getOffset(), Mask, DAG.getUNDEF(VT), LoadNode->getMemoryVT(), LoadNode->getMemOperand(), LoadNode->getAddressingMode(), LoadNode->getExtensionType()); SDValue Result = DAG.getSelect(DL, VT, Mask, Load, PassThru); return DAG.getMergeValues({Result, Load.getValue(1)}, DL); } // Custom lower trunc store for v4i8 vectors, since it is promoted to v4i16. static SDValue LowerTruncateVectorStore(SDLoc DL, StoreSDNode *ST, EVT VT, EVT MemVT, SelectionDAG &DAG) { assert(VT.isVector() && "VT should be a vector type"); assert(MemVT == MVT::v4i8 && VT == MVT::v4i16); SDValue Value = ST->getValue(); // It first extend the promoted v4i16 to v8i16, truncate to v8i8, and extract // the word lane which represent the v4i8 subvector. It optimizes the store // to: // // xtn v0.8b, v0.8h // str s0, [x0] SDValue Undef = DAG.getUNDEF(MVT::i16); SDValue UndefVec = DAG.getBuildVector(MVT::v4i16, DL, {Undef, Undef, Undef, Undef}); SDValue TruncExt = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v8i16, Value, UndefVec); SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, MVT::v8i8, TruncExt); Trunc = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Trunc); SDValue ExtractTrunc = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, Trunc, DAG.getConstant(0, DL, MVT::i64)); return DAG.getStore(ST->getChain(), DL, ExtractTrunc, ST->getBasePtr(), ST->getMemOperand()); } // Custom lowering for any store, vector or scalar and/or default or with // a truncate operations. Currently only custom lower truncate operation // from vector v4i16 to v4i8 or volatile stores of i128. SDValue AArch64TargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const { SDLoc Dl(Op); StoreSDNode *StoreNode = cast(Op); assert (StoreNode && "Can only custom lower store nodes"); SDValue Value = StoreNode->getValue(); EVT VT = Value.getValueType(); EVT MemVT = StoreNode->getMemoryVT(); if (VT.isVector()) { if (useSVEForFixedLengthVectorVT( VT, /*OverrideNEON=*/Subtarget->useSVEForFixedLengthVectors())) return LowerFixedLengthVectorStoreToSVE(Op, DAG); unsigned AS = StoreNode->getAddressSpace(); Align Alignment = StoreNode->getAlign(); if (Alignment < MemVT.getStoreSize() && !allowsMisalignedMemoryAccesses(MemVT, AS, Alignment, StoreNode->getMemOperand()->getFlags(), nullptr)) { return scalarizeVectorStore(StoreNode, DAG); } if (StoreNode->isTruncatingStore() && VT == MVT::v4i16 && MemVT == MVT::v4i8) { return LowerTruncateVectorStore(Dl, StoreNode, VT, MemVT, DAG); } // 256 bit non-temporal stores can be lowered to STNP. Do this as part of // the custom lowering, as there are no un-paired non-temporal stores and // legalization will break up 256 bit inputs. ElementCount EC = MemVT.getVectorElementCount(); if (StoreNode->isNonTemporal() && MemVT.getSizeInBits() == 256u && EC.isKnownEven() && DAG.getDataLayout().isLittleEndian() && (MemVT.getScalarSizeInBits() == 8u || MemVT.getScalarSizeInBits() == 16u || MemVT.getScalarSizeInBits() == 32u || MemVT.getScalarSizeInBits() == 64u)) { SDValue Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, Dl, MemVT.getHalfNumVectorElementsVT(*DAG.getContext()), StoreNode->getValue(), DAG.getConstant(0, Dl, MVT::i64)); SDValue Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, Dl, MemVT.getHalfNumVectorElementsVT(*DAG.getContext()), StoreNode->getValue(), DAG.getConstant(EC.getKnownMinValue() / 2, Dl, MVT::i64)); SDValue Result = DAG.getMemIntrinsicNode( AArch64ISD::STNP, Dl, DAG.getVTList(MVT::Other), {StoreNode->getChain(), Lo, Hi, StoreNode->getBasePtr()}, StoreNode->getMemoryVT(), StoreNode->getMemOperand()); return Result; } } else if (MemVT == MVT::i128 && StoreNode->isVolatile()) { return LowerStore128(Op, DAG); } else if (MemVT == MVT::i64x8) { SDValue Value = StoreNode->getValue(); assert(Value->getValueType(0) == MVT::i64x8); SDValue Chain = StoreNode->getChain(); SDValue Base = StoreNode->getBasePtr(); EVT PtrVT = Base.getValueType(); for (unsigned i = 0; i < 8; i++) { SDValue Part = DAG.getNode(AArch64ISD::LS64_EXTRACT, Dl, MVT::i64, Value, DAG.getConstant(i, Dl, MVT::i32)); SDValue Ptr = DAG.getNode(ISD::ADD, Dl, PtrVT, Base, DAG.getConstant(i * 8, Dl, PtrVT)); Chain = DAG.getStore(Chain, Dl, Part, Ptr, StoreNode->getPointerInfo(), StoreNode->getOriginalAlign()); } return Chain; } return SDValue(); } /// Lower atomic or volatile 128-bit stores to a single STP instruction. SDValue AArch64TargetLowering::LowerStore128(SDValue Op, SelectionDAG &DAG) const { MemSDNode *StoreNode = cast(Op); assert(StoreNode->getMemoryVT() == MVT::i128); assert(StoreNode->isVolatile() || StoreNode->isAtomic()); bool IsStoreRelease = StoreNode->getMergedOrdering() == AtomicOrdering::Release; if (StoreNode->isAtomic()) assert((Subtarget->hasFeature(AArch64::FeatureLSE2) && Subtarget->hasFeature(AArch64::FeatureRCPC3) && IsStoreRelease) || StoreNode->getMergedOrdering() == AtomicOrdering::Unordered || StoreNode->getMergedOrdering() == AtomicOrdering::Monotonic); SDValue Value = (StoreNode->getOpcode() == ISD::STORE || StoreNode->getOpcode() == ISD::ATOMIC_STORE) ? StoreNode->getOperand(1) : StoreNode->getOperand(2); SDLoc DL(Op); auto StoreValue = DAG.SplitScalar(Value, DL, MVT::i64, MVT::i64); unsigned Opcode = IsStoreRelease ? AArch64ISD::STILP : AArch64ISD::STP; if (DAG.getDataLayout().isBigEndian()) std::swap(StoreValue.first, StoreValue.second); SDValue Result = DAG.getMemIntrinsicNode( Opcode, DL, DAG.getVTList(MVT::Other), {StoreNode->getChain(), StoreValue.first, StoreValue.second, StoreNode->getBasePtr()}, StoreNode->getMemoryVT(), StoreNode->getMemOperand()); return Result; } SDValue AArch64TargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const { SDLoc DL(Op); LoadSDNode *LoadNode = cast(Op); assert(LoadNode && "Expected custom lowering of a load node"); if (LoadNode->getMemoryVT() == MVT::i64x8) { SmallVector Ops; SDValue Base = LoadNode->getBasePtr(); SDValue Chain = LoadNode->getChain(); EVT PtrVT = Base.getValueType(); for (unsigned i = 0; i < 8; i++) { SDValue Ptr = DAG.getNode(ISD::ADD, DL, PtrVT, Base, DAG.getConstant(i * 8, DL, PtrVT)); SDValue Part = DAG.getLoad(MVT::i64, DL, Chain, Ptr, LoadNode->getPointerInfo(), LoadNode->getOriginalAlign()); Ops.push_back(Part); Chain = SDValue(Part.getNode(), 1); } SDValue Loaded = DAG.getNode(AArch64ISD::LS64_BUILD, DL, MVT::i64x8, Ops); return DAG.getMergeValues({Loaded, Chain}, DL); } // Custom lowering for extending v4i8 vector loads. EVT VT = Op->getValueType(0); assert((VT == MVT::v4i16 || VT == MVT::v4i32) && "Expected v4i16 or v4i32"); if (LoadNode->getMemoryVT() != MVT::v4i8) return SDValue(); unsigned ExtType; if (LoadNode->getExtensionType() == ISD::SEXTLOAD) ExtType = ISD::SIGN_EXTEND; else if (LoadNode->getExtensionType() == ISD::ZEXTLOAD || LoadNode->getExtensionType() == ISD::EXTLOAD) ExtType = ISD::ZERO_EXTEND; else return SDValue(); SDValue Load = DAG.getLoad(MVT::f32, DL, LoadNode->getChain(), LoadNode->getBasePtr(), MachinePointerInfo()); SDValue Chain = Load.getValue(1); SDValue Vec = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, MVT::v2f32, Load); SDValue BC = DAG.getNode(ISD::BITCAST, DL, MVT::v8i8, Vec); SDValue Ext = DAG.getNode(ExtType, DL, MVT::v8i16, BC); Ext = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i16, Ext, DAG.getConstant(0, DL, MVT::i64)); if (VT == MVT::v4i32) Ext = DAG.getNode(ExtType, DL, MVT::v4i32, Ext); return DAG.getMergeValues({Ext, Chain}, DL); } // Generate SUBS and CSEL for integer abs. SDValue AArch64TargetLowering::LowerABS(SDValue Op, SelectionDAG &DAG) const { MVT VT = Op.getSimpleValueType(); if (VT.isVector()) return LowerToPredicatedOp(Op, DAG, AArch64ISD::ABS_MERGE_PASSTHRU); SDLoc DL(Op); SDValue Neg = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op.getOperand(0)); // Generate SUBS & CSEL. SDValue Cmp = DAG.getNode(AArch64ISD::SUBS, DL, DAG.getVTList(VT, MVT::i32), Op.getOperand(0), DAG.getConstant(0, DL, VT)); return DAG.getNode(AArch64ISD::CSEL, DL, VT, Op.getOperand(0), Neg, DAG.getConstant(AArch64CC::PL, DL, MVT::i32), Cmp.getValue(1)); } static SDValue LowerBRCOND(SDValue Op, SelectionDAG &DAG) { SDValue Chain = Op.getOperand(0); SDValue Cond = Op.getOperand(1); SDValue Dest = Op.getOperand(2); AArch64CC::CondCode CC; if (SDValue Cmp = emitConjunction(DAG, Cond, CC)) { SDLoc dl(Op); SDValue CCVal = DAG.getConstant(CC, dl, MVT::i32); return DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, Chain, Dest, CCVal, Cmp); } return SDValue(); } // Treat FSHR with constant shifts as legal operation, otherwise it is expanded // FSHL is converted to FSHR before deciding what to do with it static SDValue LowerFunnelShift(SDValue Op, SelectionDAG &DAG) { SDValue Shifts = Op.getOperand(2); // Check if the shift amount is a constant // If opcode is FSHL, convert it to FSHR if (auto *ShiftNo = dyn_cast(Shifts)) { SDLoc DL(Op); MVT VT = Op.getSimpleValueType(); if (Op.getOpcode() == ISD::FSHL) { unsigned int NewShiftNo = VT.getFixedSizeInBits() - ShiftNo->getZExtValue(); return DAG.getNode( ISD::FSHR, DL, VT, Op.getOperand(0), Op.getOperand(1), DAG.getConstant(NewShiftNo, DL, Shifts.getValueType())); } else if (Op.getOpcode() == ISD::FSHR) { return Op; } } return SDValue(); } static SDValue LowerFLDEXP(SDValue Op, SelectionDAG &DAG) { SDValue X = Op.getOperand(0); EVT XScalarTy = X.getValueType(); SDValue Exp = Op.getOperand(1); SDLoc DL(Op); EVT XVT, ExpVT; switch (Op.getSimpleValueType().SimpleTy) { default: return SDValue(); case MVT::bf16: case MVT::f16: X = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, X); [[fallthrough]]; case MVT::f32: XVT = MVT::nxv4f32; ExpVT = MVT::nxv4i32; break; case MVT::f64: XVT = MVT::nxv2f64; ExpVT = MVT::nxv2i64; Exp = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Exp); break; } SDValue Zero = DAG.getConstant(0, DL, MVT::i64); SDValue VX = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, XVT, DAG.getUNDEF(XVT), X, Zero); SDValue VExp = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, ExpVT, DAG.getUNDEF(ExpVT), Exp, Zero); SDValue VPg = getPTrue(DAG, DL, XVT.changeVectorElementType(MVT::i1), AArch64SVEPredPattern::all); SDValue FScale = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, XVT, DAG.getConstant(Intrinsic::aarch64_sve_fscale, DL, MVT::i64), VPg, VX, VExp); SDValue Final = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, X.getValueType(), FScale, Zero); if (X.getValueType() != XScalarTy) Final = DAG.getNode(ISD::FP_ROUND, DL, XScalarTy, Final, DAG.getIntPtrConstant(1, SDLoc(Op))); return Final; } SDValue AArch64TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { LLVM_DEBUG(dbgs() << "Custom lowering: "); LLVM_DEBUG(Op.dump()); switch (Op.getOpcode()) { default: llvm_unreachable("unimplemented operand"); return SDValue(); case ISD::BITCAST: return LowerBITCAST(Op, DAG); case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG); case ISD::SETCC: case ISD::STRICT_FSETCC: case ISD::STRICT_FSETCCS: return LowerSETCC(Op, DAG); case ISD::SETCCCARRY: return LowerSETCCCARRY(Op, DAG); case ISD::BRCOND: return LowerBRCOND(Op, DAG); case ISD::BR_CC: return LowerBR_CC(Op, DAG); case ISD::SELECT: return LowerSELECT(Op, DAG); case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG); case ISD::JumpTable: return LowerJumpTable(Op, DAG); case ISD::BR_JT: return LowerBR_JT(Op, DAG); case ISD::ConstantPool: return LowerConstantPool(Op, DAG); case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); case ISD::VASTART: return LowerVASTART(Op, DAG); case ISD::VACOPY: return LowerVACOPY(Op, DAG); case ISD::VAARG: return LowerVAARG(Op, DAG); case ISD::UADDO_CARRY: return lowerADDSUBO_CARRY(Op, DAG, AArch64ISD::ADCS, false /*unsigned*/); case ISD::USUBO_CARRY: return lowerADDSUBO_CARRY(Op, DAG, AArch64ISD::SBCS, false /*unsigned*/); case ISD::SADDO_CARRY: return lowerADDSUBO_CARRY(Op, DAG, AArch64ISD::ADCS, true /*signed*/); case ISD::SSUBO_CARRY: return lowerADDSUBO_CARRY(Op, DAG, AArch64ISD::SBCS, true /*signed*/); case ISD::SADDO: case ISD::UADDO: case ISD::SSUBO: case ISD::USUBO: case ISD::SMULO: case ISD::UMULO: return LowerXALUO(Op, DAG); case ISD::FADD: return LowerToPredicatedOp(Op, DAG, AArch64ISD::FADD_PRED); case ISD::FSUB: return LowerToPredicatedOp(Op, DAG, AArch64ISD::FSUB_PRED); case ISD::FMUL: return LowerToPredicatedOp(Op, DAG, AArch64ISD::FMUL_PRED); case ISD::FMA: return LowerToPredicatedOp(Op, DAG, AArch64ISD::FMA_PRED); case ISD::FDIV: return LowerToPredicatedOp(Op, DAG, AArch64ISD::FDIV_PRED); case ISD::FNEG: return LowerToPredicatedOp(Op, DAG, AArch64ISD::FNEG_MERGE_PASSTHRU); case ISD::FCEIL: return LowerToPredicatedOp(Op, DAG, AArch64ISD::FCEIL_MERGE_PASSTHRU); case ISD::FFLOOR: return LowerToPredicatedOp(Op, DAG, AArch64ISD::FFLOOR_MERGE_PASSTHRU); case ISD::FNEARBYINT: return LowerToPredicatedOp(Op, DAG, AArch64ISD::FNEARBYINT_MERGE_PASSTHRU); case ISD::FRINT: return LowerToPredicatedOp(Op, DAG, AArch64ISD::FRINT_MERGE_PASSTHRU); case ISD::FROUND: return LowerToPredicatedOp(Op, DAG, AArch64ISD::FROUND_MERGE_PASSTHRU); case ISD::FROUNDEVEN: return LowerToPredicatedOp(Op, DAG, AArch64ISD::FROUNDEVEN_MERGE_PASSTHRU); case ISD::FTRUNC: return LowerToPredicatedOp(Op, DAG, AArch64ISD::FTRUNC_MERGE_PASSTHRU); case ISD::FSQRT: return LowerToPredicatedOp(Op, DAG, AArch64ISD::FSQRT_MERGE_PASSTHRU); case ISD::FABS: return LowerToPredicatedOp(Op, DAG, AArch64ISD::FABS_MERGE_PASSTHRU); case ISD::FP_ROUND: case ISD::STRICT_FP_ROUND: return LowerFP_ROUND(Op, DAG); case ISD::FP_EXTEND: return LowerFP_EXTEND(Op, DAG); case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); case ISD::SPONENTRY: return LowerSPONENTRY(Op, DAG); case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); case ISD::ADDROFRETURNADDR: return LowerADDROFRETURNADDR(Op, DAG); case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG); case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG); case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG); case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG); case ISD::ZERO_EXTEND_VECTOR_INREG: return LowerZERO_EXTEND_VECTOR_INREG(Op, DAG); case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG); case ISD::SPLAT_VECTOR: return LowerSPLAT_VECTOR(Op, DAG); case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG); case ISD::INSERT_SUBVECTOR: return LowerINSERT_SUBVECTOR(Op, DAG); case ISD::SDIV: case ISD::UDIV: return LowerDIV(Op, DAG); case ISD::SMIN: case ISD::UMIN: case ISD::SMAX: case ISD::UMAX: return LowerMinMax(Op, DAG); case ISD::SRA: case ISD::SRL: case ISD::SHL: return LowerVectorSRA_SRL_SHL(Op, DAG); case ISD::SHL_PARTS: case ISD::SRL_PARTS: case ISD::SRA_PARTS: return LowerShiftParts(Op, DAG); case ISD::CTPOP: case ISD::PARITY: return LowerCTPOP_PARITY(Op, DAG); case ISD::FCOPYSIGN: return LowerFCOPYSIGN(Op, DAG); case ISD::OR: return LowerVectorOR(Op, DAG); case ISD::XOR: return LowerXOR(Op, DAG); case ISD::PREFETCH: return LowerPREFETCH(Op, DAG); case ISD::SINT_TO_FP: case ISD::UINT_TO_FP: case ISD::STRICT_SINT_TO_FP: case ISD::STRICT_UINT_TO_FP: return LowerINT_TO_FP(Op, DAG); case ISD::FP_TO_SINT: case ISD::FP_TO_UINT: case ISD::STRICT_FP_TO_SINT: case ISD::STRICT_FP_TO_UINT: return LowerFP_TO_INT(Op, DAG); case ISD::FP_TO_SINT_SAT: case ISD::FP_TO_UINT_SAT: return LowerFP_TO_INT_SAT(Op, DAG); case ISD::FSINCOS: return LowerFSINCOS(Op, DAG); case ISD::GET_ROUNDING: return LowerGET_ROUNDING(Op, DAG); case ISD::SET_ROUNDING: return LowerSET_ROUNDING(Op, DAG); case ISD::MUL: return LowerMUL(Op, DAG); case ISD::MULHS: return LowerToPredicatedOp(Op, DAG, AArch64ISD::MULHS_PRED); case ISD::MULHU: return LowerToPredicatedOp(Op, DAG, AArch64ISD::MULHU_PRED); case ISD::INTRINSIC_W_CHAIN: return LowerINTRINSIC_W_CHAIN(Op, DAG); case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); case ISD::INTRINSIC_VOID: return LowerINTRINSIC_VOID(Op, DAG); case ISD::ATOMIC_STORE: if (cast(Op)->getMemoryVT() == MVT::i128) { assert(Subtarget->hasLSE2() || Subtarget->hasRCPC3()); return LowerStore128(Op, DAG); } return SDValue(); case ISD::STORE: return LowerSTORE(Op, DAG); case ISD::MSTORE: return LowerFixedLengthVectorMStoreToSVE(Op, DAG); case ISD::MGATHER: return LowerMGATHER(Op, DAG); case ISD::MSCATTER: return LowerMSCATTER(Op, DAG); case ISD::VECREDUCE_SEQ_FADD: return LowerVECREDUCE_SEQ_FADD(Op, DAG); case ISD::VECREDUCE_ADD: case ISD::VECREDUCE_AND: case ISD::VECREDUCE_OR: case ISD::VECREDUCE_XOR: case ISD::VECREDUCE_SMAX: case ISD::VECREDUCE_SMIN: case ISD::VECREDUCE_UMAX: case ISD::VECREDUCE_UMIN: case ISD::VECREDUCE_FADD: case ISD::VECREDUCE_FMAX: case ISD::VECREDUCE_FMIN: case ISD::VECREDUCE_FMAXIMUM: case ISD::VECREDUCE_FMINIMUM: return LowerVECREDUCE(Op, DAG); case ISD::ATOMIC_LOAD_AND: return LowerATOMIC_LOAD_AND(Op, DAG); case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); case ISD::VSCALE: return LowerVSCALE(Op, DAG); case ISD::ANY_EXTEND: case ISD::SIGN_EXTEND: case ISD::ZERO_EXTEND: return LowerFixedLengthVectorIntExtendToSVE(Op, DAG); case ISD::SIGN_EXTEND_INREG: { // Only custom lower when ExtraVT has a legal byte based element type. EVT ExtraVT = cast(Op.getOperand(1))->getVT(); EVT ExtraEltVT = ExtraVT.getVectorElementType(); if ((ExtraEltVT != MVT::i8) && (ExtraEltVT != MVT::i16) && (ExtraEltVT != MVT::i32) && (ExtraEltVT != MVT::i64)) return SDValue(); return LowerToPredicatedOp(Op, DAG, AArch64ISD::SIGN_EXTEND_INREG_MERGE_PASSTHRU); } case ISD::TRUNCATE: return LowerTRUNCATE(Op, DAG); case ISD::MLOAD: return LowerMLOAD(Op, DAG); case ISD::LOAD: if (useSVEForFixedLengthVectorVT(Op.getValueType(), !Subtarget->isNeonAvailable())) return LowerFixedLengthVectorLoadToSVE(Op, DAG); return LowerLOAD(Op, DAG); case ISD::ADD: case ISD::AND: case ISD::SUB: return LowerToScalableOp(Op, DAG); case ISD::FMAXIMUM: return LowerToPredicatedOp(Op, DAG, AArch64ISD::FMAX_PRED); case ISD::FMAXNUM: return LowerToPredicatedOp(Op, DAG, AArch64ISD::FMAXNM_PRED); case ISD::FMINIMUM: return LowerToPredicatedOp(Op, DAG, AArch64ISD::FMIN_PRED); case ISD::FMINNUM: return LowerToPredicatedOp(Op, DAG, AArch64ISD::FMINNM_PRED); case ISD::VSELECT: return LowerFixedLengthVectorSelectToSVE(Op, DAG); case ISD::ABS: return LowerABS(Op, DAG); case ISD::ABDS: return LowerToPredicatedOp(Op, DAG, AArch64ISD::ABDS_PRED); case ISD::ABDU: return LowerToPredicatedOp(Op, DAG, AArch64ISD::ABDU_PRED); case ISD::AVGFLOORS: return LowerAVG(Op, DAG, AArch64ISD::HADDS_PRED); case ISD::AVGFLOORU: return LowerAVG(Op, DAG, AArch64ISD::HADDU_PRED); case ISD::AVGCEILS: return LowerAVG(Op, DAG, AArch64ISD::RHADDS_PRED); case ISD::AVGCEILU: return LowerAVG(Op, DAG, AArch64ISD::RHADDU_PRED); case ISD::BITREVERSE: return LowerBitreverse(Op, DAG); case ISD::BSWAP: return LowerToPredicatedOp(Op, DAG, AArch64ISD::BSWAP_MERGE_PASSTHRU); case ISD::CTLZ: return LowerToPredicatedOp(Op, DAG, AArch64ISD::CTLZ_MERGE_PASSTHRU); case ISD::CTTZ: return LowerCTTZ(Op, DAG); case ISD::VECTOR_SPLICE: return LowerVECTOR_SPLICE(Op, DAG); case ISD::VECTOR_DEINTERLEAVE: return LowerVECTOR_DEINTERLEAVE(Op, DAG); case ISD::VECTOR_INTERLEAVE: return LowerVECTOR_INTERLEAVE(Op, DAG); case ISD::LROUND: case ISD::LLROUND: case ISD::LRINT: case ISD::LLRINT: { assert((Op.getOperand(0).getValueType() == MVT::f16 || Op.getOperand(0).getValueType() == MVT::bf16) && "Expected custom lowering of rounding operations only for f16"); SDLoc DL(Op); SDValue Ext = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Op.getOperand(0)); return DAG.getNode(Op.getOpcode(), DL, Op.getValueType(), Ext); } case ISD::STRICT_LROUND: case ISD::STRICT_LLROUND: case ISD::STRICT_LRINT: case ISD::STRICT_LLRINT: { assert((Op.getOperand(1).getValueType() == MVT::f16 || Op.getOperand(1).getValueType() == MVT::bf16) && "Expected custom lowering of rounding operations only for f16"); SDLoc DL(Op); SDValue Ext = DAG.getNode(ISD::STRICT_FP_EXTEND, DL, {MVT::f32, MVT::Other}, {Op.getOperand(0), Op.getOperand(1)}); return DAG.getNode(Op.getOpcode(), DL, {Op.getValueType(), MVT::Other}, {Ext.getValue(1), Ext.getValue(0)}); } case ISD::WRITE_REGISTER: { assert(Op.getOperand(2).getValueType() == MVT::i128 && "WRITE_REGISTER custom lowering is only for 128-bit sysregs"); SDLoc DL(Op); SDValue Chain = Op.getOperand(0); SDValue SysRegName = Op.getOperand(1); std::pair Pair = DAG.SplitScalar(Op.getOperand(2), DL, MVT::i64, MVT::i64); // chain = MSRR(chain, sysregname, lo, hi) SDValue Result = DAG.getNode(AArch64ISD::MSRR, DL, MVT::Other, Chain, SysRegName, Pair.first, Pair.second); return Result; } case ISD::FSHL: case ISD::FSHR: return LowerFunnelShift(Op, DAG); case ISD::FLDEXP: return LowerFLDEXP(Op, DAG); } } bool AArch64TargetLowering::mergeStoresAfterLegalization(EVT VT) const { return !Subtarget->useSVEForFixedLengthVectors(); } bool AArch64TargetLowering::useSVEForFixedLengthVectorVT( EVT VT, bool OverrideNEON) const { if (!VT.isFixedLengthVector() || !VT.isSimple()) return false; // Don't use SVE for vectors we cannot scalarize if required. switch (VT.getVectorElementType().getSimpleVT().SimpleTy) { // Fixed length predicates should be promoted to i8. // NOTE: This is consistent with how NEON (and thus 64/128bit vectors) work. case MVT::i1: default: return false; case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64: case MVT::f16: case MVT::f32: case MVT::f64: break; } // NEON-sized vectors can be emulated using SVE instructions. if (OverrideNEON && (VT.is128BitVector() || VT.is64BitVector())) return Subtarget->hasSVEorSME(); // Ensure NEON MVTs only belong to a single register class. if (VT.getFixedSizeInBits() <= 128) return false; // Ensure wider than NEON code generation is enabled. if (!Subtarget->useSVEForFixedLengthVectors()) return false; // Don't use SVE for types that don't fit. if (VT.getFixedSizeInBits() > Subtarget->getMinSVEVectorSizeInBits()) return false; // TODO: Perhaps an artificial restriction, but worth having whilst getting // the base fixed length SVE support in place. if (!VT.isPow2VectorType()) return false; return true; } //===----------------------------------------------------------------------===// // Calling Convention Implementation //===----------------------------------------------------------------------===// static unsigned getIntrinsicID(const SDNode *N) { unsigned Opcode = N->getOpcode(); switch (Opcode) { default: return Intrinsic::not_intrinsic; case ISD::INTRINSIC_WO_CHAIN: { unsigned IID = N->getConstantOperandVal(0); if (IID < Intrinsic::num_intrinsics) return IID; return Intrinsic::not_intrinsic; } } } bool AArch64TargetLowering::isReassocProfitable(SelectionDAG &DAG, SDValue N0, SDValue N1) const { if (!N0.hasOneUse()) return false; unsigned IID = getIntrinsicID(N1.getNode()); // Avoid reassociating expressions that can be lowered to smlal/umlal. if (IID == Intrinsic::aarch64_neon_umull || N1.getOpcode() == AArch64ISD::UMULL || IID == Intrinsic::aarch64_neon_smull || N1.getOpcode() == AArch64ISD::SMULL) return N0.getOpcode() != ISD::ADD; return true; } /// Selects the correct CCAssignFn for a given CallingConvention value. CCAssignFn *AArch64TargetLowering::CCAssignFnForCall(CallingConv::ID CC, bool IsVarArg) const { switch (CC) { default: report_fatal_error("Unsupported calling convention."); case CallingConv::GHC: return CC_AArch64_GHC; case CallingConv::C: case CallingConv::Fast: case CallingConv::PreserveMost: case CallingConv::PreserveAll: case CallingConv::CXX_FAST_TLS: case CallingConv::Swift: case CallingConv::SwiftTail: case CallingConv::Tail: case CallingConv::GRAAL: if (Subtarget->isTargetWindows()) { if (IsVarArg) { if (Subtarget->isWindowsArm64EC()) return CC_AArch64_Arm64EC_VarArg; return CC_AArch64_Win64_VarArg; } return CC_AArch64_Win64PCS; } if (!Subtarget->isTargetDarwin()) return CC_AArch64_AAPCS; if (!IsVarArg) return CC_AArch64_DarwinPCS; return Subtarget->isTargetILP32() ? CC_AArch64_DarwinPCS_ILP32_VarArg : CC_AArch64_DarwinPCS_VarArg; case CallingConv::Win64: if (IsVarArg) { if (Subtarget->isWindowsArm64EC()) return CC_AArch64_Arm64EC_VarArg; return CC_AArch64_Win64_VarArg; } return CC_AArch64_Win64PCS; case CallingConv::CFGuard_Check: if (Subtarget->isWindowsArm64EC()) return CC_AArch64_Arm64EC_CFGuard_Check; return CC_AArch64_Win64_CFGuard_Check; case CallingConv::AArch64_VectorCall: case CallingConv::AArch64_SVE_VectorCall: case CallingConv::AArch64_SME_ABI_Support_Routines_PreserveMost_From_X0: case CallingConv::AArch64_SME_ABI_Support_Routines_PreserveMost_From_X2: return CC_AArch64_AAPCS; case CallingConv::ARM64EC_Thunk_X64: return CC_AArch64_Arm64EC_Thunk; case CallingConv::ARM64EC_Thunk_Native: return CC_AArch64_Arm64EC_Thunk_Native; } } CCAssignFn * AArch64TargetLowering::CCAssignFnForReturn(CallingConv::ID CC) const { switch (CC) { default: return RetCC_AArch64_AAPCS; case CallingConv::ARM64EC_Thunk_X64: return RetCC_AArch64_Arm64EC_Thunk; case CallingConv::CFGuard_Check: if (Subtarget->isWindowsArm64EC()) return RetCC_AArch64_Arm64EC_CFGuard_Check; return RetCC_AArch64_AAPCS; } } unsigned AArch64TargetLowering::allocateLazySaveBuffer(SDValue &Chain, const SDLoc &DL, SelectionDAG &DAG) const { MachineFunction &MF = DAG.getMachineFunction(); MachineFrameInfo &MFI = MF.getFrameInfo(); // Allocate a lazy-save buffer object of size SVL.B * SVL.B (worst-case) SDValue N = DAG.getNode(AArch64ISD::RDSVL, DL, MVT::i64, DAG.getConstant(1, DL, MVT::i32)); SDValue NN = DAG.getNode(ISD::MUL, DL, MVT::i64, N, N); SDValue Ops[] = {Chain, NN, DAG.getConstant(1, DL, MVT::i64)}; SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other); SDValue Buffer = DAG.getNode(ISD::DYNAMIC_STACKALLOC, DL, VTs, Ops); Chain = Buffer.getValue(1); MFI.CreateVariableSizedObject(Align(1), nullptr); // Allocate an additional TPIDR2 object on the stack (16 bytes) unsigned TPIDR2Obj = MFI.CreateStackObject(16, Align(16), false); // Store the buffer pointer to the TPIDR2 stack object. MachinePointerInfo MPI = MachinePointerInfo::getStack(MF, TPIDR2Obj); SDValue Ptr = DAG.getFrameIndex( TPIDR2Obj, DAG.getTargetLoweringInfo().getFrameIndexTy(DAG.getDataLayout())); Chain = DAG.getStore(Chain, DL, Buffer, Ptr, MPI); // Set the reserved bytes (10-15) to zero EVT PtrTy = Ptr.getValueType(); SDValue ReservedPtr = DAG.getNode(ISD::ADD, DL, PtrTy, Ptr, DAG.getConstant(10, DL, PtrTy)); Chain = DAG.getStore(Chain, DL, DAG.getConstant(0, DL, MVT::i16), ReservedPtr, MPI); ReservedPtr = DAG.getNode(ISD::ADD, DL, PtrTy, Ptr, DAG.getConstant(12, DL, PtrTy)); Chain = DAG.getStore(Chain, DL, DAG.getConstant(0, DL, MVT::i32), ReservedPtr, MPI); return TPIDR2Obj; } static bool isPassedInFPR(EVT VT) { return VT.isFixedLengthVector() || (VT.isFloatingPoint() && !VT.isScalableVector()); } SDValue AArch64TargetLowering::LowerFormalArguments( SDValue Chain, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl &Ins, const SDLoc &DL, SelectionDAG &DAG, SmallVectorImpl &InVals) const { MachineFunction &MF = DAG.getMachineFunction(); const Function &F = MF.getFunction(); MachineFrameInfo &MFI = MF.getFrameInfo(); bool IsWin64 = Subtarget->isCallingConvWin64(F.getCallingConv()); bool StackViaX4 = CallConv == CallingConv::ARM64EC_Thunk_X64 || (isVarArg && Subtarget->isWindowsArm64EC()); AArch64FunctionInfo *FuncInfo = MF.getInfo(); SmallVector Outs; GetReturnInfo(CallConv, F.getReturnType(), F.getAttributes(), Outs, DAG.getTargetLoweringInfo(), MF.getDataLayout()); if (any_of(Outs, [](ISD::OutputArg &Out){ return Out.VT.isScalableVector(); })) FuncInfo->setIsSVECC(true); // Assign locations to all of the incoming arguments. SmallVector ArgLocs; DenseMap CopiedRegs; CCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext()); // At this point, Ins[].VT may already be promoted to i32. To correctly // handle passing i8 as i8 instead of i32 on stack, we pass in both i32 and // i8 to CC_AArch64_AAPCS with i32 being ValVT and i8 being LocVT. // Since AnalyzeFormalArguments uses Ins[].VT for both ValVT and LocVT, here // we use a special version of AnalyzeFormalArguments to pass in ValVT and // LocVT. unsigned NumArgs = Ins.size(); Function::const_arg_iterator CurOrigArg = F.arg_begin(); unsigned CurArgIdx = 0; for (unsigned i = 0; i != NumArgs; ++i) { MVT ValVT = Ins[i].VT; if (Ins[i].isOrigArg()) { std::advance(CurOrigArg, Ins[i].getOrigArgIndex() - CurArgIdx); CurArgIdx = Ins[i].getOrigArgIndex(); // Get type of the original argument. EVT ActualVT = getValueType(DAG.getDataLayout(), CurOrigArg->getType(), /*AllowUnknown*/ true); MVT ActualMVT = ActualVT.isSimple() ? ActualVT.getSimpleVT() : MVT::Other; // If ActualMVT is i1/i8/i16, we should set LocVT to i8/i8/i16. if (ActualMVT == MVT::i1 || ActualMVT == MVT::i8) ValVT = MVT::i8; else if (ActualMVT == MVT::i16) ValVT = MVT::i16; } bool UseVarArgCC = false; if (IsWin64) UseVarArgCC = isVarArg; CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, UseVarArgCC); bool Res = AssignFn(i, ValVT, ValVT, CCValAssign::Full, Ins[i].Flags, CCInfo); assert(!Res && "Call operand has unhandled type"); (void)Res; } SMEAttrs Attrs(MF.getFunction()); bool IsLocallyStreaming = !Attrs.hasStreamingInterface() && Attrs.hasStreamingBody(); assert(Chain.getOpcode() == ISD::EntryToken && "Unexpected Chain value"); SDValue Glue = Chain.getValue(1); SmallVector ArgValues; unsigned ExtraArgLocs = 0; for (unsigned i = 0, e = Ins.size(); i != e; ++i) { CCValAssign &VA = ArgLocs[i - ExtraArgLocs]; if (Ins[i].Flags.isByVal()) { // Byval is used for HFAs in the PCS, but the system should work in a // non-compliant manner for larger structs. EVT PtrVT = getPointerTy(DAG.getDataLayout()); int Size = Ins[i].Flags.getByValSize(); unsigned NumRegs = (Size + 7) / 8; // FIXME: This works on big-endian for composite byvals, which are the common // case. It should also work for fundamental types too. unsigned FrameIdx = MFI.CreateFixedObject(8 * NumRegs, VA.getLocMemOffset(), false); SDValue FrameIdxN = DAG.getFrameIndex(FrameIdx, PtrVT); InVals.push_back(FrameIdxN); continue; } if (Ins[i].Flags.isSwiftAsync()) MF.getInfo()->setHasSwiftAsyncContext(true); SDValue ArgValue; if (VA.isRegLoc()) { // Arguments stored in registers. EVT RegVT = VA.getLocVT(); const TargetRegisterClass *RC; if (RegVT == MVT::i32) RC = &AArch64::GPR32RegClass; else if (RegVT == MVT::i64) RC = &AArch64::GPR64RegClass; else if (RegVT == MVT::f16 || RegVT == MVT::bf16) RC = &AArch64::FPR16RegClass; else if (RegVT == MVT::f32) RC = &AArch64::FPR32RegClass; else if (RegVT == MVT::f64 || RegVT.is64BitVector()) RC = &AArch64::FPR64RegClass; else if (RegVT == MVT::f128 || RegVT.is128BitVector()) RC = &AArch64::FPR128RegClass; else if (RegVT.isScalableVector() && RegVT.getVectorElementType() == MVT::i1) { FuncInfo->setIsSVECC(true); RC = &AArch64::PPRRegClass; } else if (RegVT == MVT::aarch64svcount) { FuncInfo->setIsSVECC(true); RC = &AArch64::PPRRegClass; } else if (RegVT.isScalableVector()) { FuncInfo->setIsSVECC(true); RC = &AArch64::ZPRRegClass; } else llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering"); // Transform the arguments in physical registers into virtual ones. Register Reg = MF.addLiveIn(VA.getLocReg(), RC); if (IsLocallyStreaming) { // LocallyStreamingFunctions must insert the SMSTART in the correct // position, so we use Glue to ensure no instructions can be scheduled // between the chain of: // t0: ch,glue = EntryNode // t1: res,ch,glue = CopyFromReg // ... // tn: res,ch,glue = CopyFromReg t(n-1), .. // t(n+1): ch, glue = SMSTART t0:0, ...., tn:2 // ^^^^^^ // This will be the new Chain/Root node. ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegVT, Glue); Glue = ArgValue.getValue(2); if (isPassedInFPR(ArgValue.getValueType())) { ArgValue = DAG.getNode(AArch64ISD::COALESCER_BARRIER, DL, DAG.getVTList(ArgValue.getValueType(), MVT::Glue), {ArgValue, Glue}); Glue = ArgValue.getValue(1); } } else ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegVT); // If this is an 8, 16 or 32-bit value, it is really passed promoted // to 64 bits. Insert an assert[sz]ext to capture this, then // truncate to the right size. switch (VA.getLocInfo()) { default: llvm_unreachable("Unknown loc info!"); case CCValAssign::Full: break; case CCValAssign::Indirect: assert( (VA.getValVT().isScalableVT() || Subtarget->isWindowsArm64EC()) && "Indirect arguments should be scalable on most subtargets"); break; case CCValAssign::BCvt: ArgValue = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), ArgValue); break; case CCValAssign::AExt: case CCValAssign::SExt: case CCValAssign::ZExt: break; case CCValAssign::AExtUpper: ArgValue = DAG.getNode(ISD::SRL, DL, RegVT, ArgValue, DAG.getConstant(32, DL, RegVT)); ArgValue = DAG.getZExtOrTrunc(ArgValue, DL, VA.getValVT()); break; } } else { // VA.isRegLoc() assert(VA.isMemLoc() && "CCValAssign is neither reg nor mem"); unsigned ArgOffset = VA.getLocMemOffset(); unsigned ArgSize = (VA.getLocInfo() == CCValAssign::Indirect ? VA.getLocVT().getSizeInBits() : VA.getValVT().getSizeInBits()) / 8; uint32_t BEAlign = 0; if (!Subtarget->isLittleEndian() && ArgSize < 8 && !Ins[i].Flags.isInConsecutiveRegs()) BEAlign = 8 - ArgSize; SDValue FIN; MachinePointerInfo PtrInfo; if (StackViaX4) { // In both the ARM64EC varargs convention and the thunk convention, // arguments on the stack are accessed relative to x4, not sp. In // the thunk convention, there's an additional offset of 32 bytes // to account for the shadow store. unsigned ObjOffset = ArgOffset + BEAlign; if (CallConv == CallingConv::ARM64EC_Thunk_X64) ObjOffset += 32; Register VReg = MF.addLiveIn(AArch64::X4, &AArch64::GPR64RegClass); SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::i64); FIN = DAG.getNode(ISD::ADD, DL, MVT::i64, Val, DAG.getConstant(ObjOffset, DL, MVT::i64)); PtrInfo = MachinePointerInfo::getUnknownStack(MF); } else { int FI = MFI.CreateFixedObject(ArgSize, ArgOffset + BEAlign, true); // Create load nodes to retrieve arguments from the stack. FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); PtrInfo = MachinePointerInfo::getFixedStack(MF, FI); } // For NON_EXTLOAD, generic code in getLoad assert(ValVT == MemVT) ISD::LoadExtType ExtType = ISD::NON_EXTLOAD; MVT MemVT = VA.getValVT(); switch (VA.getLocInfo()) { default: break; case CCValAssign::Trunc: case CCValAssign::BCvt: MemVT = VA.getLocVT(); break; case CCValAssign::Indirect: assert((VA.getValVT().isScalableVector() || Subtarget->isWindowsArm64EC()) && "Indirect arguments should be scalable on most subtargets"); MemVT = VA.getLocVT(); break; case CCValAssign::SExt: ExtType = ISD::SEXTLOAD; break; case CCValAssign::ZExt: ExtType = ISD::ZEXTLOAD; break; case CCValAssign::AExt: ExtType = ISD::EXTLOAD; break; } ArgValue = DAG.getExtLoad(ExtType, DL, VA.getLocVT(), Chain, FIN, PtrInfo, MemVT); } if (VA.getLocInfo() == CCValAssign::Indirect) { assert((VA.getValVT().isScalableVT() || Subtarget->isWindowsArm64EC()) && "Indirect arguments should be scalable on most subtargets"); uint64_t PartSize = VA.getValVT().getStoreSize().getKnownMinValue(); unsigned NumParts = 1; if (Ins[i].Flags.isInConsecutiveRegs()) { assert(!Ins[i].Flags.isInConsecutiveRegsLast()); while (!Ins[i + NumParts - 1].Flags.isInConsecutiveRegsLast()) ++NumParts; } MVT PartLoad = VA.getValVT(); SDValue Ptr = ArgValue; // Ensure we generate all loads for each tuple part, whilst updating the // pointer after each load correctly using vscale. while (NumParts > 0) { ArgValue = DAG.getLoad(PartLoad, DL, Chain, Ptr, MachinePointerInfo()); InVals.push_back(ArgValue); NumParts--; if (NumParts > 0) { SDValue BytesIncrement; if (PartLoad.isScalableVector()) { BytesIncrement = DAG.getVScale( DL, Ptr.getValueType(), APInt(Ptr.getValueSizeInBits().getFixedValue(), PartSize)); } else { BytesIncrement = DAG.getConstant( APInt(Ptr.getValueSizeInBits().getFixedValue(), PartSize), DL, Ptr.getValueType()); } SDNodeFlags Flags; Flags.setNoUnsignedWrap(true); Ptr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), Ptr, BytesIncrement, Flags); ExtraArgLocs++; i++; } } } else { if (Subtarget->isTargetILP32() && Ins[i].Flags.isPointer()) ArgValue = DAG.getNode(ISD::AssertZext, DL, ArgValue.getValueType(), ArgValue, DAG.getValueType(MVT::i32)); // i1 arguments are zero-extended to i8 by the caller. Emit a // hint to reflect this. if (Ins[i].isOrigArg()) { Argument *OrigArg = F.getArg(Ins[i].getOrigArgIndex()); if (OrigArg->getType()->isIntegerTy(1)) { if (!Ins[i].Flags.isZExt()) { ArgValue = DAG.getNode(AArch64ISD::ASSERT_ZEXT_BOOL, DL, ArgValue.getValueType(), ArgValue); } } } InVals.push_back(ArgValue); } } assert((ArgLocs.size() + ExtraArgLocs) == Ins.size()); // Insert the SMSTART if this is a locally streaming function and // make sure it is Glued to the last CopyFromReg value. if (IsLocallyStreaming) { SDValue PStateSM; if (Attrs.hasStreamingCompatibleInterface()) { PStateSM = getRuntimePStateSM(DAG, Chain, DL, MVT::i64); Register Reg = MF.getRegInfo().createVirtualRegister( getRegClassFor(PStateSM.getValueType().getSimpleVT())); FuncInfo->setPStateSMReg(Reg); Chain = DAG.getCopyToReg(Chain, DL, Reg, PStateSM); Chain = changeStreamingMode(DAG, DL, /*Enable*/ true, Chain, Glue, AArch64SME::IfCallerIsNonStreaming, PStateSM); } else Chain = changeStreamingMode(DAG, DL, /*Enable*/ true, Chain, Glue, AArch64SME::Always); // Ensure that the SMSTART happens after the CopyWithChain such that its // chain result is used. for (unsigned I=0; IisTargetDarwin() || IsWin64) { // The AAPCS variadic function ABI is identical to the non-variadic // one. As a result there may be more arguments in registers and we should // save them for future reference. // Win64 variadic functions also pass arguments in registers, but all float // arguments are passed in integer registers. saveVarArgRegisters(CCInfo, DAG, DL, Chain); } // This will point to the next argument passed via stack. unsigned VarArgsOffset = CCInfo.getStackSize(); // We currently pass all varargs at 8-byte alignment, or 4 for ILP32 VarArgsOffset = alignTo(VarArgsOffset, Subtarget->isTargetILP32() ? 4 : 8); FuncInfo->setVarArgsStackOffset(VarArgsOffset); FuncInfo->setVarArgsStackIndex( MFI.CreateFixedObject(4, VarArgsOffset, true)); if (MFI.hasMustTailInVarArgFunc()) { SmallVector RegParmTypes; RegParmTypes.push_back(MVT::i64); RegParmTypes.push_back(MVT::f128); // Compute the set of forwarded registers. The rest are scratch. SmallVectorImpl &Forwards = FuncInfo->getForwardedMustTailRegParms(); CCInfo.analyzeMustTailForwardedRegisters(Forwards, RegParmTypes, CC_AArch64_AAPCS); // Conservatively forward X8, since it might be used for aggregate return. if (!CCInfo.isAllocated(AArch64::X8)) { Register X8VReg = MF.addLiveIn(AArch64::X8, &AArch64::GPR64RegClass); Forwards.push_back(ForwardedRegister(X8VReg, AArch64::X8, MVT::i64)); } } } // On Windows, InReg pointers must be returned, so record the pointer in a // virtual register at the start of the function so it can be returned in the // epilogue. if (IsWin64 || F.getCallingConv() == CallingConv::ARM64EC_Thunk_X64) { for (unsigned I = 0, E = Ins.size(); I != E; ++I) { if ((F.getCallingConv() == CallingConv::ARM64EC_Thunk_X64 || Ins[I].Flags.isInReg()) && Ins[I].Flags.isSRet()) { assert(!FuncInfo->getSRetReturnReg()); MVT PtrTy = getPointerTy(DAG.getDataLayout()); Register Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(PtrTy)); FuncInfo->setSRetReturnReg(Reg); SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), DL, Reg, InVals[I]); Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Copy, Chain); break; } } } unsigned StackArgSize = CCInfo.getStackSize(); bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt; if (DoesCalleeRestoreStack(CallConv, TailCallOpt)) { // This is a non-standard ABI so by fiat I say we're allowed to make full // use of the stack area to be popped, which must be aligned to 16 bytes in // any case: StackArgSize = alignTo(StackArgSize, 16); // If we're expected to restore the stack (e.g. fastcc) then we'll be adding // a multiple of 16. FuncInfo->setArgumentStackToRestore(StackArgSize); // This realignment carries over to the available bytes below. Our own // callers will guarantee the space is free by giving an aligned value to // CALLSEQ_START. } // Even if we're not expected to free up the space, it's useful to know how // much is there while considering tail calls (because we can reuse it). FuncInfo->setBytesInStackArgArea(StackArgSize); if (Subtarget->hasCustomCallingConv()) Subtarget->getRegisterInfo()->UpdateCustomCalleeSavedRegs(MF); // Conservatively assume the function requires the lazy-save mechanism. if (SMEAttrs(MF.getFunction()).hasZAState()) { unsigned TPIDR2Obj = allocateLazySaveBuffer(Chain, DL, DAG); FuncInfo->setLazySaveTPIDR2Obj(TPIDR2Obj); } return Chain; } void AArch64TargetLowering::saveVarArgRegisters(CCState &CCInfo, SelectionDAG &DAG, const SDLoc &DL, SDValue &Chain) const { MachineFunction &MF = DAG.getMachineFunction(); MachineFrameInfo &MFI = MF.getFrameInfo(); AArch64FunctionInfo *FuncInfo = MF.getInfo(); auto PtrVT = getPointerTy(DAG.getDataLayout()); bool IsWin64 = Subtarget->isCallingConvWin64(MF.getFunction().getCallingConv()); SmallVector MemOps; auto GPRArgRegs = AArch64::getGPRArgRegs(); unsigned NumGPRArgRegs = GPRArgRegs.size(); if (Subtarget->isWindowsArm64EC()) { // In the ARM64EC ABI, only x0-x3 are used to pass arguments to varargs // functions. NumGPRArgRegs = 4; } unsigned FirstVariadicGPR = CCInfo.getFirstUnallocated(GPRArgRegs); unsigned GPRSaveSize = 8 * (NumGPRArgRegs - FirstVariadicGPR); int GPRIdx = 0; if (GPRSaveSize != 0) { if (IsWin64) { GPRIdx = MFI.CreateFixedObject(GPRSaveSize, -(int)GPRSaveSize, false); if (GPRSaveSize & 15) // The extra size here, if triggered, will always be 8. MFI.CreateFixedObject(16 - (GPRSaveSize & 15), -(int)alignTo(GPRSaveSize, 16), false); } else GPRIdx = MFI.CreateStackObject(GPRSaveSize, Align(8), false); SDValue FIN; if (Subtarget->isWindowsArm64EC()) { // With the Arm64EC ABI, we reserve the save area as usual, but we // compute its address relative to x4. For a normal AArch64->AArch64 // call, x4 == sp on entry, but calls from an entry thunk can pass in a // different address. Register VReg = MF.addLiveIn(AArch64::X4, &AArch64::GPR64RegClass); SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::i64); FIN = DAG.getNode(ISD::SUB, DL, MVT::i64, Val, DAG.getConstant(GPRSaveSize, DL, MVT::i64)); } else { FIN = DAG.getFrameIndex(GPRIdx, PtrVT); } for (unsigned i = FirstVariadicGPR; i < NumGPRArgRegs; ++i) { Register VReg = MF.addLiveIn(GPRArgRegs[i], &AArch64::GPR64RegClass); SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::i64); SDValue Store = DAG.getStore(Val.getValue(1), DL, Val, FIN, IsWin64 ? MachinePointerInfo::getFixedStack( MF, GPRIdx, (i - FirstVariadicGPR) * 8) : MachinePointerInfo::getStack(MF, i * 8)); MemOps.push_back(Store); FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN, DAG.getConstant(8, DL, PtrVT)); } } FuncInfo->setVarArgsGPRIndex(GPRIdx); FuncInfo->setVarArgsGPRSize(GPRSaveSize); if (Subtarget->hasFPARMv8() && !IsWin64) { auto FPRArgRegs = AArch64::getFPRArgRegs(); const unsigned NumFPRArgRegs = FPRArgRegs.size(); unsigned FirstVariadicFPR = CCInfo.getFirstUnallocated(FPRArgRegs); unsigned FPRSaveSize = 16 * (NumFPRArgRegs - FirstVariadicFPR); int FPRIdx = 0; if (FPRSaveSize != 0) { FPRIdx = MFI.CreateStackObject(FPRSaveSize, Align(16), false); SDValue FIN = DAG.getFrameIndex(FPRIdx, PtrVT); for (unsigned i = FirstVariadicFPR; i < NumFPRArgRegs; ++i) { Register VReg = MF.addLiveIn(FPRArgRegs[i], &AArch64::FPR128RegClass); SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f128); SDValue Store = DAG.getStore(Val.getValue(1), DL, Val, FIN, MachinePointerInfo::getStack(MF, i * 16)); MemOps.push_back(Store); FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN, DAG.getConstant(16, DL, PtrVT)); } } FuncInfo->setVarArgsFPRIndex(FPRIdx); FuncInfo->setVarArgsFPRSize(FPRSaveSize); } if (!MemOps.empty()) { Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps); } } /// LowerCallResult - Lower the result values of a call into the /// appropriate copies out of appropriate physical registers. SDValue AArch64TargetLowering::LowerCallResult( SDValue Chain, SDValue InGlue, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl &RVLocs, const SDLoc &DL, SelectionDAG &DAG, SmallVectorImpl &InVals, bool isThisReturn, SDValue ThisVal, bool RequiresSMChange) const { DenseMap CopiedRegs; // Copy all of the result registers out of their specified physreg. for (unsigned i = 0; i != RVLocs.size(); ++i) { CCValAssign VA = RVLocs[i]; // Pass 'this' value directly from the argument to return value, to avoid // reg unit interference if (i == 0 && isThisReturn) { assert(!VA.needsCustom() && VA.getLocVT() == MVT::i64 && "unexpected return calling convention register assignment"); InVals.push_back(ThisVal); continue; } // Avoid copying a physreg twice since RegAllocFast is incompetent and only // allows one use of a physreg per block. SDValue Val = CopiedRegs.lookup(VA.getLocReg()); if (!Val) { Val = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), InGlue); Chain = Val.getValue(1); InGlue = Val.getValue(2); CopiedRegs[VA.getLocReg()] = Val; } switch (VA.getLocInfo()) { default: llvm_unreachable("Unknown loc info!"); case CCValAssign::Full: break; case CCValAssign::BCvt: Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val); break; case CCValAssign::AExtUpper: Val = DAG.getNode(ISD::SRL, DL, VA.getLocVT(), Val, DAG.getConstant(32, DL, VA.getLocVT())); [[fallthrough]]; case CCValAssign::AExt: [[fallthrough]]; case CCValAssign::ZExt: Val = DAG.getZExtOrTrunc(Val, DL, VA.getValVT()); break; } if (RequiresSMChange && isPassedInFPR(VA.getValVT())) Val = DAG.getNode(AArch64ISD::COALESCER_BARRIER, DL, Val.getValueType(), Val); InVals.push_back(Val); } return Chain; } /// Return true if the calling convention is one that we can guarantee TCO for. static bool canGuaranteeTCO(CallingConv::ID CC, bool GuaranteeTailCalls) { return (CC == CallingConv::Fast && GuaranteeTailCalls) || CC == CallingConv::Tail || CC == CallingConv::SwiftTail; } /// Return true if we might ever do TCO for calls with this calling convention. static bool mayTailCallThisCC(CallingConv::ID CC) { switch (CC) { case CallingConv::C: case CallingConv::AArch64_SVE_VectorCall: case CallingConv::PreserveMost: case CallingConv::PreserveAll: case CallingConv::Swift: case CallingConv::SwiftTail: case CallingConv::Tail: case CallingConv::Fast: return true; default: return false; } } static void analyzeCallOperands(const AArch64TargetLowering &TLI, const AArch64Subtarget *Subtarget, const TargetLowering::CallLoweringInfo &CLI, CCState &CCInfo) { const SelectionDAG &DAG = CLI.DAG; CallingConv::ID CalleeCC = CLI.CallConv; bool IsVarArg = CLI.IsVarArg; const SmallVector &Outs = CLI.Outs; bool IsCalleeWin64 = Subtarget->isCallingConvWin64(CalleeCC); // For Arm64EC thunks, allocate 32 extra bytes at the bottom of the stack // for the shadow store. if (CalleeCC == CallingConv::ARM64EC_Thunk_X64) CCInfo.AllocateStack(32, Align(16)); unsigned NumArgs = Outs.size(); for (unsigned i = 0; i != NumArgs; ++i) { MVT ArgVT = Outs[i].VT; ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; bool UseVarArgCC = false; if (IsVarArg) { // On Windows, the fixed arguments in a vararg call are passed in GPRs // too, so use the vararg CC to force them to integer registers. if (IsCalleeWin64) { UseVarArgCC = true; } else { UseVarArgCC = !Outs[i].IsFixed; } } if (!UseVarArgCC) { // Get type of the original argument. EVT ActualVT = TLI.getValueType(DAG.getDataLayout(), CLI.Args[Outs[i].OrigArgIndex].Ty, /*AllowUnknown*/ true); MVT ActualMVT = ActualVT.isSimple() ? ActualVT.getSimpleVT() : ArgVT; // If ActualMVT is i1/i8/i16, we should set LocVT to i8/i8/i16. if (ActualMVT == MVT::i1 || ActualMVT == MVT::i8) ArgVT = MVT::i8; else if (ActualMVT == MVT::i16) ArgVT = MVT::i16; } CCAssignFn *AssignFn = TLI.CCAssignFnForCall(CalleeCC, UseVarArgCC); bool Res = AssignFn(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, CCInfo); assert(!Res && "Call operand has unhandled type"); (void)Res; } } bool AArch64TargetLowering::isEligibleForTailCallOptimization( const CallLoweringInfo &CLI) const { CallingConv::ID CalleeCC = CLI.CallConv; if (!mayTailCallThisCC(CalleeCC)) return false; SDValue Callee = CLI.Callee; bool IsVarArg = CLI.IsVarArg; const SmallVector &Outs = CLI.Outs; const SmallVector &OutVals = CLI.OutVals; const SmallVector &Ins = CLI.Ins; const SelectionDAG &DAG = CLI.DAG; MachineFunction &MF = DAG.getMachineFunction(); const Function &CallerF = MF.getFunction(); CallingConv::ID CallerCC = CallerF.getCallingConv(); // SME Streaming functions are not eligible for TCO as they may require // the streaming mode or ZA to be restored after returning from the call. SMEAttrs CallerAttrs(MF.getFunction()); auto CalleeAttrs = CLI.CB ? SMEAttrs(*CLI.CB) : SMEAttrs(SMEAttrs::Normal); if (CallerAttrs.requiresSMChange(CalleeAttrs) || CallerAttrs.requiresLazySave(CalleeAttrs) || CallerAttrs.hasStreamingBody()) return false; // Functions using the C or Fast calling convention that have an SVE signature // preserve more registers and should assume the SVE_VectorCall CC. // The check for matching callee-saved regs will determine whether it is // eligible for TCO. if ((CallerCC == CallingConv::C || CallerCC == CallingConv::Fast) && MF.getInfo()->isSVECC()) CallerCC = CallingConv::AArch64_SVE_VectorCall; bool CCMatch = CallerCC == CalleeCC; // When using the Windows calling convention on a non-windows OS, we want // to back up and restore X18 in such functions; we can't do a tail call // from those functions. if (CallerCC == CallingConv::Win64 && !Subtarget->isTargetWindows() && CalleeCC != CallingConv::Win64) return false; // Byval parameters hand the function a pointer directly into the stack area // we want to reuse during a tail call. Working around this *is* possible (see // X86) but less efficient and uglier in LowerCall. for (Function::const_arg_iterator i = CallerF.arg_begin(), e = CallerF.arg_end(); i != e; ++i) { if (i->hasByValAttr()) return false; // On Windows, "inreg" attributes signify non-aggregate indirect returns. // In this case, it is necessary to save/restore X0 in the callee. Tail // call opt interferes with this. So we disable tail call opt when the // caller has an argument with "inreg" attribute. // FIXME: Check whether the callee also has an "inreg" argument. if (i->hasInRegAttr()) return false; } if (canGuaranteeTCO(CalleeCC, getTargetMachine().Options.GuaranteedTailCallOpt)) return CCMatch; // Externally-defined functions with weak linkage should not be // tail-called on AArch64 when the OS does not support dynamic // pre-emption of symbols, as the AAELF spec requires normal calls // to undefined weak functions to be replaced with a NOP or jump to the // next instruction. The behaviour of branch instructions in this // situation (as used for tail calls) is implementation-defined, so we // cannot rely on the linker replacing the tail call with a return. if (GlobalAddressSDNode *G = dyn_cast(Callee)) { const GlobalValue *GV = G->getGlobal(); const Triple &TT = getTargetMachine().getTargetTriple(); if (GV->hasExternalWeakLinkage() && (!TT.isOSWindows() || TT.isOSBinFormatELF() || TT.isOSBinFormatMachO())) return false; } // Now we search for cases where we can use a tail call without changing the // ABI. Sibcall is used in some places (particularly gcc) to refer to this // concept. // I want anyone implementing a new calling convention to think long and hard // about this assert. assert((!IsVarArg || CalleeCC == CallingConv::C) && "Unexpected variadic calling convention"); LLVMContext &C = *DAG.getContext(); // Check that the call results are passed in the same way. if (!CCState::resultsCompatible(CalleeCC, CallerCC, MF, C, Ins, CCAssignFnForCall(CalleeCC, IsVarArg), CCAssignFnForCall(CallerCC, IsVarArg))) return false; // The callee has to preserve all registers the caller needs to preserve. const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo(); const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); if (!CCMatch) { const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC); if (Subtarget->hasCustomCallingConv()) { TRI->UpdateCustomCallPreservedMask(MF, &CallerPreserved); TRI->UpdateCustomCallPreservedMask(MF, &CalleePreserved); } if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved)) return false; } // Nothing more to check if the callee is taking no arguments if (Outs.empty()) return true; SmallVector ArgLocs; CCState CCInfo(CalleeCC, IsVarArg, MF, ArgLocs, C); analyzeCallOperands(*this, Subtarget, CLI, CCInfo); if (IsVarArg && !(CLI.CB && CLI.CB->isMustTailCall())) { // When we are musttail, additional checks have been done and we can safely ignore this check // At least two cases here: if caller is fastcc then we can't have any // memory arguments (we'd be expected to clean up the stack afterwards). If // caller is C then we could potentially use its argument area. // FIXME: for now we take the most conservative of these in both cases: // disallow all variadic memory operands. for (const CCValAssign &ArgLoc : ArgLocs) if (!ArgLoc.isRegLoc()) return false; } const AArch64FunctionInfo *FuncInfo = MF.getInfo(); // If any of the arguments is passed indirectly, it must be SVE, so the // 'getBytesInStackArgArea' is not sufficient to determine whether we need to // allocate space on the stack. That is why we determine this explicitly here // the call cannot be a tailcall. if (llvm::any_of(ArgLocs, [&](CCValAssign &A) { assert((A.getLocInfo() != CCValAssign::Indirect || A.getValVT().isScalableVector() || Subtarget->isWindowsArm64EC()) && "Expected value to be scalable"); return A.getLocInfo() == CCValAssign::Indirect; })) return false; // If the stack arguments for this call do not fit into our own save area then // the call cannot be made tail. if (CCInfo.getStackSize() > FuncInfo->getBytesInStackArgArea()) return false; const MachineRegisterInfo &MRI = MF.getRegInfo(); if (!parametersInCSRMatch(MRI, CallerPreserved, ArgLocs, OutVals)) return false; return true; } SDValue AArch64TargetLowering::addTokenForArgument(SDValue Chain, SelectionDAG &DAG, MachineFrameInfo &MFI, int ClobberedFI) const { SmallVector ArgChains; int64_t FirstByte = MFI.getObjectOffset(ClobberedFI); int64_t LastByte = FirstByte + MFI.getObjectSize(ClobberedFI) - 1; // Include the original chain at the beginning of the list. When this is // used by target LowerCall hooks, this helps legalize find the // CALLSEQ_BEGIN node. ArgChains.push_back(Chain); // Add a chain value for each stack argument corresponding for (SDNode *U : DAG.getEntryNode().getNode()->uses()) if (LoadSDNode *L = dyn_cast(U)) if (FrameIndexSDNode *FI = dyn_cast(L->getBasePtr())) if (FI->getIndex() < 0) { int64_t InFirstByte = MFI.getObjectOffset(FI->getIndex()); int64_t InLastByte = InFirstByte; InLastByte += MFI.getObjectSize(FI->getIndex()) - 1; if ((InFirstByte <= FirstByte && FirstByte <= InLastByte) || (FirstByte <= InFirstByte && InFirstByte <= LastByte)) ArgChains.push_back(SDValue(L, 1)); } // Build a tokenfactor for all the chains. return DAG.getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); } bool AArch64TargetLowering::DoesCalleeRestoreStack(CallingConv::ID CallCC, bool TailCallOpt) const { return (CallCC == CallingConv::Fast && TailCallOpt) || CallCC == CallingConv::Tail || CallCC == CallingConv::SwiftTail; } // Check if the value is zero-extended from i1 to i8 static bool checkZExtBool(SDValue Arg, const SelectionDAG &DAG) { unsigned SizeInBits = Arg.getValueType().getSizeInBits(); if (SizeInBits < 8) return false; APInt RequredZero(SizeInBits, 0xFE); KnownBits Bits = DAG.computeKnownBits(Arg, 4); bool ZExtBool = (Bits.Zero & RequredZero) == RequredZero; return ZExtBool; } void AArch64TargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI, SDNode *Node) const { // Live-in physreg copies that are glued to SMSTART are applied as // implicit-def's in the InstrEmitter. Here we remove them, allowing the // register allocator to pass call args in callee saved regs, without extra // copies to avoid these fake clobbers of actually-preserved GPRs. if (MI.getOpcode() == AArch64::MSRpstatesvcrImm1 || MI.getOpcode() == AArch64::MSRpstatePseudo) { for (unsigned I = MI.getNumOperands() - 1; I > 0; --I) if (MachineOperand &MO = MI.getOperand(I); MO.isReg() && MO.isImplicit() && MO.isDef() && (AArch64::GPR32RegClass.contains(MO.getReg()) || AArch64::GPR64RegClass.contains(MO.getReg()))) MI.removeOperand(I); // The SVE vector length can change when entering/leaving streaming mode. if (MI.getOperand(0).getImm() == AArch64SVCR::SVCRSM || MI.getOperand(0).getImm() == AArch64SVCR::SVCRSMZA) { MI.addOperand(MachineOperand::CreateReg(AArch64::VG, /*IsDef=*/false, /*IsImplicit=*/true)); MI.addOperand(MachineOperand::CreateReg(AArch64::VG, /*IsDef=*/true, /*IsImplicit=*/true)); } } // Add an implicit use of 'VG' for ADDXri/SUBXri, which are instructions that // have nothing to do with VG, were it not that they are used to materialise a // frame-address. If they contain a frame-index to a scalable vector, this // will likely require an ADDVL instruction to materialise the address, thus // reading VG. const MachineFunction &MF = *MI.getMF(); if (MF.getInfo()->hasStreamingModeChanges() && (MI.getOpcode() == AArch64::ADDXri || MI.getOpcode() == AArch64::SUBXri)) { const MachineOperand &MO = MI.getOperand(1); if (MO.isFI() && MF.getFrameInfo().getStackID(MO.getIndex()) == TargetStackID::ScalableVector) MI.addOperand(MachineOperand::CreateReg(AArch64::VG, /*IsDef=*/false, /*IsImplicit=*/true)); } } SDValue AArch64TargetLowering::changeStreamingMode(SelectionDAG &DAG, SDLoc DL, bool Enable, SDValue Chain, SDValue InGlue, unsigned Condition, SDValue PStateSM) const { MachineFunction &MF = DAG.getMachineFunction(); AArch64FunctionInfo *FuncInfo = MF.getInfo(); FuncInfo->setHasStreamingModeChanges(true); const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo(); SDValue RegMask = DAG.getRegisterMask(TRI->getSMStartStopCallPreservedMask()); SDValue MSROp = DAG.getTargetConstant((int32_t)AArch64SVCR::SVCRSM, DL, MVT::i32); SDValue ConditionOp = DAG.getTargetConstant(Condition, DL, MVT::i64); SmallVector Ops = {Chain, MSROp, ConditionOp}; if (Condition != AArch64SME::Always) { assert(PStateSM && "PStateSM should be defined"); Ops.push_back(PStateSM); } Ops.push_back(RegMask); if (InGlue) Ops.push_back(InGlue); unsigned Opcode = Enable ? AArch64ISD::SMSTART : AArch64ISD::SMSTOP; return DAG.getNode(Opcode, DL, DAG.getVTList(MVT::Other, MVT::Glue), Ops); } static unsigned getSMCondition(const SMEAttrs &CallerAttrs, const SMEAttrs &CalleeAttrs) { if (!CallerAttrs.hasStreamingCompatibleInterface() || CallerAttrs.hasStreamingBody()) return AArch64SME::Always; if (CalleeAttrs.hasNonStreamingInterface()) return AArch64SME::IfCallerIsStreaming; if (CalleeAttrs.hasStreamingInterface()) return AArch64SME::IfCallerIsNonStreaming; llvm_unreachable("Unsupported attributes"); } /// LowerCall - Lower a call to a callseq_start + CALL + callseq_end chain, /// and add input and output parameter nodes. SDValue AArch64TargetLowering::LowerCall(CallLoweringInfo &CLI, SmallVectorImpl &InVals) const { SelectionDAG &DAG = CLI.DAG; SDLoc &DL = CLI.DL; SmallVector &Outs = CLI.Outs; SmallVector &OutVals = CLI.OutVals; SmallVector &Ins = CLI.Ins; SDValue Chain = CLI.Chain; SDValue Callee = CLI.Callee; bool &IsTailCall = CLI.IsTailCall; CallingConv::ID &CallConv = CLI.CallConv; bool IsVarArg = CLI.IsVarArg; MachineFunction &MF = DAG.getMachineFunction(); MachineFunction::CallSiteInfo CSInfo; bool IsThisReturn = false; AArch64FunctionInfo *FuncInfo = MF.getInfo(); bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt; bool IsCFICall = CLI.CB && CLI.CB->isIndirectCall() && CLI.CFIType; bool IsSibCall = false; bool GuardWithBTI = false; if (CLI.CB && CLI.CB->hasFnAttr(Attribute::ReturnsTwice) && !Subtarget->noBTIAtReturnTwice()) { GuardWithBTI = FuncInfo->branchTargetEnforcement(); } // Analyze operands of the call, assigning locations to each operand. SmallVector ArgLocs; CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); if (IsVarArg) { unsigned NumArgs = Outs.size(); for (unsigned i = 0; i != NumArgs; ++i) { if (!Outs[i].IsFixed && Outs[i].VT.isScalableVector()) report_fatal_error("Passing SVE types to variadic functions is " "currently not supported"); } } analyzeCallOperands(*this, Subtarget, CLI, CCInfo); CCAssignFn *RetCC = CCAssignFnForReturn(CallConv); // Assign locations to each value returned by this call. SmallVector RVLocs; CCState RetCCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, *DAG.getContext()); RetCCInfo.AnalyzeCallResult(Ins, RetCC); // Check callee args/returns for SVE registers and set calling convention // accordingly. if (CallConv == CallingConv::C || CallConv == CallingConv::Fast) { auto HasSVERegLoc = [](CCValAssign &Loc) { if (!Loc.isRegLoc()) return false; return AArch64::ZPRRegClass.contains(Loc.getLocReg()) || AArch64::PPRRegClass.contains(Loc.getLocReg()); }; if (any_of(RVLocs, HasSVERegLoc) || any_of(ArgLocs, HasSVERegLoc)) CallConv = CallingConv::AArch64_SVE_VectorCall; } if (IsTailCall) { // Check if it's really possible to do a tail call. IsTailCall = isEligibleForTailCallOptimization(CLI); // A sibling call is one where we're under the usual C ABI and not planning // to change that but can still do a tail call: if (!TailCallOpt && IsTailCall && CallConv != CallingConv::Tail && CallConv != CallingConv::SwiftTail) IsSibCall = true; if (IsTailCall) ++NumTailCalls; } if (!IsTailCall && CLI.CB && CLI.CB->isMustTailCall()) report_fatal_error("failed to perform tail call elimination on a call " "site marked musttail"); // Get a count of how many bytes are to be pushed on the stack. unsigned NumBytes = CCInfo.getStackSize(); if (IsSibCall) { // Since we're not changing the ABI to make this a tail call, the memory // operands are already available in the caller's incoming argument space. NumBytes = 0; } // FPDiff is the byte offset of the call's argument area from the callee's. // Stores to callee stack arguments will be placed in FixedStackSlots offset // by this amount for a tail call. In a sibling call it must be 0 because the // caller will deallocate the entire stack and the callee still expects its // arguments to begin at SP+0. Completely unused for non-tail calls. int FPDiff = 0; if (IsTailCall && !IsSibCall) { unsigned NumReusableBytes = FuncInfo->getBytesInStackArgArea(); // Since callee will pop argument stack as a tail call, we must keep the // popped size 16-byte aligned. NumBytes = alignTo(NumBytes, 16); // FPDiff will be negative if this tail call requires more space than we // would automatically have in our incoming argument space. Positive if we // can actually shrink the stack. FPDiff = NumReusableBytes - NumBytes; // Update the required reserved area if this is the tail call requiring the // most argument stack space. if (FPDiff < 0 && FuncInfo->getTailCallReservedStack() < (unsigned)-FPDiff) FuncInfo->setTailCallReservedStack(-FPDiff); // The stack pointer must be 16-byte aligned at all times it's used for a // memory operation, which in practice means at *all* times and in // particular across call boundaries. Therefore our own arguments started at // a 16-byte aligned SP and the delta applied for the tail call should // satisfy the same constraint. assert(FPDiff % 16 == 0 && "unaligned stack on tail call"); } // Determine whether we need any streaming mode changes. SMEAttrs CalleeAttrs, CallerAttrs(MF.getFunction()); if (CLI.CB) CalleeAttrs = SMEAttrs(*CLI.CB); else if (auto *ES = dyn_cast(CLI.Callee)) CalleeAttrs = SMEAttrs(ES->getSymbol()); auto DescribeCallsite = [&](OptimizationRemarkAnalysis &R) -> OptimizationRemarkAnalysis & { R << "call from '" << ore::NV("Caller", MF.getName()) << "' to '"; if (auto *ES = dyn_cast(CLI.Callee)) R << ore::NV("Callee", ES->getSymbol()); else if (CLI.CB && CLI.CB->getCalledFunction()) R << ore::NV("Callee", CLI.CB->getCalledFunction()->getName()); else R << "unknown callee"; R << "'"; return R; }; bool RequiresLazySave = CallerAttrs.requiresLazySave(CalleeAttrs); if (RequiresLazySave) { unsigned TPIDR2Obj = FuncInfo->getLazySaveTPIDR2Obj(); MachinePointerInfo MPI = MachinePointerInfo::getStack(MF, TPIDR2Obj); SDValue TPIDR2ObjAddr = DAG.getFrameIndex(TPIDR2Obj, DAG.getTargetLoweringInfo().getFrameIndexTy(DAG.getDataLayout())); SDValue NumZaSaveSlicesAddr = DAG.getNode(ISD::ADD, DL, TPIDR2ObjAddr.getValueType(), TPIDR2ObjAddr, DAG.getConstant(8, DL, TPIDR2ObjAddr.getValueType())); SDValue NumZaSaveSlices = DAG.getNode(AArch64ISD::RDSVL, DL, MVT::i64, DAG.getConstant(1, DL, MVT::i32)); Chain = DAG.getTruncStore(Chain, DL, NumZaSaveSlices, NumZaSaveSlicesAddr, MPI, MVT::i16); Chain = DAG.getNode( ISD::INTRINSIC_VOID, DL, MVT::Other, Chain, DAG.getConstant(Intrinsic::aarch64_sme_set_tpidr2, DL, MVT::i32), TPIDR2ObjAddr); OptimizationRemarkEmitter ORE(&MF.getFunction()); ORE.emit([&]() { auto R = CLI.CB ? OptimizationRemarkAnalysis("sme", "SMELazySaveZA", CLI.CB) : OptimizationRemarkAnalysis("sme", "SMELazySaveZA", &MF.getFunction()); return DescribeCallsite(R) << " sets up a lazy save for ZA"; }); } SDValue PStateSM; bool RequiresSMChange = CallerAttrs.requiresSMChange(CalleeAttrs); if (RequiresSMChange) { if (CallerAttrs.hasStreamingInterfaceOrBody()) PStateSM = DAG.getConstant(1, DL, MVT::i64); else if (CallerAttrs.hasNonStreamingInterface()) PStateSM = DAG.getConstant(0, DL, MVT::i64); else PStateSM = getRuntimePStateSM(DAG, Chain, DL, MVT::i64); OptimizationRemarkEmitter ORE(&MF.getFunction()); ORE.emit([&]() { auto R = CLI.CB ? OptimizationRemarkAnalysis("sme", "SMETransition", CLI.CB) : OptimizationRemarkAnalysis("sme", "SMETransition", &MF.getFunction()); DescribeCallsite(R) << " requires a streaming mode transition"; return R; }); } SDValue ZTFrameIdx; MachineFrameInfo &MFI = MF.getFrameInfo(); bool ShouldPreserveZT0 = CallerAttrs.requiresPreservingZT0(CalleeAttrs); // If the caller has ZT0 state which will not be preserved by the callee, // spill ZT0 before the call. if (ShouldPreserveZT0) { unsigned ZTObj = MFI.CreateSpillStackObject(64, Align(16)); ZTFrameIdx = DAG.getFrameIndex( ZTObj, DAG.getTargetLoweringInfo().getFrameIndexTy(DAG.getDataLayout())); Chain = DAG.getNode(AArch64ISD::SAVE_ZT, DL, DAG.getVTList(MVT::Other), {Chain, DAG.getConstant(0, DL, MVT::i32), ZTFrameIdx}); } // If caller shares ZT0 but the callee is not shared ZA, we need to stop // PSTATE.ZA before the call if there is no lazy-save active. bool DisableZA = CallerAttrs.requiresDisablingZABeforeCall(CalleeAttrs); assert((!DisableZA || !RequiresLazySave) && "Lazy-save should have PSTATE.SM=1 on entry to the function"); if (DisableZA) Chain = DAG.getNode( AArch64ISD::SMSTOP, DL, MVT::Other, Chain, DAG.getTargetConstant((int32_t)(AArch64SVCR::SVCRZA), DL, MVT::i32), DAG.getConstant(AArch64SME::Always, DL, MVT::i64)); // Adjust the stack pointer for the new arguments... // These operations are automatically eliminated by the prolog/epilog pass if (!IsSibCall) Chain = DAG.getCALLSEQ_START(Chain, IsTailCall ? 0 : NumBytes, 0, DL); SDValue StackPtr = DAG.getCopyFromReg(Chain, DL, AArch64::SP, getPointerTy(DAG.getDataLayout())); SmallVector, 8> RegsToPass; SmallSet RegsUsed; SmallVector MemOpChains; auto PtrVT = getPointerTy(DAG.getDataLayout()); if (IsVarArg && CLI.CB && CLI.CB->isMustTailCall()) { const auto &Forwards = FuncInfo->getForwardedMustTailRegParms(); for (const auto &F : Forwards) { SDValue Val = DAG.getCopyFromReg(Chain, DL, F.VReg, F.VT); RegsToPass.emplace_back(F.PReg, Val); } } // Walk the register/memloc assignments, inserting copies/loads. unsigned ExtraArgLocs = 0; for (unsigned i = 0, e = Outs.size(); i != e; ++i) { CCValAssign &VA = ArgLocs[i - ExtraArgLocs]; SDValue Arg = OutVals[i]; ISD::ArgFlagsTy Flags = Outs[i].Flags; // Promote the value if needed. switch (VA.getLocInfo()) { default: llvm_unreachable("Unknown loc info!"); case CCValAssign::Full: break; case CCValAssign::SExt: Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg); break; case CCValAssign::ZExt: Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg); break; case CCValAssign::AExt: if (Outs[i].ArgVT == MVT::i1) { // AAPCS requires i1 to be zero-extended to 8-bits by the caller. // // Check if we actually have to do this, because the value may // already be zero-extended. // // We cannot just emit a (zext i8 (trunc (assert-zext i8))) // and rely on DAGCombiner to fold this, because the following // (anyext i32) is combined with (zext i8) in DAG.getNode: // // (ext (zext x)) -> (zext x) // // This will give us (zext i32), which we cannot remove, so // try to check this beforehand. if (!checkZExtBool(Arg, DAG)) { Arg = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Arg); Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i8, Arg); } } Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg); break; case CCValAssign::AExtUpper: assert(VA.getValVT() == MVT::i32 && "only expect 32 -> 64 upper bits"); Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg); Arg = DAG.getNode(ISD::SHL, DL, VA.getLocVT(), Arg, DAG.getConstant(32, DL, VA.getLocVT())); break; case CCValAssign::BCvt: Arg = DAG.getBitcast(VA.getLocVT(), Arg); break; case CCValAssign::Trunc: Arg = DAG.getZExtOrTrunc(Arg, DL, VA.getLocVT()); break; case CCValAssign::FPExt: Arg = DAG.getNode(ISD::FP_EXTEND, DL, VA.getLocVT(), Arg); break; case CCValAssign::Indirect: bool isScalable = VA.getValVT().isScalableVT(); assert((isScalable || Subtarget->isWindowsArm64EC()) && "Indirect arguments should be scalable on most subtargets"); uint64_t StoreSize = VA.getValVT().getStoreSize().getKnownMinValue(); uint64_t PartSize = StoreSize; unsigned NumParts = 1; if (Outs[i].Flags.isInConsecutiveRegs()) { assert(!Outs[i].Flags.isInConsecutiveRegsLast()); while (!Outs[i + NumParts - 1].Flags.isInConsecutiveRegsLast()) ++NumParts; StoreSize *= NumParts; } Type *Ty = EVT(VA.getValVT()).getTypeForEVT(*DAG.getContext()); Align Alignment = DAG.getDataLayout().getPrefTypeAlign(Ty); MachineFrameInfo &MFI = MF.getFrameInfo(); int FI = MFI.CreateStackObject(StoreSize, Alignment, false); if (isScalable) MFI.setStackID(FI, TargetStackID::ScalableVector); MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); SDValue Ptr = DAG.getFrameIndex( FI, DAG.getTargetLoweringInfo().getFrameIndexTy(DAG.getDataLayout())); SDValue SpillSlot = Ptr; // Ensure we generate all stores for each tuple part, whilst updating the // pointer after each store correctly using vscale. while (NumParts) { SDValue Store = DAG.getStore(Chain, DL, OutVals[i], Ptr, MPI); MemOpChains.push_back(Store); NumParts--; if (NumParts > 0) { SDValue BytesIncrement; if (isScalable) { BytesIncrement = DAG.getVScale( DL, Ptr.getValueType(), APInt(Ptr.getValueSizeInBits().getFixedValue(), PartSize)); } else { BytesIncrement = DAG.getConstant( APInt(Ptr.getValueSizeInBits().getFixedValue(), PartSize), DL, Ptr.getValueType()); } SDNodeFlags Flags; Flags.setNoUnsignedWrap(true); MPI = MachinePointerInfo(MPI.getAddrSpace()); Ptr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), Ptr, BytesIncrement, Flags); ExtraArgLocs++; i++; } } Arg = SpillSlot; break; } if (VA.isRegLoc()) { if (i == 0 && Flags.isReturned() && !Flags.isSwiftSelf() && Outs[0].VT == MVT::i64) { assert(VA.getLocVT() == MVT::i64 && "unexpected calling convention register assignment"); assert(!Ins.empty() && Ins[0].VT == MVT::i64 && "unexpected use of 'returned'"); IsThisReturn = true; } if (RegsUsed.count(VA.getLocReg())) { // If this register has already been used then we're trying to pack // parts of an [N x i32] into an X-register. The extension type will // take care of putting the two halves in the right place but we have to // combine them. SDValue &Bits = llvm::find_if(RegsToPass, [=](const std::pair &Elt) { return Elt.first == VA.getLocReg(); }) ->second; Bits = DAG.getNode(ISD::OR, DL, Bits.getValueType(), Bits, Arg); // Call site info is used for function's parameter entry value // tracking. For now we track only simple cases when parameter // is transferred through whole register. llvm::erase_if(CSInfo.ArgRegPairs, [&VA](MachineFunction::ArgRegPair ArgReg) { return ArgReg.Reg == VA.getLocReg(); }); } else { // Add an extra level of indirection for streaming mode changes by // using a pseudo copy node that cannot be rematerialised between a // smstart/smstop and the call by the simple register coalescer. if (RequiresSMChange && isPassedInFPR(Arg.getValueType())) Arg = DAG.getNode(AArch64ISD::COALESCER_BARRIER, DL, Arg.getValueType(), Arg); RegsToPass.emplace_back(VA.getLocReg(), Arg); RegsUsed.insert(VA.getLocReg()); const TargetOptions &Options = DAG.getTarget().Options; if (Options.EmitCallSiteInfo) CSInfo.ArgRegPairs.emplace_back(VA.getLocReg(), i); } } else { assert(VA.isMemLoc()); SDValue DstAddr; MachinePointerInfo DstInfo; // FIXME: This works on big-endian for composite byvals, which are the // common case. It should also work for fundamental types too. uint32_t BEAlign = 0; unsigned OpSize; if (VA.getLocInfo() == CCValAssign::Indirect || VA.getLocInfo() == CCValAssign::Trunc) OpSize = VA.getLocVT().getFixedSizeInBits(); else OpSize = Flags.isByVal() ? Flags.getByValSize() * 8 : VA.getValVT().getSizeInBits(); OpSize = (OpSize + 7) / 8; if (!Subtarget->isLittleEndian() && !Flags.isByVal() && !Flags.isInConsecutiveRegs()) { if (OpSize < 8) BEAlign = 8 - OpSize; } unsigned LocMemOffset = VA.getLocMemOffset(); int32_t Offset = LocMemOffset + BEAlign; SDValue PtrOff = DAG.getIntPtrConstant(Offset, DL); PtrOff = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, PtrOff); if (IsTailCall) { Offset = Offset + FPDiff; int FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true); DstAddr = DAG.getFrameIndex(FI, PtrVT); DstInfo = MachinePointerInfo::getFixedStack(MF, FI); // Make sure any stack arguments overlapping with where we're storing // are loaded before this eventual operation. Otherwise they'll be // clobbered. Chain = addTokenForArgument(Chain, DAG, MF.getFrameInfo(), FI); } else { SDValue PtrOff = DAG.getIntPtrConstant(Offset, DL); DstAddr = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, PtrOff); DstInfo = MachinePointerInfo::getStack(MF, LocMemOffset); } if (Outs[i].Flags.isByVal()) { SDValue SizeNode = DAG.getConstant(Outs[i].Flags.getByValSize(), DL, MVT::i64); SDValue Cpy = DAG.getMemcpy( Chain, DL, DstAddr, Arg, SizeNode, Outs[i].Flags.getNonZeroByValAlign(), /*isVol = */ false, /*AlwaysInline = */ false, /*isTailCall = */ false, DstInfo, MachinePointerInfo()); MemOpChains.push_back(Cpy); } else { // Since we pass i1/i8/i16 as i1/i8/i16 on stack and Arg is already // promoted to a legal register type i32, we should truncate Arg back to // i1/i8/i16. if (VA.getValVT() == MVT::i1 || VA.getValVT() == MVT::i8 || VA.getValVT() == MVT::i16) Arg = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Arg); SDValue Store = DAG.getStore(Chain, DL, Arg, DstAddr, DstInfo); MemOpChains.push_back(Store); } } } if (IsVarArg && Subtarget->isWindowsArm64EC()) { SDValue ParamPtr = StackPtr; if (IsTailCall) { // Create a dummy object at the top of the stack that can be used to get // the SP after the epilogue int FI = MF.getFrameInfo().CreateFixedObject(1, FPDiff, true); ParamPtr = DAG.getFrameIndex(FI, PtrVT); } // For vararg calls, the Arm64EC ABI requires values in x4 and x5 // describing the argument list. x4 contains the address of the // first stack parameter. x5 contains the size in bytes of all parameters // passed on the stack. RegsToPass.emplace_back(AArch64::X4, ParamPtr); RegsToPass.emplace_back(AArch64::X5, DAG.getConstant(NumBytes, DL, MVT::i64)); } if (!MemOpChains.empty()) Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); SDValue InGlue; if (RequiresSMChange) { SDValue NewChain = changeStreamingMode( DAG, DL, CalleeAttrs.hasStreamingInterface(), Chain, InGlue, getSMCondition(CallerAttrs, CalleeAttrs), PStateSM); Chain = NewChain.getValue(0); InGlue = NewChain.getValue(1); } // Build a sequence of copy-to-reg nodes chained together with token chain // and flag operands which copy the outgoing args into the appropriate regs. for (auto &RegToPass : RegsToPass) { Chain = DAG.getCopyToReg(Chain, DL, RegToPass.first, RegToPass.second, InGlue); InGlue = Chain.getValue(1); } // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol // node so that legalize doesn't hack it. if (auto *G = dyn_cast(Callee)) { auto GV = G->getGlobal(); unsigned OpFlags = Subtarget->classifyGlobalFunctionReference(GV, getTargetMachine()); if (OpFlags & AArch64II::MO_GOT) { Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags); Callee = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, Callee); } else { const GlobalValue *GV = G->getGlobal(); Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags); } } else if (auto *S = dyn_cast(Callee)) { bool UseGot = (getTargetMachine().getCodeModel() == CodeModel::Large && Subtarget->isTargetMachO()) || MF.getFunction().getParent()->getRtLibUseGOT(); const char *Sym = S->getSymbol(); if (UseGot) { Callee = DAG.getTargetExternalSymbol(Sym, PtrVT, AArch64II::MO_GOT); Callee = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, Callee); } else { Callee = DAG.getTargetExternalSymbol(Sym, PtrVT, 0); } } // We don't usually want to end the call-sequence here because we would tidy // the frame up *after* the call, however in the ABI-changing tail-call case // we've carefully laid out the parameters so that when sp is reset they'll be // in the correct location. if (IsTailCall && !IsSibCall) { Chain = DAG.getCALLSEQ_END(Chain, 0, 0, InGlue, DL); InGlue = Chain.getValue(1); } std::vector Ops; Ops.push_back(Chain); Ops.push_back(Callee); if (IsTailCall) { // Each tail call may have to adjust the stack by a different amount, so // this information must travel along with the operation for eventual // consumption by emitEpilogue. Ops.push_back(DAG.getTargetConstant(FPDiff, DL, MVT::i32)); } // Add argument registers to the end of the list so that they are known live // into the call. for (auto &RegToPass : RegsToPass) Ops.push_back(DAG.getRegister(RegToPass.first, RegToPass.second.getValueType())); // Add a register mask operand representing the call-preserved registers. const uint32_t *Mask; const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo(); if (IsThisReturn) { // For 'this' returns, use the X0-preserving mask if applicable Mask = TRI->getThisReturnPreservedMask(MF, CallConv); if (!Mask) { IsThisReturn = false; Mask = TRI->getCallPreservedMask(MF, CallConv); } } else Mask = TRI->getCallPreservedMask(MF, CallConv); if (Subtarget->hasCustomCallingConv()) TRI->UpdateCustomCallPreservedMask(MF, &Mask); if (TRI->isAnyArgRegReserved(MF)) TRI->emitReservedArgRegCallError(MF); assert(Mask && "Missing call preserved mask for calling convention"); Ops.push_back(DAG.getRegisterMask(Mask)); if (InGlue.getNode()) Ops.push_back(InGlue); SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); // If we're doing a tall call, use a TC_RETURN here rather than an // actual call instruction. if (IsTailCall) { MF.getFrameInfo().setHasTailCall(); SDValue Ret = DAG.getNode(AArch64ISD::TC_RETURN, DL, NodeTys, Ops); if (IsCFICall) Ret.getNode()->setCFIType(CLI.CFIType->getZExtValue()); DAG.addNoMergeSiteInfo(Ret.getNode(), CLI.NoMerge); DAG.addCallSiteInfo(Ret.getNode(), std::move(CSInfo)); return Ret; } unsigned CallOpc = AArch64ISD::CALL; // Calls with operand bundle "clang.arc.attachedcall" are special. They should // be expanded to the call, directly followed by a special marker sequence and // a call to an ObjC library function. Use CALL_RVMARKER to do that. if (CLI.CB && objcarc::hasAttachedCallOpBundle(CLI.CB)) { assert(!IsTailCall && "tail calls cannot be marked with clang.arc.attachedcall"); CallOpc = AArch64ISD::CALL_RVMARKER; // Add a target global address for the retainRV/claimRV runtime function // just before the call target. Function *ARCFn = *objcarc::getAttachedARCFunction(CLI.CB); auto GA = DAG.getTargetGlobalAddress(ARCFn, DL, PtrVT); Ops.insert(Ops.begin() + 1, GA); } else if (CallConv == CallingConv::ARM64EC_Thunk_X64) { CallOpc = AArch64ISD::CALL_ARM64EC_TO_X64; } else if (GuardWithBTI) { CallOpc = AArch64ISD::CALL_BTI; } // Returns a chain and a flag for retval copy to use. Chain = DAG.getNode(CallOpc, DL, NodeTys, Ops); if (IsCFICall) Chain.getNode()->setCFIType(CLI.CFIType->getZExtValue()); DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge); InGlue = Chain.getValue(1); DAG.addCallSiteInfo(Chain.getNode(), std::move(CSInfo)); uint64_t CalleePopBytes = DoesCalleeRestoreStack(CallConv, TailCallOpt) ? alignTo(NumBytes, 16) : 0; Chain = DAG.getCALLSEQ_END(Chain, NumBytes, CalleePopBytes, InGlue, DL); InGlue = Chain.getValue(1); // Handle result values, copying them out of physregs into vregs that we // return. SDValue Result = LowerCallResult( Chain, InGlue, CallConv, IsVarArg, RVLocs, DL, DAG, InVals, IsThisReturn, IsThisReturn ? OutVals[0] : SDValue(), RequiresSMChange); if (!Ins.empty()) InGlue = Result.getValue(Result->getNumValues() - 1); if (RequiresSMChange) { assert(PStateSM && "Expected a PStateSM to be set"); Result = changeStreamingMode( DAG, DL, !CalleeAttrs.hasStreamingInterface(), Result, InGlue, getSMCondition(CallerAttrs, CalleeAttrs), PStateSM); } if (CallerAttrs.requiresEnablingZAAfterCall(CalleeAttrs)) // Unconditionally resume ZA. Result = DAG.getNode( AArch64ISD::SMSTART, DL, MVT::Other, Result, DAG.getTargetConstant((int32_t)(AArch64SVCR::SVCRZA), DL, MVT::i32), DAG.getConstant(AArch64SME::Always, DL, MVT::i64)); if (ShouldPreserveZT0) Result = DAG.getNode(AArch64ISD::RESTORE_ZT, DL, DAG.getVTList(MVT::Other), {Result, DAG.getConstant(0, DL, MVT::i32), ZTFrameIdx}); if (RequiresLazySave) { // Conditionally restore the lazy save using a pseudo node. unsigned FI = FuncInfo->getLazySaveTPIDR2Obj(); SDValue RegMask = DAG.getRegisterMask( TRI->SMEABISupportRoutinesCallPreservedMaskFromX0()); SDValue RestoreRoutine = DAG.getTargetExternalSymbol( "__arm_tpidr2_restore", getPointerTy(DAG.getDataLayout())); SDValue TPIDR2_EL0 = DAG.getNode( ISD::INTRINSIC_W_CHAIN, DL, MVT::i64, Result, DAG.getConstant(Intrinsic::aarch64_sme_get_tpidr2, DL, MVT::i32)); // Copy the address of the TPIDR2 block into X0 before 'calling' the // RESTORE_ZA pseudo. SDValue Glue; SDValue TPIDR2Block = DAG.getFrameIndex( FI, DAG.getTargetLoweringInfo().getFrameIndexTy(DAG.getDataLayout())); Result = DAG.getCopyToReg(Result, DL, AArch64::X0, TPIDR2Block, Glue); Result = DAG.getNode(AArch64ISD::RESTORE_ZA, DL, MVT::Other, {Result, TPIDR2_EL0, DAG.getRegister(AArch64::X0, MVT::i64), RestoreRoutine, RegMask, Result.getValue(1)}); // Finally reset the TPIDR2_EL0 register to 0. Result = DAG.getNode( ISD::INTRINSIC_VOID, DL, MVT::Other, Result, DAG.getConstant(Intrinsic::aarch64_sme_set_tpidr2, DL, MVT::i32), DAG.getConstant(0, DL, MVT::i64)); } if (RequiresSMChange || RequiresLazySave || ShouldPreserveZT0) { for (unsigned I = 0; I < InVals.size(); ++I) { // The smstart/smstop is chained as part of the call, but when the // resulting chain is discarded (which happens when the call is not part // of a chain, e.g. a call to @llvm.cos()), we need to ensure the // smstart/smstop is chained to the result value. We can do that by doing // a vreg -> vreg copy. Register Reg = MF.getRegInfo().createVirtualRegister( getRegClassFor(InVals[I].getValueType().getSimpleVT())); SDValue X = DAG.getCopyToReg(Result, DL, Reg, InVals[I]); InVals[I] = DAG.getCopyFromReg(X, DL, Reg, InVals[I].getValueType()); } } return Result; } bool AArch64TargetLowering::CanLowerReturn( CallingConv::ID CallConv, MachineFunction &MF, bool isVarArg, const SmallVectorImpl &Outs, LLVMContext &Context) const { CCAssignFn *RetCC = CCAssignFnForReturn(CallConv); SmallVector RVLocs; CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context); return CCInfo.CheckReturn(Outs, RetCC); } SDValue AArch64TargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl &Outs, const SmallVectorImpl &OutVals, const SDLoc &DL, SelectionDAG &DAG) const { auto &MF = DAG.getMachineFunction(); auto *FuncInfo = MF.getInfo(); CCAssignFn *RetCC = CCAssignFnForReturn(CallConv); SmallVector RVLocs; CCState CCInfo(CallConv, isVarArg, MF, RVLocs, *DAG.getContext()); CCInfo.AnalyzeReturn(Outs, RetCC); // Copy the result values into the output registers. SDValue Glue; SmallVector, 4> RetVals; SmallSet RegsUsed; for (unsigned i = 0, realRVLocIdx = 0; i != RVLocs.size(); ++i, ++realRVLocIdx) { CCValAssign &VA = RVLocs[i]; assert(VA.isRegLoc() && "Can only return in registers!"); SDValue Arg = OutVals[realRVLocIdx]; switch (VA.getLocInfo()) { default: llvm_unreachable("Unknown loc info!"); case CCValAssign::Full: if (Outs[i].ArgVT == MVT::i1) { // AAPCS requires i1 to be zero-extended to i8 by the producer of the // value. This is strictly redundant on Darwin (which uses "zeroext // i1"), but will be optimised out before ISel. Arg = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Arg); Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg); } break; case CCValAssign::BCvt: Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg); break; case CCValAssign::AExt: case CCValAssign::ZExt: Arg = DAG.getZExtOrTrunc(Arg, DL, VA.getLocVT()); break; case CCValAssign::AExtUpper: assert(VA.getValVT() == MVT::i32 && "only expect 32 -> 64 upper bits"); Arg = DAG.getZExtOrTrunc(Arg, DL, VA.getLocVT()); Arg = DAG.getNode(ISD::SHL, DL, VA.getLocVT(), Arg, DAG.getConstant(32, DL, VA.getLocVT())); break; } if (RegsUsed.count(VA.getLocReg())) { SDValue &Bits = llvm::find_if(RetVals, [=](const std::pair &Elt) { return Elt.first == VA.getLocReg(); })->second; Bits = DAG.getNode(ISD::OR, DL, Bits.getValueType(), Bits, Arg); } else { RetVals.emplace_back(VA.getLocReg(), Arg); RegsUsed.insert(VA.getLocReg()); } } const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo(); // Emit SMSTOP before returning from a locally streaming function SMEAttrs FuncAttrs(MF.getFunction()); if (FuncAttrs.hasStreamingBody() && !FuncAttrs.hasStreamingInterface()) { if (FuncAttrs.hasStreamingCompatibleInterface()) { Register Reg = FuncInfo->getPStateSMReg(); assert(Reg.isValid() && "PStateSM Register is invalid"); SDValue PStateSM = DAG.getCopyFromReg(Chain, DL, Reg, MVT::i64); Chain = changeStreamingMode(DAG, DL, /*Enable*/ false, Chain, /*Glue*/ SDValue(), AArch64SME::IfCallerIsNonStreaming, PStateSM); } else Chain = changeStreamingMode(DAG, DL, /*Enable*/ false, Chain, /*Glue*/ SDValue(), AArch64SME::Always); Glue = Chain.getValue(1); } SmallVector RetOps(1, Chain); for (auto &RetVal : RetVals) { if (FuncAttrs.hasStreamingBody() && !FuncAttrs.hasStreamingInterface() && isPassedInFPR(RetVal.second.getValueType())) RetVal.second = DAG.getNode(AArch64ISD::COALESCER_BARRIER, DL, RetVal.second.getValueType(), RetVal.second); Chain = DAG.getCopyToReg(Chain, DL, RetVal.first, RetVal.second, Glue); Glue = Chain.getValue(1); RetOps.push_back( DAG.getRegister(RetVal.first, RetVal.second.getValueType())); } // Windows AArch64 ABIs require that for returning structs by value we copy // the sret argument into X0 for the return. // We saved the argument into a virtual register in the entry block, // so now we copy the value out and into X0. if (unsigned SRetReg = FuncInfo->getSRetReturnReg()) { SDValue Val = DAG.getCopyFromReg(RetOps[0], DL, SRetReg, getPointerTy(MF.getDataLayout())); unsigned RetValReg = AArch64::X0; if (CallConv == CallingConv::ARM64EC_Thunk_X64) RetValReg = AArch64::X8; Chain = DAG.getCopyToReg(Chain, DL, RetValReg, Val, Glue); Glue = Chain.getValue(1); RetOps.push_back( DAG.getRegister(RetValReg, getPointerTy(DAG.getDataLayout()))); } const MCPhysReg *I = TRI->getCalleeSavedRegsViaCopy(&MF); if (I) { for (; *I; ++I) { if (AArch64::GPR64RegClass.contains(*I)) RetOps.push_back(DAG.getRegister(*I, MVT::i64)); else if (AArch64::FPR64RegClass.contains(*I)) RetOps.push_back(DAG.getRegister(*I, MVT::getFloatingPointVT(64))); else llvm_unreachable("Unexpected register class in CSRsViaCopy!"); } } RetOps[0] = Chain; // Update chain. // Add the glue if we have it. if (Glue.getNode()) RetOps.push_back(Glue); if (CallConv == CallingConv::ARM64EC_Thunk_X64) { // ARM64EC entry thunks use a special return sequence: instead of a regular // "ret" instruction, they need to explicitly call the emulator. EVT PtrVT = getPointerTy(DAG.getDataLayout()); SDValue Arm64ECRetDest = DAG.getExternalSymbol("__os_arm64x_dispatch_ret", PtrVT); Arm64ECRetDest = getAddr(cast(Arm64ECRetDest), DAG, 0); Arm64ECRetDest = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Arm64ECRetDest, MachinePointerInfo()); RetOps.insert(RetOps.begin() + 1, Arm64ECRetDest); RetOps.insert(RetOps.begin() + 2, DAG.getTargetConstant(0, DL, MVT::i32)); return DAG.getNode(AArch64ISD::TC_RETURN, DL, MVT::Other, RetOps); } return DAG.getNode(AArch64ISD::RET_GLUE, DL, MVT::Other, RetOps); } //===----------------------------------------------------------------------===// // Other Lowering Code //===----------------------------------------------------------------------===// SDValue AArch64TargetLowering::getTargetNode(GlobalAddressSDNode *N, EVT Ty, SelectionDAG &DAG, unsigned Flag) const { return DAG.getTargetGlobalAddress(N->getGlobal(), SDLoc(N), Ty, N->getOffset(), Flag); } SDValue AArch64TargetLowering::getTargetNode(JumpTableSDNode *N, EVT Ty, SelectionDAG &DAG, unsigned Flag) const { return DAG.getTargetJumpTable(N->getIndex(), Ty, Flag); } SDValue AArch64TargetLowering::getTargetNode(ConstantPoolSDNode *N, EVT Ty, SelectionDAG &DAG, unsigned Flag) const { return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlign(), N->getOffset(), Flag); } SDValue AArch64TargetLowering::getTargetNode(BlockAddressSDNode* N, EVT Ty, SelectionDAG &DAG, unsigned Flag) const { return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, 0, Flag); } SDValue AArch64TargetLowering::getTargetNode(ExternalSymbolSDNode *N, EVT Ty, SelectionDAG &DAG, unsigned Flag) const { return DAG.getTargetExternalSymbol(N->getSymbol(), Ty, Flag); } // (loadGOT sym) template SDValue AArch64TargetLowering::getGOT(NodeTy *N, SelectionDAG &DAG, unsigned Flags) const { LLVM_DEBUG(dbgs() << "AArch64TargetLowering::getGOT\n"); SDLoc DL(N); EVT Ty = getPointerTy(DAG.getDataLayout()); SDValue GotAddr = getTargetNode(N, Ty, DAG, AArch64II::MO_GOT | Flags); // FIXME: Once remat is capable of dealing with instructions with register // operands, expand this into two nodes instead of using a wrapper node. return DAG.getNode(AArch64ISD::LOADgot, DL, Ty, GotAddr); } // (wrapper %highest(sym), %higher(sym), %hi(sym), %lo(sym)) template SDValue AArch64TargetLowering::getAddrLarge(NodeTy *N, SelectionDAG &DAG, unsigned Flags) const { LLVM_DEBUG(dbgs() << "AArch64TargetLowering::getAddrLarge\n"); SDLoc DL(N); EVT Ty = getPointerTy(DAG.getDataLayout()); const unsigned char MO_NC = AArch64II::MO_NC; return DAG.getNode( AArch64ISD::WrapperLarge, DL, Ty, getTargetNode(N, Ty, DAG, AArch64II::MO_G3 | Flags), getTargetNode(N, Ty, DAG, AArch64II::MO_G2 | MO_NC | Flags), getTargetNode(N, Ty, DAG, AArch64II::MO_G1 | MO_NC | Flags), getTargetNode(N, Ty, DAG, AArch64II::MO_G0 | MO_NC | Flags)); } // (addlow (adrp %hi(sym)) %lo(sym)) template SDValue AArch64TargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG, unsigned Flags) const { LLVM_DEBUG(dbgs() << "AArch64TargetLowering::getAddr\n"); SDLoc DL(N); EVT Ty = getPointerTy(DAG.getDataLayout()); SDValue Hi = getTargetNode(N, Ty, DAG, AArch64II::MO_PAGE | Flags); SDValue Lo = getTargetNode(N, Ty, DAG, AArch64II::MO_PAGEOFF | AArch64II::MO_NC | Flags); SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, Ty, Hi); return DAG.getNode(AArch64ISD::ADDlow, DL, Ty, ADRP, Lo); } // (adr sym) template SDValue AArch64TargetLowering::getAddrTiny(NodeTy *N, SelectionDAG &DAG, unsigned Flags) const { LLVM_DEBUG(dbgs() << "AArch64TargetLowering::getAddrTiny\n"); SDLoc DL(N); EVT Ty = getPointerTy(DAG.getDataLayout()); SDValue Sym = getTargetNode(N, Ty, DAG, Flags); return DAG.getNode(AArch64ISD::ADR, DL, Ty, Sym); } SDValue AArch64TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const { GlobalAddressSDNode *GN = cast(Op); const GlobalValue *GV = GN->getGlobal(); unsigned OpFlags = Subtarget->ClassifyGlobalReference(GV, getTargetMachine()); if (OpFlags != AArch64II::MO_NO_FLAG) assert(cast(Op)->getOffset() == 0 && "unexpected offset in global node"); // This also catches the large code model case for Darwin, and tiny code // model with got relocations. if ((OpFlags & AArch64II::MO_GOT) != 0) { return getGOT(GN, DAG, OpFlags); } SDValue Result; if (getTargetMachine().getCodeModel() == CodeModel::Large && !getTargetMachine().isPositionIndependent()) { Result = getAddrLarge(GN, DAG, OpFlags); } else if (getTargetMachine().getCodeModel() == CodeModel::Tiny) { Result = getAddrTiny(GN, DAG, OpFlags); } else { Result = getAddr(GN, DAG, OpFlags); } EVT PtrVT = getPointerTy(DAG.getDataLayout()); SDLoc DL(GN); if (OpFlags & (AArch64II::MO_DLLIMPORT | AArch64II::MO_COFFSTUB)) Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result, MachinePointerInfo::getGOT(DAG.getMachineFunction())); return Result; } /// Convert a TLS address reference into the correct sequence of loads /// and calls to compute the variable's address (for Darwin, currently) and /// return an SDValue containing the final node. /// Darwin only has one TLS scheme which must be capable of dealing with the /// fully general situation, in the worst case. This means: /// + "extern __thread" declaration. /// + Defined in a possibly unknown dynamic library. /// /// The general system is that each __thread variable has a [3 x i64] descriptor /// which contains information used by the runtime to calculate the address. The /// only part of this the compiler needs to know about is the first xword, which /// contains a function pointer that must be called with the address of the /// entire descriptor in "x0". /// /// Since this descriptor may be in a different unit, in general even the /// descriptor must be accessed via an indirect load. The "ideal" code sequence /// is: /// adrp x0, _var@TLVPPAGE /// ldr x0, [x0, _var@TLVPPAGEOFF] ; x0 now contains address of descriptor /// ldr x1, [x0] ; x1 contains 1st entry of descriptor, /// ; the function pointer /// blr x1 ; Uses descriptor address in x0 /// ; Address of _var is now in x0. /// /// If the address of _var's descriptor *is* known to the linker, then it can /// change the first "ldr" instruction to an appropriate "add x0, x0, #imm" for /// a slight efficiency gain. SDValue AArch64TargetLowering::LowerDarwinGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const { assert(Subtarget->isTargetDarwin() && "This function expects a Darwin target"); SDLoc DL(Op); MVT PtrVT = getPointerTy(DAG.getDataLayout()); MVT PtrMemVT = getPointerMemTy(DAG.getDataLayout()); const GlobalValue *GV = cast(Op)->getGlobal(); SDValue TLVPAddr = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS); SDValue DescAddr = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, TLVPAddr); // The first entry in the descriptor is a function pointer that we must call // to obtain the address of the variable. SDValue Chain = DAG.getEntryNode(); SDValue FuncTLVGet = DAG.getLoad( PtrMemVT, DL, Chain, DescAddr, MachinePointerInfo::getGOT(DAG.getMachineFunction()), Align(PtrMemVT.getSizeInBits() / 8), MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable); Chain = FuncTLVGet.getValue(1); // Extend loaded pointer if necessary (i.e. if ILP32) to DAG pointer. FuncTLVGet = DAG.getZExtOrTrunc(FuncTLVGet, DL, PtrVT); MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); MFI.setAdjustsStack(true); // TLS calls preserve all registers except those that absolutely must be // trashed: X0 (it takes an argument), LR (it's a call) and NZCV (let's not be // silly). const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo(); const uint32_t *Mask = TRI->getTLSCallPreservedMask(); if (Subtarget->hasCustomCallingConv()) TRI->UpdateCustomCallPreservedMask(DAG.getMachineFunction(), &Mask); // Finally, we can make the call. This is just a degenerate version of a // normal AArch64 call node: x0 takes the address of the descriptor, and // returns the address of the variable in this thread. Chain = DAG.getCopyToReg(Chain, DL, AArch64::X0, DescAddr, SDValue()); Chain = DAG.getNode(AArch64ISD::CALL, DL, DAG.getVTList(MVT::Other, MVT::Glue), Chain, FuncTLVGet, DAG.getRegister(AArch64::X0, MVT::i64), DAG.getRegisterMask(Mask), Chain.getValue(1)); return DAG.getCopyFromReg(Chain, DL, AArch64::X0, PtrVT, Chain.getValue(1)); } /// Convert a thread-local variable reference into a sequence of instructions to /// compute the variable's address for the local exec TLS model of ELF targets. /// The sequence depends on the maximum TLS area size. SDValue AArch64TargetLowering::LowerELFTLSLocalExec(const GlobalValue *GV, SDValue ThreadBase, const SDLoc &DL, SelectionDAG &DAG) const { EVT PtrVT = getPointerTy(DAG.getDataLayout()); SDValue TPOff, Addr; switch (DAG.getTarget().Options.TLSSize) { default: llvm_unreachable("Unexpected TLS size"); case 12: { // mrs x0, TPIDR_EL0 // add x0, x0, :tprel_lo12:a SDValue Var = DAG.getTargetGlobalAddress( GV, DL, PtrVT, 0, AArch64II::MO_TLS | AArch64II::MO_PAGEOFF); return SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, ThreadBase, Var, DAG.getTargetConstant(0, DL, MVT::i32)), 0); } case 24: { // mrs x0, TPIDR_EL0 // add x0, x0, :tprel_hi12:a // add x0, x0, :tprel_lo12_nc:a SDValue HiVar = DAG.getTargetGlobalAddress( GV, DL, PtrVT, 0, AArch64II::MO_TLS | AArch64II::MO_HI12); SDValue LoVar = DAG.getTargetGlobalAddress( GV, DL, PtrVT, 0, AArch64II::MO_TLS | AArch64II::MO_PAGEOFF | AArch64II::MO_NC); Addr = SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, ThreadBase, HiVar, DAG.getTargetConstant(0, DL, MVT::i32)), 0); return SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, Addr, LoVar, DAG.getTargetConstant(0, DL, MVT::i32)), 0); } case 32: { // mrs x1, TPIDR_EL0 // movz x0, #:tprel_g1:a // movk x0, #:tprel_g0_nc:a // add x0, x1, x0 SDValue HiVar = DAG.getTargetGlobalAddress( GV, DL, PtrVT, 0, AArch64II::MO_TLS | AArch64II::MO_G1); SDValue LoVar = DAG.getTargetGlobalAddress( GV, DL, PtrVT, 0, AArch64II::MO_TLS | AArch64II::MO_G0 | AArch64II::MO_NC); TPOff = SDValue(DAG.getMachineNode(AArch64::MOVZXi, DL, PtrVT, HiVar, DAG.getTargetConstant(16, DL, MVT::i32)), 0); TPOff = SDValue(DAG.getMachineNode(AArch64::MOVKXi, DL, PtrVT, TPOff, LoVar, DAG.getTargetConstant(0, DL, MVT::i32)), 0); return DAG.getNode(ISD::ADD, DL, PtrVT, ThreadBase, TPOff); } case 48: { // mrs x1, TPIDR_EL0 // movz x0, #:tprel_g2:a // movk x0, #:tprel_g1_nc:a // movk x0, #:tprel_g0_nc:a // add x0, x1, x0 SDValue HiVar = DAG.getTargetGlobalAddress( GV, DL, PtrVT, 0, AArch64II::MO_TLS | AArch64II::MO_G2); SDValue MiVar = DAG.getTargetGlobalAddress( GV, DL, PtrVT, 0, AArch64II::MO_TLS | AArch64II::MO_G1 | AArch64II::MO_NC); SDValue LoVar = DAG.getTargetGlobalAddress( GV, DL, PtrVT, 0, AArch64II::MO_TLS | AArch64II::MO_G0 | AArch64II::MO_NC); TPOff = SDValue(DAG.getMachineNode(AArch64::MOVZXi, DL, PtrVT, HiVar, DAG.getTargetConstant(32, DL, MVT::i32)), 0); TPOff = SDValue(DAG.getMachineNode(AArch64::MOVKXi, DL, PtrVT, TPOff, MiVar, DAG.getTargetConstant(16, DL, MVT::i32)), 0); TPOff = SDValue(DAG.getMachineNode(AArch64::MOVKXi, DL, PtrVT, TPOff, LoVar, DAG.getTargetConstant(0, DL, MVT::i32)), 0); return DAG.getNode(ISD::ADD, DL, PtrVT, ThreadBase, TPOff); } } } /// When accessing thread-local variables under either the general-dynamic or /// local-dynamic system, we make a "TLS-descriptor" call. The variable will /// have a descriptor, accessible via a PC-relative ADRP, and whose first entry /// is a function pointer to carry out the resolution. /// /// The sequence is: /// adrp x0, :tlsdesc:var /// ldr x1, [x0, #:tlsdesc_lo12:var] /// add x0, x0, #:tlsdesc_lo12:var /// .tlsdesccall var /// blr x1 /// (TPIDR_EL0 offset now in x0) /// /// The above sequence must be produced unscheduled, to enable the linker to /// optimize/relax this sequence. /// Therefore, a pseudo-instruction (TLSDESC_CALLSEQ) is used to represent the /// above sequence, and expanded really late in the compilation flow, to ensure /// the sequence is produced as per above. SDValue AArch64TargetLowering::LowerELFTLSDescCallSeq(SDValue SymAddr, const SDLoc &DL, SelectionDAG &DAG) const { EVT PtrVT = getPointerTy(DAG.getDataLayout()); SDValue Chain = DAG.getEntryNode(); SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); Chain = DAG.getNode(AArch64ISD::TLSDESC_CALLSEQ, DL, NodeTys, {Chain, SymAddr}); SDValue Glue = Chain.getValue(1); return DAG.getCopyFromReg(Chain, DL, AArch64::X0, PtrVT, Glue); } SDValue AArch64TargetLowering::LowerELFGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const { assert(Subtarget->isTargetELF() && "This function expects an ELF target"); const GlobalAddressSDNode *GA = cast(Op); TLSModel::Model Model = getTargetMachine().getTLSModel(GA->getGlobal()); if (!EnableAArch64ELFLocalDynamicTLSGeneration) { if (Model == TLSModel::LocalDynamic) Model = TLSModel::GeneralDynamic; } if (getTargetMachine().getCodeModel() == CodeModel::Large && Model != TLSModel::LocalExec) report_fatal_error("ELF TLS only supported in small memory model or " "in local exec TLS model"); // Different choices can be made for the maximum size of the TLS area for a // module. For the small address model, the default TLS size is 16MiB and the // maximum TLS size is 4GiB. // FIXME: add tiny and large code model support for TLS access models other // than local exec. We currently generate the same code as small for tiny, // which may be larger than needed. SDValue TPOff; EVT PtrVT = getPointerTy(DAG.getDataLayout()); SDLoc DL(Op); const GlobalValue *GV = GA->getGlobal(); SDValue ThreadBase = DAG.getNode(AArch64ISD::THREAD_POINTER, DL, PtrVT); if (Model == TLSModel::LocalExec) { return LowerELFTLSLocalExec(GV, ThreadBase, DL, DAG); } else if (Model == TLSModel::InitialExec) { TPOff = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS); TPOff = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, TPOff); } else if (Model == TLSModel::LocalDynamic) { // Local-dynamic accesses proceed in two phases. A general-dynamic TLS // descriptor call against the special symbol _TLS_MODULE_BASE_ to calculate // the beginning of the module's TLS region, followed by a DTPREL offset // calculation. // These accesses will need deduplicating if there's more than one. AArch64FunctionInfo *MFI = DAG.getMachineFunction().getInfo(); MFI->incNumLocalDynamicTLSAccesses(); // The call needs a relocation too for linker relaxation. It doesn't make // sense to call it MO_PAGE or MO_PAGEOFF though so we need another copy of // the address. SDValue SymAddr = DAG.getTargetExternalSymbol("_TLS_MODULE_BASE_", PtrVT, AArch64II::MO_TLS); // Now we can calculate the offset from TPIDR_EL0 to this module's // thread-local area. TPOff = LowerELFTLSDescCallSeq(SymAddr, DL, DAG); // Now use :dtprel_whatever: operations to calculate this variable's offset // in its thread-storage area. SDValue HiVar = DAG.getTargetGlobalAddress( GV, DL, MVT::i64, 0, AArch64II::MO_TLS | AArch64II::MO_HI12); SDValue LoVar = DAG.getTargetGlobalAddress( GV, DL, MVT::i64, 0, AArch64II::MO_TLS | AArch64II::MO_PAGEOFF | AArch64II::MO_NC); TPOff = SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, TPOff, HiVar, DAG.getTargetConstant(0, DL, MVT::i32)), 0); TPOff = SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, TPOff, LoVar, DAG.getTargetConstant(0, DL, MVT::i32)), 0); } else if (Model == TLSModel::GeneralDynamic) { // The call needs a relocation too for linker relaxation. It doesn't make // sense to call it MO_PAGE or MO_PAGEOFF though so we need another copy of // the address. SDValue SymAddr = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS); // Finally we can make a call to calculate the offset from tpidr_el0. TPOff = LowerELFTLSDescCallSeq(SymAddr, DL, DAG); } else llvm_unreachable("Unsupported ELF TLS access model"); return DAG.getNode(ISD::ADD, DL, PtrVT, ThreadBase, TPOff); } SDValue AArch64TargetLowering::LowerWindowsGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const { assert(Subtarget->isTargetWindows() && "Windows specific TLS lowering"); SDValue Chain = DAG.getEntryNode(); EVT PtrVT = getPointerTy(DAG.getDataLayout()); SDLoc DL(Op); SDValue TEB = DAG.getRegister(AArch64::X18, MVT::i64); // Load the ThreadLocalStoragePointer from the TEB // A pointer to the TLS array is located at offset 0x58 from the TEB. SDValue TLSArray = DAG.getNode(ISD::ADD, DL, PtrVT, TEB, DAG.getIntPtrConstant(0x58, DL)); TLSArray = DAG.getLoad(PtrVT, DL, Chain, TLSArray, MachinePointerInfo()); Chain = TLSArray.getValue(1); // Load the TLS index from the C runtime; // This does the same as getAddr(), but without having a GlobalAddressSDNode. // This also does the same as LOADgot, but using a generic i32 load, // while LOADgot only loads i64. SDValue TLSIndexHi = DAG.getTargetExternalSymbol("_tls_index", PtrVT, AArch64II::MO_PAGE); SDValue TLSIndexLo = DAG.getTargetExternalSymbol( "_tls_index", PtrVT, AArch64II::MO_PAGEOFF | AArch64II::MO_NC); SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, TLSIndexHi); SDValue TLSIndex = DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, TLSIndexLo); TLSIndex = DAG.getLoad(MVT::i32, DL, Chain, TLSIndex, MachinePointerInfo()); Chain = TLSIndex.getValue(1); // The pointer to the thread's TLS data area is at the TLS Index scaled by 8 // offset into the TLSArray. TLSIndex = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TLSIndex); SDValue Slot = DAG.getNode(ISD::SHL, DL, PtrVT, TLSIndex, DAG.getConstant(3, DL, PtrVT)); SDValue TLS = DAG.getLoad(PtrVT, DL, Chain, DAG.getNode(ISD::ADD, DL, PtrVT, TLSArray, Slot), MachinePointerInfo()); Chain = TLS.getValue(1); const GlobalAddressSDNode *GA = cast(Op); const GlobalValue *GV = GA->getGlobal(); SDValue TGAHi = DAG.getTargetGlobalAddress( GV, DL, PtrVT, 0, AArch64II::MO_TLS | AArch64II::MO_HI12); SDValue TGALo = DAG.getTargetGlobalAddress( GV, DL, PtrVT, 0, AArch64II::MO_TLS | AArch64II::MO_PAGEOFF | AArch64II::MO_NC); // Add the offset from the start of the .tls section (section base). SDValue Addr = SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, TLS, TGAHi, DAG.getTargetConstant(0, DL, MVT::i32)), 0); Addr = DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, Addr, TGALo); return Addr; } SDValue AArch64TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const { const GlobalAddressSDNode *GA = cast(Op); if (DAG.getTarget().useEmulatedTLS()) return LowerToTLSEmulatedModel(GA, DAG); if (Subtarget->isTargetDarwin()) return LowerDarwinGlobalTLSAddress(Op, DAG); if (Subtarget->isTargetELF()) return LowerELFGlobalTLSAddress(Op, DAG); if (Subtarget->isTargetWindows()) return LowerWindowsGlobalTLSAddress(Op, DAG); llvm_unreachable("Unexpected platform trying to use TLS"); } // Looks through \param Val to determine the bit that can be used to // check the sign of the value. It returns the unextended value and // the sign bit position. std::pair lookThroughSignExtension(SDValue Val) { if (Val.getOpcode() == ISD::SIGN_EXTEND_INREG) return {Val.getOperand(0), cast(Val.getOperand(1))->getVT().getFixedSizeInBits() - 1}; if (Val.getOpcode() == ISD::SIGN_EXTEND) return {Val.getOperand(0), Val.getOperand(0)->getValueType(0).getFixedSizeInBits() - 1}; return {Val, Val.getValueSizeInBits() - 1}; } SDValue AArch64TargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const { SDValue Chain = Op.getOperand(0); ISD::CondCode CC = cast(Op.getOperand(1))->get(); SDValue LHS = Op.getOperand(2); SDValue RHS = Op.getOperand(3); SDValue Dest = Op.getOperand(4); SDLoc dl(Op); MachineFunction &MF = DAG.getMachineFunction(); // Speculation tracking/SLH assumes that optimized TB(N)Z/CB(N)Z instructions // will not be produced, as they are conditional branch instructions that do // not set flags. bool ProduceNonFlagSettingCondBr = !MF.getFunction().hasFnAttribute(Attribute::SpeculativeLoadHardening); // Handle f128 first, since lowering it will result in comparing the return // value of a libcall against zero, which is just what the rest of LowerBR_CC // is expecting to deal with. if (LHS.getValueType() == MVT::f128) { softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl, LHS, RHS); // If softenSetCCOperands returned a scalar, we need to compare the result // against zero to select between true and false values. if (!RHS.getNode()) { RHS = DAG.getConstant(0, dl, LHS.getValueType()); CC = ISD::SETNE; } } // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a branch // instruction. if (ISD::isOverflowIntrOpRes(LHS) && isOneConstant(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE)) { // Only lower legal XALUO ops. if (!DAG.getTargetLoweringInfo().isTypeLegal(LHS->getValueType(0))) return SDValue(); // The actual operation with overflow check. AArch64CC::CondCode OFCC; SDValue Value, Overflow; std::tie(Value, Overflow) = getAArch64XALUOOp(OFCC, LHS.getValue(0), DAG); if (CC == ISD::SETNE) OFCC = getInvertedCondCode(OFCC); SDValue CCVal = DAG.getConstant(OFCC, dl, MVT::i32); return DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, Chain, Dest, CCVal, Overflow); } if (LHS.getValueType().isInteger()) { assert((LHS.getValueType() == RHS.getValueType()) && (LHS.getValueType() == MVT::i32 || LHS.getValueType() == MVT::i64)); // If the RHS of the comparison is zero, we can potentially fold this // to a specialized branch. const ConstantSDNode *RHSC = dyn_cast(RHS); if (RHSC && RHSC->getZExtValue() == 0 && ProduceNonFlagSettingCondBr) { if (CC == ISD::SETEQ) { // See if we can use a TBZ to fold in an AND as well. // TBZ has a smaller branch displacement than CBZ. If the offset is // out of bounds, a late MI-layer pass rewrites branches. // 403.gcc is an example that hits this case. if (LHS.getOpcode() == ISD::AND && isa(LHS.getOperand(1)) && isPowerOf2_64(LHS.getConstantOperandVal(1))) { SDValue Test = LHS.getOperand(0); uint64_t Mask = LHS.getConstantOperandVal(1); return DAG.getNode(AArch64ISD::TBZ, dl, MVT::Other, Chain, Test, DAG.getConstant(Log2_64(Mask), dl, MVT::i64), Dest); } return DAG.getNode(AArch64ISD::CBZ, dl, MVT::Other, Chain, LHS, Dest); } else if (CC == ISD::SETNE) { // See if we can use a TBZ to fold in an AND as well. // TBZ has a smaller branch displacement than CBZ. If the offset is // out of bounds, a late MI-layer pass rewrites branches. // 403.gcc is an example that hits this case. if (LHS.getOpcode() == ISD::AND && isa(LHS.getOperand(1)) && isPowerOf2_64(LHS.getConstantOperandVal(1))) { SDValue Test = LHS.getOperand(0); uint64_t Mask = LHS.getConstantOperandVal(1); return DAG.getNode(AArch64ISD::TBNZ, dl, MVT::Other, Chain, Test, DAG.getConstant(Log2_64(Mask), dl, MVT::i64), Dest); } return DAG.getNode(AArch64ISD::CBNZ, dl, MVT::Other, Chain, LHS, Dest); } else if (CC == ISD::SETLT && LHS.getOpcode() != ISD::AND) { // Don't combine AND since emitComparison converts the AND to an ANDS // (a.k.a. TST) and the test in the test bit and branch instruction // becomes redundant. This would also increase register pressure. uint64_t SignBitPos; std::tie(LHS, SignBitPos) = lookThroughSignExtension(LHS); return DAG.getNode(AArch64ISD::TBNZ, dl, MVT::Other, Chain, LHS, DAG.getConstant(SignBitPos, dl, MVT::i64), Dest); } } if (RHSC && RHSC->getSExtValue() == -1 && CC == ISD::SETGT && LHS.getOpcode() != ISD::AND && ProduceNonFlagSettingCondBr) { // Don't combine AND since emitComparison converts the AND to an ANDS // (a.k.a. TST) and the test in the test bit and branch instruction // becomes redundant. This would also increase register pressure. uint64_t SignBitPos; std::tie(LHS, SignBitPos) = lookThroughSignExtension(LHS); return DAG.getNode(AArch64ISD::TBZ, dl, MVT::Other, Chain, LHS, DAG.getConstant(SignBitPos, dl, MVT::i64), Dest); } SDValue CCVal; SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl); return DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, Chain, Dest, CCVal, Cmp); } assert(LHS.getValueType() == MVT::f16 || LHS.getValueType() == MVT::bf16 || LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64); // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally // clean. Some of them require two branches to implement. SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG); AArch64CC::CondCode CC1, CC2; changeFPCCToAArch64CC(CC, CC1, CC2); SDValue CC1Val = DAG.getConstant(CC1, dl, MVT::i32); SDValue BR1 = DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, Chain, Dest, CC1Val, Cmp); if (CC2 != AArch64CC::AL) { SDValue CC2Val = DAG.getConstant(CC2, dl, MVT::i32); return DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, BR1, Dest, CC2Val, Cmp); } return BR1; } SDValue AArch64TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const { if (!Subtarget->hasNEON()) return SDValue(); EVT VT = Op.getValueType(); EVT IntVT = VT.changeTypeToInteger(); SDLoc DL(Op); SDValue In1 = Op.getOperand(0); SDValue In2 = Op.getOperand(1); EVT SrcVT = In2.getValueType(); if (!SrcVT.bitsEq(VT)) In2 = DAG.getFPExtendOrRound(In2, DL, VT); if (VT.isScalableVector()) IntVT = getPackedSVEVectorVT(VT.getVectorElementType().changeTypeToInteger()); if (VT.isFixedLengthVector() && useSVEForFixedLengthVectorVT(VT, !Subtarget->isNeonAvailable())) { EVT ContainerVT = getContainerForFixedLengthVector(DAG, VT); In1 = convertToScalableVector(DAG, ContainerVT, In1); In2 = convertToScalableVector(DAG, ContainerVT, In2); SDValue Res = DAG.getNode(ISD::FCOPYSIGN, DL, ContainerVT, In1, In2); return convertFromScalableVector(DAG, VT, Res); } auto BitCast = [this](EVT VT, SDValue Op, SelectionDAG &DAG) { if (VT.isScalableVector()) return getSVESafeBitCast(VT, Op, DAG); return DAG.getBitcast(VT, Op); }; SDValue VecVal1, VecVal2; EVT VecVT; auto SetVecVal = [&](int Idx = -1) { if (!VT.isVector()) { VecVal1 = DAG.getTargetInsertSubreg(Idx, DL, VecVT, DAG.getUNDEF(VecVT), In1); VecVal2 = DAG.getTargetInsertSubreg(Idx, DL, VecVT, DAG.getUNDEF(VecVT), In2); } else { VecVal1 = BitCast(VecVT, In1, DAG); VecVal2 = BitCast(VecVT, In2, DAG); } }; if (VT.isVector()) { VecVT = IntVT; SetVecVal(); } else if (VT == MVT::f64) { VecVT = MVT::v2i64; SetVecVal(AArch64::dsub); } else if (VT == MVT::f32) { VecVT = MVT::v4i32; SetVecVal(AArch64::ssub); } else if (VT == MVT::f16 || VT == MVT::bf16) { VecVT = MVT::v8i16; SetVecVal(AArch64::hsub); } else { llvm_unreachable("Invalid type for copysign!"); } unsigned BitWidth = In1.getScalarValueSizeInBits(); SDValue SignMaskV = DAG.getConstant(~APInt::getSignMask(BitWidth), DL, VecVT); // We want to materialize a mask with every bit but the high bit set, but the // AdvSIMD immediate moves cannot materialize that in a single instruction for // 64-bit elements. Instead, materialize all bits set and then negate that. if (VT == MVT::f64 || VT == MVT::v2f64) { SignMaskV = DAG.getConstant(APInt::getAllOnes(BitWidth), DL, VecVT); SignMaskV = DAG.getNode(ISD::BITCAST, DL, MVT::v2f64, SignMaskV); SignMaskV = DAG.getNode(ISD::FNEG, DL, MVT::v2f64, SignMaskV); SignMaskV = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, SignMaskV); } SDValue BSP = DAG.getNode(AArch64ISD::BSP, DL, VecVT, SignMaskV, VecVal1, VecVal2); if (VT == MVT::f16 || VT == MVT::bf16) return DAG.getTargetExtractSubreg(AArch64::hsub, DL, VT, BSP); if (VT == MVT::f32) return DAG.getTargetExtractSubreg(AArch64::ssub, DL, VT, BSP); if (VT == MVT::f64) return DAG.getTargetExtractSubreg(AArch64::dsub, DL, VT, BSP); return BitCast(VT, BSP, DAG); } SDValue AArch64TargetLowering::LowerCTPOP_PARITY(SDValue Op, SelectionDAG &DAG) const { if (DAG.getMachineFunction().getFunction().hasFnAttribute( Attribute::NoImplicitFloat)) return SDValue(); if (!Subtarget->hasNEON()) return SDValue(); bool IsParity = Op.getOpcode() == ISD::PARITY; SDValue Val = Op.getOperand(0); SDLoc DL(Op); EVT VT = Op.getValueType(); // for i32, general parity function using EORs is more efficient compared to // using floating point if (VT == MVT::i32 && IsParity) return SDValue(); // If there is no CNT instruction available, GPR popcount can // be more efficiently lowered to the following sequence that uses // AdvSIMD registers/instructions as long as the copies to/from // the AdvSIMD registers are cheap. // FMOV D0, X0 // copy 64-bit int to vector, high bits zero'd // CNT V0.8B, V0.8B // 8xbyte pop-counts // ADDV B0, V0.8B // sum 8xbyte pop-counts // UMOV X0, V0.B[0] // copy byte result back to integer reg if (VT == MVT::i32 || VT == MVT::i64) { if (VT == MVT::i32) Val = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, Val); Val = DAG.getNode(ISD::BITCAST, DL, MVT::v8i8, Val); SDValue CtPop = DAG.getNode(ISD::CTPOP, DL, MVT::v8i8, Val); SDValue UaddLV = DAG.getNode(AArch64ISD::UADDLV, DL, MVT::v4i32, CtPop); UaddLV = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, UaddLV, DAG.getConstant(0, DL, MVT::i64)); if (IsParity) UaddLV = DAG.getNode(ISD::AND, DL, MVT::i32, UaddLV, DAG.getConstant(1, DL, MVT::i32)); if (VT == MVT::i64) UaddLV = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, UaddLV); return UaddLV; } else if (VT == MVT::i128) { Val = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Val); SDValue CtPop = DAG.getNode(ISD::CTPOP, DL, MVT::v16i8, Val); SDValue UaddLV = DAG.getNode(AArch64ISD::UADDLV, DL, MVT::v4i32, CtPop); UaddLV = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, UaddLV, DAG.getConstant(0, DL, MVT::i64)); if (IsParity) UaddLV = DAG.getNode(ISD::AND, DL, MVT::i32, UaddLV, DAG.getConstant(1, DL, MVT::i32)); return DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i128, UaddLV); } assert(!IsParity && "ISD::PARITY of vector types not supported"); if (VT.isScalableVector() || useSVEForFixedLengthVectorVT(VT, !Subtarget->isNeonAvailable())) return LowerToPredicatedOp(Op, DAG, AArch64ISD::CTPOP_MERGE_PASSTHRU); assert((VT == MVT::v1i64 || VT == MVT::v2i64 || VT == MVT::v2i32 || VT == MVT::v4i32 || VT == MVT::v4i16 || VT == MVT::v8i16) && "Unexpected type for custom ctpop lowering"); EVT VT8Bit = VT.is64BitVector() ? MVT::v8i8 : MVT::v16i8; Val = DAG.getBitcast(VT8Bit, Val); Val = DAG.getNode(ISD::CTPOP, DL, VT8Bit, Val); // Widen v8i8/v16i8 CTPOP result to VT by repeatedly widening pairwise adds. unsigned EltSize = 8; unsigned NumElts = VT.is64BitVector() ? 8 : 16; while (EltSize != VT.getScalarSizeInBits()) { EltSize *= 2; NumElts /= 2; MVT WidenVT = MVT::getVectorVT(MVT::getIntegerVT(EltSize), NumElts); Val = DAG.getNode( ISD::INTRINSIC_WO_CHAIN, DL, WidenVT, DAG.getConstant(Intrinsic::aarch64_neon_uaddlp, DL, MVT::i32), Val); } return Val; } SDValue AArch64TargetLowering::LowerCTTZ(SDValue Op, SelectionDAG &DAG) const { EVT VT = Op.getValueType(); assert(VT.isScalableVector() || useSVEForFixedLengthVectorVT( VT, /*OverrideNEON=*/Subtarget->useSVEForFixedLengthVectors())); SDLoc DL(Op); SDValue RBIT = DAG.getNode(ISD::BITREVERSE, DL, VT, Op.getOperand(0)); return DAG.getNode(ISD::CTLZ, DL, VT, RBIT); } SDValue AArch64TargetLowering::LowerMinMax(SDValue Op, SelectionDAG &DAG) const { EVT VT = Op.getValueType(); SDLoc DL(Op); unsigned Opcode = Op.getOpcode(); ISD::CondCode CC; switch (Opcode) { default: llvm_unreachable("Wrong instruction"); case ISD::SMAX: CC = ISD::SETGT; break; case ISD::SMIN: CC = ISD::SETLT; break; case ISD::UMAX: CC = ISD::SETUGT; break; case ISD::UMIN: CC = ISD::SETULT; break; } if (VT.isScalableVector() || useSVEForFixedLengthVectorVT( VT, /*OverrideNEON=*/Subtarget->useSVEForFixedLengthVectors())) { switch (Opcode) { default: llvm_unreachable("Wrong instruction"); case ISD::SMAX: return LowerToPredicatedOp(Op, DAG, AArch64ISD::SMAX_PRED); case ISD::SMIN: return LowerToPredicatedOp(Op, DAG, AArch64ISD::SMIN_PRED); case ISD::UMAX: return LowerToPredicatedOp(Op, DAG, AArch64ISD::UMAX_PRED); case ISD::UMIN: return LowerToPredicatedOp(Op, DAG, AArch64ISD::UMIN_PRED); } } SDValue Op0 = Op.getOperand(0); SDValue Op1 = Op.getOperand(1); SDValue Cond = DAG.getSetCC(DL, VT, Op0, Op1, CC); return DAG.getSelect(DL, VT, Cond, Op0, Op1); } SDValue AArch64TargetLowering::LowerBitreverse(SDValue Op, SelectionDAG &DAG) const { EVT VT = Op.getValueType(); if (VT.isScalableVector() || useSVEForFixedLengthVectorVT( VT, /*OverrideNEON=*/Subtarget->useSVEForFixedLengthVectors())) return LowerToPredicatedOp(Op, DAG, AArch64ISD::BITREVERSE_MERGE_PASSTHRU); SDLoc DL(Op); SDValue REVB; MVT VST; switch (VT.getSimpleVT().SimpleTy) { default: llvm_unreachable("Invalid type for bitreverse!"); case MVT::v2i32: { VST = MVT::v8i8; REVB = DAG.getNode(AArch64ISD::REV32, DL, VST, Op.getOperand(0)); break; } case MVT::v4i32: { VST = MVT::v16i8; REVB = DAG.getNode(AArch64ISD::REV32, DL, VST, Op.getOperand(0)); break; } case MVT::v1i64: { VST = MVT::v8i8; REVB = DAG.getNode(AArch64ISD::REV64, DL, VST, Op.getOperand(0)); break; } case MVT::v2i64: { VST = MVT::v16i8; REVB = DAG.getNode(AArch64ISD::REV64, DL, VST, Op.getOperand(0)); break; } } return DAG.getNode(AArch64ISD::NVCAST, DL, VT, DAG.getNode(ISD::BITREVERSE, DL, VST, REVB)); } // Check whether the continuous comparison sequence. static bool isOrXorChain(SDValue N, unsigned &Num, SmallVector, 16> &WorkList) { if (Num == MaxXors) return false; // Skip the one-use zext if (N->getOpcode() == ISD::ZERO_EXTEND && N->hasOneUse()) N = N->getOperand(0); // The leaf node must be XOR if (N->getOpcode() == ISD::XOR) { WorkList.push_back(std::make_pair(N->getOperand(0), N->getOperand(1))); Num++; return true; } // All the non-leaf nodes must be OR. if (N->getOpcode() != ISD::OR || !N->hasOneUse()) return false; if (isOrXorChain(N->getOperand(0), Num, WorkList) && isOrXorChain(N->getOperand(1), Num, WorkList)) return true; return false; } // Transform chains of ORs and XORs, which usually outlined by memcmp/bmp. static SDValue performOrXorChainCombine(SDNode *N, SelectionDAG &DAG) { SDValue LHS = N->getOperand(0); SDValue RHS = N->getOperand(1); SDLoc DL(N); EVT VT = N->getValueType(0); SmallVector, 16> WorkList; // Only handle integer compares. if (N->getOpcode() != ISD::SETCC) return SDValue(); ISD::CondCode Cond = cast(N->getOperand(2))->get(); // Try to express conjunction "cmp 0 (or (xor A0 A1) (xor B0 B1))" as: // sub A0, A1; ccmp B0, B1, 0, eq; cmp inv(Cond) flag unsigned NumXors = 0; if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && isNullConstant(RHS) && LHS->getOpcode() == ISD::OR && LHS->hasOneUse() && isOrXorChain(LHS, NumXors, WorkList)) { SDValue XOR0, XOR1; std::tie(XOR0, XOR1) = WorkList[0]; unsigned LogicOp = (Cond == ISD::SETEQ) ? ISD::AND : ISD::OR; SDValue Cmp = DAG.getSetCC(DL, VT, XOR0, XOR1, Cond); for (unsigned I = 1; I < WorkList.size(); I++) { std::tie(XOR0, XOR1) = WorkList[I]; SDValue CmpChain = DAG.getSetCC(DL, VT, XOR0, XOR1, Cond); Cmp = DAG.getNode(LogicOp, DL, VT, Cmp, CmpChain); } // Exit early by inverting the condition, which help reduce indentations. return Cmp; } return SDValue(); } SDValue AArch64TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { if (Op.getValueType().isVector()) return LowerVSETCC(Op, DAG); bool IsStrict = Op->isStrictFPOpcode(); bool IsSignaling = Op.getOpcode() == ISD::STRICT_FSETCCS; unsigned OpNo = IsStrict ? 1 : 0; SDValue Chain; if (IsStrict) Chain = Op.getOperand(0); SDValue LHS = Op.getOperand(OpNo + 0); SDValue RHS = Op.getOperand(OpNo + 1); ISD::CondCode CC = cast(Op.getOperand(OpNo + 2))->get(); SDLoc dl(Op); // We chose ZeroOrOneBooleanContents, so use zero and one. EVT VT = Op.getValueType(); SDValue TVal = DAG.getConstant(1, dl, VT); SDValue FVal = DAG.getConstant(0, dl, VT); // Handle f128 first, since one possible outcome is a normal integer // comparison which gets picked up by the next if statement. if (LHS.getValueType() == MVT::f128) { softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl, LHS, RHS, Chain, IsSignaling); // If softenSetCCOperands returned a scalar, use it. if (!RHS.getNode()) { assert(LHS.getValueType() == Op.getValueType() && "Unexpected setcc expansion!"); return IsStrict ? DAG.getMergeValues({LHS, Chain}, dl) : LHS; } } if (LHS.getValueType().isInteger()) { SDValue CCVal; SDValue Cmp = getAArch64Cmp( LHS, RHS, ISD::getSetCCInverse(CC, LHS.getValueType()), CCVal, DAG, dl); // Note that we inverted the condition above, so we reverse the order of // the true and false operands here. This will allow the setcc to be // matched to a single CSINC instruction. SDValue Res = DAG.getNode(AArch64ISD::CSEL, dl, VT, FVal, TVal, CCVal, Cmp); return IsStrict ? DAG.getMergeValues({Res, Chain}, dl) : Res; } // Now we know we're dealing with FP values. assert(LHS.getValueType() == MVT::bf16 || LHS.getValueType() == MVT::f16 || LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64); // If that fails, we'll need to perform an FCMP + CSEL sequence. Go ahead // and do the comparison. SDValue Cmp; if (IsStrict) Cmp = emitStrictFPComparison(LHS, RHS, dl, DAG, Chain, IsSignaling); else Cmp = emitComparison(LHS, RHS, CC, dl, DAG); AArch64CC::CondCode CC1, CC2; changeFPCCToAArch64CC(CC, CC1, CC2); SDValue Res; if (CC2 == AArch64CC::AL) { changeFPCCToAArch64CC(ISD::getSetCCInverse(CC, LHS.getValueType()), CC1, CC2); SDValue CC1Val = DAG.getConstant(CC1, dl, MVT::i32); // Note that we inverted the condition above, so we reverse the order of // the true and false operands here. This will allow the setcc to be // matched to a single CSINC instruction. Res = DAG.getNode(AArch64ISD::CSEL, dl, VT, FVal, TVal, CC1Val, Cmp); } else { // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't // totally clean. Some of them require two CSELs to implement. As is in // this case, we emit the first CSEL and then emit a second using the output // of the first as the RHS. We're effectively OR'ing the two CC's together. // FIXME: It would be nice if we could match the two CSELs to two CSINCs. SDValue CC1Val = DAG.getConstant(CC1, dl, MVT::i32); SDValue CS1 = DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, FVal, CC1Val, Cmp); SDValue CC2Val = DAG.getConstant(CC2, dl, MVT::i32); Res = DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, CS1, CC2Val, Cmp); } return IsStrict ? DAG.getMergeValues({Res, Cmp.getValue(1)}, dl) : Res; } SDValue AArch64TargetLowering::LowerSETCCCARRY(SDValue Op, SelectionDAG &DAG) const { SDValue LHS = Op.getOperand(0); SDValue RHS = Op.getOperand(1); EVT VT = LHS.getValueType(); if (VT != MVT::i32 && VT != MVT::i64) return SDValue(); SDLoc DL(Op); SDValue Carry = Op.getOperand(2); // SBCS uses a carry not a borrow so the carry flag should be inverted first. SDValue InvCarry = valueToCarryFlag(Carry, DAG, true); SDValue Cmp = DAG.getNode(AArch64ISD::SBCS, DL, DAG.getVTList(VT, MVT::Glue), LHS, RHS, InvCarry); EVT OpVT = Op.getValueType(); SDValue TVal = DAG.getConstant(1, DL, OpVT); SDValue FVal = DAG.getConstant(0, DL, OpVT); ISD::CondCode Cond = cast(Op.getOperand(3))->get(); ISD::CondCode CondInv = ISD::getSetCCInverse(Cond, VT); SDValue CCVal = DAG.getConstant(changeIntCCToAArch64CC(CondInv), DL, MVT::i32); // Inputs are swapped because the condition is inverted. This will allow // matching with a single CSINC instruction. return DAG.getNode(AArch64ISD::CSEL, DL, OpVT, FVal, TVal, CCVal, Cmp.getValue(1)); } SDValue AArch64TargetLowering::LowerSELECT_CC(ISD::CondCode CC, SDValue LHS, SDValue RHS, SDValue TVal, SDValue FVal, const SDLoc &dl, SelectionDAG &DAG) const { // Handle f128 first, because it will result in a comparison of some RTLIB // call result against zero. if (LHS.getValueType() == MVT::f128) { softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl, LHS, RHS); // If softenSetCCOperands returned a scalar, we need to compare the result // against zero to select between true and false values. if (!RHS.getNode()) { RHS = DAG.getConstant(0, dl, LHS.getValueType()); CC = ISD::SETNE; } } // Also handle f16, for which we need to do a f32 comparison. if ((LHS.getValueType() == MVT::f16 && !Subtarget->hasFullFP16()) || LHS.getValueType() == MVT::bf16) { LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, LHS); RHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, RHS); } // Next, handle integers. if (LHS.getValueType().isInteger()) { assert((LHS.getValueType() == RHS.getValueType()) && (LHS.getValueType() == MVT::i32 || LHS.getValueType() == MVT::i64)); ConstantSDNode *CFVal = dyn_cast(FVal); ConstantSDNode *CTVal = dyn_cast(TVal); ConstantSDNode *RHSC = dyn_cast(RHS); // Check for sign pattern (SELECT_CC setgt, iN lhs, -1, 1, -1) and transform // into (OR (ASR lhs, N-1), 1), which requires less instructions for the // supported types. if (CC == ISD::SETGT && RHSC && RHSC->isAllOnes() && CTVal && CFVal && CTVal->isOne() && CFVal->isAllOnes() && LHS.getValueType() == TVal.getValueType()) { EVT VT = LHS.getValueType(); SDValue Shift = DAG.getNode(ISD::SRA, dl, VT, LHS, DAG.getConstant(VT.getSizeInBits() - 1, dl, VT)); return DAG.getNode(ISD::OR, dl, VT, Shift, DAG.getConstant(1, dl, VT)); } // Check for SMAX(lhs, 0) and SMIN(lhs, 0) patterns. // (SELECT_CC setgt, lhs, 0, lhs, 0) -> (BIC lhs, (SRA lhs, typesize-1)) // (SELECT_CC setlt, lhs, 0, lhs, 0) -> (AND lhs, (SRA lhs, typesize-1)) // Both require less instructions than compare and conditional select. if ((CC == ISD::SETGT || CC == ISD::SETLT) && LHS == TVal && RHSC && RHSC->isZero() && CFVal && CFVal->isZero() && LHS.getValueType() == RHS.getValueType()) { EVT VT = LHS.getValueType(); SDValue Shift = DAG.getNode(ISD::SRA, dl, VT, LHS, DAG.getConstant(VT.getSizeInBits() - 1, dl, VT)); if (CC == ISD::SETGT) Shift = DAG.getNOT(dl, Shift, VT); return DAG.getNode(ISD::AND, dl, VT, LHS, Shift); } unsigned Opcode = AArch64ISD::CSEL; // If both the TVal and the FVal are constants, see if we can swap them in // order to for a CSINV or CSINC out of them. if (CTVal && CFVal && CTVal->isAllOnes() && CFVal->isZero()) { std::swap(TVal, FVal); std::swap(CTVal, CFVal); CC = ISD::getSetCCInverse(CC, LHS.getValueType()); } else if (CTVal && CFVal && CTVal->isOne() && CFVal->isZero()) { std::swap(TVal, FVal); std::swap(CTVal, CFVal); CC = ISD::getSetCCInverse(CC, LHS.getValueType()); } else if (TVal.getOpcode() == ISD::XOR) { // If TVal is a NOT we want to swap TVal and FVal so that we can match // with a CSINV rather than a CSEL. if (isAllOnesConstant(TVal.getOperand(1))) { std::swap(TVal, FVal); std::swap(CTVal, CFVal); CC = ISD::getSetCCInverse(CC, LHS.getValueType()); } } else if (TVal.getOpcode() == ISD::SUB) { // If TVal is a negation (SUB from 0) we want to swap TVal and FVal so // that we can match with a CSNEG rather than a CSEL. if (isNullConstant(TVal.getOperand(0))) { std::swap(TVal, FVal); std::swap(CTVal, CFVal); CC = ISD::getSetCCInverse(CC, LHS.getValueType()); } } else if (CTVal && CFVal) { const int64_t TrueVal = CTVal->getSExtValue(); const int64_t FalseVal = CFVal->getSExtValue(); bool Swap = false; // If both TVal and FVal are constants, see if FVal is the // inverse/negation/increment of TVal and generate a CSINV/CSNEG/CSINC // instead of a CSEL in that case. if (TrueVal == ~FalseVal) { Opcode = AArch64ISD::CSINV; } else if (FalseVal > std::numeric_limits::min() && TrueVal == -FalseVal) { Opcode = AArch64ISD::CSNEG; } else if (TVal.getValueType() == MVT::i32) { // If our operands are only 32-bit wide, make sure we use 32-bit // arithmetic for the check whether we can use CSINC. This ensures that // the addition in the check will wrap around properly in case there is // an overflow (which would not be the case if we do the check with // 64-bit arithmetic). const uint32_t TrueVal32 = CTVal->getZExtValue(); const uint32_t FalseVal32 = CFVal->getZExtValue(); if ((TrueVal32 == FalseVal32 + 1) || (TrueVal32 + 1 == FalseVal32)) { Opcode = AArch64ISD::CSINC; if (TrueVal32 > FalseVal32) { Swap = true; } } } else { // 64-bit check whether we can use CSINC. const uint64_t TrueVal64 = TrueVal; const uint64_t FalseVal64 = FalseVal; if ((TrueVal64 == FalseVal64 + 1) || (TrueVal64 + 1 == FalseVal64)) { Opcode = AArch64ISD::CSINC; if (TrueVal > FalseVal) { Swap = true; } } } // Swap TVal and FVal if necessary. if (Swap) { std::swap(TVal, FVal); std::swap(CTVal, CFVal); CC = ISD::getSetCCInverse(CC, LHS.getValueType()); } if (Opcode != AArch64ISD::CSEL) { // Drop FVal since we can get its value by simply inverting/negating // TVal. FVal = TVal; } } // Avoid materializing a constant when possible by reusing a known value in // a register. However, don't perform this optimization if the known value // is one, zero or negative one in the case of a CSEL. We can always // materialize these values using CSINC, CSEL and CSINV with wzr/xzr as the // FVal, respectively. ConstantSDNode *RHSVal = dyn_cast(RHS); if (Opcode == AArch64ISD::CSEL && RHSVal && !RHSVal->isOne() && !RHSVal->isZero() && !RHSVal->isAllOnes()) { AArch64CC::CondCode AArch64CC = changeIntCCToAArch64CC(CC); // Transform "a == C ? C : x" to "a == C ? a : x" and "a != C ? x : C" to // "a != C ? x : a" to avoid materializing C. if (CTVal && CTVal == RHSVal && AArch64CC == AArch64CC::EQ) TVal = LHS; else if (CFVal && CFVal == RHSVal && AArch64CC == AArch64CC::NE) FVal = LHS; } else if (Opcode == AArch64ISD::CSNEG && RHSVal && RHSVal->isOne()) { assert (CTVal && CFVal && "Expected constant operands for CSNEG."); // Use a CSINV to transform "a == C ? 1 : -1" to "a == C ? a : -1" to // avoid materializing C. AArch64CC::CondCode AArch64CC = changeIntCCToAArch64CC(CC); if (CTVal == RHSVal && AArch64CC == AArch64CC::EQ) { Opcode = AArch64ISD::CSINV; TVal = LHS; FVal = DAG.getConstant(0, dl, FVal.getValueType()); } } SDValue CCVal; SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl); EVT VT = TVal.getValueType(); return DAG.getNode(Opcode, dl, VT, TVal, FVal, CCVal, Cmp); } // Now we know we're dealing with FP values. assert(LHS.getValueType() == MVT::f16 || LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64); assert(LHS.getValueType() == RHS.getValueType()); EVT VT = TVal.getValueType(); SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG); // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally // clean. Some of them require two CSELs to implement. AArch64CC::CondCode CC1, CC2; changeFPCCToAArch64CC(CC, CC1, CC2); if (DAG.getTarget().Options.UnsafeFPMath) { // Transform "a == 0.0 ? 0.0 : x" to "a == 0.0 ? a : x" and // "a != 0.0 ? x : 0.0" to "a != 0.0 ? x : a" to avoid materializing 0.0. ConstantFPSDNode *RHSVal = dyn_cast(RHS); if (RHSVal && RHSVal->isZero()) { ConstantFPSDNode *CFVal = dyn_cast(FVal); ConstantFPSDNode *CTVal = dyn_cast(TVal); if ((CC == ISD::SETEQ || CC == ISD::SETOEQ || CC == ISD::SETUEQ) && CTVal && CTVal->isZero() && TVal.getValueType() == LHS.getValueType()) TVal = LHS; else if ((CC == ISD::SETNE || CC == ISD::SETONE || CC == ISD::SETUNE) && CFVal && CFVal->isZero() && FVal.getValueType() == LHS.getValueType()) FVal = LHS; } } // Emit first, and possibly only, CSEL. SDValue CC1Val = DAG.getConstant(CC1, dl, MVT::i32); SDValue CS1 = DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, FVal, CC1Val, Cmp); // If we need a second CSEL, emit it, using the output of the first as the // RHS. We're effectively OR'ing the two CC's together. if (CC2 != AArch64CC::AL) { SDValue CC2Val = DAG.getConstant(CC2, dl, MVT::i32); return DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, CS1, CC2Val, Cmp); } // Otherwise, return the output of the first CSEL. return CS1; } SDValue AArch64TargetLowering::LowerVECTOR_SPLICE(SDValue Op, SelectionDAG &DAG) const { EVT Ty = Op.getValueType(); auto Idx = Op.getConstantOperandAPInt(2); int64_t IdxVal = Idx.getSExtValue(); assert(Ty.isScalableVector() && "Only expect scalable vectors for custom lowering of VECTOR_SPLICE"); // We can use the splice instruction for certain index values where we are // able to efficiently generate the correct predicate. The index will be // inverted and used directly as the input to the ptrue instruction, i.e. // -1 -> vl1, -2 -> vl2, etc. The predicate will then be reversed to get the // splice predicate. However, we can only do this if we can guarantee that // there are enough elements in the vector, hence we check the index <= min // number of elements. std::optional PredPattern; if (Ty.isScalableVector() && IdxVal < 0 && (PredPattern = getSVEPredPatternFromNumElements(std::abs(IdxVal))) != std::nullopt) { SDLoc DL(Op); // Create a predicate where all but the last -IdxVal elements are false. EVT PredVT = Ty.changeVectorElementType(MVT::i1); SDValue Pred = getPTrue(DAG, DL, PredVT, *PredPattern); Pred = DAG.getNode(ISD::VECTOR_REVERSE, DL, PredVT, Pred); // Now splice the two inputs together using the predicate. return DAG.getNode(AArch64ISD::SPLICE, DL, Ty, Pred, Op.getOperand(0), Op.getOperand(1)); } // This will select to an EXT instruction, which has a maximum immediate // value of 255, hence 2048-bits is the maximum value we can lower. if (IdxVal >= 0 && IdxVal < int64_t(2048 / Ty.getVectorElementType().getSizeInBits())) return Op; return SDValue(); } SDValue AArch64TargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const { ISD::CondCode CC = cast(Op.getOperand(4))->get(); SDValue LHS = Op.getOperand(0); SDValue RHS = Op.getOperand(1); SDValue TVal = Op.getOperand(2); SDValue FVal = Op.getOperand(3); SDLoc DL(Op); return LowerSELECT_CC(CC, LHS, RHS, TVal, FVal, DL, DAG); } SDValue AArch64TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const { SDValue CCVal = Op->getOperand(0); SDValue TVal = Op->getOperand(1); SDValue FVal = Op->getOperand(2); SDLoc DL(Op); EVT Ty = Op.getValueType(); if (Ty == MVT::aarch64svcount) { TVal = DAG.getNode(ISD::BITCAST, DL, MVT::nxv16i1, TVal); FVal = DAG.getNode(ISD::BITCAST, DL, MVT::nxv16i1, FVal); SDValue Sel = DAG.getNode(ISD::SELECT, DL, MVT::nxv16i1, CCVal, TVal, FVal); return DAG.getNode(ISD::BITCAST, DL, Ty, Sel); } if (Ty.isScalableVector()) { MVT PredVT = MVT::getVectorVT(MVT::i1, Ty.getVectorElementCount()); SDValue SplatPred = DAG.getNode(ISD::SPLAT_VECTOR, DL, PredVT, CCVal); return DAG.getNode(ISD::VSELECT, DL, Ty, SplatPred, TVal, FVal); } if (useSVEForFixedLengthVectorVT(Ty, !Subtarget->isNeonAvailable())) { // FIXME: Ideally this would be the same as above using i1 types, however // for the moment we can't deal with fixed i1 vector types properly, so // instead extend the predicate to a result type sized integer vector. MVT SplatValVT = MVT::getIntegerVT(Ty.getScalarSizeInBits()); MVT PredVT = MVT::getVectorVT(SplatValVT, Ty.getVectorElementCount()); SDValue SplatVal = DAG.getSExtOrTrunc(CCVal, DL, SplatValVT); SDValue SplatPred = DAG.getNode(ISD::SPLAT_VECTOR, DL, PredVT, SplatVal); return DAG.getNode(ISD::VSELECT, DL, Ty, SplatPred, TVal, FVal); } // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a select // instruction. if (ISD::isOverflowIntrOpRes(CCVal)) { // Only lower legal XALUO ops. if (!DAG.getTargetLoweringInfo().isTypeLegal(CCVal->getValueType(0))) return SDValue(); AArch64CC::CondCode OFCC; SDValue Value, Overflow; std::tie(Value, Overflow) = getAArch64XALUOOp(OFCC, CCVal.getValue(0), DAG); SDValue CCVal = DAG.getConstant(OFCC, DL, MVT::i32); return DAG.getNode(AArch64ISD::CSEL, DL, Op.getValueType(), TVal, FVal, CCVal, Overflow); } // Lower it the same way as we would lower a SELECT_CC node. ISD::CondCode CC; SDValue LHS, RHS; if (CCVal.getOpcode() == ISD::SETCC) { LHS = CCVal.getOperand(0); RHS = CCVal.getOperand(1); CC = cast(CCVal.getOperand(2))->get(); } else { LHS = CCVal; RHS = DAG.getConstant(0, DL, CCVal.getValueType()); CC = ISD::SETNE; } // If we are lowering a f16 and we do not have fullf16, convert to a f32 in // order to use FCSELSrrr if ((Ty == MVT::f16 || Ty == MVT::bf16) && !Subtarget->hasFullFP16()) { TVal = DAG.getTargetInsertSubreg(AArch64::hsub, DL, MVT::f32, DAG.getUNDEF(MVT::f32), TVal); FVal = DAG.getTargetInsertSubreg(AArch64::hsub, DL, MVT::f32, DAG.getUNDEF(MVT::f32), FVal); } SDValue Res = LowerSELECT_CC(CC, LHS, RHS, TVal, FVal, DL, DAG); if ((Ty == MVT::f16 || Ty == MVT::bf16) && !Subtarget->hasFullFP16()) { return DAG.getTargetExtractSubreg(AArch64::hsub, DL, Ty, Res); } return Res; } SDValue AArch64TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const { // Jump table entries as PC relative offsets. No additional tweaking // is necessary here. Just get the address of the jump table. JumpTableSDNode *JT = cast(Op); CodeModel::Model CM = getTargetMachine().getCodeModel(); if (CM == CodeModel::Large && !getTargetMachine().isPositionIndependent() && !Subtarget->isTargetMachO()) return getAddrLarge(JT, DAG); if (CM == CodeModel::Tiny) return getAddrTiny(JT, DAG); return getAddr(JT, DAG); } SDValue AArch64TargetLowering::LowerBR_JT(SDValue Op, SelectionDAG &DAG) const { // Jump table entries as PC relative offsets. No additional tweaking // is necessary here. Just get the address of the jump table. SDLoc DL(Op); SDValue JT = Op.getOperand(1); SDValue Entry = Op.getOperand(2); int JTI = cast(JT.getNode())->getIndex(); auto *AFI = DAG.getMachineFunction().getInfo(); AFI->setJumpTableEntryInfo(JTI, 4, nullptr); SDNode *Dest = DAG.getMachineNode(AArch64::JumpTableDest32, DL, MVT::i64, MVT::i64, JT, Entry, DAG.getTargetJumpTable(JTI, MVT::i32)); SDValue JTInfo = DAG.getJumpTableDebugInfo(JTI, Op.getOperand(0), DL); return DAG.getNode(ISD::BRIND, DL, MVT::Other, JTInfo, SDValue(Dest, 0)); } SDValue AArch64TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const { ConstantPoolSDNode *CP = cast(Op); CodeModel::Model CM = getTargetMachine().getCodeModel(); if (CM == CodeModel::Large) { // Use the GOT for the large code model on iOS. if (Subtarget->isTargetMachO()) { return getGOT(CP, DAG); } if (!getTargetMachine().isPositionIndependent()) return getAddrLarge(CP, DAG); } else if (CM == CodeModel::Tiny) { return getAddrTiny(CP, DAG); } return getAddr(CP, DAG); } SDValue AArch64TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const { BlockAddressSDNode *BA = cast(Op); CodeModel::Model CM = getTargetMachine().getCodeModel(); if (CM == CodeModel::Large && !Subtarget->isTargetMachO()) { if (!getTargetMachine().isPositionIndependent()) return getAddrLarge(BA, DAG); } else if (CM == CodeModel::Tiny) { return getAddrTiny(BA, DAG); } return getAddr(BA, DAG); } SDValue AArch64TargetLowering::LowerDarwin_VASTART(SDValue Op, SelectionDAG &DAG) const { AArch64FunctionInfo *FuncInfo = DAG.getMachineFunction().getInfo(); SDLoc DL(Op); SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsStackIndex(), getPointerTy(DAG.getDataLayout())); FR = DAG.getZExtOrTrunc(FR, DL, getPointerMemTy(DAG.getDataLayout())); const Value *SV = cast(Op.getOperand(2))->getValue(); return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1), MachinePointerInfo(SV)); } SDValue AArch64TargetLowering::LowerWin64_VASTART(SDValue Op, SelectionDAG &DAG) const { MachineFunction &MF = DAG.getMachineFunction(); AArch64FunctionInfo *FuncInfo = MF.getInfo(); SDLoc DL(Op); SDValue FR; if (Subtarget->isWindowsArm64EC()) { // With the Arm64EC ABI, we compute the address of the varargs save area // relative to x4. For a normal AArch64->AArch64 call, x4 == sp on entry, // but calls from an entry thunk can pass in a different address. Register VReg = MF.addLiveIn(AArch64::X4, &AArch64::GPR64RegClass); SDValue Val = DAG.getCopyFromReg(DAG.getEntryNode(), DL, VReg, MVT::i64); uint64_t StackOffset; if (FuncInfo->getVarArgsGPRSize() > 0) StackOffset = -(uint64_t)FuncInfo->getVarArgsGPRSize(); else StackOffset = FuncInfo->getVarArgsStackOffset(); FR = DAG.getNode(ISD::ADD, DL, MVT::i64, Val, DAG.getConstant(StackOffset, DL, MVT::i64)); } else { FR = DAG.getFrameIndex(FuncInfo->getVarArgsGPRSize() > 0 ? FuncInfo->getVarArgsGPRIndex() : FuncInfo->getVarArgsStackIndex(), getPointerTy(DAG.getDataLayout())); } const Value *SV = cast(Op.getOperand(2))->getValue(); return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1), MachinePointerInfo(SV)); } SDValue AArch64TargetLowering::LowerAAPCS_VASTART(SDValue Op, SelectionDAG &DAG) const { // The layout of the va_list struct is specified in the AArch64 Procedure Call // Standard, section B.3. MachineFunction &MF = DAG.getMachineFunction(); AArch64FunctionInfo *FuncInfo = MF.getInfo(); unsigned PtrSize = Subtarget->isTargetILP32() ? 4 : 8; auto PtrMemVT = getPointerMemTy(DAG.getDataLayout()); auto PtrVT = getPointerTy(DAG.getDataLayout()); SDLoc DL(Op); SDValue Chain = Op.getOperand(0); SDValue VAList = Op.getOperand(1); const Value *SV = cast(Op.getOperand(2))->getValue(); SmallVector MemOps; // void *__stack at offset 0 unsigned Offset = 0; SDValue Stack = DAG.getFrameIndex(FuncInfo->getVarArgsStackIndex(), PtrVT); Stack = DAG.getZExtOrTrunc(Stack, DL, PtrMemVT); MemOps.push_back(DAG.getStore(Chain, DL, Stack, VAList, MachinePointerInfo(SV), Align(PtrSize))); // void *__gr_top at offset 8 (4 on ILP32) Offset += PtrSize; int GPRSize = FuncInfo->getVarArgsGPRSize(); if (GPRSize > 0) { SDValue GRTop, GRTopAddr; GRTopAddr = DAG.getNode(ISD::ADD, DL, PtrVT, VAList, DAG.getConstant(Offset, DL, PtrVT)); GRTop = DAG.getFrameIndex(FuncInfo->getVarArgsGPRIndex(), PtrVT); GRTop = DAG.getNode(ISD::ADD, DL, PtrVT, GRTop, DAG.getConstant(GPRSize, DL, PtrVT)); GRTop = DAG.getZExtOrTrunc(GRTop, DL, PtrMemVT); MemOps.push_back(DAG.getStore(Chain, DL, GRTop, GRTopAddr, MachinePointerInfo(SV, Offset), Align(PtrSize))); } // void *__vr_top at offset 16 (8 on ILP32) Offset += PtrSize; int FPRSize = FuncInfo->getVarArgsFPRSize(); if (FPRSize > 0) { SDValue VRTop, VRTopAddr; VRTopAddr = DAG.getNode(ISD::ADD, DL, PtrVT, VAList, DAG.getConstant(Offset, DL, PtrVT)); VRTop = DAG.getFrameIndex(FuncInfo->getVarArgsFPRIndex(), PtrVT); VRTop = DAG.getNode(ISD::ADD, DL, PtrVT, VRTop, DAG.getConstant(FPRSize, DL, PtrVT)); VRTop = DAG.getZExtOrTrunc(VRTop, DL, PtrMemVT); MemOps.push_back(DAG.getStore(Chain, DL, VRTop, VRTopAddr, MachinePointerInfo(SV, Offset), Align(PtrSize))); } // int __gr_offs at offset 24 (12 on ILP32) Offset += PtrSize; SDValue GROffsAddr = DAG.getNode(ISD::ADD, DL, PtrVT, VAList, DAG.getConstant(Offset, DL, PtrVT)); MemOps.push_back( DAG.getStore(Chain, DL, DAG.getConstant(-GPRSize, DL, MVT::i32), GROffsAddr, MachinePointerInfo(SV, Offset), Align(4))); // int __vr_offs at offset 28 (16 on ILP32) Offset += 4; SDValue VROffsAddr = DAG.getNode(ISD::ADD, DL, PtrVT, VAList, DAG.getConstant(Offset, DL, PtrVT)); MemOps.push_back( DAG.getStore(Chain, DL, DAG.getConstant(-FPRSize, DL, MVT::i32), VROffsAddr, MachinePointerInfo(SV, Offset), Align(4))); return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps); } SDValue AArch64TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const { MachineFunction &MF = DAG.getMachineFunction(); if (Subtarget->isCallingConvWin64(MF.getFunction().getCallingConv())) return LowerWin64_VASTART(Op, DAG); else if (Subtarget->isTargetDarwin()) return LowerDarwin_VASTART(Op, DAG); else return LowerAAPCS_VASTART(Op, DAG); } SDValue AArch64TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const { // AAPCS has three pointers and two ints (= 32 bytes), Darwin has single // pointer. SDLoc DL(Op); unsigned PtrSize = Subtarget->isTargetILP32() ? 4 : 8; unsigned VaListSize = (Subtarget->isTargetDarwin() || Subtarget->isTargetWindows()) ? PtrSize : Subtarget->isTargetILP32() ? 20 : 32; const Value *DestSV = cast(Op.getOperand(3))->getValue(); const Value *SrcSV = cast(Op.getOperand(4))->getValue(); return DAG.getMemcpy(Op.getOperand(0), DL, Op.getOperand(1), Op.getOperand(2), DAG.getConstant(VaListSize, DL, MVT::i32), Align(PtrSize), false, false, false, MachinePointerInfo(DestSV), MachinePointerInfo(SrcSV)); } SDValue AArch64TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const { assert(Subtarget->isTargetDarwin() && "automatic va_arg instruction only works on Darwin"); const Value *V = cast(Op.getOperand(2))->getValue(); EVT VT = Op.getValueType(); SDLoc DL(Op); SDValue Chain = Op.getOperand(0); SDValue Addr = Op.getOperand(1); MaybeAlign Align(Op.getConstantOperandVal(3)); unsigned MinSlotSize = Subtarget->isTargetILP32() ? 4 : 8; auto PtrVT = getPointerTy(DAG.getDataLayout()); auto PtrMemVT = getPointerMemTy(DAG.getDataLayout()); SDValue VAList = DAG.getLoad(PtrMemVT, DL, Chain, Addr, MachinePointerInfo(V)); Chain = VAList.getValue(1); VAList = DAG.getZExtOrTrunc(VAList, DL, PtrVT); if (VT.isScalableVector()) report_fatal_error("Passing SVE types to variadic functions is " "currently not supported"); if (Align && *Align > MinSlotSize) { VAList = DAG.getNode(ISD::ADD, DL, PtrVT, VAList, DAG.getConstant(Align->value() - 1, DL, PtrVT)); VAList = DAG.getNode(ISD::AND, DL, PtrVT, VAList, DAG.getConstant(-(int64_t)Align->value(), DL, PtrVT)); } Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); unsigned ArgSize = DAG.getDataLayout().getTypeAllocSize(ArgTy); // Scalar integer and FP values smaller than 64 bits are implicitly extended // up to 64 bits. At the very least, we have to increase the striding of the // vaargs list to match this, and for FP values we need to introduce // FP_ROUND nodes as well. if (VT.isInteger() && !VT.isVector()) ArgSize = std::max(ArgSize, MinSlotSize); bool NeedFPTrunc = false; if (VT.isFloatingPoint() && !VT.isVector() && VT != MVT::f64) { ArgSize = 8; NeedFPTrunc = true; } // Increment the pointer, VAList, to the next vaarg SDValue VANext = DAG.getNode(ISD::ADD, DL, PtrVT, VAList, DAG.getConstant(ArgSize, DL, PtrVT)); VANext = DAG.getZExtOrTrunc(VANext, DL, PtrMemVT); // Store the incremented VAList to the legalized pointer SDValue APStore = DAG.getStore(Chain, DL, VANext, Addr, MachinePointerInfo(V)); // Load the actual argument out of the pointer VAList if (NeedFPTrunc) { // Load the value as an f64. SDValue WideFP = DAG.getLoad(MVT::f64, DL, APStore, VAList, MachinePointerInfo()); // Round the value down to an f32. SDValue NarrowFP = DAG.getNode(ISD::FP_ROUND, DL, VT, WideFP.getValue(0), DAG.getIntPtrConstant(1, DL, /*isTarget=*/true)); SDValue Ops[] = { NarrowFP, WideFP.getValue(1) }; // Merge the rounded value with the chain output of the load. return DAG.getMergeValues(Ops, DL); } return DAG.getLoad(VT, DL, APStore, VAList, MachinePointerInfo()); } SDValue AArch64TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const { MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); MFI.setFrameAddressIsTaken(true); EVT VT = Op.getValueType(); SDLoc DL(Op); unsigned Depth = Op.getConstantOperandVal(0); SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, AArch64::FP, MVT::i64); while (Depth--) FrameAddr = DAG.getLoad(VT, DL, DAG.getEntryNode(), FrameAddr, MachinePointerInfo()); if (Subtarget->isTargetILP32()) FrameAddr = DAG.getNode(ISD::AssertZext, DL, MVT::i64, FrameAddr, DAG.getValueType(VT)); return FrameAddr; } SDValue AArch64TargetLowering::LowerSPONENTRY(SDValue Op, SelectionDAG &DAG) const { MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); EVT VT = getPointerTy(DAG.getDataLayout()); SDLoc DL(Op); int FI = MFI.CreateFixedObject(4, 0, false); return DAG.getFrameIndex(FI, VT); } #define GET_REGISTER_MATCHER #include "AArch64GenAsmMatcher.inc" // FIXME? Maybe this could be a TableGen attribute on some registers and // this table could be generated automatically from RegInfo. Register AArch64TargetLowering:: getRegisterByName(const char* RegName, LLT VT, const MachineFunction &MF) const { Register Reg = MatchRegisterName(RegName); if (AArch64::X1 <= Reg && Reg <= AArch64::X28) { const AArch64RegisterInfo *MRI = Subtarget->getRegisterInfo(); unsigned DwarfRegNum = MRI->getDwarfRegNum(Reg, false); if (!Subtarget->isXRegisterReserved(DwarfRegNum) && !MRI->isReservedReg(MF, Reg)) Reg = 0; } if (Reg) return Reg; report_fatal_error(Twine("Invalid register name \"" + StringRef(RegName) + "\".")); } SDValue AArch64TargetLowering::LowerADDROFRETURNADDR(SDValue Op, SelectionDAG &DAG) const { DAG.getMachineFunction().getFrameInfo().setFrameAddressIsTaken(true); EVT VT = Op.getValueType(); SDLoc DL(Op); SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, AArch64::FP, VT); SDValue Offset = DAG.getConstant(8, DL, getPointerTy(DAG.getDataLayout())); return DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset); } SDValue AArch64TargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const { MachineFunction &MF = DAG.getMachineFunction(); MachineFrameInfo &MFI = MF.getFrameInfo(); MFI.setReturnAddressIsTaken(true); EVT VT = Op.getValueType(); SDLoc DL(Op); unsigned Depth = Op.getConstantOperandVal(0); SDValue ReturnAddress; if (Depth) { SDValue FrameAddr = LowerFRAMEADDR(Op, DAG); SDValue Offset = DAG.getConstant(8, DL, getPointerTy(DAG.getDataLayout())); ReturnAddress = DAG.getLoad( VT, DL, DAG.getEntryNode(), DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset), MachinePointerInfo()); } else { // Return LR, which contains the return address. Mark it an implicit // live-in. Register Reg = MF.addLiveIn(AArch64::LR, &AArch64::GPR64RegClass); ReturnAddress = DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, VT); } // The XPACLRI instruction assembles to a hint-space instruction before // Armv8.3-A therefore this instruction can be safely used for any pre // Armv8.3-A architectures. On Armv8.3-A and onwards XPACI is available so use // that instead. SDNode *St; if (Subtarget->hasPAuth()) { St = DAG.getMachineNode(AArch64::XPACI, DL, VT, ReturnAddress); } else { // XPACLRI operates on LR therefore we must move the operand accordingly. SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), DL, AArch64::LR, ReturnAddress); St = DAG.getMachineNode(AArch64::XPACLRI, DL, VT, Chain); } return SDValue(St, 0); } /// LowerShiftParts - Lower SHL_PARTS/SRA_PARTS/SRL_PARTS, which returns two /// i32 values and take a 2 x i32 value to shift plus a shift amount. SDValue AArch64TargetLowering::LowerShiftParts(SDValue Op, SelectionDAG &DAG) const { SDValue Lo, Hi; expandShiftParts(Op.getNode(), Lo, Hi, DAG); return DAG.getMergeValues({Lo, Hi}, SDLoc(Op)); } bool AArch64TargetLowering::isOffsetFoldingLegal( const GlobalAddressSDNode *GA) const { // Offsets are folded in the DAG combine rather than here so that we can // intelligently choose an offset based on the uses. return false; } bool AArch64TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, bool OptForSize) const { bool IsLegal = false; // We can materialize #0.0 as fmov $Rd, XZR for 64-bit, 32-bit cases, and // 16-bit case when target has full fp16 support. // We encode bf16 bit patterns as if they were fp16. This results in very // strange looking assembly but should populate the register with appropriate // values. Let's say we wanted to encode 0xR3FC0 which is 1.5 in BF16. We will // end up encoding this as the imm8 0x7f. This imm8 will be expanded to the // FP16 1.9375 which shares the same bit pattern as BF16 1.5. // FIXME: We should be able to handle f128 as well with a clever lowering. const APInt ImmInt = Imm.bitcastToAPInt(); if (VT == MVT::f64) IsLegal = AArch64_AM::getFP64Imm(ImmInt) != -1 || Imm.isPosZero(); else if (VT == MVT::f32) IsLegal = AArch64_AM::getFP32Imm(ImmInt) != -1 || Imm.isPosZero(); else if (VT == MVT::f16 || VT == MVT::bf16) IsLegal = (Subtarget->hasFullFP16() && AArch64_AM::getFP16Imm(ImmInt) != -1) || Imm.isPosZero(); // If we can not materialize in immediate field for fmov, check if the // value can be encoded as the immediate operand of a logical instruction. // The immediate value will be created with either MOVZ, MOVN, or ORR. // TODO: fmov h0, w0 is also legal, however we don't have an isel pattern to // generate that fmov. if (!IsLegal && (VT == MVT::f64 || VT == MVT::f32)) { // The cost is actually exactly the same for mov+fmov vs. adrp+ldr; // however the mov+fmov sequence is always better because of the reduced // cache pressure. The timings are still the same if you consider // movw+movk+fmov vs. adrp+ldr (it's one instruction longer, but the // movw+movk is fused). So we limit up to 2 instrdduction at most. SmallVector Insn; AArch64_IMM::expandMOVImm(ImmInt.getZExtValue(), VT.getSizeInBits(), Insn); unsigned Limit = (OptForSize ? 1 : (Subtarget->hasFuseLiterals() ? 5 : 2)); IsLegal = Insn.size() <= Limit; } LLVM_DEBUG(dbgs() << (IsLegal ? "Legal " : "Illegal ") << VT << " imm value: "; Imm.dump();); return IsLegal; } //===----------------------------------------------------------------------===// // AArch64 Optimization Hooks //===----------------------------------------------------------------------===// static SDValue getEstimate(const AArch64Subtarget *ST, unsigned Opcode, SDValue Operand, SelectionDAG &DAG, int &ExtraSteps) { EVT VT = Operand.getValueType(); if ((ST->hasNEON() && (VT == MVT::f64 || VT == MVT::v1f64 || VT == MVT::v2f64 || VT == MVT::f32 || VT == MVT::v1f32 || VT == MVT::v2f32 || VT == MVT::v4f32)) || (ST->hasSVE() && (VT == MVT::nxv8f16 || VT == MVT::nxv4f32 || VT == MVT::nxv2f64))) { if (ExtraSteps == TargetLoweringBase::ReciprocalEstimate::Unspecified) { // For the reciprocal estimates, convergence is quadratic, so the number // of digits is doubled after each iteration. In ARMv8, the accuracy of // the initial estimate is 2^-8. Thus the number of extra steps to refine // the result for float (23 mantissa bits) is 2 and for double (52 // mantissa bits) is 3. constexpr unsigned AccurateBits = 8; unsigned DesiredBits = APFloat::semanticsPrecision(DAG.EVTToAPFloatSemantics(VT)); ExtraSteps = DesiredBits <= AccurateBits ? 0 : Log2_64_Ceil(DesiredBits) - Log2_64_Ceil(AccurateBits); } return DAG.getNode(Opcode, SDLoc(Operand), VT, Operand); } return SDValue(); } SDValue AArch64TargetLowering::getSqrtInputTest(SDValue Op, SelectionDAG &DAG, const DenormalMode &Mode) const { SDLoc DL(Op); EVT VT = Op.getValueType(); EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); SDValue FPZero = DAG.getConstantFP(0.0, DL, VT); return DAG.getSetCC(DL, CCVT, Op, FPZero, ISD::SETEQ); } SDValue AArch64TargetLowering::getSqrtResultForDenormInput(SDValue Op, SelectionDAG &DAG) const { return Op; } SDValue AArch64TargetLowering::getSqrtEstimate(SDValue Operand, SelectionDAG &DAG, int Enabled, int &ExtraSteps, bool &UseOneConst, bool Reciprocal) const { if (Enabled == ReciprocalEstimate::Enabled || (Enabled == ReciprocalEstimate::Unspecified && Subtarget->useRSqrt())) if (SDValue Estimate = getEstimate(Subtarget, AArch64ISD::FRSQRTE, Operand, DAG, ExtraSteps)) { SDLoc DL(Operand); EVT VT = Operand.getValueType(); SDNodeFlags Flags; Flags.setAllowReassociation(true); // Newton reciprocal square root iteration: E * 0.5 * (3 - X * E^2) // AArch64 reciprocal square root iteration instruction: 0.5 * (3 - M * N) for (int i = ExtraSteps; i > 0; --i) { SDValue Step = DAG.getNode(ISD::FMUL, DL, VT, Estimate, Estimate, Flags); Step = DAG.getNode(AArch64ISD::FRSQRTS, DL, VT, Operand, Step, Flags); Estimate = DAG.getNode(ISD::FMUL, DL, VT, Estimate, Step, Flags); } if (!Reciprocal) Estimate = DAG.getNode(ISD::FMUL, DL, VT, Operand, Estimate, Flags); ExtraSteps = 0; return Estimate; } return SDValue(); } SDValue AArch64TargetLowering::getRecipEstimate(SDValue Operand, SelectionDAG &DAG, int Enabled, int &ExtraSteps) const { if (Enabled == ReciprocalEstimate::Enabled) if (SDValue Estimate = getEstimate(Subtarget, AArch64ISD::FRECPE, Operand, DAG, ExtraSteps)) { SDLoc DL(Operand); EVT VT = Operand.getValueType(); SDNodeFlags Flags; Flags.setAllowReassociation(true); // Newton reciprocal iteration: E * (2 - X * E) // AArch64 reciprocal iteration instruction: (2 - M * N) for (int i = ExtraSteps; i > 0; --i) { SDValue Step = DAG.getNode(AArch64ISD::FRECPS, DL, VT, Operand, Estimate, Flags); Estimate = DAG.getNode(ISD::FMUL, DL, VT, Estimate, Step, Flags); } ExtraSteps = 0; return Estimate; } return SDValue(); } //===----------------------------------------------------------------------===// // AArch64 Inline Assembly Support //===----------------------------------------------------------------------===// // Table of Constraints // TODO: This is the current set of constraints supported by ARM for the // compiler, not all of them may make sense. // // r - A general register // w - An FP/SIMD register of some size in the range v0-v31 // x - An FP/SIMD register of some size in the range v0-v15 // I - Constant that can be used with an ADD instruction // J - Constant that can be used with a SUB instruction // K - Constant that can be used with a 32-bit logical instruction // L - Constant that can be used with a 64-bit logical instruction // M - Constant that can be used as a 32-bit MOV immediate // N - Constant that can be used as a 64-bit MOV immediate // Q - A memory reference with base register and no offset // S - A symbolic address // Y - Floating point constant zero // Z - Integer constant zero // // Note that general register operands will be output using their 64-bit x // register name, whatever the size of the variable, unless the asm operand // is prefixed by the %w modifier. Floating-point and SIMD register operands // will be output with the v prefix unless prefixed by the %b, %h, %s, %d or // %q modifier. const char *AArch64TargetLowering::LowerXConstraint(EVT ConstraintVT) const { // At this point, we have to lower this constraint to something else, so we // lower it to an "r" or "w". However, by doing this we will force the result // to be in register, while the X constraint is much more permissive. // // Although we are correct (we are free to emit anything, without // constraints), we might break use cases that would expect us to be more // efficient and emit something else. if (!Subtarget->hasFPARMv8()) return "r"; if (ConstraintVT.isFloatingPoint()) return "w"; if (ConstraintVT.isVector() && (ConstraintVT.getSizeInBits() == 64 || ConstraintVT.getSizeInBits() == 128)) return "w"; return "r"; } enum class PredicateConstraint { Uph, Upl, Upa }; static std::optional parsePredicateConstraint(StringRef Constraint) { return StringSwitch>(Constraint) .Case("Uph", PredicateConstraint::Uph) .Case("Upl", PredicateConstraint::Upl) .Case("Upa", PredicateConstraint::Upa) .Default(std::nullopt); } static const TargetRegisterClass * getPredicateRegisterClass(PredicateConstraint Constraint, EVT VT) { if (VT != MVT::aarch64svcount && (!VT.isScalableVector() || VT.getVectorElementType() != MVT::i1)) return nullptr; switch (Constraint) { case PredicateConstraint::Uph: return VT == MVT::aarch64svcount ? &AArch64::PNR_p8to15RegClass : &AArch64::PPR_p8to15RegClass; case PredicateConstraint::Upl: return VT == MVT::aarch64svcount ? &AArch64::PNR_3bRegClass : &AArch64::PPR_3bRegClass; case PredicateConstraint::Upa: return VT == MVT::aarch64svcount ? &AArch64::PNRRegClass : &AArch64::PPRRegClass; } llvm_unreachable("Missing PredicateConstraint!"); } enum class ReducedGprConstraint { Uci, Ucj }; static std::optional parseReducedGprConstraint(StringRef Constraint) { return StringSwitch>(Constraint) .Case("Uci", ReducedGprConstraint::Uci) .Case("Ucj", ReducedGprConstraint::Ucj) .Default(std::nullopt); } static const TargetRegisterClass * getReducedGprRegisterClass(ReducedGprConstraint Constraint, EVT VT) { if (!VT.isScalarInteger() || VT.getFixedSizeInBits() > 64) return nullptr; switch (Constraint) { case ReducedGprConstraint::Uci: return &AArch64::MatrixIndexGPR32_8_11RegClass; case ReducedGprConstraint::Ucj: return &AArch64::MatrixIndexGPR32_12_15RegClass; } llvm_unreachable("Missing ReducedGprConstraint!"); } // The set of cc code supported is from // https://gcc.gnu.org/onlinedocs/gcc/Extended-Asm.html#Flag-Output-Operands static AArch64CC::CondCode parseConstraintCode(llvm::StringRef Constraint) { AArch64CC::CondCode Cond = StringSwitch(Constraint) .Case("{@cchi}", AArch64CC::HI) .Case("{@cccs}", AArch64CC::HS) .Case("{@cclo}", AArch64CC::LO) .Case("{@ccls}", AArch64CC::LS) .Case("{@cccc}", AArch64CC::LO) .Case("{@cceq}", AArch64CC::EQ) .Case("{@ccgt}", AArch64CC::GT) .Case("{@ccge}", AArch64CC::GE) .Case("{@cclt}", AArch64CC::LT) .Case("{@ccle}", AArch64CC::LE) .Case("{@cchs}", AArch64CC::HS) .Case("{@ccne}", AArch64CC::NE) .Case("{@ccvc}", AArch64CC::VC) .Case("{@ccpl}", AArch64CC::PL) .Case("{@ccvs}", AArch64CC::VS) .Case("{@ccmi}", AArch64CC::MI) .Default(AArch64CC::Invalid); return Cond; } /// Helper function to create 'CSET', which is equivalent to 'CSINC , WZR, /// WZR, invert()'. static SDValue getSETCC(AArch64CC::CondCode CC, SDValue NZCV, const SDLoc &DL, SelectionDAG &DAG) { return DAG.getNode( AArch64ISD::CSINC, DL, MVT::i32, DAG.getConstant(0, DL, MVT::i32), DAG.getConstant(0, DL, MVT::i32), DAG.getConstant(getInvertedCondCode(CC), DL, MVT::i32), NZCV); } // Lower @cc flag output via getSETCC. SDValue AArch64TargetLowering::LowerAsmOutputForConstraint( SDValue &Chain, SDValue &Glue, const SDLoc &DL, const AsmOperandInfo &OpInfo, SelectionDAG &DAG) const { AArch64CC::CondCode Cond = parseConstraintCode(OpInfo.ConstraintCode); if (Cond == AArch64CC::Invalid) return SDValue(); // The output variable should be a scalar integer. if (OpInfo.ConstraintVT.isVector() || !OpInfo.ConstraintVT.isInteger() || OpInfo.ConstraintVT.getSizeInBits() < 8) report_fatal_error("Flag output operand is of invalid type"); // Get NZCV register. Only update chain when copyfrom is glued. if (Glue.getNode()) { Glue = DAG.getCopyFromReg(Chain, DL, AArch64::NZCV, MVT::i32, Glue); Chain = Glue.getValue(1); } else Glue = DAG.getCopyFromReg(Chain, DL, AArch64::NZCV, MVT::i32); // Extract CC code. SDValue CC = getSETCC(Cond, Glue, DL, DAG); SDValue Result; // Truncate or ZERO_EXTEND based on value types. if (OpInfo.ConstraintVT.getSizeInBits() <= 32) Result = DAG.getNode(ISD::TRUNCATE, DL, OpInfo.ConstraintVT, CC); else Result = DAG.getNode(ISD::ZERO_EXTEND, DL, OpInfo.ConstraintVT, CC); return Result; } /// getConstraintType - Given a constraint letter, return the type of /// constraint it is for this target. AArch64TargetLowering::ConstraintType AArch64TargetLowering::getConstraintType(StringRef Constraint) const { if (Constraint.size() == 1) { switch (Constraint[0]) { default: break; case 'x': case 'w': case 'y': return C_RegisterClass; // An address with a single base register. Due to the way we // currently handle addresses it is the same as 'r'. case 'Q': return C_Memory; case 'I': case 'J': case 'K': case 'L': case 'M': case 'N': case 'Y': case 'Z': return C_Immediate; case 'z': case 'S': // A symbol or label reference with a constant offset return C_Other; } } else if (parsePredicateConstraint(Constraint)) return C_RegisterClass; else if (parseReducedGprConstraint(Constraint)) return C_RegisterClass; else if (parseConstraintCode(Constraint) != AArch64CC::Invalid) return C_Other; return TargetLowering::getConstraintType(Constraint); } /// Examine constraint type and operand type and determine a weight value. /// This object must already have been set up with the operand type /// and the current alternative constraint selected. TargetLowering::ConstraintWeight AArch64TargetLowering::getSingleConstraintMatchWeight( AsmOperandInfo &info, const char *constraint) const { ConstraintWeight weight = CW_Invalid; Value *CallOperandVal = info.CallOperandVal; // If we don't have a value, we can't do a match, // but allow it at the lowest weight. if (!CallOperandVal) return CW_Default; Type *type = CallOperandVal->getType(); // Look at the constraint type. switch (*constraint) { default: weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); break; case 'x': case 'w': case 'y': if (type->isFloatingPointTy() || type->isVectorTy()) weight = CW_Register; break; case 'z': weight = CW_Constant; break; case 'U': if (parsePredicateConstraint(constraint) || parseReducedGprConstraint(constraint)) weight = CW_Register; break; } return weight; } std::pair AArch64TargetLowering::getRegForInlineAsmConstraint( const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const { if (Constraint.size() == 1) { switch (Constraint[0]) { case 'r': if (VT.isScalableVector()) return std::make_pair(0U, nullptr); if (Subtarget->hasLS64() && VT.getSizeInBits() == 512) return std::make_pair(0U, &AArch64::GPR64x8ClassRegClass); if (VT.getFixedSizeInBits() == 64) return std::make_pair(0U, &AArch64::GPR64commonRegClass); return std::make_pair(0U, &AArch64::GPR32commonRegClass); case 'w': { if (!Subtarget->hasFPARMv8()) break; if (VT.isScalableVector()) { if (VT.getVectorElementType() != MVT::i1) return std::make_pair(0U, &AArch64::ZPRRegClass); return std::make_pair(0U, nullptr); } uint64_t VTSize = VT.getFixedSizeInBits(); if (VTSize == 16) return std::make_pair(0U, &AArch64::FPR16RegClass); if (VTSize == 32) return std::make_pair(0U, &AArch64::FPR32RegClass); if (VTSize == 64) return std::make_pair(0U, &AArch64::FPR64RegClass); if (VTSize == 128) return std::make_pair(0U, &AArch64::FPR128RegClass); break; } // The instructions that this constraint is designed for can // only take 128-bit registers so just use that regclass. case 'x': if (!Subtarget->hasFPARMv8()) break; if (VT.isScalableVector()) return std::make_pair(0U, &AArch64::ZPR_4bRegClass); if (VT.getSizeInBits() == 128) return std::make_pair(0U, &AArch64::FPR128_loRegClass); break; case 'y': if (!Subtarget->hasFPARMv8()) break; if (VT.isScalableVector()) return std::make_pair(0U, &AArch64::ZPR_3bRegClass); break; } } else { if (const auto PC = parsePredicateConstraint(Constraint)) if (const auto *RegClass = getPredicateRegisterClass(*PC, VT)) return std::make_pair(0U, RegClass); if (const auto RGC = parseReducedGprConstraint(Constraint)) if (const auto *RegClass = getReducedGprRegisterClass(*RGC, VT)) return std::make_pair(0U, RegClass); } if (StringRef("{cc}").equals_insensitive(Constraint) || parseConstraintCode(Constraint) != AArch64CC::Invalid) return std::make_pair(unsigned(AArch64::NZCV), &AArch64::CCRRegClass); if (Constraint == "{za}") { return std::make_pair(unsigned(AArch64::ZA), &AArch64::MPRRegClass); } if (Constraint == "{zt0}") { return std::make_pair(unsigned(AArch64::ZT0), &AArch64::ZTRRegClass); } // Use the default implementation in TargetLowering to convert the register // constraint into a member of a register class. std::pair Res; Res = TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); // Not found as a standard register? if (!Res.second) { unsigned Size = Constraint.size(); if ((Size == 4 || Size == 5) && Constraint[0] == '{' && tolower(Constraint[1]) == 'v' && Constraint[Size - 1] == '}') { int RegNo; bool Failed = Constraint.slice(2, Size - 1).getAsInteger(10, RegNo); if (!Failed && RegNo >= 0 && RegNo <= 31) { // v0 - v31 are aliases of q0 - q31 or d0 - d31 depending on size. // By default we'll emit v0-v31 for this unless there's a modifier where // we'll emit the correct register as well. if (VT != MVT::Other && VT.getSizeInBits() == 64) { Res.first = AArch64::FPR64RegClass.getRegister(RegNo); Res.second = &AArch64::FPR64RegClass; } else { Res.first = AArch64::FPR128RegClass.getRegister(RegNo); Res.second = &AArch64::FPR128RegClass; } } } } if (Res.second && !Subtarget->hasFPARMv8() && !AArch64::GPR32allRegClass.hasSubClassEq(Res.second) && !AArch64::GPR64allRegClass.hasSubClassEq(Res.second)) return std::make_pair(0U, nullptr); return Res; } EVT AArch64TargetLowering::getAsmOperandValueType(const DataLayout &DL, llvm::Type *Ty, bool AllowUnknown) const { if (Subtarget->hasLS64() && Ty->isIntegerTy(512)) return EVT(MVT::i64x8); return TargetLowering::getAsmOperandValueType(DL, Ty, AllowUnknown); } /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops /// vector. If it is invalid, don't add anything to Ops. void AArch64TargetLowering::LowerAsmOperandForConstraint( SDValue Op, StringRef Constraint, std::vector &Ops, SelectionDAG &DAG) const { SDValue Result; // Currently only support length 1 constraints. if (Constraint.size() != 1) return; char ConstraintLetter = Constraint[0]; switch (ConstraintLetter) { default: break; // This set of constraints deal with valid constants for various instructions. // Validate and return a target constant for them if we can. case 'z': { // 'z' maps to xzr or wzr so it needs an input of 0. if (!isNullConstant(Op)) return; if (Op.getValueType() == MVT::i64) Result = DAG.getRegister(AArch64::XZR, MVT::i64); else Result = DAG.getRegister(AArch64::WZR, MVT::i32); break; } case 'S': // Use the generic code path for "s". In GCC's aarch64 port, "S" is // supported for PIC while "s" isn't, making "s" less useful. We implement // "S" but not "s". TargetLowering::LowerAsmOperandForConstraint(Op, "s", Ops, DAG); break; case 'I': case 'J': case 'K': case 'L': case 'M': case 'N': ConstantSDNode *C = dyn_cast(Op); if (!C) return; // Grab the value and do some validation. uint64_t CVal = C->getZExtValue(); switch (ConstraintLetter) { // The I constraint applies only to simple ADD or SUB immediate operands: // i.e. 0 to 4095 with optional shift by 12 // The J constraint applies only to ADD or SUB immediates that would be // valid when negated, i.e. if [an add pattern] were to be output as a SUB // instruction [or vice versa], in other words -1 to -4095 with optional // left shift by 12. case 'I': if (isUInt<12>(CVal) || isShiftedUInt<12, 12>(CVal)) break; return; case 'J': { uint64_t NVal = -C->getSExtValue(); if (isUInt<12>(NVal) || isShiftedUInt<12, 12>(NVal)) { CVal = C->getSExtValue(); break; } return; } // The K and L constraints apply *only* to logical immediates, including // what used to be the MOVI alias for ORR (though the MOVI alias has now // been removed and MOV should be used). So these constraints have to // distinguish between bit patterns that are valid 32-bit or 64-bit // "bitmask immediates": for example 0xaaaaaaaa is a valid bimm32 (K), but // not a valid bimm64 (L) where 0xaaaaaaaaaaaaaaaa would be valid, and vice // versa. case 'K': if (AArch64_AM::isLogicalImmediate(CVal, 32)) break; return; case 'L': if (AArch64_AM::isLogicalImmediate(CVal, 64)) break; return; // The M and N constraints are a superset of K and L respectively, for use // with the MOV (immediate) alias. As well as the logical immediates they // also match 32 or 64-bit immediates that can be loaded either using a // *single* MOVZ or MOVN , such as 32-bit 0x12340000, 0x00001234, 0xffffedca // (M) or 64-bit 0x1234000000000000 (N) etc. // As a note some of this code is liberally stolen from the asm parser. case 'M': { if (!isUInt<32>(CVal)) return; if (AArch64_AM::isLogicalImmediate(CVal, 32)) break; if ((CVal & 0xFFFF) == CVal) break; if ((CVal & 0xFFFF0000ULL) == CVal) break; uint64_t NCVal = ~(uint32_t)CVal; if ((NCVal & 0xFFFFULL) == NCVal) break; if ((NCVal & 0xFFFF0000ULL) == NCVal) break; return; } case 'N': { if (AArch64_AM::isLogicalImmediate(CVal, 64)) break; if ((CVal & 0xFFFFULL) == CVal) break; if ((CVal & 0xFFFF0000ULL) == CVal) break; if ((CVal & 0xFFFF00000000ULL) == CVal) break; if ((CVal & 0xFFFF000000000000ULL) == CVal) break; uint64_t NCVal = ~CVal; if ((NCVal & 0xFFFFULL) == NCVal) break; if ((NCVal & 0xFFFF0000ULL) == NCVal) break; if ((NCVal & 0xFFFF00000000ULL) == NCVal) break; if ((NCVal & 0xFFFF000000000000ULL) == NCVal) break; return; } default: return; } // All assembler immediates are 64-bit integers. Result = DAG.getTargetConstant(CVal, SDLoc(Op), MVT::i64); break; } if (Result.getNode()) { Ops.push_back(Result); return; } return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); } //===----------------------------------------------------------------------===// // AArch64 Advanced SIMD Support //===----------------------------------------------------------------------===// /// WidenVector - Given a value in the V64 register class, produce the /// equivalent value in the V128 register class. static SDValue WidenVector(SDValue V64Reg, SelectionDAG &DAG) { EVT VT = V64Reg.getValueType(); unsigned NarrowSize = VT.getVectorNumElements(); MVT EltTy = VT.getVectorElementType().getSimpleVT(); MVT WideTy = MVT::getVectorVT(EltTy, 2 * NarrowSize); SDLoc DL(V64Reg); return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, WideTy, DAG.getUNDEF(WideTy), V64Reg, DAG.getConstant(0, DL, MVT::i64)); } /// getExtFactor - Determine the adjustment factor for the position when /// generating an "extract from vector registers" instruction. static unsigned getExtFactor(SDValue &V) { EVT EltType = V.getValueType().getVectorElementType(); return EltType.getSizeInBits() / 8; } // Check if a vector is built from one vector via extracted elements of // another together with an AND mask, ensuring that all elements fit // within range. This can be reconstructed using AND and NEON's TBL1. SDValue ReconstructShuffleWithRuntimeMask(SDValue Op, SelectionDAG &DAG) { assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!"); SDLoc dl(Op); EVT VT = Op.getValueType(); assert(!VT.isScalableVector() && "Scalable vectors cannot be used with ISD::BUILD_VECTOR"); // Can only recreate a shuffle with 16xi8 or 8xi8 elements, as they map // directly to TBL1. if (VT != MVT::v16i8 && VT != MVT::v8i8) return SDValue(); unsigned NumElts = VT.getVectorNumElements(); assert((NumElts == 8 || NumElts == 16) && "Need to have exactly 8 or 16 elements in vector."); SDValue SourceVec; SDValue MaskSourceVec; SmallVector AndMaskConstants; for (unsigned i = 0; i < NumElts; ++i) { SDValue V = Op.getOperand(i); if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT) return SDValue(); SDValue OperandSourceVec = V.getOperand(0); if (!SourceVec) SourceVec = OperandSourceVec; else if (SourceVec != OperandSourceVec) return SDValue(); // This only looks at shuffles with elements that are // a) truncated by a constant AND mask extracted from a mask vector, or // b) extracted directly from a mask vector. SDValue MaskSource = V.getOperand(1); if (MaskSource.getOpcode() == ISD::AND) { if (!isa(MaskSource.getOperand(1))) return SDValue(); AndMaskConstants.push_back(MaskSource.getOperand(1)); MaskSource = MaskSource->getOperand(0); } else if (!AndMaskConstants.empty()) { // Either all or no operands should have an AND mask. return SDValue(); } // An ANY_EXTEND may be inserted between the AND and the source vector // extraction. We don't care about that, so we can just skip it. if (MaskSource.getOpcode() == ISD::ANY_EXTEND) MaskSource = MaskSource.getOperand(0); if (MaskSource.getOpcode() != ISD::EXTRACT_VECTOR_ELT) return SDValue(); SDValue MaskIdx = MaskSource.getOperand(1); if (!isa(MaskIdx) || !cast(MaskIdx)->getConstantIntValue()->equalsInt(i)) return SDValue(); // We only apply this if all elements come from the same vector with the // same vector type. if (!MaskSourceVec) { MaskSourceVec = MaskSource->getOperand(0); if (MaskSourceVec.getValueType() != VT) return SDValue(); } else if (MaskSourceVec != MaskSource->getOperand(0)) { return SDValue(); } } // We need a v16i8 for TBL, so we extend the source with a placeholder vector // for v8i8 to get a v16i8. As the pattern we are replacing is extract + // insert, we know that the index in the mask must be smaller than the number // of elements in the source, or we would have an out-of-bounds access. if (NumElts == 8) SourceVec = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v16i8, SourceVec, DAG.getUNDEF(VT)); // Preconditions met, so we can use a vector (AND +) TBL to build this vector. if (!AndMaskConstants.empty()) MaskSourceVec = DAG.getNode(ISD::AND, dl, VT, MaskSourceVec, DAG.getBuildVector(VT, dl, AndMaskConstants)); return DAG.getNode( ISD::INTRINSIC_WO_CHAIN, dl, VT, DAG.getConstant(Intrinsic::aarch64_neon_tbl1, dl, MVT::i32), SourceVec, MaskSourceVec); } // Gather data to see if the operation can be modelled as a // shuffle in combination with VEXTs. SDValue AArch64TargetLowering::ReconstructShuffle(SDValue Op, SelectionDAG &DAG) const { assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!"); LLVM_DEBUG(dbgs() << "AArch64TargetLowering::ReconstructShuffle\n"); SDLoc dl(Op); EVT VT = Op.getValueType(); assert(!VT.isScalableVector() && "Scalable vectors cannot be used with ISD::BUILD_VECTOR"); unsigned NumElts = VT.getVectorNumElements(); struct ShuffleSourceInfo { SDValue Vec; unsigned MinElt; unsigned MaxElt; // We may insert some combination of BITCASTs and VEXT nodes to force Vec to // be compatible with the shuffle we intend to construct. As a result // ShuffleVec will be some sliding window into the original Vec. SDValue ShuffleVec; // Code should guarantee that element i in Vec starts at element "WindowBase // + i * WindowScale in ShuffleVec". int WindowBase; int WindowScale; ShuffleSourceInfo(SDValue Vec) : Vec(Vec), MinElt(std::numeric_limits::max()), MaxElt(0), ShuffleVec(Vec), WindowBase(0), WindowScale(1) {} bool operator ==(SDValue OtherVec) { return Vec == OtherVec; } }; // First gather all vectors used as an immediate source for this BUILD_VECTOR // node. SmallVector Sources; for (unsigned i = 0; i < NumElts; ++i) { SDValue V = Op.getOperand(i); if (V.isUndef()) continue; else if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT || !isa(V.getOperand(1)) || V.getOperand(0).getValueType().isScalableVector()) { LLVM_DEBUG( dbgs() << "Reshuffle failed: " "a shuffle can only come from building a vector from " "various elements of other fixed-width vectors, provided " "their indices are constant\n"); return SDValue(); } // Add this element source to the list if it's not already there. SDValue SourceVec = V.getOperand(0); auto Source = find(Sources, SourceVec); if (Source == Sources.end()) Source = Sources.insert(Sources.end(), ShuffleSourceInfo(SourceVec)); // Update the minimum and maximum lane number seen. unsigned EltNo = V.getConstantOperandVal(1); Source->MinElt = std::min(Source->MinElt, EltNo); Source->MaxElt = std::max(Source->MaxElt, EltNo); } // If we have 3 or 4 sources, try to generate a TBL, which will at least be // better than moving to/from gpr registers for larger vectors. if ((Sources.size() == 3 || Sources.size() == 4) && NumElts > 4) { // Construct a mask for the tbl. We may need to adjust the index for types // larger than i8. SmallVector Mask; unsigned OutputFactor = VT.getScalarSizeInBits() / 8; for (unsigned I = 0; I < NumElts; ++I) { SDValue V = Op.getOperand(I); if (V.isUndef()) { for (unsigned OF = 0; OF < OutputFactor; OF++) Mask.push_back(-1); continue; } // Set the Mask lanes adjusted for the size of the input and output // lanes. The Mask is always i8, so it will set OutputFactor lanes per // output element, adjusted in their positions per input and output types. unsigned Lane = V.getConstantOperandVal(1); for (unsigned S = 0; S < Sources.size(); S++) { if (V.getOperand(0) == Sources[S].Vec) { unsigned InputSize = Sources[S].Vec.getScalarValueSizeInBits(); unsigned InputBase = 16 * S + Lane * InputSize / 8; for (unsigned OF = 0; OF < OutputFactor; OF++) Mask.push_back(InputBase + OF); break; } } } // Construct the tbl3/tbl4 out of an intrinsic, the sources converted to // v16i8, and the TBLMask SmallVector TBLOperands; TBLOperands.push_back(DAG.getConstant(Sources.size() == 3 ? Intrinsic::aarch64_neon_tbl3 : Intrinsic::aarch64_neon_tbl4, dl, MVT::i32)); for (unsigned i = 0; i < Sources.size(); i++) { SDValue Src = Sources[i].Vec; EVT SrcVT = Src.getValueType(); Src = DAG.getBitcast(SrcVT.is64BitVector() ? MVT::v8i8 : MVT::v16i8, Src); assert((SrcVT.is64BitVector() || SrcVT.is128BitVector()) && "Expected a legally typed vector"); if (SrcVT.is64BitVector()) Src = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v16i8, Src, DAG.getUNDEF(MVT::v8i8)); TBLOperands.push_back(Src); } SmallVector TBLMask; for (unsigned i = 0; i < Mask.size(); i++) TBLMask.push_back(DAG.getConstant(Mask[i], dl, MVT::i32)); assert((Mask.size() == 8 || Mask.size() == 16) && "Expected a v8i8 or v16i8 Mask"); TBLOperands.push_back( DAG.getBuildVector(Mask.size() == 8 ? MVT::v8i8 : MVT::v16i8, dl, TBLMask)); SDValue Shuffle = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, Mask.size() == 8 ? MVT::v8i8 : MVT::v16i8, TBLOperands); return DAG.getBitcast(VT, Shuffle); } if (Sources.size() > 2) { LLVM_DEBUG(dbgs() << "Reshuffle failed: currently only do something " << "sensible when at most two source vectors are " << "involved\n"); return SDValue(); } // Find out the smallest element size among result and two sources, and use // it as element size to build the shuffle_vector. EVT SmallestEltTy = VT.getVectorElementType(); for (auto &Source : Sources) { EVT SrcEltTy = Source.Vec.getValueType().getVectorElementType(); if (SrcEltTy.bitsLT(SmallestEltTy)) { SmallestEltTy = SrcEltTy; } } unsigned ResMultiplier = VT.getScalarSizeInBits() / SmallestEltTy.getFixedSizeInBits(); uint64_t VTSize = VT.getFixedSizeInBits(); NumElts = VTSize / SmallestEltTy.getFixedSizeInBits(); EVT ShuffleVT = EVT::getVectorVT(*DAG.getContext(), SmallestEltTy, NumElts); // If the source vector is too wide or too narrow, we may nevertheless be able // to construct a compatible shuffle either by concatenating it with UNDEF or // extracting a suitable range of elements. for (auto &Src : Sources) { EVT SrcVT = Src.ShuffleVec.getValueType(); TypeSize SrcVTSize = SrcVT.getSizeInBits(); if (SrcVTSize == TypeSize::getFixed(VTSize)) continue; // This stage of the search produces a source with the same element type as // the original, but with a total width matching the BUILD_VECTOR output. EVT EltVT = SrcVT.getVectorElementType(); unsigned NumSrcElts = VTSize / EltVT.getFixedSizeInBits(); EVT DestVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumSrcElts); if (SrcVTSize.getFixedValue() < VTSize) { assert(2 * SrcVTSize == VTSize); // We can pad out the smaller vector for free, so if it's part of a // shuffle... Src.ShuffleVec = DAG.getNode(ISD::CONCAT_VECTORS, dl, DestVT, Src.ShuffleVec, DAG.getUNDEF(Src.ShuffleVec.getValueType())); continue; } if (SrcVTSize.getFixedValue() != 2 * VTSize) { LLVM_DEBUG( dbgs() << "Reshuffle failed: result vector too small to extract\n"); return SDValue(); } if (Src.MaxElt - Src.MinElt >= NumSrcElts) { LLVM_DEBUG( dbgs() << "Reshuffle failed: span too large for a VEXT to cope\n"); return SDValue(); } if (Src.MinElt >= NumSrcElts) { // The extraction can just take the second half Src.ShuffleVec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec, DAG.getConstant(NumSrcElts, dl, MVT::i64)); Src.WindowBase = -NumSrcElts; } else if (Src.MaxElt < NumSrcElts) { // The extraction can just take the first half Src.ShuffleVec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec, DAG.getConstant(0, dl, MVT::i64)); } else { // An actual VEXT is needed SDValue VEXTSrc1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec, DAG.getConstant(0, dl, MVT::i64)); SDValue VEXTSrc2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec, DAG.getConstant(NumSrcElts, dl, MVT::i64)); unsigned Imm = Src.MinElt * getExtFactor(VEXTSrc1); if (!SrcVT.is64BitVector()) { LLVM_DEBUG( dbgs() << "Reshuffle failed: don't know how to lower AArch64ISD::EXT " "for SVE vectors."); return SDValue(); } Src.ShuffleVec = DAG.getNode(AArch64ISD::EXT, dl, DestVT, VEXTSrc1, VEXTSrc2, DAG.getConstant(Imm, dl, MVT::i32)); Src.WindowBase = -Src.MinElt; } } // Another possible incompatibility occurs from the vector element types. We // can fix this by bitcasting the source vectors to the same type we intend // for the shuffle. for (auto &Src : Sources) { EVT SrcEltTy = Src.ShuffleVec.getValueType().getVectorElementType(); if (SrcEltTy == SmallestEltTy) continue; assert(ShuffleVT.getVectorElementType() == SmallestEltTy); if (DAG.getDataLayout().isBigEndian()) { Src.ShuffleVec = DAG.getNode(AArch64ISD::NVCAST, dl, ShuffleVT, Src.ShuffleVec); } else { Src.ShuffleVec = DAG.getNode(ISD::BITCAST, dl, ShuffleVT, Src.ShuffleVec); } Src.WindowScale = SrcEltTy.getFixedSizeInBits() / SmallestEltTy.getFixedSizeInBits(); Src.WindowBase *= Src.WindowScale; } // Final check before we try to actually produce a shuffle. LLVM_DEBUG(for (auto Src : Sources) assert(Src.ShuffleVec.getValueType() == ShuffleVT);); // The stars all align, our next step is to produce the mask for the shuffle. SmallVector Mask(ShuffleVT.getVectorNumElements(), -1); int BitsPerShuffleLane = ShuffleVT.getScalarSizeInBits(); for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) { SDValue Entry = Op.getOperand(i); if (Entry.isUndef()) continue; auto Src = find(Sources, Entry.getOperand(0)); int EltNo = cast(Entry.getOperand(1))->getSExtValue(); // EXTRACT_VECTOR_ELT performs an implicit any_ext; BUILD_VECTOR an implicit // trunc. So only std::min(SrcBits, DestBits) actually get defined in this // segment. EVT OrigEltTy = Entry.getOperand(0).getValueType().getVectorElementType(); int BitsDefined = std::min(OrigEltTy.getScalarSizeInBits(), VT.getScalarSizeInBits()); int LanesDefined = BitsDefined / BitsPerShuffleLane; // This source is expected to fill ResMultiplier lanes of the final shuffle, // starting at the appropriate offset. int *LaneMask = &Mask[i * ResMultiplier]; int ExtractBase = EltNo * Src->WindowScale + Src->WindowBase; ExtractBase += NumElts * (Src - Sources.begin()); for (int j = 0; j < LanesDefined; ++j) LaneMask[j] = ExtractBase + j; } // Final check before we try to produce nonsense... if (!isShuffleMaskLegal(Mask, ShuffleVT)) { LLVM_DEBUG(dbgs() << "Reshuffle failed: illegal shuffle mask\n"); return SDValue(); } SDValue ShuffleOps[] = { DAG.getUNDEF(ShuffleVT), DAG.getUNDEF(ShuffleVT) }; for (unsigned i = 0; i < Sources.size(); ++i) ShuffleOps[i] = Sources[i].ShuffleVec; SDValue Shuffle = DAG.getVectorShuffle(ShuffleVT, dl, ShuffleOps[0], ShuffleOps[1], Mask); SDValue V; if (DAG.getDataLayout().isBigEndian()) { V = DAG.getNode(AArch64ISD::NVCAST, dl, VT, Shuffle); } else { V = DAG.getNode(ISD::BITCAST, dl, VT, Shuffle); } LLVM_DEBUG(dbgs() << "Reshuffle, creating node: "; Shuffle.dump(); dbgs() << "Reshuffle, creating node: "; V.dump();); return V; } // check if an EXT instruction can handle the shuffle mask when the // vector sources of the shuffle are the same. static bool isSingletonEXTMask(ArrayRef M, EVT VT, unsigned &Imm) { unsigned NumElts = VT.getVectorNumElements(); // Assume that the first shuffle index is not UNDEF. Fail if it is. if (M[0] < 0) return false; Imm = M[0]; // If this is a VEXT shuffle, the immediate value is the index of the first // element. The other shuffle indices must be the successive elements after // the first one. unsigned ExpectedElt = Imm; for (unsigned i = 1; i < NumElts; ++i) { // Increment the expected index. If it wraps around, just follow it // back to index zero and keep going. ++ExpectedElt; if (ExpectedElt == NumElts) ExpectedElt = 0; if (M[i] < 0) continue; // ignore UNDEF indices if (ExpectedElt != static_cast(M[i])) return false; } return true; } // Detect patterns of a0,a1,a2,a3,b0,b1,b2,b3,c0,c1,c2,c3,d0,d1,d2,d3 from // v4i32s. This is really a truncate, which we can construct out of (legal) // concats and truncate nodes. static SDValue ReconstructTruncateFromBuildVector(SDValue V, SelectionDAG &DAG) { if (V.getValueType() != MVT::v16i8) return SDValue(); assert(V.getNumOperands() == 16 && "Expected 16 operands on the BUILDVECTOR"); for (unsigned X = 0; X < 4; X++) { // Check the first item in each group is an extract from lane 0 of a v4i32 // or v4i16. SDValue BaseExt = V.getOperand(X * 4); if (BaseExt.getOpcode() != ISD::EXTRACT_VECTOR_ELT || (BaseExt.getOperand(0).getValueType() != MVT::v4i16 && BaseExt.getOperand(0).getValueType() != MVT::v4i32) || !isa(BaseExt.getOperand(1)) || BaseExt.getConstantOperandVal(1) != 0) return SDValue(); SDValue Base = BaseExt.getOperand(0); // And check the other items are extracts from the same vector. for (unsigned Y = 1; Y < 4; Y++) { SDValue Ext = V.getOperand(X * 4 + Y); if (Ext.getOpcode() != ISD::EXTRACT_VECTOR_ELT || Ext.getOperand(0) != Base || !isa(Ext.getOperand(1)) || Ext.getConstantOperandVal(1) != Y) return SDValue(); } } // Turn the buildvector into a series of truncates and concates, which will // become uzip1's. Any v4i32s we found get truncated to v4i16, which are // concat together to produce 2 v8i16. These are both truncated and concat // together. SDLoc DL(V); SDValue Trunc[4] = { V.getOperand(0).getOperand(0), V.getOperand(4).getOperand(0), V.getOperand(8).getOperand(0), V.getOperand(12).getOperand(0)}; for (SDValue &V : Trunc) if (V.getValueType() == MVT::v4i32) V = DAG.getNode(ISD::TRUNCATE, DL, MVT::v4i16, V); SDValue Concat0 = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v8i16, Trunc[0], Trunc[1]); SDValue Concat1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v8i16, Trunc[2], Trunc[3]); SDValue Trunc0 = DAG.getNode(ISD::TRUNCATE, DL, MVT::v8i8, Concat0); SDValue Trunc1 = DAG.getNode(ISD::TRUNCATE, DL, MVT::v8i8, Concat1); return DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v16i8, Trunc0, Trunc1); } /// Check if a vector shuffle corresponds to a DUP instructions with a larger /// element width than the vector lane type. If that is the case the function /// returns true and writes the value of the DUP instruction lane operand into /// DupLaneOp static bool isWideDUPMask(ArrayRef M, EVT VT, unsigned BlockSize, unsigned &DupLaneOp) { assert((BlockSize == 16 || BlockSize == 32 || BlockSize == 64) && "Only possible block sizes for wide DUP are: 16, 32, 64"); if (BlockSize <= VT.getScalarSizeInBits()) return false; if (BlockSize % VT.getScalarSizeInBits() != 0) return false; if (VT.getSizeInBits() % BlockSize != 0) return false; size_t SingleVecNumElements = VT.getVectorNumElements(); size_t NumEltsPerBlock = BlockSize / VT.getScalarSizeInBits(); size_t NumBlocks = VT.getSizeInBits() / BlockSize; // We are looking for masks like // [0, 1, 0, 1] or [2, 3, 2, 3] or [4, 5, 6, 7, 4, 5, 6, 7] where any element // might be replaced by 'undefined'. BlockIndices will eventually contain // lane indices of the duplicated block (i.e. [0, 1], [2, 3] and [4, 5, 6, 7] // for the above examples) SmallVector BlockElts(NumEltsPerBlock, -1); for (size_t BlockIndex = 0; BlockIndex < NumBlocks; BlockIndex++) for (size_t I = 0; I < NumEltsPerBlock; I++) { int Elt = M[BlockIndex * NumEltsPerBlock + I]; if (Elt < 0) continue; // For now we don't support shuffles that use the second operand if ((unsigned)Elt >= SingleVecNumElements) return false; if (BlockElts[I] < 0) BlockElts[I] = Elt; else if (BlockElts[I] != Elt) return false; } // We found a candidate block (possibly with some undefs). It must be a // sequence of consecutive integers starting with a value divisible by // NumEltsPerBlock with some values possibly replaced by undef-s. // Find first non-undef element auto FirstRealEltIter = find_if(BlockElts, [](int Elt) { return Elt >= 0; }); assert(FirstRealEltIter != BlockElts.end() && "Shuffle with all-undefs must have been caught by previous cases, " "e.g. isSplat()"); if (FirstRealEltIter == BlockElts.end()) { DupLaneOp = 0; return true; } // Index of FirstRealElt in BlockElts size_t FirstRealIndex = FirstRealEltIter - BlockElts.begin(); if ((unsigned)*FirstRealEltIter < FirstRealIndex) return false; // BlockElts[0] must have the following value if it isn't undef: size_t Elt0 = *FirstRealEltIter - FirstRealIndex; // Check the first element if (Elt0 % NumEltsPerBlock != 0) return false; // Check that the sequence indeed consists of consecutive integers (modulo // undefs) for (size_t I = 0; I < NumEltsPerBlock; I++) if (BlockElts[I] >= 0 && (unsigned)BlockElts[I] != Elt0 + I) return false; DupLaneOp = Elt0 / NumEltsPerBlock; return true; } // check if an EXT instruction can handle the shuffle mask when the // vector sources of the shuffle are different. static bool isEXTMask(ArrayRef M, EVT VT, bool &ReverseEXT, unsigned &Imm) { // Look for the first non-undef element. const int *FirstRealElt = find_if(M, [](int Elt) { return Elt >= 0; }); // Benefit form APInt to handle overflow when calculating expected element. unsigned NumElts = VT.getVectorNumElements(); unsigned MaskBits = APInt(32, NumElts * 2).logBase2(); APInt ExpectedElt = APInt(MaskBits, *FirstRealElt + 1); // The following shuffle indices must be the successive elements after the // first real element. bool FoundWrongElt = std::any_of(FirstRealElt + 1, M.end(), [&](int Elt) { return Elt != ExpectedElt++ && Elt != -1; }); if (FoundWrongElt) return false; // The index of an EXT is the first element if it is not UNDEF. // Watch out for the beginning UNDEFs. The EXT index should be the expected // value of the first element. E.g. // <-1, -1, 3, ...> is treated as <1, 2, 3, ...>. // <-1, -1, 0, 1, ...> is treated as <2*NumElts-2, 2*NumElts-1, 0, 1, ...>. // ExpectedElt is the last mask index plus 1. Imm = ExpectedElt.getZExtValue(); // There are two difference cases requiring to reverse input vectors. // For example, for vector <4 x i32> we have the following cases, // Case 1: shufflevector(<4 x i32>,<4 x i32>,<-1, -1, -1, 0>) // Case 2: shufflevector(<4 x i32>,<4 x i32>,<-1, -1, 7, 0>) // For both cases, we finally use mask <5, 6, 7, 0>, which requires // to reverse two input vectors. if (Imm < NumElts) ReverseEXT = true; else Imm -= NumElts; return true; } /// isREVMask - Check if a vector shuffle corresponds to a REV /// instruction with the specified blocksize. (The order of the elements /// within each block of the vector is reversed.) static bool isREVMask(ArrayRef M, EVT VT, unsigned BlockSize) { assert((BlockSize == 16 || BlockSize == 32 || BlockSize == 64 || BlockSize == 128) && "Only possible block sizes for REV are: 16, 32, 64, 128"); unsigned EltSz = VT.getScalarSizeInBits(); unsigned NumElts = VT.getVectorNumElements(); unsigned BlockElts = M[0] + 1; // If the first shuffle index is UNDEF, be optimistic. if (M[0] < 0) BlockElts = BlockSize / EltSz; if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz) return false; for (unsigned i = 0; i < NumElts; ++i) { if (M[i] < 0) continue; // ignore UNDEF indices if ((unsigned)M[i] != (i - i % BlockElts) + (BlockElts - 1 - i % BlockElts)) return false; } return true; } static bool isZIPMask(ArrayRef M, EVT VT, unsigned &WhichResult) { unsigned NumElts = VT.getVectorNumElements(); if (NumElts % 2 != 0) return false; WhichResult = (M[0] == 0 ? 0 : 1); unsigned Idx = WhichResult * NumElts / 2; for (unsigned i = 0; i != NumElts; i += 2) { if ((M[i] >= 0 && (unsigned)M[i] != Idx) || (M[i + 1] >= 0 && (unsigned)M[i + 1] != Idx + NumElts)) return false; Idx += 1; } return true; } static bool isUZPMask(ArrayRef M, EVT VT, unsigned &WhichResult) { unsigned NumElts = VT.getVectorNumElements(); WhichResult = (M[0] == 0 ? 0 : 1); for (unsigned i = 0; i != NumElts; ++i) { if (M[i] < 0) continue; // ignore UNDEF indices if ((unsigned)M[i] != 2 * i + WhichResult) return false; } return true; } static bool isTRNMask(ArrayRef M, EVT VT, unsigned &WhichResult) { unsigned NumElts = VT.getVectorNumElements(); if (NumElts % 2 != 0) return false; WhichResult = (M[0] == 0 ? 0 : 1); for (unsigned i = 0; i < NumElts; i += 2) { if ((M[i] >= 0 && (unsigned)M[i] != i + WhichResult) || (M[i + 1] >= 0 && (unsigned)M[i + 1] != i + NumElts + WhichResult)) return false; } return true; } /// isZIP_v_undef_Mask - Special case of isZIPMask for canonical form of /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef". /// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>. static bool isZIP_v_undef_Mask(ArrayRef M, EVT VT, unsigned &WhichResult) { unsigned NumElts = VT.getVectorNumElements(); if (NumElts % 2 != 0) return false; WhichResult = (M[0] == 0 ? 0 : 1); unsigned Idx = WhichResult * NumElts / 2; for (unsigned i = 0; i != NumElts; i += 2) { if ((M[i] >= 0 && (unsigned)M[i] != Idx) || (M[i + 1] >= 0 && (unsigned)M[i + 1] != Idx)) return false; Idx += 1; } return true; } /// isUZP_v_undef_Mask - Special case of isUZPMask for canonical form of /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef". /// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>, static bool isUZP_v_undef_Mask(ArrayRef M, EVT VT, unsigned &WhichResult) { unsigned Half = VT.getVectorNumElements() / 2; WhichResult = (M[0] == 0 ? 0 : 1); for (unsigned j = 0; j != 2; ++j) { unsigned Idx = WhichResult; for (unsigned i = 0; i != Half; ++i) { int MIdx = M[i + j * Half]; if (MIdx >= 0 && (unsigned)MIdx != Idx) return false; Idx += 2; } } return true; } /// isTRN_v_undef_Mask - Special case of isTRNMask for canonical form of /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef". /// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>. static bool isTRN_v_undef_Mask(ArrayRef M, EVT VT, unsigned &WhichResult) { unsigned NumElts = VT.getVectorNumElements(); if (NumElts % 2 != 0) return false; WhichResult = (M[0] == 0 ? 0 : 1); for (unsigned i = 0; i < NumElts; i += 2) { if ((M[i] >= 0 && (unsigned)M[i] != i + WhichResult) || (M[i + 1] >= 0 && (unsigned)M[i + 1] != i + WhichResult)) return false; } return true; } static bool isINSMask(ArrayRef M, int NumInputElements, bool &DstIsLeft, int &Anomaly) { if (M.size() != static_cast(NumInputElements)) return false; int NumLHSMatch = 0, NumRHSMatch = 0; int LastLHSMismatch = -1, LastRHSMismatch = -1; for (int i = 0; i < NumInputElements; ++i) { if (M[i] == -1) { ++NumLHSMatch; ++NumRHSMatch; continue; } if (M[i] == i) ++NumLHSMatch; else LastLHSMismatch = i; if (M[i] == i + NumInputElements) ++NumRHSMatch; else LastRHSMismatch = i; } if (NumLHSMatch == NumInputElements - 1) { DstIsLeft = true; Anomaly = LastLHSMismatch; return true; } else if (NumRHSMatch == NumInputElements - 1) { DstIsLeft = false; Anomaly = LastRHSMismatch; return true; } return false; } static bool isConcatMask(ArrayRef Mask, EVT VT, bool SplitLHS) { if (VT.getSizeInBits() != 128) return false; unsigned NumElts = VT.getVectorNumElements(); for (int I = 0, E = NumElts / 2; I != E; I++) { if (Mask[I] != I) return false; } int Offset = NumElts / 2; for (int I = NumElts / 2, E = NumElts; I != E; I++) { if (Mask[I] != I + SplitLHS * Offset) return false; } return true; } static SDValue tryFormConcatFromShuffle(SDValue Op, SelectionDAG &DAG) { SDLoc DL(Op); EVT VT = Op.getValueType(); SDValue V0 = Op.getOperand(0); SDValue V1 = Op.getOperand(1); ArrayRef Mask = cast(Op)->getMask(); if (VT.getVectorElementType() != V0.getValueType().getVectorElementType() || VT.getVectorElementType() != V1.getValueType().getVectorElementType()) return SDValue(); bool SplitV0 = V0.getValueSizeInBits() == 128; if (!isConcatMask(Mask, VT, SplitV0)) return SDValue(); EVT CastVT = VT.getHalfNumVectorElementsVT(*DAG.getContext()); if (SplitV0) { V0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, CastVT, V0, DAG.getConstant(0, DL, MVT::i64)); } if (V1.getValueSizeInBits() == 128) { V1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, CastVT, V1, DAG.getConstant(0, DL, MVT::i64)); } return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, V0, V1); } /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit /// the specified operations to build the shuffle. ID is the perfect-shuffle //ID, V1 and V2 are the original shuffle inputs. PFEntry is the Perfect shuffle //table entry and LHS/RHS are the immediate inputs for this stage of the //shuffle. static SDValue GeneratePerfectShuffle(unsigned ID, SDValue V1, SDValue V2, unsigned PFEntry, SDValue LHS, SDValue RHS, SelectionDAG &DAG, const SDLoc &dl) { unsigned OpNum = (PFEntry >> 26) & 0x0F; unsigned LHSID = (PFEntry >> 13) & ((1 << 13) - 1); unsigned RHSID = (PFEntry >> 0) & ((1 << 13) - 1); enum { OP_COPY = 0, // Copy, used for things like to say it is <0,1,2,3> OP_VREV, OP_VDUP0, OP_VDUP1, OP_VDUP2, OP_VDUP3, OP_VEXT1, OP_VEXT2, OP_VEXT3, OP_VUZPL, // VUZP, left result OP_VUZPR, // VUZP, right result OP_VZIPL, // VZIP, left result OP_VZIPR, // VZIP, right result OP_VTRNL, // VTRN, left result OP_VTRNR, // VTRN, right result OP_MOVLANE // Move lane. RHSID is the lane to move into }; if (OpNum == OP_COPY) { if (LHSID == (1 * 9 + 2) * 9 + 3) return LHS; assert(LHSID == ((4 * 9 + 5) * 9 + 6) * 9 + 7 && "Illegal OP_COPY!"); return RHS; } if (OpNum == OP_MOVLANE) { // Decompose a PerfectShuffle ID to get the Mask for lane Elt auto getPFIDLane = [](unsigned ID, int Elt) -> int { assert(Elt < 4 && "Expected Perfect Lanes to be less than 4"); Elt = 3 - Elt; while (Elt > 0) { ID /= 9; Elt--; } return (ID % 9 == 8) ? -1 : ID % 9; }; // For OP_MOVLANE shuffles, the RHSID represents the lane to move into. We // get the lane to move from the PFID, which is always from the // original vectors (V1 or V2). SDValue OpLHS = GeneratePerfectShuffle( LHSID, V1, V2, PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl); EVT VT = OpLHS.getValueType(); assert(RHSID < 8 && "Expected a lane index for RHSID!"); unsigned ExtLane = 0; SDValue Input; // OP_MOVLANE are either D movs (if bit 0x4 is set) or S movs. D movs // convert into a higher type. if (RHSID & 0x4) { int MaskElt = getPFIDLane(ID, (RHSID & 0x01) << 1) >> 1; if (MaskElt == -1) MaskElt = (getPFIDLane(ID, ((RHSID & 0x01) << 1) + 1) - 1) >> 1; assert(MaskElt >= 0 && "Didn't expect an undef movlane index!"); ExtLane = MaskElt < 2 ? MaskElt : (MaskElt - 2); Input = MaskElt < 2 ? V1 : V2; if (VT.getScalarSizeInBits() == 16) { Input = DAG.getBitcast(MVT::v2f32, Input); OpLHS = DAG.getBitcast(MVT::v2f32, OpLHS); } else { assert(VT.getScalarSizeInBits() == 32 && "Expected 16 or 32 bit shuffle elemements"); Input = DAG.getBitcast(MVT::v2f64, Input); OpLHS = DAG.getBitcast(MVT::v2f64, OpLHS); } } else { int MaskElt = getPFIDLane(ID, RHSID); assert(MaskElt >= 0 && "Didn't expect an undef movlane index!"); ExtLane = MaskElt < 4 ? MaskElt : (MaskElt - 4); Input = MaskElt < 4 ? V1 : V2; // Be careful about creating illegal types. Use f16 instead of i16. if (VT == MVT::v4i16) { Input = DAG.getBitcast(MVT::v4f16, Input); OpLHS = DAG.getBitcast(MVT::v4f16, OpLHS); } } SDValue Ext = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, Input.getValueType().getVectorElementType(), Input, DAG.getVectorIdxConstant(ExtLane, dl)); SDValue Ins = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, Input.getValueType(), OpLHS, Ext, DAG.getVectorIdxConstant(RHSID & 0x3, dl)); return DAG.getBitcast(VT, Ins); } SDValue OpLHS, OpRHS; OpLHS = GeneratePerfectShuffle(LHSID, V1, V2, PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl); OpRHS = GeneratePerfectShuffle(RHSID, V1, V2, PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl); EVT VT = OpLHS.getValueType(); switch (OpNum) { default: llvm_unreachable("Unknown shuffle opcode!"); case OP_VREV: // VREV divides the vector in half and swaps within the half. if (VT.getVectorElementType() == MVT::i32 || VT.getVectorElementType() == MVT::f32) return DAG.getNode(AArch64ISD::REV64, dl, VT, OpLHS); // vrev <4 x i16> -> REV32 if (VT.getVectorElementType() == MVT::i16 || VT.getVectorElementType() == MVT::f16 || VT.getVectorElementType() == MVT::bf16) return DAG.getNode(AArch64ISD::REV32, dl, VT, OpLHS); // vrev <4 x i8> -> REV16 assert(VT.getVectorElementType() == MVT::i8); return DAG.getNode(AArch64ISD::REV16, dl, VT, OpLHS); case OP_VDUP0: case OP_VDUP1: case OP_VDUP2: case OP_VDUP3: { EVT EltTy = VT.getVectorElementType(); unsigned Opcode; if (EltTy == MVT::i8) Opcode = AArch64ISD::DUPLANE8; else if (EltTy == MVT::i16 || EltTy == MVT::f16 || EltTy == MVT::bf16) Opcode = AArch64ISD::DUPLANE16; else if (EltTy == MVT::i32 || EltTy == MVT::f32) Opcode = AArch64ISD::DUPLANE32; else if (EltTy == MVT::i64 || EltTy == MVT::f64) Opcode = AArch64ISD::DUPLANE64; else llvm_unreachable("Invalid vector element type?"); if (VT.getSizeInBits() == 64) OpLHS = WidenVector(OpLHS, DAG); SDValue Lane = DAG.getConstant(OpNum - OP_VDUP0, dl, MVT::i64); return DAG.getNode(Opcode, dl, VT, OpLHS, Lane); } case OP_VEXT1: case OP_VEXT2: case OP_VEXT3: { unsigned Imm = (OpNum - OP_VEXT1 + 1) * getExtFactor(OpLHS); return DAG.getNode(AArch64ISD::EXT, dl, VT, OpLHS, OpRHS, DAG.getConstant(Imm, dl, MVT::i32)); } case OP_VUZPL: return DAG.getNode(AArch64ISD::UZP1, dl, VT, OpLHS, OpRHS); case OP_VUZPR: return DAG.getNode(AArch64ISD::UZP2, dl, VT, OpLHS, OpRHS); case OP_VZIPL: return DAG.getNode(AArch64ISD::ZIP1, dl, VT, OpLHS, OpRHS); case OP_VZIPR: return DAG.getNode(AArch64ISD::ZIP2, dl, VT, OpLHS, OpRHS); case OP_VTRNL: return DAG.getNode(AArch64ISD::TRN1, dl, VT, OpLHS, OpRHS); case OP_VTRNR: return DAG.getNode(AArch64ISD::TRN2, dl, VT, OpLHS, OpRHS); } } static SDValue GenerateTBL(SDValue Op, ArrayRef ShuffleMask, SelectionDAG &DAG) { // Check to see if we can use the TBL instruction. SDValue V1 = Op.getOperand(0); SDValue V2 = Op.getOperand(1); SDLoc DL(Op); EVT EltVT = Op.getValueType().getVectorElementType(); unsigned BytesPerElt = EltVT.getSizeInBits() / 8; bool Swap = false; if (V1.isUndef() || isZerosVector(V1.getNode())) { std::swap(V1, V2); Swap = true; } // If the V2 source is undef or zero then we can use a tbl1, as tbl1 will fill // out of range values with 0s. We do need to make sure that any out-of-range // values are really out-of-range for a v16i8 vector. bool IsUndefOrZero = V2.isUndef() || isZerosVector(V2.getNode()); MVT IndexVT = MVT::v8i8; unsigned IndexLen = 8; if (Op.getValueSizeInBits() == 128) { IndexVT = MVT::v16i8; IndexLen = 16; } SmallVector TBLMask; for (int Val : ShuffleMask) { for (unsigned Byte = 0; Byte < BytesPerElt; ++Byte) { unsigned Offset = Byte + Val * BytesPerElt; if (Swap) Offset = Offset < IndexLen ? Offset + IndexLen : Offset - IndexLen; if (IsUndefOrZero && Offset >= IndexLen) Offset = 255; TBLMask.push_back(DAG.getConstant(Offset, DL, MVT::i32)); } } SDValue V1Cst = DAG.getNode(ISD::BITCAST, DL, IndexVT, V1); SDValue V2Cst = DAG.getNode(ISD::BITCAST, DL, IndexVT, V2); SDValue Shuffle; if (IsUndefOrZero) { if (IndexLen == 8) V1Cst = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v16i8, V1Cst, V1Cst); Shuffle = DAG.getNode( ISD::INTRINSIC_WO_CHAIN, DL, IndexVT, DAG.getConstant(Intrinsic::aarch64_neon_tbl1, DL, MVT::i32), V1Cst, DAG.getBuildVector(IndexVT, DL, ArrayRef(TBLMask.data(), IndexLen))); } else { if (IndexLen == 8) { V1Cst = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v16i8, V1Cst, V2Cst); Shuffle = DAG.getNode( ISD::INTRINSIC_WO_CHAIN, DL, IndexVT, DAG.getConstant(Intrinsic::aarch64_neon_tbl1, DL, MVT::i32), V1Cst, DAG.getBuildVector(IndexVT, DL, ArrayRef(TBLMask.data(), IndexLen))); } else { // FIXME: We cannot, for the moment, emit a TBL2 instruction because we // cannot currently represent the register constraints on the input // table registers. // Shuffle = DAG.getNode(AArch64ISD::TBL2, DL, IndexVT, V1Cst, V2Cst, // DAG.getBuildVector(IndexVT, DL, &TBLMask[0], // IndexLen)); Shuffle = DAG.getNode( ISD::INTRINSIC_WO_CHAIN, DL, IndexVT, DAG.getConstant(Intrinsic::aarch64_neon_tbl2, DL, MVT::i32), V1Cst, V2Cst, DAG.getBuildVector(IndexVT, DL, ArrayRef(TBLMask.data(), IndexLen))); } } return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Shuffle); } static unsigned getDUPLANEOp(EVT EltType) { if (EltType == MVT::i8) return AArch64ISD::DUPLANE8; if (EltType == MVT::i16 || EltType == MVT::f16 || EltType == MVT::bf16) return AArch64ISD::DUPLANE16; if (EltType == MVT::i32 || EltType == MVT::f32) return AArch64ISD::DUPLANE32; if (EltType == MVT::i64 || EltType == MVT::f64) return AArch64ISD::DUPLANE64; llvm_unreachable("Invalid vector element type?"); } static SDValue constructDup(SDValue V, int Lane, SDLoc dl, EVT VT, unsigned Opcode, SelectionDAG &DAG) { // Try to eliminate a bitcasted extract subvector before a DUPLANE. auto getScaledOffsetDup = [](SDValue BitCast, int &LaneC, MVT &CastVT) { // Match: dup (bitcast (extract_subv X, C)), LaneC if (BitCast.getOpcode() != ISD::BITCAST || BitCast.getOperand(0).getOpcode() != ISD::EXTRACT_SUBVECTOR) return false; // The extract index must align in the destination type. That may not // happen if the bitcast is from narrow to wide type. SDValue Extract = BitCast.getOperand(0); unsigned ExtIdx = Extract.getConstantOperandVal(1); unsigned SrcEltBitWidth = Extract.getScalarValueSizeInBits(); unsigned ExtIdxInBits = ExtIdx * SrcEltBitWidth; unsigned CastedEltBitWidth = BitCast.getScalarValueSizeInBits(); if (ExtIdxInBits % CastedEltBitWidth != 0) return false; // Can't handle cases where vector size is not 128-bit if (!Extract.getOperand(0).getValueType().is128BitVector()) return false; // Update the lane value by offsetting with the scaled extract index. LaneC += ExtIdxInBits / CastedEltBitWidth; // Determine the casted vector type of the wide vector input. // dup (bitcast (extract_subv X, C)), LaneC --> dup (bitcast X), LaneC' // Examples: // dup (bitcast (extract_subv v2f64 X, 1) to v2f32), 1 --> dup v4f32 X, 3 // dup (bitcast (extract_subv v16i8 X, 8) to v4i16), 1 --> dup v8i16 X, 5 unsigned SrcVecNumElts = Extract.getOperand(0).getValueSizeInBits() / CastedEltBitWidth; CastVT = MVT::getVectorVT(BitCast.getSimpleValueType().getScalarType(), SrcVecNumElts); return true; }; MVT CastVT; if (getScaledOffsetDup(V, Lane, CastVT)) { V = DAG.getBitcast(CastVT, V.getOperand(0).getOperand(0)); } else if (V.getOpcode() == ISD::EXTRACT_SUBVECTOR && V.getOperand(0).getValueType().is128BitVector()) { // The lane is incremented by the index of the extract. // Example: dup v2f32 (extract v4f32 X, 2), 1 --> dup v4f32 X, 3 Lane += V.getConstantOperandVal(1); V = V.getOperand(0); } else if (V.getOpcode() == ISD::CONCAT_VECTORS) { // The lane is decremented if we are splatting from the 2nd operand. // Example: dup v4i32 (concat v2i32 X, v2i32 Y), 3 --> dup v4i32 Y, 1 unsigned Idx = Lane >= (int)VT.getVectorNumElements() / 2; Lane -= Idx * VT.getVectorNumElements() / 2; V = WidenVector(V.getOperand(Idx), DAG); } else if (VT.getSizeInBits() == 64) { // Widen the operand to 128-bit register with undef. V = WidenVector(V, DAG); } return DAG.getNode(Opcode, dl, VT, V, DAG.getConstant(Lane, dl, MVT::i64)); } // Return true if we can get a new shuffle mask by checking the parameter mask // array to test whether every two adjacent mask values are continuous and // starting from an even number. static bool isWideTypeMask(ArrayRef M, EVT VT, SmallVectorImpl &NewMask) { unsigned NumElts = VT.getVectorNumElements(); if (NumElts % 2 != 0) return false; NewMask.clear(); for (unsigned i = 0; i < NumElts; i += 2) { int M0 = M[i]; int M1 = M[i + 1]; // If both elements are undef, new mask is undef too. if (M0 == -1 && M1 == -1) { NewMask.push_back(-1); continue; } if (M0 == -1 && M1 != -1 && (M1 % 2) == 1) { NewMask.push_back(M1 / 2); continue; } if (M0 != -1 && (M0 % 2) == 0 && ((M0 + 1) == M1 || M1 == -1)) { NewMask.push_back(M0 / 2); continue; } NewMask.clear(); return false; } assert(NewMask.size() == NumElts / 2 && "Incorrect size for mask!"); return true; } // Try to widen element type to get a new mask value for a better permutation // sequence, so that we can use NEON shuffle instructions, such as zip1/2, // UZP1/2, TRN1/2, REV, INS, etc. // For example: // shufflevector <4 x i32> %a, <4 x i32> %b, // <4 x i32> // is equivalent to: // shufflevector <2 x i64> %a, <2 x i64> %b, <2 x i32> // Finally, we can get: // mov v0.d[0], v1.d[1] static SDValue tryWidenMaskForShuffle(SDValue Op, SelectionDAG &DAG) { SDLoc DL(Op); EVT VT = Op.getValueType(); EVT ScalarVT = VT.getVectorElementType(); unsigned ElementSize = ScalarVT.getFixedSizeInBits(); SDValue V0 = Op.getOperand(0); SDValue V1 = Op.getOperand(1); ArrayRef Mask = cast(Op)->getMask(); // If combining adjacent elements, like two i16's -> i32, two i32's -> i64 ... // We need to make sure the wider element type is legal. Thus, ElementSize // should be not larger than 32 bits, and i1 type should also be excluded. if (ElementSize > 32 || ElementSize == 1) return SDValue(); SmallVector NewMask; if (isWideTypeMask(Mask, VT, NewMask)) { MVT NewEltVT = VT.isFloatingPoint() ? MVT::getFloatingPointVT(ElementSize * 2) : MVT::getIntegerVT(ElementSize * 2); MVT NewVT = MVT::getVectorVT(NewEltVT, VT.getVectorNumElements() / 2); if (DAG.getTargetLoweringInfo().isTypeLegal(NewVT)) { V0 = DAG.getBitcast(NewVT, V0); V1 = DAG.getBitcast(NewVT, V1); return DAG.getBitcast(VT, DAG.getVectorShuffle(NewVT, DL, V0, V1, NewMask)); } } return SDValue(); } // Try to fold shuffle (tbl2, tbl2) into a single tbl4. static SDValue tryToConvertShuffleOfTbl2ToTbl4(SDValue Op, ArrayRef ShuffleMask, SelectionDAG &DAG) { SDValue Tbl1 = Op->getOperand(0); SDValue Tbl2 = Op->getOperand(1); SDLoc dl(Op); SDValue Tbl2ID = DAG.getTargetConstant(Intrinsic::aarch64_neon_tbl2, dl, MVT::i64); EVT VT = Op.getValueType(); if (Tbl1->getOpcode() != ISD::INTRINSIC_WO_CHAIN || Tbl1->getOperand(0) != Tbl2ID || Tbl2->getOpcode() != ISD::INTRINSIC_WO_CHAIN || Tbl2->getOperand(0) != Tbl2ID) return SDValue(); if (Tbl1->getValueType(0) != MVT::v16i8 || Tbl2->getValueType(0) != MVT::v16i8) return SDValue(); SDValue Mask1 = Tbl1->getOperand(3); SDValue Mask2 = Tbl2->getOperand(3); SmallVector TBLMaskParts(16, SDValue()); for (unsigned I = 0; I < 16; I++) { if (ShuffleMask[I] < 16) TBLMaskParts[I] = Mask1->getOperand(ShuffleMask[I]); else { auto *C = dyn_cast(Mask2->getOperand(ShuffleMask[I] - 16)); if (!C) return SDValue(); TBLMaskParts[I] = DAG.getConstant(C->getSExtValue() + 32, dl, MVT::i32); } } SDValue TBLMask = DAG.getBuildVector(VT, dl, TBLMaskParts); SDValue ID = DAG.getTargetConstant(Intrinsic::aarch64_neon_tbl4, dl, MVT::i64); return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v16i8, {ID, Tbl1->getOperand(1), Tbl1->getOperand(2), Tbl2->getOperand(1), Tbl2->getOperand(2), TBLMask}); } // Baseline legalization for ZERO_EXTEND_VECTOR_INREG will blend-in zeros, // but we don't have an appropriate instruction, // so custom-lower it as ZIP1-with-zeros. SDValue AArch64TargetLowering::LowerZERO_EXTEND_VECTOR_INREG(SDValue Op, SelectionDAG &DAG) const { SDLoc dl(Op); EVT VT = Op.getValueType(); SDValue SrcOp = Op.getOperand(0); EVT SrcVT = SrcOp.getValueType(); assert(VT.getScalarSizeInBits() % SrcVT.getScalarSizeInBits() == 0 && "Unexpected extension factor."); unsigned Scale = VT.getScalarSizeInBits() / SrcVT.getScalarSizeInBits(); // FIXME: support multi-step zipping? if (Scale != 2) return SDValue(); SDValue Zeros = DAG.getConstant(0, dl, SrcVT); return DAG.getBitcast(VT, DAG.getNode(AArch64ISD::ZIP1, dl, SrcVT, SrcOp, Zeros)); } SDValue AArch64TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const { SDLoc dl(Op); EVT VT = Op.getValueType(); ShuffleVectorSDNode *SVN = cast(Op.getNode()); if (useSVEForFixedLengthVectorVT(VT, !Subtarget->isNeonAvailable())) return LowerFixedLengthVECTOR_SHUFFLEToSVE(Op, DAG); // Convert shuffles that are directly supported on NEON to target-specific // DAG nodes, instead of keeping them as shuffles and matching them again // during code selection. This is more efficient and avoids the possibility // of inconsistencies between legalization and selection. ArrayRef ShuffleMask = SVN->getMask(); SDValue V1 = Op.getOperand(0); SDValue V2 = Op.getOperand(1); assert(V1.getValueType() == VT && "Unexpected VECTOR_SHUFFLE type!"); assert(ShuffleMask.size() == VT.getVectorNumElements() && "Unexpected VECTOR_SHUFFLE mask size!"); if (SDValue Res = tryToConvertShuffleOfTbl2ToTbl4(Op, ShuffleMask, DAG)) return Res; if (SVN->isSplat()) { int Lane = SVN->getSplatIndex(); // If this is undef splat, generate it via "just" vdup, if possible. if (Lane == -1) Lane = 0; if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR) return DAG.getNode(AArch64ISD::DUP, dl, V1.getValueType(), V1.getOperand(0)); // Test if V1 is a BUILD_VECTOR and the lane being referenced is a non- // constant. If so, we can just reference the lane's definition directly. if (V1.getOpcode() == ISD::BUILD_VECTOR && !isa(V1.getOperand(Lane))) return DAG.getNode(AArch64ISD::DUP, dl, VT, V1.getOperand(Lane)); // Otherwise, duplicate from the lane of the input vector. unsigned Opcode = getDUPLANEOp(V1.getValueType().getVectorElementType()); return constructDup(V1, Lane, dl, VT, Opcode, DAG); } // Check if the mask matches a DUP for a wider element for (unsigned LaneSize : {64U, 32U, 16U}) { unsigned Lane = 0; if (isWideDUPMask(ShuffleMask, VT, LaneSize, Lane)) { unsigned Opcode = LaneSize == 64 ? AArch64ISD::DUPLANE64 : LaneSize == 32 ? AArch64ISD::DUPLANE32 : AArch64ISD::DUPLANE16; // Cast V1 to an integer vector with required lane size MVT NewEltTy = MVT::getIntegerVT(LaneSize); unsigned NewEltCount = VT.getSizeInBits() / LaneSize; MVT NewVecTy = MVT::getVectorVT(NewEltTy, NewEltCount); V1 = DAG.getBitcast(NewVecTy, V1); // Constuct the DUP instruction V1 = constructDup(V1, Lane, dl, NewVecTy, Opcode, DAG); // Cast back to the original type return DAG.getBitcast(VT, V1); } } if (isREVMask(ShuffleMask, VT, 64)) return DAG.getNode(AArch64ISD::REV64, dl, V1.getValueType(), V1, V2); if (isREVMask(ShuffleMask, VT, 32)) return DAG.getNode(AArch64ISD::REV32, dl, V1.getValueType(), V1, V2); if (isREVMask(ShuffleMask, VT, 16)) return DAG.getNode(AArch64ISD::REV16, dl, V1.getValueType(), V1, V2); if (((VT.getVectorNumElements() == 8 && VT.getScalarSizeInBits() == 16) || (VT.getVectorNumElements() == 16 && VT.getScalarSizeInBits() == 8)) && ShuffleVectorInst::isReverseMask(ShuffleMask, ShuffleMask.size())) { SDValue Rev = DAG.getNode(AArch64ISD::REV64, dl, VT, V1); return DAG.getNode(AArch64ISD::EXT, dl, VT, Rev, Rev, DAG.getConstant(8, dl, MVT::i32)); } bool ReverseEXT = false; unsigned Imm; if (isEXTMask(ShuffleMask, VT, ReverseEXT, Imm)) { if (ReverseEXT) std::swap(V1, V2); Imm *= getExtFactor(V1); return DAG.getNode(AArch64ISD::EXT, dl, V1.getValueType(), V1, V2, DAG.getConstant(Imm, dl, MVT::i32)); } else if (V2->isUndef() && isSingletonEXTMask(ShuffleMask, VT, Imm)) { Imm *= getExtFactor(V1); return DAG.getNode(AArch64ISD::EXT, dl, V1.getValueType(), V1, V1, DAG.getConstant(Imm, dl, MVT::i32)); } unsigned WhichResult; if (isZIPMask(ShuffleMask, VT, WhichResult)) { unsigned Opc = (WhichResult == 0) ? AArch64ISD::ZIP1 : AArch64ISD::ZIP2; return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2); } if (isUZPMask(ShuffleMask, VT, WhichResult)) { unsigned Opc = (WhichResult == 0) ? AArch64ISD::UZP1 : AArch64ISD::UZP2; return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2); } if (isTRNMask(ShuffleMask, VT, WhichResult)) { unsigned Opc = (WhichResult == 0) ? AArch64ISD::TRN1 : AArch64ISD::TRN2; return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2); } if (isZIP_v_undef_Mask(ShuffleMask, VT, WhichResult)) { unsigned Opc = (WhichResult == 0) ? AArch64ISD::ZIP1 : AArch64ISD::ZIP2; return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1); } if (isUZP_v_undef_Mask(ShuffleMask, VT, WhichResult)) { unsigned Opc = (WhichResult == 0) ? AArch64ISD::UZP1 : AArch64ISD::UZP2; return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1); } if (isTRN_v_undef_Mask(ShuffleMask, VT, WhichResult)) { unsigned Opc = (WhichResult == 0) ? AArch64ISD::TRN1 : AArch64ISD::TRN2; return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1); } if (SDValue Concat = tryFormConcatFromShuffle(Op, DAG)) return Concat; bool DstIsLeft; int Anomaly; int NumInputElements = V1.getValueType().getVectorNumElements(); if (isINSMask(ShuffleMask, NumInputElements, DstIsLeft, Anomaly)) { SDValue DstVec = DstIsLeft ? V1 : V2; SDValue DstLaneV = DAG.getConstant(Anomaly, dl, MVT::i64); SDValue SrcVec = V1; int SrcLane = ShuffleMask[Anomaly]; if (SrcLane >= NumInputElements) { SrcVec = V2; SrcLane -= VT.getVectorNumElements(); } SDValue SrcLaneV = DAG.getConstant(SrcLane, dl, MVT::i64); EVT ScalarVT = VT.getVectorElementType(); if (ScalarVT.getFixedSizeInBits() < 32 && ScalarVT.isInteger()) ScalarVT = MVT::i32; return DAG.getNode( ISD::INSERT_VECTOR_ELT, dl, VT, DstVec, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ScalarVT, SrcVec, SrcLaneV), DstLaneV); } if (SDValue NewSD = tryWidenMaskForShuffle(Op, DAG)) return NewSD; // If the shuffle is not directly supported and it has 4 elements, use // the PerfectShuffle-generated table to synthesize it from other shuffles. unsigned NumElts = VT.getVectorNumElements(); if (NumElts == 4) { unsigned PFIndexes[4]; for (unsigned i = 0; i != 4; ++i) { if (ShuffleMask[i] < 0) PFIndexes[i] = 8; else PFIndexes[i] = ShuffleMask[i]; } // Compute the index in the perfect shuffle table. unsigned PFTableIndex = PFIndexes[0] * 9 * 9 * 9 + PFIndexes[1] * 9 * 9 + PFIndexes[2] * 9 + PFIndexes[3]; unsigned PFEntry = PerfectShuffleTable[PFTableIndex]; return GeneratePerfectShuffle(PFTableIndex, V1, V2, PFEntry, V1, V2, DAG, dl); } return GenerateTBL(Op, ShuffleMask, DAG); } SDValue AArch64TargetLowering::LowerSPLAT_VECTOR(SDValue Op, SelectionDAG &DAG) const { EVT VT = Op.getValueType(); if (useSVEForFixedLengthVectorVT(VT, !Subtarget->isNeonAvailable())) return LowerToScalableOp(Op, DAG); assert(VT.isScalableVector() && VT.getVectorElementType() == MVT::i1 && "Unexpected vector type!"); // We can handle the constant cases during isel. if (isa(Op.getOperand(0))) return Op; // There isn't a natural way to handle the general i1 case, so we use some // trickery with whilelo. SDLoc DL(Op); SDValue SplatVal = DAG.getAnyExtOrTrunc(Op.getOperand(0), DL, MVT::i64); SplatVal = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, SplatVal, DAG.getValueType(MVT::i1)); SDValue ID = DAG.getTargetConstant(Intrinsic::aarch64_sve_whilelo, DL, MVT::i64); SDValue Zero = DAG.getConstant(0, DL, MVT::i64); if (VT == MVT::nxv1i1) return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::nxv1i1, DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, MVT::nxv2i1, ID, Zero, SplatVal), Zero); return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT, ID, Zero, SplatVal); } SDValue AArch64TargetLowering::LowerDUPQLane(SDValue Op, SelectionDAG &DAG) const { SDLoc DL(Op); EVT VT = Op.getValueType(); if (!isTypeLegal(VT) || !VT.isScalableVector()) return SDValue(); // Current lowering only supports the SVE-ACLE types. if (VT.getSizeInBits().getKnownMinValue() != AArch64::SVEBitsPerBlock) return SDValue(); // The DUPQ operation is indepedent of element type so normalise to i64s. SDValue Idx128 = Op.getOperand(2); // DUPQ can be used when idx is in range. auto *CIdx = dyn_cast(Idx128); if (CIdx && (CIdx->getZExtValue() <= 3)) { SDValue CI = DAG.getTargetConstant(CIdx->getZExtValue(), DL, MVT::i64); return DAG.getNode(AArch64ISD::DUPLANE128, DL, VT, Op.getOperand(1), CI); } SDValue V = DAG.getNode(ISD::BITCAST, DL, MVT::nxv2i64, Op.getOperand(1)); // The ACLE says this must produce the same result as: // svtbl(data, svadd_x(svptrue_b64(), // svand_x(svptrue_b64(), svindex_u64(0, 1), 1), // index * 2)) SDValue One = DAG.getConstant(1, DL, MVT::i64); SDValue SplatOne = DAG.getNode(ISD::SPLAT_VECTOR, DL, MVT::nxv2i64, One); // create the vector 0,1,0,1,... SDValue SV = DAG.getStepVector(DL, MVT::nxv2i64); SV = DAG.getNode(ISD::AND, DL, MVT::nxv2i64, SV, SplatOne); // create the vector idx64,idx64+1,idx64,idx64+1,... SDValue Idx64 = DAG.getNode(ISD::ADD, DL, MVT::i64, Idx128, Idx128); SDValue SplatIdx64 = DAG.getNode(ISD::SPLAT_VECTOR, DL, MVT::nxv2i64, Idx64); SDValue ShuffleMask = DAG.getNode(ISD::ADD, DL, MVT::nxv2i64, SV, SplatIdx64); // create the vector Val[idx64],Val[idx64+1],Val[idx64],Val[idx64+1],... SDValue TBL = DAG.getNode(AArch64ISD::TBL, DL, MVT::nxv2i64, V, ShuffleMask); return DAG.getNode(ISD::BITCAST, DL, VT, TBL); } static bool resolveBuildVector(BuildVectorSDNode *BVN, APInt &CnstBits, APInt &UndefBits) { EVT VT = BVN->getValueType(0); APInt SplatBits, SplatUndef; unsigned SplatBitSize; bool HasAnyUndefs; if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) { unsigned NumSplats = VT.getSizeInBits() / SplatBitSize; for (unsigned i = 0; i < NumSplats; ++i) { CnstBits <<= SplatBitSize; UndefBits <<= SplatBitSize; CnstBits |= SplatBits.zextOrTrunc(VT.getSizeInBits()); UndefBits |= (SplatBits ^ SplatUndef).zextOrTrunc(VT.getSizeInBits()); } return true; } return false; } // Try 64-bit splatted SIMD immediate. static SDValue tryAdvSIMDModImm64(unsigned NewOp, SDValue Op, SelectionDAG &DAG, const APInt &Bits) { if (Bits.getHiBits(64) == Bits.getLoBits(64)) { uint64_t Value = Bits.zextOrTrunc(64).getZExtValue(); EVT VT = Op.getValueType(); MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v2i64 : MVT::f64; if (AArch64_AM::isAdvSIMDModImmType10(Value)) { Value = AArch64_AM::encodeAdvSIMDModImmType10(Value); SDLoc dl(Op); SDValue Mov = DAG.getNode(NewOp, dl, MovTy, DAG.getConstant(Value, dl, MVT::i32)); return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov); } } return SDValue(); } // Try 32-bit splatted SIMD immediate. static SDValue tryAdvSIMDModImm32(unsigned NewOp, SDValue Op, SelectionDAG &DAG, const APInt &Bits, const SDValue *LHS = nullptr) { EVT VT = Op.getValueType(); if (VT.isFixedLengthVector() && !DAG.getSubtarget().isNeonAvailable()) return SDValue(); if (Bits.getHiBits(64) == Bits.getLoBits(64)) { uint64_t Value = Bits.zextOrTrunc(64).getZExtValue(); MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32; bool isAdvSIMDModImm = false; uint64_t Shift; if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType1(Value))) { Value = AArch64_AM::encodeAdvSIMDModImmType1(Value); Shift = 0; } else if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType2(Value))) { Value = AArch64_AM::encodeAdvSIMDModImmType2(Value); Shift = 8; } else if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType3(Value))) { Value = AArch64_AM::encodeAdvSIMDModImmType3(Value); Shift = 16; } else if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType4(Value))) { Value = AArch64_AM::encodeAdvSIMDModImmType4(Value); Shift = 24; } if (isAdvSIMDModImm) { SDLoc dl(Op); SDValue Mov; if (LHS) Mov = DAG.getNode(NewOp, dl, MovTy, DAG.getNode(AArch64ISD::NVCAST, dl, MovTy, *LHS), DAG.getConstant(Value, dl, MVT::i32), DAG.getConstant(Shift, dl, MVT::i32)); else Mov = DAG.getNode(NewOp, dl, MovTy, DAG.getConstant(Value, dl, MVT::i32), DAG.getConstant(Shift, dl, MVT::i32)); return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov); } } return SDValue(); } // Try 16-bit splatted SIMD immediate. static SDValue tryAdvSIMDModImm16(unsigned NewOp, SDValue Op, SelectionDAG &DAG, const APInt &Bits, const SDValue *LHS = nullptr) { EVT VT = Op.getValueType(); if (VT.isFixedLengthVector() && !DAG.getSubtarget().isNeonAvailable()) return SDValue(); if (Bits.getHiBits(64) == Bits.getLoBits(64)) { uint64_t Value = Bits.zextOrTrunc(64).getZExtValue(); MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16; bool isAdvSIMDModImm = false; uint64_t Shift; if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType5(Value))) { Value = AArch64_AM::encodeAdvSIMDModImmType5(Value); Shift = 0; } else if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType6(Value))) { Value = AArch64_AM::encodeAdvSIMDModImmType6(Value); Shift = 8; } if (isAdvSIMDModImm) { SDLoc dl(Op); SDValue Mov; if (LHS) Mov = DAG.getNode(NewOp, dl, MovTy, DAG.getNode(AArch64ISD::NVCAST, dl, MovTy, *LHS), DAG.getConstant(Value, dl, MVT::i32), DAG.getConstant(Shift, dl, MVT::i32)); else Mov = DAG.getNode(NewOp, dl, MovTy, DAG.getConstant(Value, dl, MVT::i32), DAG.getConstant(Shift, dl, MVT::i32)); return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov); } } return SDValue(); } // Try 32-bit splatted SIMD immediate with shifted ones. static SDValue tryAdvSIMDModImm321s(unsigned NewOp, SDValue Op, SelectionDAG &DAG, const APInt &Bits) { if (Bits.getHiBits(64) == Bits.getLoBits(64)) { uint64_t Value = Bits.zextOrTrunc(64).getZExtValue(); EVT VT = Op.getValueType(); MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32; bool isAdvSIMDModImm = false; uint64_t Shift; if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType7(Value))) { Value = AArch64_AM::encodeAdvSIMDModImmType7(Value); Shift = 264; } else if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType8(Value))) { Value = AArch64_AM::encodeAdvSIMDModImmType8(Value); Shift = 272; } if (isAdvSIMDModImm) { SDLoc dl(Op); SDValue Mov = DAG.getNode(NewOp, dl, MovTy, DAG.getConstant(Value, dl, MVT::i32), DAG.getConstant(Shift, dl, MVT::i32)); return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov); } } return SDValue(); } // Try 8-bit splatted SIMD immediate. static SDValue tryAdvSIMDModImm8(unsigned NewOp, SDValue Op, SelectionDAG &DAG, const APInt &Bits) { if (Bits.getHiBits(64) == Bits.getLoBits(64)) { uint64_t Value = Bits.zextOrTrunc(64).getZExtValue(); EVT VT = Op.getValueType(); MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v16i8 : MVT::v8i8; if (AArch64_AM::isAdvSIMDModImmType9(Value)) { Value = AArch64_AM::encodeAdvSIMDModImmType9(Value); SDLoc dl(Op); SDValue Mov = DAG.getNode(NewOp, dl, MovTy, DAG.getConstant(Value, dl, MVT::i32)); return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov); } } return SDValue(); } // Try FP splatted SIMD immediate. static SDValue tryAdvSIMDModImmFP(unsigned NewOp, SDValue Op, SelectionDAG &DAG, const APInt &Bits) { if (Bits.getHiBits(64) == Bits.getLoBits(64)) { uint64_t Value = Bits.zextOrTrunc(64).getZExtValue(); EVT VT = Op.getValueType(); bool isWide = (VT.getSizeInBits() == 128); MVT MovTy; bool isAdvSIMDModImm = false; if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType11(Value))) { Value = AArch64_AM::encodeAdvSIMDModImmType11(Value); MovTy = isWide ? MVT::v4f32 : MVT::v2f32; } else if (isWide && (isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType12(Value))) { Value = AArch64_AM::encodeAdvSIMDModImmType12(Value); MovTy = MVT::v2f64; } if (isAdvSIMDModImm) { SDLoc dl(Op); SDValue Mov = DAG.getNode(NewOp, dl, MovTy, DAG.getConstant(Value, dl, MVT::i32)); return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov); } } return SDValue(); } // Specialized code to quickly find if PotentialBVec is a BuildVector that // consists of only the same constant int value, returned in reference arg // ConstVal static bool isAllConstantBuildVector(const SDValue &PotentialBVec, uint64_t &ConstVal) { BuildVectorSDNode *Bvec = dyn_cast(PotentialBVec); if (!Bvec) return false; ConstantSDNode *FirstElt = dyn_cast(Bvec->getOperand(0)); if (!FirstElt) return false; EVT VT = Bvec->getValueType(0); unsigned NumElts = VT.getVectorNumElements(); for (unsigned i = 1; i < NumElts; ++i) if (dyn_cast(Bvec->getOperand(i)) != FirstElt) return false; ConstVal = FirstElt->getZExtValue(); return true; } static bool isAllInactivePredicate(SDValue N) { // Look through cast. while (N.getOpcode() == AArch64ISD::REINTERPRET_CAST) N = N.getOperand(0); return ISD::isConstantSplatVectorAllZeros(N.getNode()); } static bool isAllActivePredicate(SelectionDAG &DAG, SDValue N) { unsigned NumElts = N.getValueType().getVectorMinNumElements(); // Look through cast. while (N.getOpcode() == AArch64ISD::REINTERPRET_CAST) { N = N.getOperand(0); // When reinterpreting from a type with fewer elements the "new" elements // are not active, so bail if they're likely to be used. if (N.getValueType().getVectorMinNumElements() < NumElts) return false; } if (ISD::isConstantSplatVectorAllOnes(N.getNode())) return true; // "ptrue p., all" can be considered all active when is the same size // or smaller than the implicit element type represented by N. // NOTE: A larger element count implies a smaller element type. if (N.getOpcode() == AArch64ISD::PTRUE && N.getConstantOperandVal(0) == AArch64SVEPredPattern::all) return N.getValueType().getVectorMinNumElements() >= NumElts; // If we're compiling for a specific vector-length, we can check if the // pattern's VL equals that of the scalable vector at runtime. if (N.getOpcode() == AArch64ISD::PTRUE) { const auto &Subtarget = DAG.getSubtarget(); unsigned MinSVESize = Subtarget.getMinSVEVectorSizeInBits(); unsigned MaxSVESize = Subtarget.getMaxSVEVectorSizeInBits(); if (MaxSVESize && MinSVESize == MaxSVESize) { unsigned VScale = MaxSVESize / AArch64::SVEBitsPerBlock; unsigned PatNumElts = getNumElementsFromSVEPredPattern(N.getConstantOperandVal(0)); return PatNumElts == (NumElts * VScale); } } return false; } // Attempt to form a vector S[LR]I from (or (and X, BvecC1), (lsl Y, C2)), // to (SLI X, Y, C2), where X and Y have matching vector types, BvecC1 is a // BUILD_VECTORs with constant element C1, C2 is a constant, and: // - for the SLI case: C1 == ~(Ones(ElemSizeInBits) << C2) // - for the SRI case: C1 == ~(Ones(ElemSizeInBits) >> C2) // The (or (lsl Y, C2), (and X, BvecC1)) case is also handled. static SDValue tryLowerToSLI(SDNode *N, SelectionDAG &DAG) { EVT VT = N->getValueType(0); if (!VT.isVector()) return SDValue(); SDLoc DL(N); SDValue And; SDValue Shift; SDValue FirstOp = N->getOperand(0); unsigned FirstOpc = FirstOp.getOpcode(); SDValue SecondOp = N->getOperand(1); unsigned SecondOpc = SecondOp.getOpcode(); // Is one of the operands an AND or a BICi? The AND may have been optimised to // a BICi in order to use an immediate instead of a register. // Is the other operand an shl or lshr? This will have been turned into: // AArch64ISD::VSHL vector, #shift or AArch64ISD::VLSHR vector, #shift // or (AArch64ISD::SHL_PRED || AArch64ISD::SRL_PRED) mask, vector, #shiftVec. if ((FirstOpc == ISD::AND || FirstOpc == AArch64ISD::BICi) && (SecondOpc == AArch64ISD::VSHL || SecondOpc == AArch64ISD::VLSHR || SecondOpc == AArch64ISD::SHL_PRED || SecondOpc == AArch64ISD::SRL_PRED)) { And = FirstOp; Shift = SecondOp; } else if ((SecondOpc == ISD::AND || SecondOpc == AArch64ISD::BICi) && (FirstOpc == AArch64ISD::VSHL || FirstOpc == AArch64ISD::VLSHR || FirstOpc == AArch64ISD::SHL_PRED || FirstOpc == AArch64ISD::SRL_PRED)) { And = SecondOp; Shift = FirstOp; } else return SDValue(); bool IsAnd = And.getOpcode() == ISD::AND; bool IsShiftRight = Shift.getOpcode() == AArch64ISD::VLSHR || Shift.getOpcode() == AArch64ISD::SRL_PRED; bool ShiftHasPredOp = Shift.getOpcode() == AArch64ISD::SHL_PRED || Shift.getOpcode() == AArch64ISD::SRL_PRED; // Is the shift amount constant and are all lanes active? uint64_t C2; if (ShiftHasPredOp) { if (!isAllActivePredicate(DAG, Shift.getOperand(0))) return SDValue(); APInt C; if (!ISD::isConstantSplatVector(Shift.getOperand(2).getNode(), C)) return SDValue(); C2 = C.getZExtValue(); } else if (ConstantSDNode *C2node = dyn_cast(Shift.getOperand(1))) C2 = C2node->getZExtValue(); else return SDValue(); APInt C1AsAPInt; unsigned ElemSizeInBits = VT.getScalarSizeInBits(); if (IsAnd) { // Is the and mask vector all constant? if (!ISD::isConstantSplatVector(And.getOperand(1).getNode(), C1AsAPInt)) return SDValue(); } else { // Reconstruct the corresponding AND immediate from the two BICi immediates. ConstantSDNode *C1nodeImm = dyn_cast(And.getOperand(1)); ConstantSDNode *C1nodeShift = dyn_cast(And.getOperand(2)); assert(C1nodeImm && C1nodeShift); C1AsAPInt = ~(C1nodeImm->getAPIntValue() << C1nodeShift->getAPIntValue()); C1AsAPInt = C1AsAPInt.zextOrTrunc(ElemSizeInBits); } // Is C1 == ~(Ones(ElemSizeInBits) << C2) or // C1 == ~(Ones(ElemSizeInBits) >> C2), taking into account // how much one can shift elements of a particular size? if (C2 > ElemSizeInBits) return SDValue(); APInt RequiredC1 = IsShiftRight ? APInt::getHighBitsSet(ElemSizeInBits, C2) : APInt::getLowBitsSet(ElemSizeInBits, C2); if (C1AsAPInt != RequiredC1) return SDValue(); SDValue X = And.getOperand(0); SDValue Y = ShiftHasPredOp ? Shift.getOperand(1) : Shift.getOperand(0); SDValue Imm = ShiftHasPredOp ? DAG.getTargetConstant(C2, DL, MVT::i32) : Shift.getOperand(1); unsigned Inst = IsShiftRight ? AArch64ISD::VSRI : AArch64ISD::VSLI; SDValue ResultSLI = DAG.getNode(Inst, DL, VT, X, Y, Imm); LLVM_DEBUG(dbgs() << "aarch64-lower: transformed: \n"); LLVM_DEBUG(N->dump(&DAG)); LLVM_DEBUG(dbgs() << "into: \n"); LLVM_DEBUG(ResultSLI->dump(&DAG)); ++NumShiftInserts; return ResultSLI; } SDValue AArch64TargetLowering::LowerVectorOR(SDValue Op, SelectionDAG &DAG) const { if (useSVEForFixedLengthVectorVT(Op.getValueType(), !Subtarget->isNeonAvailable())) return LowerToScalableOp(Op, DAG); // Attempt to form a vector S[LR]I from (or (and X, C1), (lsl Y, C2)) if (SDValue Res = tryLowerToSLI(Op.getNode(), DAG)) return Res; EVT VT = Op.getValueType(); if (VT.isScalableVector()) return Op; SDValue LHS = Op.getOperand(0); BuildVectorSDNode *BVN = dyn_cast(Op.getOperand(1).getNode()); if (!BVN) { // OR commutes, so try swapping the operands. LHS = Op.getOperand(1); BVN = dyn_cast(Op.getOperand(0).getNode()); } if (!BVN) return Op; APInt DefBits(VT.getSizeInBits(), 0); APInt UndefBits(VT.getSizeInBits(), 0); if (resolveBuildVector(BVN, DefBits, UndefBits)) { SDValue NewOp; if ((NewOp = tryAdvSIMDModImm32(AArch64ISD::ORRi, Op, DAG, DefBits, &LHS)) || (NewOp = tryAdvSIMDModImm16(AArch64ISD::ORRi, Op, DAG, DefBits, &LHS))) return NewOp; if ((NewOp = tryAdvSIMDModImm32(AArch64ISD::ORRi, Op, DAG, UndefBits, &LHS)) || (NewOp = tryAdvSIMDModImm16(AArch64ISD::ORRi, Op, DAG, UndefBits, &LHS))) return NewOp; } // We can always fall back to a non-immediate OR. return Op; } // Normalize the operands of BUILD_VECTOR. The value of constant operands will // be truncated to fit element width. static SDValue NormalizeBuildVector(SDValue Op, SelectionDAG &DAG) { assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!"); SDLoc dl(Op); EVT VT = Op.getValueType(); EVT EltTy= VT.getVectorElementType(); if (EltTy.isFloatingPoint() || EltTy.getSizeInBits() > 16) return Op; SmallVector Ops; for (SDValue Lane : Op->ops()) { // For integer vectors, type legalization would have promoted the // operands already. Otherwise, if Op is a floating-point splat // (with operands cast to integers), then the only possibilities // are constants and UNDEFs. if (auto *CstLane = dyn_cast(Lane)) { APInt LowBits(EltTy.getSizeInBits(), CstLane->getZExtValue()); Lane = DAG.getConstant(LowBits.getZExtValue(), dl, MVT::i32); } else if (Lane.getNode()->isUndef()) { Lane = DAG.getUNDEF(MVT::i32); } else { assert(Lane.getValueType() == MVT::i32 && "Unexpected BUILD_VECTOR operand type"); } Ops.push_back(Lane); } return DAG.getBuildVector(VT, dl, Ops); } static SDValue ConstantBuildVector(SDValue Op, SelectionDAG &DAG, const AArch64Subtarget *ST) { EVT VT = Op.getValueType(); assert((VT.getSizeInBits() == 64 || VT.getSizeInBits() == 128) && "Expected a legal NEON vector"); APInt DefBits(VT.getSizeInBits(), 0); APInt UndefBits(VT.getSizeInBits(), 0); BuildVectorSDNode *BVN = cast(Op.getNode()); if (resolveBuildVector(BVN, DefBits, UndefBits)) { auto TryMOVIWithBits = [&](APInt DefBits) { SDValue NewOp; if ((NewOp = tryAdvSIMDModImm64(AArch64ISD::MOVIedit, Op, DAG, DefBits)) || (NewOp = tryAdvSIMDModImm32(AArch64ISD::MOVIshift, Op, DAG, DefBits)) || (NewOp = tryAdvSIMDModImm321s(AArch64ISD::MOVImsl, Op, DAG, DefBits)) || (NewOp = tryAdvSIMDModImm16(AArch64ISD::MOVIshift, Op, DAG, DefBits)) || (NewOp = tryAdvSIMDModImm8(AArch64ISD::MOVI, Op, DAG, DefBits)) || (NewOp = tryAdvSIMDModImmFP(AArch64ISD::FMOV, Op, DAG, DefBits))) return NewOp; APInt NotDefBits = ~DefBits; if ((NewOp = tryAdvSIMDModImm32(AArch64ISD::MVNIshift, Op, DAG, NotDefBits)) || (NewOp = tryAdvSIMDModImm321s(AArch64ISD::MVNImsl, Op, DAG, NotDefBits)) || (NewOp = tryAdvSIMDModImm16(AArch64ISD::MVNIshift, Op, DAG, NotDefBits))) return NewOp; return SDValue(); }; if (SDValue R = TryMOVIWithBits(DefBits)) return R; if (SDValue R = TryMOVIWithBits(UndefBits)) return R; // See if a fneg of the constant can be materialized with a MOVI, etc auto TryWithFNeg = [&](APInt DefBits, MVT FVT) { // FNegate each sub-element of the constant assert(VT.getSizeInBits() % FVT.getScalarSizeInBits() == 0); APInt Neg = APInt::getHighBitsSet(FVT.getSizeInBits(), 1) .zext(VT.getSizeInBits()); APInt NegBits(VT.getSizeInBits(), 0); unsigned NumElts = VT.getSizeInBits() / FVT.getScalarSizeInBits(); for (unsigned i = 0; i < NumElts; i++) NegBits |= Neg << (FVT.getScalarSizeInBits() * i); NegBits = DefBits ^ NegBits; // Try to create the new constants with MOVI, and if so generate a fneg // for it. if (SDValue NewOp = TryMOVIWithBits(NegBits)) { SDLoc DL(Op); MVT VFVT = NumElts == 1 ? FVT : MVT::getVectorVT(FVT, NumElts); return DAG.getNode( AArch64ISD::NVCAST, DL, VT, DAG.getNode(ISD::FNEG, DL, VFVT, DAG.getNode(AArch64ISD::NVCAST, DL, VFVT, NewOp))); } return SDValue(); }; SDValue R; if ((R = TryWithFNeg(DefBits, MVT::f32)) || (R = TryWithFNeg(DefBits, MVT::f64)) || (ST->hasFullFP16() && (R = TryWithFNeg(DefBits, MVT::f16)))) return R; } return SDValue(); } SDValue AArch64TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const { EVT VT = Op.getValueType(); if (useSVEForFixedLengthVectorVT(VT, !Subtarget->isNeonAvailable())) { if (auto SeqInfo = cast(Op)->isConstantSequence()) { SDLoc DL(Op); EVT ContainerVT = getContainerForFixedLengthVector(DAG, VT); SDValue Start = DAG.getConstant(SeqInfo->first, DL, ContainerVT); SDValue Steps = DAG.getStepVector(DL, ContainerVT, SeqInfo->second); SDValue Seq = DAG.getNode(ISD::ADD, DL, ContainerVT, Start, Steps); return convertFromScalableVector(DAG, Op.getValueType(), Seq); } // Revert to common legalisation for all other variants. return SDValue(); } // Try to build a simple constant vector. Op = NormalizeBuildVector(Op, DAG); // Thought this might return a non-BUILD_VECTOR (e.g. CONCAT_VECTORS), if so, // abort. if (Op.getOpcode() != ISD::BUILD_VECTOR) return SDValue(); // Certain vector constants, used to express things like logical NOT and // arithmetic NEG, are passed through unmodified. This allows special // patterns for these operations to match, which will lower these constants // to whatever is proven necessary. BuildVectorSDNode *BVN = cast(Op.getNode()); if (BVN->isConstant()) { if (ConstantSDNode *Const = BVN->getConstantSplatNode()) { unsigned BitSize = VT.getVectorElementType().getSizeInBits(); APInt Val(BitSize, Const->getAPIntValue().zextOrTrunc(BitSize).getZExtValue()); if (Val.isZero() || (VT.isInteger() && Val.isAllOnes())) return Op; } if (ConstantFPSDNode *Const = BVN->getConstantFPSplatNode()) if (Const->isZero() && !Const->isNegative()) return Op; } if (SDValue V = ConstantBuildVector(Op, DAG, Subtarget)) return V; // Scan through the operands to find some interesting properties we can // exploit: // 1) If only one value is used, we can use a DUP, or // 2) if only the low element is not undef, we can just insert that, or // 3) if only one constant value is used (w/ some non-constant lanes), // we can splat the constant value into the whole vector then fill // in the non-constant lanes. // 4) FIXME: If different constant values are used, but we can intelligently // select the values we'll be overwriting for the non-constant // lanes such that we can directly materialize the vector // some other way (MOVI, e.g.), we can be sneaky. // 5) if all operands are EXTRACT_VECTOR_ELT, check for VUZP. SDLoc dl(Op); unsigned NumElts = VT.getVectorNumElements(); bool isOnlyLowElement = true; bool usesOnlyOneValue = true; bool usesOnlyOneConstantValue = true; bool isConstant = true; bool AllLanesExtractElt = true; unsigned NumConstantLanes = 0; unsigned NumDifferentLanes = 0; unsigned NumUndefLanes = 0; SDValue Value; SDValue ConstantValue; SmallMapVector DifferentValueMap; unsigned ConsecutiveValCount = 0; SDValue PrevVal; for (unsigned i = 0; i < NumElts; ++i) { SDValue V = Op.getOperand(i); if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT) AllLanesExtractElt = false; if (V.isUndef()) { ++NumUndefLanes; continue; } if (i > 0) isOnlyLowElement = false; if (!isIntOrFPConstant(V)) isConstant = false; if (isIntOrFPConstant(V)) { ++NumConstantLanes; if (!ConstantValue.getNode()) ConstantValue = V; else if (ConstantValue != V) usesOnlyOneConstantValue = false; } if (!Value.getNode()) Value = V; else if (V != Value) { usesOnlyOneValue = false; ++NumDifferentLanes; } if (PrevVal != V) { ConsecutiveValCount = 0; PrevVal = V; } // Keep different values and its last consecutive count. For example, // // t22: v16i8 = build_vector t23, t23, t23, t23, t23, t23, t23, t23, // t24, t24, t24, t24, t24, t24, t24, t24 // t23 = consecutive count 8 // t24 = consecutive count 8 // ------------------------------------------------------------------ // t22: v16i8 = build_vector t24, t24, t23, t23, t23, t23, t23, t24, // t24, t24, t24, t24, t24, t24, t24, t24 // t23 = consecutive count 5 // t24 = consecutive count 9 DifferentValueMap[V] = ++ConsecutiveValCount; } if (!Value.getNode()) { LLVM_DEBUG( dbgs() << "LowerBUILD_VECTOR: value undefined, creating undef node\n"); return DAG.getUNDEF(VT); } // Convert BUILD_VECTOR where all elements but the lowest are undef into // SCALAR_TO_VECTOR, except for when we have a single-element constant vector // as SimplifyDemandedBits will just turn that back into BUILD_VECTOR. if (isOnlyLowElement && !(NumElts == 1 && isIntOrFPConstant(Value))) { LLVM_DEBUG(dbgs() << "LowerBUILD_VECTOR: only low element used, creating 1 " "SCALAR_TO_VECTOR node\n"); return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value); } if (AllLanesExtractElt) { SDNode *Vector = nullptr; bool Even = false; bool Odd = false; // Check whether the extract elements match the Even pattern <0,2,4,...> or // the Odd pattern <1,3,5,...>. for (unsigned i = 0; i < NumElts; ++i) { SDValue V = Op.getOperand(i); const SDNode *N = V.getNode(); if (!isa(N->getOperand(1))) { Even = false; Odd = false; break; } SDValue N0 = N->getOperand(0); // All elements are extracted from the same vector. if (!Vector) { Vector = N0.getNode(); // Check that the type of EXTRACT_VECTOR_ELT matches the type of // BUILD_VECTOR. if (VT.getVectorElementType() != N0.getValueType().getVectorElementType()) break; } else if (Vector != N0.getNode()) { Odd = false; Even = false; break; } // Extracted values are either at Even indices <0,2,4,...> or at Odd // indices <1,3,5,...>. uint64_t Val = N->getConstantOperandVal(1); if (Val == 2 * i) { Even = true; continue; } if (Val - 1 == 2 * i) { Odd = true; continue; } // Something does not match: abort. Odd = false; Even = false; break; } if (Even || Odd) { SDValue LHS = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, SDValue(Vector, 0), DAG.getConstant(0, dl, MVT::i64)); SDValue RHS = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, SDValue(Vector, 0), DAG.getConstant(NumElts, dl, MVT::i64)); if (Even && !Odd) return DAG.getNode(AArch64ISD::UZP1, dl, DAG.getVTList(VT, VT), LHS, RHS); if (Odd && !Even) return DAG.getNode(AArch64ISD::UZP2, dl, DAG.getVTList(VT, VT), LHS, RHS); } } // Use DUP for non-constant splats. For f32 constant splats, reduce to // i32 and try again. if (usesOnlyOneValue) { if (!isConstant) { if (Value.getOpcode() != ISD::EXTRACT_VECTOR_ELT || Value.getValueType() != VT) { LLVM_DEBUG( dbgs() << "LowerBUILD_VECTOR: use DUP for non-constant splats\n"); return DAG.getNode(AArch64ISD::DUP, dl, VT, Value); } // This is actually a DUPLANExx operation, which keeps everything vectory. SDValue Lane = Value.getOperand(1); Value = Value.getOperand(0); if (Value.getValueSizeInBits() == 64) { LLVM_DEBUG( dbgs() << "LowerBUILD_VECTOR: DUPLANE works on 128-bit vectors, " "widening it\n"); Value = WidenVector(Value, DAG); } unsigned Opcode = getDUPLANEOp(VT.getVectorElementType()); return DAG.getNode(Opcode, dl, VT, Value, Lane); } if (VT.getVectorElementType().isFloatingPoint()) { SmallVector Ops; EVT EltTy = VT.getVectorElementType(); assert ((EltTy == MVT::f16 || EltTy == MVT::bf16 || EltTy == MVT::f32 || EltTy == MVT::f64) && "Unsupported floating-point vector type"); LLVM_DEBUG( dbgs() << "LowerBUILD_VECTOR: float constant splats, creating int " "BITCASTS, and try again\n"); MVT NewType = MVT::getIntegerVT(EltTy.getSizeInBits()); for (unsigned i = 0; i < NumElts; ++i) Ops.push_back(DAG.getNode(ISD::BITCAST, dl, NewType, Op.getOperand(i))); EVT VecVT = EVT::getVectorVT(*DAG.getContext(), NewType, NumElts); SDValue Val = DAG.getBuildVector(VecVT, dl, Ops); LLVM_DEBUG(dbgs() << "LowerBUILD_VECTOR: trying to lower new vector: "; Val.dump();); Val = LowerBUILD_VECTOR(Val, DAG); if (Val.getNode()) return DAG.getNode(ISD::BITCAST, dl, VT, Val); } } // If we need to insert a small number of different non-constant elements and // the vector width is sufficiently large, prefer using DUP with the common // value and INSERT_VECTOR_ELT for the different lanes. If DUP is preferred, // skip the constant lane handling below. bool PreferDUPAndInsert = !isConstant && NumDifferentLanes >= 1 && NumDifferentLanes < ((NumElts - NumUndefLanes) / 2) && NumDifferentLanes >= NumConstantLanes; // If there was only one constant value used and for more than one lane, // start by splatting that value, then replace the non-constant lanes. This // is better than the default, which will perform a separate initialization // for each lane. if (!PreferDUPAndInsert && NumConstantLanes > 0 && usesOnlyOneConstantValue) { // Firstly, try to materialize the splat constant. SDValue Val = DAG.getSplatBuildVector(VT, dl, ConstantValue); unsigned BitSize = VT.getScalarSizeInBits(); APInt ConstantValueAPInt(1, 0); if (auto *C = dyn_cast(ConstantValue)) ConstantValueAPInt = C->getAPIntValue().zextOrTrunc(BitSize); if (!isNullConstant(ConstantValue) && !isNullFPConstant(ConstantValue) && !ConstantValueAPInt.isAllOnes()) { Val = ConstantBuildVector(Val, DAG, Subtarget); if (!Val) // Otherwise, materialize the constant and splat it. Val = DAG.getNode(AArch64ISD::DUP, dl, VT, ConstantValue); } // Now insert the non-constant lanes. for (unsigned i = 0; i < NumElts; ++i) { SDValue V = Op.getOperand(i); SDValue LaneIdx = DAG.getConstant(i, dl, MVT::i64); if (!isIntOrFPConstant(V)) // Note that type legalization likely mucked about with the VT of the // source operand, so we may have to convert it here before inserting. Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Val, V, LaneIdx); } return Val; } // This will generate a load from the constant pool. if (isConstant) { LLVM_DEBUG( dbgs() << "LowerBUILD_VECTOR: all elements are constant, use default " "expansion\n"); return SDValue(); } // Detect patterns of a0,a1,a2,a3,b0,b1,b2,b3,c0,c1,c2,c3,d0,d1,d2,d3 from // v4i32s. This is really a truncate, which we can construct out of (legal) // concats and truncate nodes. if (SDValue M = ReconstructTruncateFromBuildVector(Op, DAG)) return M; // Empirical tests suggest this is rarely worth it for vectors of length <= 2. if (NumElts >= 4) { if (SDValue Shuffle = ReconstructShuffle(Op, DAG)) return Shuffle; if (SDValue Shuffle = ReconstructShuffleWithRuntimeMask(Op, DAG)) return Shuffle; } if (PreferDUPAndInsert) { // First, build a constant vector with the common element. SmallVector Ops(NumElts, Value); SDValue NewVector = LowerBUILD_VECTOR(DAG.getBuildVector(VT, dl, Ops), DAG); // Next, insert the elements that do not match the common value. for (unsigned I = 0; I < NumElts; ++I) if (Op.getOperand(I) != Value) NewVector = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, NewVector, Op.getOperand(I), DAG.getConstant(I, dl, MVT::i64)); return NewVector; } // If vector consists of two different values, try to generate two DUPs and // (CONCAT_VECTORS or VECTOR_SHUFFLE). if (DifferentValueMap.size() == 2 && NumUndefLanes == 0) { SmallVector Vals; // Check the consecutive count of the value is the half number of vector // elements. In this case, we can use CONCAT_VECTORS. For example, // // canUseVECTOR_CONCAT = true; // t22: v16i8 = build_vector t23, t23, t23, t23, t23, t23, t23, t23, // t24, t24, t24, t24, t24, t24, t24, t24 // // canUseVECTOR_CONCAT = false; // t22: v16i8 = build_vector t23, t23, t23, t23, t23, t24, t24, t24, // t24, t24, t24, t24, t24, t24, t24, t24 bool canUseVECTOR_CONCAT = true; for (auto Pair : DifferentValueMap) { // Check different values have same length which is NumElts / 2. if (Pair.second != NumElts / 2) canUseVECTOR_CONCAT = false; Vals.push_back(Pair.first); } // If canUseVECTOR_CONCAT is true, we can generate two DUPs and // CONCAT_VECTORs. For example, // // t22: v16i8 = BUILD_VECTOR t23, t23, t23, t23, t23, t23, t23, t23, // t24, t24, t24, t24, t24, t24, t24, t24 // ==> // t26: v8i8 = AArch64ISD::DUP t23 // t28: v8i8 = AArch64ISD::DUP t24 // t29: v16i8 = concat_vectors t26, t28 if (canUseVECTOR_CONCAT) { EVT SubVT = VT.getHalfNumVectorElementsVT(*DAG.getContext()); if (isTypeLegal(SubVT) && SubVT.isVector() && SubVT.getVectorNumElements() >= 2) { SmallVector Ops1(NumElts / 2, Vals[0]); SmallVector Ops2(NumElts / 2, Vals[1]); SDValue DUP1 = LowerBUILD_VECTOR(DAG.getBuildVector(SubVT, dl, Ops1), DAG); SDValue DUP2 = LowerBUILD_VECTOR(DAG.getBuildVector(SubVT, dl, Ops2), DAG); SDValue CONCAT_VECTORS = DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, DUP1, DUP2); return CONCAT_VECTORS; } } // Let's try to generate VECTOR_SHUFFLE. For example, // // t24: v8i8 = BUILD_VECTOR t25, t25, t25, t25, t26, t26, t26, t26 // ==> // t27: v8i8 = BUILD_VECTOR t26, t26, t26, t26, t26, t26, t26, t26 // t28: v8i8 = BUILD_VECTOR t25, t25, t25, t25, t25, t25, t25, t25 // t29: v8i8 = vector_shuffle<0,1,2,3,12,13,14,15> t27, t28 if (NumElts >= 8) { SmallVector MaskVec; // Build mask for VECTOR_SHUFLLE. SDValue FirstLaneVal = Op.getOperand(0); for (unsigned i = 0; i < NumElts; ++i) { SDValue Val = Op.getOperand(i); if (FirstLaneVal == Val) MaskVec.push_back(i); else MaskVec.push_back(i + NumElts); } SmallVector Ops1(NumElts, Vals[0]); SmallVector Ops2(NumElts, Vals[1]); SDValue VEC1 = DAG.getBuildVector(VT, dl, Ops1); SDValue VEC2 = DAG.getBuildVector(VT, dl, Ops2); SDValue VECTOR_SHUFFLE = DAG.getVectorShuffle(VT, dl, VEC1, VEC2, MaskVec); return VECTOR_SHUFFLE; } } // If all else fails, just use a sequence of INSERT_VECTOR_ELT when we // know the default expansion would otherwise fall back on something even // worse. For a vector with one or two non-undef values, that's // scalar_to_vector for the elements followed by a shuffle (provided the // shuffle is valid for the target) and materialization element by element // on the stack followed by a load for everything else. if (!isConstant && !usesOnlyOneValue) { LLVM_DEBUG( dbgs() << "LowerBUILD_VECTOR: alternatives failed, creating sequence " "of INSERT_VECTOR_ELT\n"); SDValue Vec = DAG.getUNDEF(VT); SDValue Op0 = Op.getOperand(0); unsigned i = 0; // Use SCALAR_TO_VECTOR for lane zero to // a) Avoid a RMW dependency on the full vector register, and // b) Allow the register coalescer to fold away the copy if the // value is already in an S or D register, and we're forced to emit an // INSERT_SUBREG that we can't fold anywhere. // // We also allow types like i8 and i16 which are illegal scalar but legal // vector element types. After type-legalization the inserted value is // extended (i32) and it is safe to cast them to the vector type by ignoring // the upper bits of the lowest lane (e.g. v8i8, v4i16). if (!Op0.isUndef()) { LLVM_DEBUG(dbgs() << "Creating node for op0, it is not undefined:\n"); Vec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op0); ++i; } LLVM_DEBUG(if (i < NumElts) dbgs() << "Creating nodes for the other vector elements:\n";); for (; i < NumElts; ++i) { SDValue V = Op.getOperand(i); if (V.isUndef()) continue; SDValue LaneIdx = DAG.getConstant(i, dl, MVT::i64); Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Vec, V, LaneIdx); } return Vec; } LLVM_DEBUG( dbgs() << "LowerBUILD_VECTOR: use default expansion, failed to find " "better alternative\n"); return SDValue(); } SDValue AArch64TargetLowering::LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const { if (useSVEForFixedLengthVectorVT(Op.getValueType(), !Subtarget->isNeonAvailable())) return LowerFixedLengthConcatVectorsToSVE(Op, DAG); assert(Op.getValueType().isScalableVector() && isTypeLegal(Op.getValueType()) && "Expected legal scalable vector type!"); if (isTypeLegal(Op.getOperand(0).getValueType())) { unsigned NumOperands = Op->getNumOperands(); assert(NumOperands > 1 && isPowerOf2_32(NumOperands) && "Unexpected number of operands in CONCAT_VECTORS"); if (NumOperands == 2) return Op; // Concat each pair of subvectors and pack into the lower half of the array. SmallVector ConcatOps(Op->op_begin(), Op->op_end()); while (ConcatOps.size() > 1) { for (unsigned I = 0, E = ConcatOps.size(); I != E; I += 2) { SDValue V1 = ConcatOps[I]; SDValue V2 = ConcatOps[I + 1]; EVT SubVT = V1.getValueType(); EVT PairVT = SubVT.getDoubleNumVectorElementsVT(*DAG.getContext()); ConcatOps[I / 2] = DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), PairVT, V1, V2); } ConcatOps.resize(ConcatOps.size() / 2); } return ConcatOps[0]; } return SDValue(); } SDValue AArch64TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const { assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT && "Unknown opcode!"); if (useSVEForFixedLengthVectorVT(Op.getValueType(), !Subtarget->isNeonAvailable())) return LowerFixedLengthInsertVectorElt(Op, DAG); EVT VT = Op.getOperand(0).getValueType(); if (VT.getScalarType() == MVT::i1) { EVT VectorVT = getPromotedVTForPredicate(VT); SDLoc DL(Op); SDValue ExtendedVector = DAG.getAnyExtOrTrunc(Op.getOperand(0), DL, VectorVT); SDValue ExtendedValue = DAG.getAnyExtOrTrunc(Op.getOperand(1), DL, VectorVT.getScalarType().getSizeInBits() < 32 ? MVT::i32 : VectorVT.getScalarType()); ExtendedVector = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VectorVT, ExtendedVector, ExtendedValue, Op.getOperand(2)); return DAG.getAnyExtOrTrunc(ExtendedVector, DL, VT); } // Check for non-constant or out of range lane. ConstantSDNode *CI = dyn_cast(Op.getOperand(2)); if (!CI || CI->getZExtValue() >= VT.getVectorNumElements()) return SDValue(); return Op; } SDValue AArch64TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const { assert(Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && "Unknown opcode!"); EVT VT = Op.getOperand(0).getValueType(); if (VT.getScalarType() == MVT::i1) { // We can't directly extract from an SVE predicate; extend it first. // (This isn't the only possible lowering, but it's straightforward.) EVT VectorVT = getPromotedVTForPredicate(VT); SDLoc DL(Op); SDValue Extend = DAG.getNode(ISD::ANY_EXTEND, DL, VectorVT, Op.getOperand(0)); MVT ExtractTy = VectorVT == MVT::nxv2i64 ? MVT::i64 : MVT::i32; SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ExtractTy, Extend, Op.getOperand(1)); return DAG.getAnyExtOrTrunc(Extract, DL, Op.getValueType()); } if (useSVEForFixedLengthVectorVT(VT, !Subtarget->isNeonAvailable())) return LowerFixedLengthExtractVectorElt(Op, DAG); // Check for non-constant or out of range lane. ConstantSDNode *CI = dyn_cast(Op.getOperand(1)); if (!CI || CI->getZExtValue() >= VT.getVectorNumElements()) return SDValue(); // Insertion/extraction are legal for V128 types. if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 || VT == MVT::v2i64 || VT == MVT::v4f32 || VT == MVT::v2f64 || VT == MVT::v8f16 || VT == MVT::v8bf16) return Op; if (VT != MVT::v8i8 && VT != MVT::v4i16 && VT != MVT::v2i32 && VT != MVT::v1i64 && VT != MVT::v2f32 && VT != MVT::v4f16 && VT != MVT::v4bf16) return SDValue(); // For V64 types, we perform extraction by expanding the value // to a V128 type and perform the extraction on that. SDLoc DL(Op); SDValue WideVec = WidenVector(Op.getOperand(0), DAG); EVT WideTy = WideVec.getValueType(); EVT ExtrTy = WideTy.getVectorElementType(); if (ExtrTy == MVT::i16 || ExtrTy == MVT::i8) ExtrTy = MVT::i32; // For extractions, we just return the result directly. return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ExtrTy, WideVec, Op.getOperand(1)); } SDValue AArch64TargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const { assert(Op.getValueType().isFixedLengthVector() && "Only cases that extract a fixed length vector are supported!"); EVT InVT = Op.getOperand(0).getValueType(); unsigned Idx = Op.getConstantOperandVal(1); unsigned Size = Op.getValueSizeInBits(); // If we don't have legal types yet, do nothing if (!DAG.getTargetLoweringInfo().isTypeLegal(InVT)) return SDValue(); if (InVT.isScalableVector()) { // This will be matched by custom code during ISelDAGToDAG. if (Idx == 0 && isPackedVectorType(InVT, DAG)) return Op; return SDValue(); } // This will get lowered to an appropriate EXTRACT_SUBREG in ISel. if (Idx == 0 && InVT.getSizeInBits() <= 128) return Op; // If this is extracting the upper 64-bits of a 128-bit vector, we match // that directly. if (Size == 64 && Idx * InVT.getScalarSizeInBits() == 64 && InVT.getSizeInBits() == 128 && Subtarget->isNeonAvailable()) return Op; if (useSVEForFixedLengthVectorVT(InVT, !Subtarget->isNeonAvailable())) { SDLoc DL(Op); EVT ContainerVT = getContainerForFixedLengthVector(DAG, InVT); SDValue NewInVec = convertToScalableVector(DAG, ContainerVT, Op.getOperand(0)); SDValue Splice = DAG.getNode(ISD::VECTOR_SPLICE, DL, ContainerVT, NewInVec, NewInVec, DAG.getConstant(Idx, DL, MVT::i64)); return convertFromScalableVector(DAG, Op.getValueType(), Splice); } return SDValue(); } SDValue AArch64TargetLowering::LowerINSERT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const { assert(Op.getValueType().isScalableVector() && "Only expect to lower inserts into scalable vectors!"); EVT InVT = Op.getOperand(1).getValueType(); unsigned Idx = Op.getConstantOperandVal(2); SDValue Vec0 = Op.getOperand(0); SDValue Vec1 = Op.getOperand(1); SDLoc DL(Op); EVT VT = Op.getValueType(); if (InVT.isScalableVector()) { if (!isTypeLegal(VT)) return SDValue(); // Break down insert_subvector into simpler parts. if (VT.getVectorElementType() == MVT::i1) { unsigned NumElts = VT.getVectorMinNumElements(); EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext()); SDValue Lo, Hi; Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, Vec0, DAG.getVectorIdxConstant(0, DL)); Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, Vec0, DAG.getVectorIdxConstant(NumElts / 2, DL)); if (Idx < (NumElts / 2)) { SDValue NewLo = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, HalfVT, Lo, Vec1, DAG.getVectorIdxConstant(Idx, DL)); return DAG.getNode(AArch64ISD::UZP1, DL, VT, NewLo, Hi); } else { SDValue NewHi = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, HalfVT, Hi, Vec1, DAG.getVectorIdxConstant(Idx - (NumElts / 2), DL)); return DAG.getNode(AArch64ISD::UZP1, DL, VT, Lo, NewHi); } } // Ensure the subvector is half the size of the main vector. if (VT.getVectorElementCount() != (InVT.getVectorElementCount() * 2)) return SDValue(); // Here narrow and wide refers to the vector element types. After "casting" // both vectors must have the same bit length and so because the subvector // has fewer elements, those elements need to be bigger. EVT NarrowVT = getPackedSVEVectorVT(VT.getVectorElementCount()); EVT WideVT = getPackedSVEVectorVT(InVT.getVectorElementCount()); // NOP cast operands to the largest legal vector of the same element count. if (VT.isFloatingPoint()) { Vec0 = getSVESafeBitCast(NarrowVT, Vec0, DAG); Vec1 = getSVESafeBitCast(WideVT, Vec1, DAG); } else { // Legal integer vectors are already their largest so Vec0 is fine as is. Vec1 = DAG.getNode(ISD::ANY_EXTEND, DL, WideVT, Vec1); } // To replace the top/bottom half of vector V with vector SubV we widen the // preserved half of V, concatenate this to SubV (the order depending on the // half being replaced) and then narrow the result. SDValue Narrow; if (Idx == 0) { SDValue HiVec0 = DAG.getNode(AArch64ISD::UUNPKHI, DL, WideVT, Vec0); Narrow = DAG.getNode(AArch64ISD::UZP1, DL, NarrowVT, Vec1, HiVec0); } else { assert(Idx == InVT.getVectorMinNumElements() && "Invalid subvector index!"); SDValue LoVec0 = DAG.getNode(AArch64ISD::UUNPKLO, DL, WideVT, Vec0); Narrow = DAG.getNode(AArch64ISD::UZP1, DL, NarrowVT, LoVec0, Vec1); } return getSVESafeBitCast(VT, Narrow, DAG); } if (Idx == 0 && isPackedVectorType(VT, DAG)) { // This will be matched by custom code during ISelDAGToDAG. if (Vec0.isUndef()) return Op; std::optional PredPattern = getSVEPredPatternFromNumElements(InVT.getVectorNumElements()); auto PredTy = VT.changeVectorElementType(MVT::i1); SDValue PTrue = getPTrue(DAG, DL, PredTy, *PredPattern); SDValue ScalableVec1 = convertToScalableVector(DAG, VT, Vec1); return DAG.getNode(ISD::VSELECT, DL, VT, PTrue, ScalableVec1, Vec0); } return SDValue(); } static bool isPow2Splat(SDValue Op, uint64_t &SplatVal, bool &Negated) { if (Op.getOpcode() != AArch64ISD::DUP && Op.getOpcode() != ISD::SPLAT_VECTOR && Op.getOpcode() != ISD::BUILD_VECTOR) return false; if (Op.getOpcode() == ISD::BUILD_VECTOR && !isAllConstantBuildVector(Op, SplatVal)) return false; if (Op.getOpcode() != ISD::BUILD_VECTOR && !isa(Op->getOperand(0))) return false; SplatVal = Op->getConstantOperandVal(0); if (Op.getValueType().getVectorElementType() != MVT::i64) SplatVal = (int32_t)SplatVal; Negated = false; if (isPowerOf2_64(SplatVal)) return true; Negated = true; if (isPowerOf2_64(-SplatVal)) { SplatVal = -SplatVal; return true; } return false; } SDValue AArch64TargetLowering::LowerDIV(SDValue Op, SelectionDAG &DAG) const { EVT VT = Op.getValueType(); SDLoc dl(Op); if (useSVEForFixedLengthVectorVT(VT, /*OverrideNEON=*/true)) return LowerFixedLengthVectorIntDivideToSVE(Op, DAG); assert(VT.isScalableVector() && "Expected a scalable vector."); bool Signed = Op.getOpcode() == ISD::SDIV; unsigned PredOpcode = Signed ? AArch64ISD::SDIV_PRED : AArch64ISD::UDIV_PRED; bool Negated; uint64_t SplatVal; if (Signed && isPow2Splat(Op.getOperand(1), SplatVal, Negated)) { SDValue Pg = getPredicateForScalableVector(DAG, dl, VT); SDValue Res = DAG.getNode(AArch64ISD::SRAD_MERGE_OP1, dl, VT, Pg, Op->getOperand(0), DAG.getTargetConstant(Log2_64(SplatVal), dl, MVT::i32)); if (Negated) Res = DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(0, dl, VT), Res); return Res; } if (VT == MVT::nxv4i32 || VT == MVT::nxv2i64) return LowerToPredicatedOp(Op, DAG, PredOpcode); // SVE doesn't have i8 and i16 DIV operations; widen them to 32-bit // operations, and truncate the result. EVT WidenedVT; if (VT == MVT::nxv16i8) WidenedVT = MVT::nxv8i16; else if (VT == MVT::nxv8i16) WidenedVT = MVT::nxv4i32; else llvm_unreachable("Unexpected Custom DIV operation"); unsigned UnpkLo = Signed ? AArch64ISD::SUNPKLO : AArch64ISD::UUNPKLO; unsigned UnpkHi = Signed ? AArch64ISD::SUNPKHI : AArch64ISD::UUNPKHI; SDValue Op0Lo = DAG.getNode(UnpkLo, dl, WidenedVT, Op.getOperand(0)); SDValue Op1Lo = DAG.getNode(UnpkLo, dl, WidenedVT, Op.getOperand(1)); SDValue Op0Hi = DAG.getNode(UnpkHi, dl, WidenedVT, Op.getOperand(0)); SDValue Op1Hi = DAG.getNode(UnpkHi, dl, WidenedVT, Op.getOperand(1)); SDValue ResultLo = DAG.getNode(Op.getOpcode(), dl, WidenedVT, Op0Lo, Op1Lo); SDValue ResultHi = DAG.getNode(Op.getOpcode(), dl, WidenedVT, Op0Hi, Op1Hi); return DAG.getNode(AArch64ISD::UZP1, dl, VT, ResultLo, ResultHi); } bool AArch64TargetLowering::isShuffleMaskLegal(ArrayRef M, EVT VT) const { // Currently no fixed length shuffles that require SVE are legal. if (useSVEForFixedLengthVectorVT(VT, !Subtarget->isNeonAvailable())) return false; if (VT.getVectorNumElements() == 4 && (VT.is128BitVector() || VT.is64BitVector())) { unsigned Cost = getPerfectShuffleCost(M); if (Cost <= 1) return true; } bool DummyBool; int DummyInt; unsigned DummyUnsigned; return (ShuffleVectorSDNode::isSplatMask(&M[0], VT) || isREVMask(M, VT, 64) || isREVMask(M, VT, 32) || isREVMask(M, VT, 16) || isEXTMask(M, VT, DummyBool, DummyUnsigned) || // isTBLMask(M, VT) || // FIXME: Port TBL support from ARM. isTRNMask(M, VT, DummyUnsigned) || isUZPMask(M, VT, DummyUnsigned) || isZIPMask(M, VT, DummyUnsigned) || isTRN_v_undef_Mask(M, VT, DummyUnsigned) || isUZP_v_undef_Mask(M, VT, DummyUnsigned) || isZIP_v_undef_Mask(M, VT, DummyUnsigned) || isINSMask(M, VT.getVectorNumElements(), DummyBool, DummyInt) || isConcatMask(M, VT, VT.getSizeInBits() == 128)); } bool AArch64TargetLowering::isVectorClearMaskLegal(ArrayRef M, EVT VT) const { // Just delegate to the generic legality, clear masks aren't special. return isShuffleMaskLegal(M, VT); } /// getVShiftImm - Check if this is a valid build_vector for the immediate /// operand of a vector shift operation, where all the elements of the /// build_vector must have the same constant integer value. static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) { // Ignore bit_converts. while (Op.getOpcode() == ISD::BITCAST) Op = Op.getOperand(0); BuildVectorSDNode *BVN = dyn_cast(Op.getNode()); APInt SplatBits, SplatUndef; unsigned SplatBitSize; bool HasAnyUndefs; if (!BVN || !BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, ElementBits) || SplatBitSize > ElementBits) return false; Cnt = SplatBits.getSExtValue(); return true; } /// isVShiftLImm - Check if this is a valid build_vector for the immediate /// operand of a vector shift left operation. That value must be in the range: /// 0 <= Value < ElementBits for a left shift; or /// 0 <= Value <= ElementBits for a long left shift. static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) { assert(VT.isVector() && "vector shift count is not a vector type"); int64_t ElementBits = VT.getScalarSizeInBits(); if (!getVShiftImm(Op, ElementBits, Cnt)) return false; return (Cnt >= 0 && (isLong ? Cnt - 1 : Cnt) < ElementBits); } /// isVShiftRImm - Check if this is a valid build_vector for the immediate /// operand of a vector shift right operation. The value must be in the range: /// 1 <= Value <= ElementBits for a right shift; or static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, int64_t &Cnt) { assert(VT.isVector() && "vector shift count is not a vector type"); int64_t ElementBits = VT.getScalarSizeInBits(); if (!getVShiftImm(Op, ElementBits, Cnt)) return false; return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits / 2 : ElementBits)); } SDValue AArch64TargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const { EVT VT = Op.getValueType(); if (VT.getScalarType() == MVT::i1) { // Lower i1 truncate to `(x & 1) != 0`. SDLoc dl(Op); EVT OpVT = Op.getOperand(0).getValueType(); SDValue Zero = DAG.getConstant(0, dl, OpVT); SDValue One = DAG.getConstant(1, dl, OpVT); SDValue And = DAG.getNode(ISD::AND, dl, OpVT, Op.getOperand(0), One); return DAG.getSetCC(dl, VT, And, Zero, ISD::SETNE); } if (!VT.isVector() || VT.isScalableVector()) return SDValue(); if (useSVEForFixedLengthVectorVT(Op.getOperand(0).getValueType(), !Subtarget->isNeonAvailable())) return LowerFixedLengthVectorTruncateToSVE(Op, DAG); return SDValue(); } // Check if we can we lower this SRL to a rounding shift instruction. ResVT is // possibly a truncated type, it tells how many bits of the value are to be // used. static bool canLowerSRLToRoundingShiftForVT(SDValue Shift, EVT ResVT, SelectionDAG &DAG, unsigned &ShiftValue, SDValue &RShOperand) { if (Shift->getOpcode() != ISD::SRL) return false; EVT VT = Shift.getValueType(); assert(VT.isScalableVT()); auto ShiftOp1 = dyn_cast_or_null(DAG.getSplatValue(Shift->getOperand(1))); if (!ShiftOp1) return false; ShiftValue = ShiftOp1->getZExtValue(); if (ShiftValue < 1 || ShiftValue > ResVT.getScalarSizeInBits()) return false; SDValue Add = Shift->getOperand(0); if (Add->getOpcode() != ISD::ADD || !Add->hasOneUse()) return false; assert(ResVT.getScalarSizeInBits() <= VT.getScalarSizeInBits() && "ResVT must be truncated or same type as the shift."); // Check if an overflow can lead to incorrect results. uint64_t ExtraBits = VT.getScalarSizeInBits() - ResVT.getScalarSizeInBits(); if (ShiftValue > ExtraBits && !Add->getFlags().hasNoUnsignedWrap()) return false; auto AddOp1 = dyn_cast_or_null(DAG.getSplatValue(Add->getOperand(1))); if (!AddOp1) return false; uint64_t AddValue = AddOp1->getZExtValue(); if (AddValue != 1ULL << (ShiftValue - 1)) return false; RShOperand = Add->getOperand(0); return true; } SDValue AArch64TargetLowering::LowerVectorSRA_SRL_SHL(SDValue Op, SelectionDAG &DAG) const { EVT VT = Op.getValueType(); SDLoc DL(Op); int64_t Cnt; if (!Op.getOperand(1).getValueType().isVector()) return Op; unsigned EltSize = VT.getScalarSizeInBits(); switch (Op.getOpcode()) { case ISD::SHL: if (VT.isScalableVector() || useSVEForFixedLengthVectorVT(VT, !Subtarget->isNeonAvailable())) return LowerToPredicatedOp(Op, DAG, AArch64ISD::SHL_PRED); if (isVShiftLImm(Op.getOperand(1), VT, false, Cnt) && Cnt < EltSize) return DAG.getNode(AArch64ISD::VSHL, DL, VT, Op.getOperand(0), DAG.getConstant(Cnt, DL, MVT::i32)); return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT, DAG.getConstant(Intrinsic::aarch64_neon_ushl, DL, MVT::i32), Op.getOperand(0), Op.getOperand(1)); case ISD::SRA: case ISD::SRL: if (VT.isScalableVector() && Subtarget->hasSVE2orSME()) { SDValue RShOperand; unsigned ShiftValue; if (canLowerSRLToRoundingShiftForVT(Op, VT, DAG, ShiftValue, RShOperand)) return DAG.getNode(AArch64ISD::URSHR_I_PRED, DL, VT, getPredicateForVector(DAG, DL, VT), RShOperand, DAG.getTargetConstant(ShiftValue, DL, MVT::i32)); } if (VT.isScalableVector() || useSVEForFixedLengthVectorVT(VT, !Subtarget->isNeonAvailable())) { unsigned Opc = Op.getOpcode() == ISD::SRA ? AArch64ISD::SRA_PRED : AArch64ISD::SRL_PRED; return LowerToPredicatedOp(Op, DAG, Opc); } // Right shift immediate if (isVShiftRImm(Op.getOperand(1), VT, false, Cnt) && Cnt < EltSize) { unsigned Opc = (Op.getOpcode() == ISD::SRA) ? AArch64ISD::VASHR : AArch64ISD::VLSHR; return DAG.getNode(Opc, DL, VT, Op.getOperand(0), DAG.getConstant(Cnt, DL, MVT::i32)); } // Right shift register. Note, there is not a shift right register // instruction, but the shift left register instruction takes a signed // value, where negative numbers specify a right shift. unsigned Opc = (Op.getOpcode() == ISD::SRA) ? Intrinsic::aarch64_neon_sshl : Intrinsic::aarch64_neon_ushl; // negate the shift amount SDValue NegShift = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op.getOperand(1)); SDValue NegShiftLeft = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT, DAG.getConstant(Opc, DL, MVT::i32), Op.getOperand(0), NegShift); return NegShiftLeft; } llvm_unreachable("unexpected shift opcode"); } static SDValue EmitVectorComparison(SDValue LHS, SDValue RHS, AArch64CC::CondCode CC, bool NoNans, EVT VT, const SDLoc &dl, SelectionDAG &DAG) { EVT SrcVT = LHS.getValueType(); assert(VT.getSizeInBits() == SrcVT.getSizeInBits() && "function only supposed to emit natural comparisons"); APInt SplatValue; APInt SplatUndef; unsigned SplatBitSize = 0; bool HasAnyUndefs; BuildVectorSDNode *BVN = dyn_cast(RHS.getNode()); bool IsCnst = BVN && BVN->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, HasAnyUndefs); bool IsZero = IsCnst && SplatValue == 0; bool IsOne = IsCnst && SrcVT.getScalarSizeInBits() == SplatBitSize && SplatValue == 1; bool IsMinusOne = IsCnst && SplatValue.isAllOnes(); if (SrcVT.getVectorElementType().isFloatingPoint()) { switch (CC) { default: return SDValue(); case AArch64CC::NE: { SDValue Fcmeq; if (IsZero) Fcmeq = DAG.getNode(AArch64ISD::FCMEQz, dl, VT, LHS); else Fcmeq = DAG.getNode(AArch64ISD::FCMEQ, dl, VT, LHS, RHS); return DAG.getNOT(dl, Fcmeq, VT); } case AArch64CC::EQ: if (IsZero) return DAG.getNode(AArch64ISD::FCMEQz, dl, VT, LHS); return DAG.getNode(AArch64ISD::FCMEQ, dl, VT, LHS, RHS); case AArch64CC::GE: if (IsZero) return DAG.getNode(AArch64ISD::FCMGEz, dl, VT, LHS); return DAG.getNode(AArch64ISD::FCMGE, dl, VT, LHS, RHS); case AArch64CC::GT: if (IsZero) return DAG.getNode(AArch64ISD::FCMGTz, dl, VT, LHS); return DAG.getNode(AArch64ISD::FCMGT, dl, VT, LHS, RHS); case AArch64CC::LE: if (!NoNans) return SDValue(); // If we ignore NaNs then we can use to the LS implementation. [[fallthrough]]; case AArch64CC::LS: if (IsZero) return DAG.getNode(AArch64ISD::FCMLEz, dl, VT, LHS); return DAG.getNode(AArch64ISD::FCMGE, dl, VT, RHS, LHS); case AArch64CC::LT: if (!NoNans) return SDValue(); // If we ignore NaNs then we can use to the MI implementation. [[fallthrough]]; case AArch64CC::MI: if (IsZero) return DAG.getNode(AArch64ISD::FCMLTz, dl, VT, LHS); return DAG.getNode(AArch64ISD::FCMGT, dl, VT, RHS, LHS); } } switch (CC) { default: return SDValue(); case AArch64CC::NE: { SDValue Cmeq; if (IsZero) Cmeq = DAG.getNode(AArch64ISD::CMEQz, dl, VT, LHS); else Cmeq = DAG.getNode(AArch64ISD::CMEQ, dl, VT, LHS, RHS); return DAG.getNOT(dl, Cmeq, VT); } case AArch64CC::EQ: if (IsZero) return DAG.getNode(AArch64ISD::CMEQz, dl, VT, LHS); return DAG.getNode(AArch64ISD::CMEQ, dl, VT, LHS, RHS); case AArch64CC::GE: if (IsZero) return DAG.getNode(AArch64ISD::CMGEz, dl, VT, LHS); return DAG.getNode(AArch64ISD::CMGE, dl, VT, LHS, RHS); case AArch64CC::GT: if (IsZero) return DAG.getNode(AArch64ISD::CMGTz, dl, VT, LHS); if (IsMinusOne) return DAG.getNode(AArch64ISD::CMGEz, dl, VT, LHS, RHS); return DAG.getNode(AArch64ISD::CMGT, dl, VT, LHS, RHS); case AArch64CC::LE: if (IsZero) return DAG.getNode(AArch64ISD::CMLEz, dl, VT, LHS); return DAG.getNode(AArch64ISD::CMGE, dl, VT, RHS, LHS); case AArch64CC::LS: return DAG.getNode(AArch64ISD::CMHS, dl, VT, RHS, LHS); case AArch64CC::LO: return DAG.getNode(AArch64ISD::CMHI, dl, VT, RHS, LHS); case AArch64CC::LT: if (IsZero) return DAG.getNode(AArch64ISD::CMLTz, dl, VT, LHS); if (IsOne) return DAG.getNode(AArch64ISD::CMLEz, dl, VT, LHS); return DAG.getNode(AArch64ISD::CMGT, dl, VT, RHS, LHS); case AArch64CC::HI: return DAG.getNode(AArch64ISD::CMHI, dl, VT, LHS, RHS); case AArch64CC::HS: return DAG.getNode(AArch64ISD::CMHS, dl, VT, LHS, RHS); } } SDValue AArch64TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) const { if (Op.getValueType().isScalableVector()) return LowerToPredicatedOp(Op, DAG, AArch64ISD::SETCC_MERGE_ZERO); if (useSVEForFixedLengthVectorVT(Op.getOperand(0).getValueType(), !Subtarget->isNeonAvailable())) return LowerFixedLengthVectorSetccToSVE(Op, DAG); ISD::CondCode CC = cast(Op.getOperand(2))->get(); SDValue LHS = Op.getOperand(0); SDValue RHS = Op.getOperand(1); EVT CmpVT = LHS.getValueType().changeVectorElementTypeToInteger(); SDLoc dl(Op); if (LHS.getValueType().getVectorElementType().isInteger()) { assert(LHS.getValueType() == RHS.getValueType()); AArch64CC::CondCode AArch64CC = changeIntCCToAArch64CC(CC); SDValue Cmp = EmitVectorComparison(LHS, RHS, AArch64CC, false, CmpVT, dl, DAG); return DAG.getSExtOrTrunc(Cmp, dl, Op.getValueType()); } // Lower isnan(x) | isnan(never-nan) to x != x. // Lower !isnan(x) & !isnan(never-nan) to x == x. if (CC == ISD::SETUO || CC == ISD::SETO) { bool OneNaN = false; if (LHS == RHS) { OneNaN = true; } else if (DAG.isKnownNeverNaN(RHS)) { OneNaN = true; RHS = LHS; } else if (DAG.isKnownNeverNaN(LHS)) { OneNaN = true; LHS = RHS; } if (OneNaN) { CC = CC == ISD::SETUO ? ISD::SETUNE : ISD::SETOEQ; } } const bool FullFP16 = DAG.getSubtarget().hasFullFP16(); // Make v4f16 (only) fcmp operations utilise vector instructions // v8f16 support will be a litle more complicated if ((!FullFP16 && LHS.getValueType().getVectorElementType() == MVT::f16) || LHS.getValueType().getVectorElementType() == MVT::bf16) { if (LHS.getValueType().getVectorNumElements() == 4) { LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::v4f32, LHS); RHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::v4f32, RHS); SDValue NewSetcc = DAG.getSetCC(dl, MVT::v4i16, LHS, RHS, CC); DAG.ReplaceAllUsesWith(Op, NewSetcc); CmpVT = MVT::v4i32; } else return SDValue(); } assert((!FullFP16 && LHS.getValueType().getVectorElementType() != MVT::f16) || LHS.getValueType().getVectorElementType() != MVT::bf16 || LHS.getValueType().getVectorElementType() != MVT::f128); // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally // clean. Some of them require two branches to implement. AArch64CC::CondCode CC1, CC2; bool ShouldInvert; changeVectorFPCCToAArch64CC(CC, CC1, CC2, ShouldInvert); bool NoNaNs = getTargetMachine().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs(); SDValue Cmp = EmitVectorComparison(LHS, RHS, CC1, NoNaNs, CmpVT, dl, DAG); if (!Cmp.getNode()) return SDValue(); if (CC2 != AArch64CC::AL) { SDValue Cmp2 = EmitVectorComparison(LHS, RHS, CC2, NoNaNs, CmpVT, dl, DAG); if (!Cmp2.getNode()) return SDValue(); Cmp = DAG.getNode(ISD::OR, dl, CmpVT, Cmp, Cmp2); } Cmp = DAG.getSExtOrTrunc(Cmp, dl, Op.getValueType()); if (ShouldInvert) Cmp = DAG.getNOT(dl, Cmp, Cmp.getValueType()); return Cmp; } static SDValue getReductionSDNode(unsigned Op, SDLoc DL, SDValue ScalarOp, SelectionDAG &DAG) { SDValue VecOp = ScalarOp.getOperand(0); auto Rdx = DAG.getNode(Op, DL, VecOp.getSimpleValueType(), VecOp); return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ScalarOp.getValueType(), Rdx, DAG.getConstant(0, DL, MVT::i64)); } static SDValue getVectorBitwiseReduce(unsigned Opcode, SDValue Vec, EVT VT, SDLoc DL, SelectionDAG &DAG) { unsigned ScalarOpcode; switch (Opcode) { case ISD::VECREDUCE_AND: ScalarOpcode = ISD::AND; break; case ISD::VECREDUCE_OR: ScalarOpcode = ISD::OR; break; case ISD::VECREDUCE_XOR: ScalarOpcode = ISD::XOR; break; default: llvm_unreachable("Expected bitwise vector reduction"); return SDValue(); } EVT VecVT = Vec.getValueType(); assert(VecVT.isFixedLengthVector() && VecVT.isPow2VectorType() && "Expected power-of-2 length vector"); EVT ElemVT = VecVT.getVectorElementType(); SDValue Result; unsigned NumElems = VecVT.getVectorNumElements(); // Special case for boolean reductions if (ElemVT == MVT::i1) { // Split large vectors into smaller ones if (NumElems > 16) { SDValue Lo, Hi; std::tie(Lo, Hi) = DAG.SplitVector(Vec, DL); EVT HalfVT = Lo.getValueType(); SDValue HalfVec = DAG.getNode(ScalarOpcode, DL, HalfVT, Lo, Hi); return getVectorBitwiseReduce(Opcode, HalfVec, VT, DL, DAG); } // Vectors that are less than 64 bits get widened to neatly fit a 64 bit // register, so e.g. <4 x i1> gets lowered to <4 x i16>. Sign extending to // this element size leads to the best codegen, since e.g. setcc results // might need to be truncated otherwise. EVT ExtendedVT = MVT::getIntegerVT(std::max(64u / NumElems, 8u)); // any_ext doesn't work with umin/umax, so only use it for uadd. unsigned ExtendOp = ScalarOpcode == ISD::XOR ? ISD::ANY_EXTEND : ISD::SIGN_EXTEND; SDValue Extended = DAG.getNode( ExtendOp, DL, VecVT.changeVectorElementType(ExtendedVT), Vec); switch (ScalarOpcode) { case ISD::AND: Result = DAG.getNode(ISD::VECREDUCE_UMIN, DL, ExtendedVT, Extended); break; case ISD::OR: Result = DAG.getNode(ISD::VECREDUCE_UMAX, DL, ExtendedVT, Extended); break; case ISD::XOR: Result = DAG.getNode(ISD::VECREDUCE_ADD, DL, ExtendedVT, Extended); break; default: llvm_unreachable("Unexpected Opcode"); } Result = DAG.getAnyExtOrTrunc(Result, DL, MVT::i1); } else { // Iteratively split the vector in half and combine using the bitwise // operation until it fits in a 64 bit register. while (VecVT.getSizeInBits() > 64) { SDValue Lo, Hi; std::tie(Lo, Hi) = DAG.SplitVector(Vec, DL); VecVT = Lo.getValueType(); NumElems = VecVT.getVectorNumElements(); Vec = DAG.getNode(ScalarOpcode, DL, VecVT, Lo, Hi); } EVT ScalarVT = EVT::getIntegerVT(*DAG.getContext(), VecVT.getSizeInBits()); // Do the remaining work on a scalar since it allows the code generator to // combine the shift and bitwise operation into one instruction and since // integer instructions can have higher throughput than vector instructions. SDValue Scalar = DAG.getBitcast(ScalarVT, Vec); // Iteratively combine the lower and upper halves of the scalar using the // bitwise operation, halving the relevant region of the scalar in each // iteration, until the relevant region is just one element of the original // vector. for (unsigned Shift = NumElems / 2; Shift > 0; Shift /= 2) { SDValue ShiftAmount = DAG.getConstant(Shift * ElemVT.getSizeInBits(), DL, MVT::i64); SDValue Shifted = DAG.getNode(ISD::SRL, DL, ScalarVT, Scalar, ShiftAmount); Scalar = DAG.getNode(ScalarOpcode, DL, ScalarVT, Scalar, Shifted); } Result = DAG.getAnyExtOrTrunc(Scalar, DL, ElemVT); } return DAG.getAnyExtOrTrunc(Result, DL, VT); } SDValue AArch64TargetLowering::LowerVECREDUCE(SDValue Op, SelectionDAG &DAG) const { SDValue Src = Op.getOperand(0); // Try to lower fixed length reductions to SVE. EVT SrcVT = Src.getValueType(); bool OverrideNEON = !Subtarget->isNeonAvailable() || Op.getOpcode() == ISD::VECREDUCE_AND || Op.getOpcode() == ISD::VECREDUCE_OR || Op.getOpcode() == ISD::VECREDUCE_XOR || Op.getOpcode() == ISD::VECREDUCE_FADD || (Op.getOpcode() != ISD::VECREDUCE_ADD && SrcVT.getVectorElementType() == MVT::i64); if (SrcVT.isScalableVector() || useSVEForFixedLengthVectorVT( SrcVT, OverrideNEON && Subtarget->useSVEForFixedLengthVectors())) { if (SrcVT.getVectorElementType() == MVT::i1) return LowerPredReductionToSVE(Op, DAG); switch (Op.getOpcode()) { case ISD::VECREDUCE_ADD: return LowerReductionToSVE(AArch64ISD::UADDV_PRED, Op, DAG); case ISD::VECREDUCE_AND: return LowerReductionToSVE(AArch64ISD::ANDV_PRED, Op, DAG); case ISD::VECREDUCE_OR: return LowerReductionToSVE(AArch64ISD::ORV_PRED, Op, DAG); case ISD::VECREDUCE_SMAX: return LowerReductionToSVE(AArch64ISD::SMAXV_PRED, Op, DAG); case ISD::VECREDUCE_SMIN: return LowerReductionToSVE(AArch64ISD::SMINV_PRED, Op, DAG); case ISD::VECREDUCE_UMAX: return LowerReductionToSVE(AArch64ISD::UMAXV_PRED, Op, DAG); case ISD::VECREDUCE_UMIN: return LowerReductionToSVE(AArch64ISD::UMINV_PRED, Op, DAG); case ISD::VECREDUCE_XOR: return LowerReductionToSVE(AArch64ISD::EORV_PRED, Op, DAG); case ISD::VECREDUCE_FADD: return LowerReductionToSVE(AArch64ISD::FADDV_PRED, Op, DAG); case ISD::VECREDUCE_FMAX: return LowerReductionToSVE(AArch64ISD::FMAXNMV_PRED, Op, DAG); case ISD::VECREDUCE_FMIN: return LowerReductionToSVE(AArch64ISD::FMINNMV_PRED, Op, DAG); case ISD::VECREDUCE_FMAXIMUM: return LowerReductionToSVE(AArch64ISD::FMAXV_PRED, Op, DAG); case ISD::VECREDUCE_FMINIMUM: return LowerReductionToSVE(AArch64ISD::FMINV_PRED, Op, DAG); default: llvm_unreachable("Unhandled fixed length reduction"); } } // Lower NEON reductions. SDLoc dl(Op); switch (Op.getOpcode()) { case ISD::VECREDUCE_AND: case ISD::VECREDUCE_OR: case ISD::VECREDUCE_XOR: return getVectorBitwiseReduce(Op.getOpcode(), Op.getOperand(0), Op.getValueType(), dl, DAG); case ISD::VECREDUCE_ADD: return getReductionSDNode(AArch64ISD::UADDV, dl, Op, DAG); case ISD::VECREDUCE_SMAX: return getReductionSDNode(AArch64ISD::SMAXV, dl, Op, DAG); case ISD::VECREDUCE_SMIN: return getReductionSDNode(AArch64ISD::SMINV, dl, Op, DAG); case ISD::VECREDUCE_UMAX: return getReductionSDNode(AArch64ISD::UMAXV, dl, Op, DAG); case ISD::VECREDUCE_UMIN: return getReductionSDNode(AArch64ISD::UMINV, dl, Op, DAG); default: llvm_unreachable("Unhandled reduction"); } } SDValue AArch64TargetLowering::LowerATOMIC_LOAD_AND(SDValue Op, SelectionDAG &DAG) const { auto &Subtarget = DAG.getSubtarget(); // No point replacing if we don't have the relevant instruction/libcall anyway if (!Subtarget.hasLSE() && !Subtarget.outlineAtomics()) return SDValue(); // LSE has an atomic load-clear instruction, but not a load-and. SDLoc dl(Op); MVT VT = Op.getSimpleValueType(); assert(VT != MVT::i128 && "Handled elsewhere, code replicated."); SDValue RHS = Op.getOperand(2); AtomicSDNode *AN = cast(Op.getNode()); RHS = DAG.getNode(ISD::XOR, dl, VT, DAG.getConstant(-1ULL, dl, VT), RHS); return DAG.getAtomic(ISD::ATOMIC_LOAD_CLR, dl, AN->getMemoryVT(), Op.getOperand(0), Op.getOperand(1), RHS, AN->getMemOperand()); } SDValue AArch64TargetLowering::LowerWindowsDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const { SDLoc dl(Op); // Get the inputs. SDNode *Node = Op.getNode(); SDValue Chain = Op.getOperand(0); SDValue Size = Op.getOperand(1); MaybeAlign Align = cast(Op.getOperand(2))->getMaybeAlignValue(); EVT VT = Node->getValueType(0); if (DAG.getMachineFunction().getFunction().hasFnAttribute( "no-stack-arg-probe")) { SDValue SP = DAG.getCopyFromReg(Chain, dl, AArch64::SP, MVT::i64); Chain = SP.getValue(1); SP = DAG.getNode(ISD::SUB, dl, MVT::i64, SP, Size); if (Align) SP = DAG.getNode(ISD::AND, dl, VT, SP.getValue(0), DAG.getConstant(-(uint64_t)Align->value(), dl, VT)); Chain = DAG.getCopyToReg(Chain, dl, AArch64::SP, SP); SDValue Ops[2] = {SP, Chain}; return DAG.getMergeValues(Ops, dl); } Chain = DAG.getCALLSEQ_START(Chain, 0, 0, dl); EVT PtrVT = getPointerTy(DAG.getDataLayout()); SDValue Callee = DAG.getTargetExternalSymbol(Subtarget->getChkStkName(), PtrVT, 0); const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo(); const uint32_t *Mask = TRI->getWindowsStackProbePreservedMask(); if (Subtarget->hasCustomCallingConv()) TRI->UpdateCustomCallPreservedMask(DAG.getMachineFunction(), &Mask); Size = DAG.getNode(ISD::SRL, dl, MVT::i64, Size, DAG.getConstant(4, dl, MVT::i64)); Chain = DAG.getCopyToReg(Chain, dl, AArch64::X15, Size, SDValue()); Chain = DAG.getNode(AArch64ISD::CALL, dl, DAG.getVTList(MVT::Other, MVT::Glue), Chain, Callee, DAG.getRegister(AArch64::X15, MVT::i64), DAG.getRegisterMask(Mask), Chain.getValue(1)); // To match the actual intent better, we should read the output from X15 here // again (instead of potentially spilling it to the stack), but rereading Size // from X15 here doesn't work at -O0, since it thinks that X15 is undefined // here. Size = DAG.getNode(ISD::SHL, dl, MVT::i64, Size, DAG.getConstant(4, dl, MVT::i64)); SDValue SP = DAG.getCopyFromReg(Chain, dl, AArch64::SP, MVT::i64); Chain = SP.getValue(1); SP = DAG.getNode(ISD::SUB, dl, MVT::i64, SP, Size); if (Align) SP = DAG.getNode(ISD::AND, dl, VT, SP.getValue(0), DAG.getConstant(-(uint64_t)Align->value(), dl, VT)); Chain = DAG.getCopyToReg(Chain, dl, AArch64::SP, SP); Chain = DAG.getCALLSEQ_END(Chain, 0, 0, SDValue(), dl); SDValue Ops[2] = {SP, Chain}; return DAG.getMergeValues(Ops, dl); } SDValue AArch64TargetLowering::LowerInlineDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const { // Get the inputs. SDNode *Node = Op.getNode(); SDValue Chain = Op.getOperand(0); SDValue Size = Op.getOperand(1); MaybeAlign Align = cast(Op.getOperand(2))->getMaybeAlignValue(); SDLoc dl(Op); EVT VT = Node->getValueType(0); // Construct the new SP value in a GPR. SDValue SP = DAG.getCopyFromReg(Chain, dl, AArch64::SP, MVT::i64); Chain = SP.getValue(1); SP = DAG.getNode(ISD::SUB, dl, MVT::i64, SP, Size); if (Align) SP = DAG.getNode(ISD::AND, dl, VT, SP.getValue(0), DAG.getConstant(-(uint64_t)Align->value(), dl, VT)); // Set the real SP to the new value with a probing loop. Chain = DAG.getNode(AArch64ISD::PROBED_ALLOCA, dl, MVT::Other, Chain, SP); SDValue Ops[2] = {SP, Chain}; return DAG.getMergeValues(Ops, dl); } SDValue AArch64TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const { MachineFunction &MF = DAG.getMachineFunction(); if (Subtarget->isTargetWindows()) return LowerWindowsDYNAMIC_STACKALLOC(Op, DAG); else if (hasInlineStackProbe(MF)) return LowerInlineDYNAMIC_STACKALLOC(Op, DAG); else return SDValue(); } // When x and y are extended, lower: // avgfloor(x, y) -> (x + y) >> 1 // avgceil(x, y) -> (x + y + 1) >> 1 // Otherwise, lower to: // avgfloor(x, y) -> (x >> 1) + (y >> 1) + (x & y & 1) // avgceil(x, y) -> (x >> 1) + (y >> 1) + ((x || y) & 1) SDValue AArch64TargetLowering::LowerAVG(SDValue Op, SelectionDAG &DAG, unsigned NewOp) const { if (Subtarget->hasSVE2()) return LowerToPredicatedOp(Op, DAG, NewOp); SDLoc dl(Op); SDValue OpA = Op->getOperand(0); SDValue OpB = Op->getOperand(1); EVT VT = Op.getValueType(); bool IsCeil = (Op->getOpcode() == ISD::AVGCEILS || Op->getOpcode() == ISD::AVGCEILU); bool IsSigned = (Op->getOpcode() == ISD::AVGFLOORS || Op->getOpcode() == ISD::AVGCEILS); unsigned ShiftOpc = IsSigned ? ISD::SRA : ISD::SRL; assert(VT.isScalableVector() && "Only expect to lower scalable vector op!"); auto IsZeroExtended = [&DAG](SDValue &Node) { KnownBits Known = DAG.computeKnownBits(Node, 0); return Known.Zero.isSignBitSet(); }; auto IsSignExtended = [&DAG](SDValue &Node) { return (DAG.ComputeNumSignBits(Node, 0) > 1); }; SDValue ConstantOne = DAG.getConstant(1, dl, VT); if ((!IsSigned && IsZeroExtended(OpA) && IsZeroExtended(OpB)) || (IsSigned && IsSignExtended(OpA) && IsSignExtended(OpB))) { SDValue Add = DAG.getNode(ISD::ADD, dl, VT, OpA, OpB); if (IsCeil) Add = DAG.getNode(ISD::ADD, dl, VT, Add, ConstantOne); return DAG.getNode(ShiftOpc, dl, VT, Add, ConstantOne); } SDValue ShiftOpA = DAG.getNode(ShiftOpc, dl, VT, OpA, ConstantOne); SDValue ShiftOpB = DAG.getNode(ShiftOpc, dl, VT, OpB, ConstantOne); SDValue tmp = DAG.getNode(IsCeil ? ISD::OR : ISD::AND, dl, VT, OpA, OpB); tmp = DAG.getNode(ISD::AND, dl, VT, tmp, ConstantOne); SDValue Add = DAG.getNode(ISD::ADD, dl, VT, ShiftOpA, ShiftOpB); return DAG.getNode(ISD::ADD, dl, VT, Add, tmp); } SDValue AArch64TargetLowering::LowerVSCALE(SDValue Op, SelectionDAG &DAG) const { EVT VT = Op.getValueType(); assert(VT != MVT::i64 && "Expected illegal VSCALE node"); SDLoc DL(Op); APInt MulImm = Op.getConstantOperandAPInt(0); return DAG.getZExtOrTrunc(DAG.getVScale(DL, MVT::i64, MulImm.sext(64)), DL, VT); } /// Set the IntrinsicInfo for the `aarch64_sve_st` intrinsics. template static bool setInfoSVEStN(const AArch64TargetLowering &TLI, const DataLayout &DL, AArch64TargetLowering::IntrinsicInfo &Info, const CallInst &CI) { Info.opc = ISD::INTRINSIC_VOID; // Retrieve EC from first vector argument. const EVT VT = TLI.getMemValueType(DL, CI.getArgOperand(0)->getType()); ElementCount EC = VT.getVectorElementCount(); #ifndef NDEBUG // Check the assumption that all input vectors are the same type. for (unsigned I = 0; I < NumVecs; ++I) assert(VT == TLI.getMemValueType(DL, CI.getArgOperand(I)->getType()) && "Invalid type."); #endif // memVT is `NumVecs * VT`. Info.memVT = EVT::getVectorVT(CI.getType()->getContext(), VT.getScalarType(), EC * NumVecs); Info.ptrVal = CI.getArgOperand(CI.arg_size() - 1); Info.offset = 0; Info.align.reset(); Info.flags = MachineMemOperand::MOStore; return true; } /// getTgtMemIntrinsic - Represent NEON load and store intrinsics as /// MemIntrinsicNodes. The associated MachineMemOperands record the alignment /// specified in the intrinsic calls. bool AArch64TargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, const CallInst &I, MachineFunction &MF, unsigned Intrinsic) const { auto &DL = I.getModule()->getDataLayout(); switch (Intrinsic) { case Intrinsic::aarch64_sve_st2: return setInfoSVEStN<2>(*this, DL, Info, I); case Intrinsic::aarch64_sve_st3: return setInfoSVEStN<3>(*this, DL, Info, I); case Intrinsic::aarch64_sve_st4: return setInfoSVEStN<4>(*this, DL, Info, I); case Intrinsic::aarch64_neon_ld2: case Intrinsic::aarch64_neon_ld3: case Intrinsic::aarch64_neon_ld4: case Intrinsic::aarch64_neon_ld1x2: case Intrinsic::aarch64_neon_ld1x3: case Intrinsic::aarch64_neon_ld1x4: { Info.opc = ISD::INTRINSIC_W_CHAIN; uint64_t NumElts = DL.getTypeSizeInBits(I.getType()) / 64; Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts); Info.ptrVal = I.getArgOperand(I.arg_size() - 1); Info.offset = 0; Info.align.reset(); // volatile loads with NEON intrinsics not supported Info.flags = MachineMemOperand::MOLoad; return true; } case Intrinsic::aarch64_neon_ld2lane: case Intrinsic::aarch64_neon_ld3lane: case Intrinsic::aarch64_neon_ld4lane: case Intrinsic::aarch64_neon_ld2r: case Intrinsic::aarch64_neon_ld3r: case Intrinsic::aarch64_neon_ld4r: { Info.opc = ISD::INTRINSIC_W_CHAIN; // ldx return struct with the same vec type Type *RetTy = I.getType(); auto *StructTy = cast(RetTy); unsigned NumElts = StructTy->getNumElements(); Type *VecTy = StructTy->getElementType(0); MVT EleVT = MVT::getVT(VecTy).getVectorElementType(); Info.memVT = EVT::getVectorVT(I.getType()->getContext(), EleVT, NumElts); Info.ptrVal = I.getArgOperand(I.arg_size() - 1); Info.offset = 0; Info.align.reset(); // volatile loads with NEON intrinsics not supported Info.flags = MachineMemOperand::MOLoad; return true; } case Intrinsic::aarch64_neon_st2: case Intrinsic::aarch64_neon_st3: case Intrinsic::aarch64_neon_st4: case Intrinsic::aarch64_neon_st1x2: case Intrinsic::aarch64_neon_st1x3: case Intrinsic::aarch64_neon_st1x4: { Info.opc = ISD::INTRINSIC_VOID; unsigned NumElts = 0; for (const Value *Arg : I.args()) { Type *ArgTy = Arg->getType(); if (!ArgTy->isVectorTy()) break; NumElts += DL.getTypeSizeInBits(ArgTy) / 64; } Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts); Info.ptrVal = I.getArgOperand(I.arg_size() - 1); Info.offset = 0; Info.align.reset(); // volatile stores with NEON intrinsics not supported Info.flags = MachineMemOperand::MOStore; return true; } case Intrinsic::aarch64_neon_st2lane: case Intrinsic::aarch64_neon_st3lane: case Intrinsic::aarch64_neon_st4lane: { Info.opc = ISD::INTRINSIC_VOID; unsigned NumElts = 0; // all the vector type is same Type *VecTy = I.getArgOperand(0)->getType(); MVT EleVT = MVT::getVT(VecTy).getVectorElementType(); for (const Value *Arg : I.args()) { Type *ArgTy = Arg->getType(); if (!ArgTy->isVectorTy()) break; NumElts += 1; } Info.memVT = EVT::getVectorVT(I.getType()->getContext(), EleVT, NumElts); Info.ptrVal = I.getArgOperand(I.arg_size() - 1); Info.offset = 0; Info.align.reset(); // volatile stores with NEON intrinsics not supported Info.flags = MachineMemOperand::MOStore; return true; } case Intrinsic::aarch64_ldaxr: case Intrinsic::aarch64_ldxr: { Type *ValTy = I.getParamElementType(0); Info.opc = ISD::INTRINSIC_W_CHAIN; Info.memVT = MVT::getVT(ValTy); Info.ptrVal = I.getArgOperand(0); Info.offset = 0; Info.align = DL.getABITypeAlign(ValTy); Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile; return true; } case Intrinsic::aarch64_stlxr: case Intrinsic::aarch64_stxr: { Type *ValTy = I.getParamElementType(1); Info.opc = ISD::INTRINSIC_W_CHAIN; Info.memVT = MVT::getVT(ValTy); Info.ptrVal = I.getArgOperand(1); Info.offset = 0; Info.align = DL.getABITypeAlign(ValTy); Info.flags = MachineMemOperand::MOStore | MachineMemOperand::MOVolatile; return true; } case Intrinsic::aarch64_ldaxp: case Intrinsic::aarch64_ldxp: Info.opc = ISD::INTRINSIC_W_CHAIN; Info.memVT = MVT::i128; Info.ptrVal = I.getArgOperand(0); Info.offset = 0; Info.align = Align(16); Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile; return true; case Intrinsic::aarch64_stlxp: case Intrinsic::aarch64_stxp: Info.opc = ISD::INTRINSIC_W_CHAIN; Info.memVT = MVT::i128; Info.ptrVal = I.getArgOperand(2); Info.offset = 0; Info.align = Align(16); Info.flags = MachineMemOperand::MOStore | MachineMemOperand::MOVolatile; return true; case Intrinsic::aarch64_sve_ldnt1: { Type *ElTy = cast(I.getType())->getElementType(); Info.opc = ISD::INTRINSIC_W_CHAIN; Info.memVT = MVT::getVT(I.getType()); Info.ptrVal = I.getArgOperand(1); Info.offset = 0; Info.align = DL.getABITypeAlign(ElTy); Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MONonTemporal; return true; } case Intrinsic::aarch64_sve_stnt1: { Type *ElTy = cast(I.getArgOperand(0)->getType())->getElementType(); Info.opc = ISD::INTRINSIC_W_CHAIN; Info.memVT = MVT::getVT(I.getOperand(0)->getType()); Info.ptrVal = I.getArgOperand(2); Info.offset = 0; Info.align = DL.getABITypeAlign(ElTy); Info.flags = MachineMemOperand::MOStore | MachineMemOperand::MONonTemporal; return true; } case Intrinsic::aarch64_mops_memset_tag: { Value *Dst = I.getArgOperand(0); Value *Val = I.getArgOperand(1); Info.opc = ISD::INTRINSIC_W_CHAIN; Info.memVT = MVT::getVT(Val->getType()); Info.ptrVal = Dst; Info.offset = 0; Info.align = I.getParamAlign(0).valueOrOne(); Info.flags = MachineMemOperand::MOStore; // The size of the memory being operated on is unknown at this point Info.size = MemoryLocation::UnknownSize; return true; } default: break; } return false; } bool AArch64TargetLowering::shouldReduceLoadWidth(SDNode *Load, ISD::LoadExtType ExtTy, EVT NewVT) const { // TODO: This may be worth removing. Check regression tests for diffs. if (!TargetLoweringBase::shouldReduceLoadWidth(Load, ExtTy, NewVT)) return false; // If we're reducing the load width in order to avoid having to use an extra // instruction to do extension then it's probably a good idea. if (ExtTy != ISD::NON_EXTLOAD) return true; // Don't reduce load width if it would prevent us from combining a shift into // the offset. MemSDNode *Mem = dyn_cast(Load); assert(Mem); const SDValue &Base = Mem->getBasePtr(); if (Base.getOpcode() == ISD::ADD && Base.getOperand(1).getOpcode() == ISD::SHL && Base.getOperand(1).hasOneUse() && Base.getOperand(1).getOperand(1).getOpcode() == ISD::Constant) { // It's unknown whether a scalable vector has a power-of-2 bitwidth. if (Mem->getMemoryVT().isScalableVector()) return false; // The shift can be combined if it matches the size of the value being // loaded (and so reducing the width would make it not match). uint64_t ShiftAmount = Base.getOperand(1).getConstantOperandVal(1); uint64_t LoadBytes = Mem->getMemoryVT().getSizeInBits()/8; if (ShiftAmount == Log2_32(LoadBytes)) return false; } // We have no reason to disallow reducing the load width, so allow it. return true; } // Treat a sext_inreg(extract(..)) as free if it has multiple uses. bool AArch64TargetLowering::shouldRemoveRedundantExtend(SDValue Extend) const { EVT VT = Extend.getValueType(); if ((VT == MVT::i64 || VT == MVT::i32) && Extend->use_size()) { SDValue Extract = Extend.getOperand(0); if (Extract.getOpcode() == ISD::ANY_EXTEND && Extract.hasOneUse()) Extract = Extract.getOperand(0); if (Extract.getOpcode() == ISD::EXTRACT_VECTOR_ELT && Extract.hasOneUse()) { EVT VecVT = Extract.getOperand(0).getValueType(); if (VecVT.getScalarType() == MVT::i8 || VecVT.getScalarType() == MVT::i16) return false; } } return true; } // Truncations from 64-bit GPR to 32-bit GPR is free. bool AArch64TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const { if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy()) return false; uint64_t NumBits1 = Ty1->getPrimitiveSizeInBits().getFixedValue(); uint64_t NumBits2 = Ty2->getPrimitiveSizeInBits().getFixedValue(); return NumBits1 > NumBits2; } bool AArch64TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const { if (VT1.isVector() || VT2.isVector() || !VT1.isInteger() || !VT2.isInteger()) return false; uint64_t NumBits1 = VT1.getFixedSizeInBits(); uint64_t NumBits2 = VT2.getFixedSizeInBits(); return NumBits1 > NumBits2; } /// Check if it is profitable to hoist instruction in then/else to if. /// Not profitable if I and it's user can form a FMA instruction /// because we prefer FMSUB/FMADD. bool AArch64TargetLowering::isProfitableToHoist(Instruction *I) const { if (I->getOpcode() != Instruction::FMul) return true; if (!I->hasOneUse()) return true; Instruction *User = I->user_back(); if (!(User->getOpcode() == Instruction::FSub || User->getOpcode() == Instruction::FAdd)) return true; const TargetOptions &Options = getTargetMachine().Options; const Function *F = I->getFunction(); const DataLayout &DL = F->getParent()->getDataLayout(); Type *Ty = User->getOperand(0)->getType(); return !(isFMAFasterThanFMulAndFAdd(*F, Ty) && isOperationLegalOrCustom(ISD::FMA, getValueType(DL, Ty)) && (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath)); } // All 32-bit GPR operations implicitly zero the high-half of the corresponding // 64-bit GPR. bool AArch64TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const { if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy()) return false; unsigned NumBits1 = Ty1->getPrimitiveSizeInBits(); unsigned NumBits2 = Ty2->getPrimitiveSizeInBits(); return NumBits1 == 32 && NumBits2 == 64; } bool AArch64TargetLowering::isZExtFree(EVT VT1, EVT VT2) const { if (VT1.isVector() || VT2.isVector() || !VT1.isInteger() || !VT2.isInteger()) return false; unsigned NumBits1 = VT1.getSizeInBits(); unsigned NumBits2 = VT2.getSizeInBits(); return NumBits1 == 32 && NumBits2 == 64; } bool AArch64TargetLowering::isZExtFree(SDValue Val, EVT VT2) const { EVT VT1 = Val.getValueType(); if (isZExtFree(VT1, VT2)) { return true; } if (Val.getOpcode() != ISD::LOAD) return false; // 8-, 16-, and 32-bit integer loads all implicitly zero-extend. return (VT1.isSimple() && !VT1.isVector() && VT1.isInteger() && VT2.isSimple() && !VT2.isVector() && VT2.isInteger() && VT1.getSizeInBits() <= 32); } bool AArch64TargetLowering::isExtFreeImpl(const Instruction *Ext) const { if (isa(Ext)) return false; // Vector types are not free. if (Ext->getType()->isVectorTy()) return false; for (const Use &U : Ext->uses()) { // The extension is free if we can fold it with a left shift in an // addressing mode or an arithmetic operation: add, sub, and cmp. // Is there a shift? const Instruction *Instr = cast(U.getUser()); // Is this a constant shift? switch (Instr->getOpcode()) { case Instruction::Shl: if (!isa(Instr->getOperand(1))) return false; break; case Instruction::GetElementPtr: { gep_type_iterator GTI = gep_type_begin(Instr); auto &DL = Ext->getModule()->getDataLayout(); std::advance(GTI, U.getOperandNo()-1); Type *IdxTy = GTI.getIndexedType(); // This extension will end up with a shift because of the scaling factor. // 8-bit sized types have a scaling factor of 1, thus a shift amount of 0. // Get the shift amount based on the scaling factor: // log2(sizeof(IdxTy)) - log2(8). if (IdxTy->isScalableTy()) return false; uint64_t ShiftAmt = llvm::countr_zero(DL.getTypeStoreSizeInBits(IdxTy).getFixedValue()) - 3; // Is the constant foldable in the shift of the addressing mode? // I.e., shift amount is between 1 and 4 inclusive. if (ShiftAmt == 0 || ShiftAmt > 4) return false; break; } case Instruction::Trunc: // Check if this is a noop. // trunc(sext ty1 to ty2) to ty1. if (Instr->getType() == Ext->getOperand(0)->getType()) continue; [[fallthrough]]; default: return false; } // At this point we can use the bfm family, so this extension is free // for that use. } return true; } static bool isSplatShuffle(Value *V) { if (auto *Shuf = dyn_cast(V)) return all_equal(Shuf->getShuffleMask()); return false; } /// Check if both Op1 and Op2 are shufflevector extracts of either the lower /// or upper half of the vector elements. static bool areExtractShuffleVectors(Value *Op1, Value *Op2, bool AllowSplat = false) { auto areTypesHalfed = [](Value *FullV, Value *HalfV) { auto *FullTy = FullV->getType(); auto *HalfTy = HalfV->getType(); return FullTy->getPrimitiveSizeInBits().getFixedValue() == 2 * HalfTy->getPrimitiveSizeInBits().getFixedValue(); }; auto extractHalf = [](Value *FullV, Value *HalfV) { auto *FullVT = cast(FullV->getType()); auto *HalfVT = cast(HalfV->getType()); return FullVT->getNumElements() == 2 * HalfVT->getNumElements(); }; ArrayRef M1, M2; Value *S1Op1 = nullptr, *S2Op1 = nullptr; if (!match(Op1, m_Shuffle(m_Value(S1Op1), m_Undef(), m_Mask(M1))) || !match(Op2, m_Shuffle(m_Value(S2Op1), m_Undef(), m_Mask(M2)))) return false; // If we allow splats, set S1Op1/S2Op1 to nullptr for the relavant arg so that // it is not checked as an extract below. if (AllowSplat && isSplatShuffle(Op1)) S1Op1 = nullptr; if (AllowSplat && isSplatShuffle(Op2)) S2Op1 = nullptr; // Check that the operands are half as wide as the result and we extract // half of the elements of the input vectors. if ((S1Op1 && (!areTypesHalfed(S1Op1, Op1) || !extractHalf(S1Op1, Op1))) || (S2Op1 && (!areTypesHalfed(S2Op1, Op2) || !extractHalf(S2Op1, Op2)))) return false; // Check the mask extracts either the lower or upper half of vector // elements. int M1Start = 0; int M2Start = 0; int NumElements = cast(Op1->getType())->getNumElements() * 2; if ((S1Op1 && !ShuffleVectorInst::isExtractSubvectorMask(M1, NumElements, M1Start)) || (S2Op1 && !ShuffleVectorInst::isExtractSubvectorMask(M2, NumElements, M2Start))) return false; if ((M1Start != 0 && M1Start != (NumElements / 2)) || (M2Start != 0 && M2Start != (NumElements / 2))) return false; if (S1Op1 && S2Op1 && M1Start != M2Start) return false; return true; } /// Check if Ext1 and Ext2 are extends of the same type, doubling the bitwidth /// of the vector elements. static bool areExtractExts(Value *Ext1, Value *Ext2) { auto areExtDoubled = [](Instruction *Ext) { return Ext->getType()->getScalarSizeInBits() == 2 * Ext->getOperand(0)->getType()->getScalarSizeInBits(); }; if (!match(Ext1, m_ZExtOrSExt(m_Value())) || !match(Ext2, m_ZExtOrSExt(m_Value())) || !areExtDoubled(cast(Ext1)) || !areExtDoubled(cast(Ext2))) return false; return true; } /// Check if Op could be used with vmull_high_p64 intrinsic. static bool isOperandOfVmullHighP64(Value *Op) { Value *VectorOperand = nullptr; ConstantInt *ElementIndex = nullptr; return match(Op, m_ExtractElt(m_Value(VectorOperand), m_ConstantInt(ElementIndex))) && ElementIndex->getValue() == 1 && isa(VectorOperand->getType()) && cast(VectorOperand->getType())->getNumElements() == 2; } /// Check if Op1 and Op2 could be used with vmull_high_p64 intrinsic. static bool areOperandsOfVmullHighP64(Value *Op1, Value *Op2) { return isOperandOfVmullHighP64(Op1) && isOperandOfVmullHighP64(Op2); } static bool shouldSinkVectorOfPtrs(Value *Ptrs, SmallVectorImpl &Ops) { // Restrict ourselves to the form CodeGenPrepare typically constructs. auto *GEP = dyn_cast(Ptrs); if (!GEP || GEP->getNumOperands() != 2) return false; Value *Base = GEP->getOperand(0); Value *Offsets = GEP->getOperand(1); // We only care about scalar_base+vector_offsets. if (Base->getType()->isVectorTy() || !Offsets->getType()->isVectorTy()) return false; // Sink extends that would allow us to use 32-bit offset vectors. if (isa(Offsets) || isa(Offsets)) { auto *OffsetsInst = cast(Offsets); if (OffsetsInst->getType()->getScalarSizeInBits() > 32 && OffsetsInst->getOperand(0)->getType()->getScalarSizeInBits() <= 32) Ops.push_back(&GEP->getOperandUse(1)); } // Sink the GEP. return true; } /// We want to sink following cases: /// (add|sub|gep) A, ((mul|shl) vscale, imm); (add|sub|gep) A, vscale static bool shouldSinkVScale(Value *Op, SmallVectorImpl &Ops) { if (match(Op, m_VScale())) return true; if (match(Op, m_Shl(m_VScale(), m_ConstantInt())) || match(Op, m_Mul(m_VScale(), m_ConstantInt()))) { Ops.push_back(&cast(Op)->getOperandUse(0)); return true; } return false; } /// Check if sinking \p I's operands to I's basic block is profitable, because /// the operands can be folded into a target instruction, e.g. /// shufflevectors extracts and/or sext/zext can be folded into (u,s)subl(2). bool AArch64TargetLowering::shouldSinkOperands( Instruction *I, SmallVectorImpl &Ops) const { if (IntrinsicInst *II = dyn_cast(I)) { switch (II->getIntrinsicID()) { case Intrinsic::aarch64_neon_smull: case Intrinsic::aarch64_neon_umull: if (areExtractShuffleVectors(II->getOperand(0), II->getOperand(1), /*AllowSplat=*/true)) { Ops.push_back(&II->getOperandUse(0)); Ops.push_back(&II->getOperandUse(1)); return true; } [[fallthrough]]; case Intrinsic::fma: if (isa(I->getType()) && cast(I->getType())->getElementType()->isHalfTy() && !Subtarget->hasFullFP16()) return false; [[fallthrough]]; case Intrinsic::aarch64_neon_sqdmull: case Intrinsic::aarch64_neon_sqdmulh: case Intrinsic::aarch64_neon_sqrdmulh: // Sink splats for index lane variants if (isSplatShuffle(II->getOperand(0))) Ops.push_back(&II->getOperandUse(0)); if (isSplatShuffle(II->getOperand(1))) Ops.push_back(&II->getOperandUse(1)); return !Ops.empty(); case Intrinsic::aarch64_neon_fmlal: case Intrinsic::aarch64_neon_fmlal2: case Intrinsic::aarch64_neon_fmlsl: case Intrinsic::aarch64_neon_fmlsl2: // Sink splats for index lane variants if (isSplatShuffle(II->getOperand(1))) Ops.push_back(&II->getOperandUse(1)); if (isSplatShuffle(II->getOperand(2))) Ops.push_back(&II->getOperandUse(2)); return !Ops.empty(); case Intrinsic::aarch64_sve_ptest_first: case Intrinsic::aarch64_sve_ptest_last: if (auto *IIOp = dyn_cast(II->getOperand(0))) if (IIOp->getIntrinsicID() == Intrinsic::aarch64_sve_ptrue) Ops.push_back(&II->getOperandUse(0)); return !Ops.empty(); case Intrinsic::aarch64_sme_write_horiz: case Intrinsic::aarch64_sme_write_vert: case Intrinsic::aarch64_sme_writeq_horiz: case Intrinsic::aarch64_sme_writeq_vert: { auto *Idx = dyn_cast(II->getOperand(1)); if (!Idx || Idx->getOpcode() != Instruction::Add) return false; Ops.push_back(&II->getOperandUse(1)); return true; } case Intrinsic::aarch64_sme_read_horiz: case Intrinsic::aarch64_sme_read_vert: case Intrinsic::aarch64_sme_readq_horiz: case Intrinsic::aarch64_sme_readq_vert: case Intrinsic::aarch64_sme_ld1b_vert: case Intrinsic::aarch64_sme_ld1h_vert: case Intrinsic::aarch64_sme_ld1w_vert: case Intrinsic::aarch64_sme_ld1d_vert: case Intrinsic::aarch64_sme_ld1q_vert: case Intrinsic::aarch64_sme_st1b_vert: case Intrinsic::aarch64_sme_st1h_vert: case Intrinsic::aarch64_sme_st1w_vert: case Intrinsic::aarch64_sme_st1d_vert: case Intrinsic::aarch64_sme_st1q_vert: case Intrinsic::aarch64_sme_ld1b_horiz: case Intrinsic::aarch64_sme_ld1h_horiz: case Intrinsic::aarch64_sme_ld1w_horiz: case Intrinsic::aarch64_sme_ld1d_horiz: case Intrinsic::aarch64_sme_ld1q_horiz: case Intrinsic::aarch64_sme_st1b_horiz: case Intrinsic::aarch64_sme_st1h_horiz: case Intrinsic::aarch64_sme_st1w_horiz: case Intrinsic::aarch64_sme_st1d_horiz: case Intrinsic::aarch64_sme_st1q_horiz: { auto *Idx = dyn_cast(II->getOperand(3)); if (!Idx || Idx->getOpcode() != Instruction::Add) return false; Ops.push_back(&II->getOperandUse(3)); return true; } case Intrinsic::aarch64_neon_pmull: if (!areExtractShuffleVectors(II->getOperand(0), II->getOperand(1))) return false; Ops.push_back(&II->getOperandUse(0)); Ops.push_back(&II->getOperandUse(1)); return true; case Intrinsic::aarch64_neon_pmull64: if (!areOperandsOfVmullHighP64(II->getArgOperand(0), II->getArgOperand(1))) return false; Ops.push_back(&II->getArgOperandUse(0)); Ops.push_back(&II->getArgOperandUse(1)); return true; case Intrinsic::masked_gather: if (!shouldSinkVectorOfPtrs(II->getArgOperand(0), Ops)) return false; Ops.push_back(&II->getArgOperandUse(0)); return true; case Intrinsic::masked_scatter: if (!shouldSinkVectorOfPtrs(II->getArgOperand(1), Ops)) return false; Ops.push_back(&II->getArgOperandUse(1)); return true; default: return false; } } // Sink vscales closer to uses for better isel switch (I->getOpcode()) { case Instruction::GetElementPtr: case Instruction::Add: case Instruction::Sub: for (unsigned Op = 0; Op < I->getNumOperands(); ++Op) { if (shouldSinkVScale(I->getOperand(Op), Ops)) { Ops.push_back(&I->getOperandUse(Op)); return true; } } break; default: break; } if (!I->getType()->isVectorTy()) return false; switch (I->getOpcode()) { case Instruction::Sub: case Instruction::Add: { if (!areExtractExts(I->getOperand(0), I->getOperand(1))) return false; // If the exts' operands extract either the lower or upper elements, we // can sink them too. auto Ext1 = cast(I->getOperand(0)); auto Ext2 = cast(I->getOperand(1)); if (areExtractShuffleVectors(Ext1->getOperand(0), Ext2->getOperand(0))) { Ops.push_back(&Ext1->getOperandUse(0)); Ops.push_back(&Ext2->getOperandUse(0)); } Ops.push_back(&I->getOperandUse(0)); Ops.push_back(&I->getOperandUse(1)); return true; } case Instruction::Or: { // Pattern: Or(And(MaskValue, A), And(Not(MaskValue), B)) -> // bitselect(MaskValue, A, B) where Not(MaskValue) = Xor(MaskValue, -1) if (Subtarget->hasNEON()) { Instruction *OtherAnd, *IA, *IB; Value *MaskValue; // MainAnd refers to And instruction that has 'Not' as one of its operands if (match(I, m_c_Or(m_OneUse(m_Instruction(OtherAnd)), m_OneUse(m_c_And(m_OneUse(m_Not(m_Value(MaskValue))), m_Instruction(IA)))))) { if (match(OtherAnd, m_c_And(m_Specific(MaskValue), m_Instruction(IB)))) { Instruction *MainAnd = I->getOperand(0) == OtherAnd ? cast(I->getOperand(1)) : cast(I->getOperand(0)); // Both Ands should be in same basic block as Or if (I->getParent() != MainAnd->getParent() || I->getParent() != OtherAnd->getParent()) return false; // Non-mask operands of both Ands should also be in same basic block if (I->getParent() != IA->getParent() || I->getParent() != IB->getParent()) return false; Ops.push_back(&MainAnd->getOperandUse(MainAnd->getOperand(0) == IA ? 1 : 0)); Ops.push_back(&I->getOperandUse(0)); Ops.push_back(&I->getOperandUse(1)); return true; } } } return false; } case Instruction::Mul: { int NumZExts = 0, NumSExts = 0; for (auto &Op : I->operands()) { // Make sure we are not already sinking this operand if (any_of(Ops, [&](Use *U) { return U->get() == Op; })) continue; if (match(&Op, m_SExt(m_Value()))) { NumSExts++; continue; } else if (match(&Op, m_ZExt(m_Value()))) { NumZExts++; continue; } ShuffleVectorInst *Shuffle = dyn_cast(Op); // If the Shuffle is a splat and the operand is a zext/sext, sinking the // operand and the s/zext can help create indexed s/umull. This is // especially useful to prevent i64 mul being scalarized. if (Shuffle && isSplatShuffle(Shuffle) && match(Shuffle->getOperand(0), m_ZExtOrSExt(m_Value()))) { Ops.push_back(&Shuffle->getOperandUse(0)); Ops.push_back(&Op); if (match(Shuffle->getOperand(0), m_SExt(m_Value()))) NumSExts++; else NumZExts++; continue; } if (!Shuffle) continue; Value *ShuffleOperand = Shuffle->getOperand(0); InsertElementInst *Insert = dyn_cast(ShuffleOperand); if (!Insert) continue; Instruction *OperandInstr = dyn_cast(Insert->getOperand(1)); if (!OperandInstr) continue; ConstantInt *ElementConstant = dyn_cast(Insert->getOperand(2)); // Check that the insertelement is inserting into element 0 if (!ElementConstant || !ElementConstant->isZero()) continue; unsigned Opcode = OperandInstr->getOpcode(); if (Opcode == Instruction::SExt) NumSExts++; else if (Opcode == Instruction::ZExt) NumZExts++; else { // If we find that the top bits are known 0, then we can sink and allow // the backend to generate a umull. unsigned Bitwidth = I->getType()->getScalarSizeInBits(); APInt UpperMask = APInt::getHighBitsSet(Bitwidth, Bitwidth / 2); const DataLayout &DL = I->getFunction()->getParent()->getDataLayout(); if (!MaskedValueIsZero(OperandInstr, UpperMask, DL)) continue; NumZExts++; } Ops.push_back(&Shuffle->getOperandUse(0)); Ops.push_back(&Op); } // Is it profitable to sink if we found two of the same type of extends. return !Ops.empty() && (NumSExts == 2 || NumZExts == 2); } default: return false; } return false; } static bool createTblShuffleForZExt(ZExtInst *ZExt, FixedVectorType *DstTy, bool IsLittleEndian) { Value *Op = ZExt->getOperand(0); auto *SrcTy = cast(Op->getType()); auto SrcWidth = cast(SrcTy->getElementType())->getBitWidth(); auto DstWidth = cast(DstTy->getElementType())->getBitWidth(); if (DstWidth % 8 != 0 || DstWidth <= 16 || DstWidth >= 64) return false; assert(DstWidth % SrcWidth == 0 && "TBL lowering is not supported for a ZExt instruction with this " "source & destination element type."); unsigned ZExtFactor = DstWidth / SrcWidth; unsigned NumElts = SrcTy->getNumElements(); IRBuilder<> Builder(ZExt); SmallVector Mask; // Create a mask that selects <0,...,Op[i]> for each lane of the destination // vector to replace the original ZExt. This can later be lowered to a set of // tbl instructions. for (unsigned i = 0; i < NumElts * ZExtFactor; i++) { if (IsLittleEndian) { if (i % ZExtFactor == 0) Mask.push_back(i / ZExtFactor); else Mask.push_back(NumElts); } else { if ((i + 1) % ZExtFactor == 0) Mask.push_back((i - ZExtFactor + 1) / ZExtFactor); else Mask.push_back(NumElts); } } auto *FirstEltZero = Builder.CreateInsertElement( PoisonValue::get(SrcTy), Builder.getInt8(0), uint64_t(0)); Value *Result = Builder.CreateShuffleVector(Op, FirstEltZero, Mask); Result = Builder.CreateBitCast(Result, DstTy); if (DstTy != ZExt->getType()) Result = Builder.CreateZExt(Result, ZExt->getType()); ZExt->replaceAllUsesWith(Result); ZExt->eraseFromParent(); return true; } static void createTblForTrunc(TruncInst *TI, bool IsLittleEndian) { IRBuilder<> Builder(TI); SmallVector Parts; int NumElements = cast(TI->getType())->getNumElements(); auto *SrcTy = cast(TI->getOperand(0)->getType()); auto *DstTy = cast(TI->getType()); assert(SrcTy->getElementType()->isIntegerTy() && "Non-integer type source vector element is not supported"); assert(DstTy->getElementType()->isIntegerTy(8) && "Unsupported destination vector element type"); unsigned SrcElemTySz = cast(SrcTy->getElementType())->getBitWidth(); unsigned DstElemTySz = cast(DstTy->getElementType())->getBitWidth(); assert((SrcElemTySz % DstElemTySz == 0) && "Cannot lower truncate to tbl instructions for a source element size " "that is not divisible by the destination element size"); unsigned TruncFactor = SrcElemTySz / DstElemTySz; assert((SrcElemTySz == 16 || SrcElemTySz == 32 || SrcElemTySz == 64) && "Unsupported source vector element type size"); Type *VecTy = FixedVectorType::get(Builder.getInt8Ty(), 16); // Create a mask to choose every nth byte from the source vector table of // bytes to create the truncated destination vector, where 'n' is the truncate // ratio. For example, for a truncate from Yxi64 to Yxi8, choose // 0,8,16,..Y*8th bytes for the little-endian format SmallVector MaskConst; for (int Itr = 0; Itr < 16; Itr++) { if (Itr < NumElements) MaskConst.push_back(Builder.getInt8( IsLittleEndian ? Itr * TruncFactor : Itr * TruncFactor + (TruncFactor - 1))); else MaskConst.push_back(Builder.getInt8(255)); } int MaxTblSz = 128 * 4; int MaxSrcSz = SrcElemTySz * NumElements; int ElemsPerTbl = (MaxTblSz > MaxSrcSz) ? NumElements : (MaxTblSz / SrcElemTySz); assert(ElemsPerTbl <= 16 && "Maximum elements selected using TBL instruction cannot exceed 16!"); int ShuffleCount = 128 / SrcElemTySz; SmallVector ShuffleLanes; for (int i = 0; i < ShuffleCount; ++i) ShuffleLanes.push_back(i); // Create TBL's table of bytes in 1,2,3 or 4 FP/SIMD registers using shuffles // over the source vector. If TBL's maximum 4 FP/SIMD registers are saturated, // call TBL & save the result in a vector of TBL results for combining later. SmallVector Results; while (ShuffleLanes.back() < NumElements) { Parts.push_back(Builder.CreateBitCast( Builder.CreateShuffleVector(TI->getOperand(0), ShuffleLanes), VecTy)); if (Parts.size() == 4) { auto *F = Intrinsic::getDeclaration(TI->getModule(), Intrinsic::aarch64_neon_tbl4, VecTy); Parts.push_back(ConstantVector::get(MaskConst)); Results.push_back(Builder.CreateCall(F, Parts)); Parts.clear(); } for (int i = 0; i < ShuffleCount; ++i) ShuffleLanes[i] += ShuffleCount; } assert((Parts.empty() || Results.empty()) && "Lowering trunc for vectors requiring different TBL instructions is " "not supported!"); // Call TBL for the residual table bytes present in 1,2, or 3 FP/SIMD // registers if (!Parts.empty()) { Intrinsic::ID TblID; switch (Parts.size()) { case 1: TblID = Intrinsic::aarch64_neon_tbl1; break; case 2: TblID = Intrinsic::aarch64_neon_tbl2; break; case 3: TblID = Intrinsic::aarch64_neon_tbl3; break; } auto *F = Intrinsic::getDeclaration(TI->getModule(), TblID, VecTy); Parts.push_back(ConstantVector::get(MaskConst)); Results.push_back(Builder.CreateCall(F, Parts)); } // Extract the destination vector from TBL result(s) after combining them // where applicable. Currently, at most two TBLs are supported. assert(Results.size() <= 2 && "Trunc lowering does not support generation of " "more than 2 tbl instructions!"); Value *FinalResult = Results[0]; if (Results.size() == 1) { if (ElemsPerTbl < 16) { SmallVector FinalMask(ElemsPerTbl); std::iota(FinalMask.begin(), FinalMask.end(), 0); FinalResult = Builder.CreateShuffleVector(Results[0], FinalMask); } } else { SmallVector FinalMask(ElemsPerTbl * Results.size()); if (ElemsPerTbl < 16) { std::iota(FinalMask.begin(), FinalMask.begin() + ElemsPerTbl, 0); std::iota(FinalMask.begin() + ElemsPerTbl, FinalMask.end(), 16); } else { std::iota(FinalMask.begin(), FinalMask.end(), 0); } FinalResult = Builder.CreateShuffleVector(Results[0], Results[1], FinalMask); } TI->replaceAllUsesWith(FinalResult); TI->eraseFromParent(); } bool AArch64TargetLowering::optimizeExtendOrTruncateConversion( Instruction *I, Loop *L, const TargetTransformInfo &TTI) const { // shuffle_vector instructions are serialized when targeting SVE, // see LowerSPLAT_VECTOR. This peephole is not beneficial. if (!EnableExtToTBL || Subtarget->useSVEForFixedLengthVectors()) return false; // Try to optimize conversions using tbl. This requires materializing constant // index vectors, which can increase code size and add loads. Skip the // transform unless the conversion is in a loop block guaranteed to execute // and we are not optimizing for size. Function *F = I->getParent()->getParent(); if (!L || L->getHeader() != I->getParent() || F->hasMinSize() || F->hasOptSize()) return false; auto *SrcTy = dyn_cast(I->getOperand(0)->getType()); auto *DstTy = dyn_cast(I->getType()); if (!SrcTy || !DstTy) return false; // Convert 'zext %x to ' to a shuffle that can be // lowered to tbl instructions to insert the original i8 elements // into i8x lanes. This is enabled for cases where it is beneficial. auto *ZExt = dyn_cast(I); if (ZExt && SrcTy->getElementType()->isIntegerTy(8)) { auto DstWidth = DstTy->getElementType()->getScalarSizeInBits(); if (DstWidth % 8 != 0) return false; auto *TruncDstType = cast(VectorType::getTruncatedElementVectorType(DstTy)); // If the ZExt can be lowered to a single ZExt to the next power-of-2 and // the remaining ZExt folded into the user, don't use tbl lowering. auto SrcWidth = SrcTy->getElementType()->getScalarSizeInBits(); if (TTI.getCastInstrCost(I->getOpcode(), DstTy, TruncDstType, TargetTransformInfo::getCastContextHint(I), TTI::TCK_SizeAndLatency, I) == TTI::TCC_Free) { if (SrcWidth * 2 >= TruncDstType->getElementType()->getScalarSizeInBits()) return false; DstTy = TruncDstType; } return createTblShuffleForZExt(ZExt, DstTy, Subtarget->isLittleEndian()); } auto *UIToFP = dyn_cast(I); if (UIToFP && SrcTy->getElementType()->isIntegerTy(8) && DstTy->getElementType()->isFloatTy()) { IRBuilder<> Builder(I); auto *ZExt = cast( Builder.CreateZExt(I->getOperand(0), VectorType::getInteger(DstTy))); auto *UI = Builder.CreateUIToFP(ZExt, DstTy); I->replaceAllUsesWith(UI); I->eraseFromParent(); return createTblShuffleForZExt(ZExt, cast(ZExt->getType()), Subtarget->isLittleEndian()); } // Convert 'fptoui <(8|16) x float> to <(8|16) x i8>' to a wide fptoui // followed by a truncate lowered to using tbl.4. auto *FPToUI = dyn_cast(I); if (FPToUI && (SrcTy->getNumElements() == 8 || SrcTy->getNumElements() == 16) && SrcTy->getElementType()->isFloatTy() && DstTy->getElementType()->isIntegerTy(8)) { IRBuilder<> Builder(I); auto *WideConv = Builder.CreateFPToUI(FPToUI->getOperand(0), VectorType::getInteger(SrcTy)); auto *TruncI = Builder.CreateTrunc(WideConv, DstTy); I->replaceAllUsesWith(TruncI); I->eraseFromParent(); createTblForTrunc(cast(TruncI), Subtarget->isLittleEndian()); return true; } // Convert 'trunc <(8|16) x (i32|i64)> %x to <(8|16) x i8>' to an appropriate // tbl instruction selecting the lowest/highest (little/big endian) 8 bits // per lane of the input that is represented using 1,2,3 or 4 128-bit table // registers auto *TI = dyn_cast(I); if (TI && DstTy->getElementType()->isIntegerTy(8) && ((SrcTy->getElementType()->isIntegerTy(32) || SrcTy->getElementType()->isIntegerTy(64)) && (SrcTy->getNumElements() == 16 || SrcTy->getNumElements() == 8))) { createTblForTrunc(TI, Subtarget->isLittleEndian()); return true; } return false; } bool AArch64TargetLowering::hasPairedLoad(EVT LoadedType, Align &RequiredAligment) const { if (!LoadedType.isSimple() || (!LoadedType.isInteger() && !LoadedType.isFloatingPoint())) return false; // Cyclone supports unaligned accesses. RequiredAligment = Align(1); unsigned NumBits = LoadedType.getSizeInBits(); return NumBits == 32 || NumBits == 64; } /// A helper function for determining the number of interleaved accesses we /// will generate when lowering accesses of the given type. unsigned AArch64TargetLowering::getNumInterleavedAccesses( VectorType *VecTy, const DataLayout &DL, bool UseScalable) const { unsigned VecSize = 128; unsigned ElSize = DL.getTypeSizeInBits(VecTy->getElementType()); unsigned MinElts = VecTy->getElementCount().getKnownMinValue(); if (UseScalable) VecSize = std::max(Subtarget->getMinSVEVectorSizeInBits(), 128u); return std::max(1, (MinElts * ElSize + 127) / VecSize); } MachineMemOperand::Flags AArch64TargetLowering::getTargetMMOFlags(const Instruction &I) const { if (Subtarget->getProcFamily() == AArch64Subtarget::Falkor && I.hasMetadata(FALKOR_STRIDED_ACCESS_MD)) return MOStridedAccess; return MachineMemOperand::MONone; } bool AArch64TargetLowering::isLegalInterleavedAccessType( VectorType *VecTy, const DataLayout &DL, bool &UseScalable) const { unsigned ElSize = DL.getTypeSizeInBits(VecTy->getElementType()); auto EC = VecTy->getElementCount(); unsigned MinElts = EC.getKnownMinValue(); UseScalable = false; if (!VecTy->isScalableTy() && !Subtarget->hasNEON()) return false; if (VecTy->isScalableTy() && !Subtarget->hasSVEorSME()) return false; // Ensure that the predicate for this number of elements is available. if (Subtarget->hasSVE() && !getSVEPredPatternFromNumElements(MinElts)) return false; // Ensure the number of vector elements is greater than 1. if (MinElts < 2) return false; // Ensure the element type is legal. if (ElSize != 8 && ElSize != 16 && ElSize != 32 && ElSize != 64) return false; if (EC.isScalable()) { UseScalable = true; return isPowerOf2_32(MinElts) && (MinElts * ElSize) % 128 == 0; } unsigned VecSize = DL.getTypeSizeInBits(VecTy); if (!Subtarget->isNeonAvailable() || (Subtarget->useSVEForFixedLengthVectors() && (VecSize % Subtarget->getMinSVEVectorSizeInBits() == 0 || (VecSize < Subtarget->getMinSVEVectorSizeInBits() && isPowerOf2_32(MinElts) && VecSize > 128)))) { UseScalable = true; return true; } // Ensure the total vector size is 64 or a multiple of 128. Types larger than // 128 will be split into multiple interleaved accesses. return VecSize == 64 || VecSize % 128 == 0; } static ScalableVectorType *getSVEContainerIRType(FixedVectorType *VTy) { if (VTy->getElementType() == Type::getDoubleTy(VTy->getContext())) return ScalableVectorType::get(VTy->getElementType(), 2); if (VTy->getElementType() == Type::getFloatTy(VTy->getContext())) return ScalableVectorType::get(VTy->getElementType(), 4); if (VTy->getElementType() == Type::getBFloatTy(VTy->getContext())) return ScalableVectorType::get(VTy->getElementType(), 8); if (VTy->getElementType() == Type::getHalfTy(VTy->getContext())) return ScalableVectorType::get(VTy->getElementType(), 8); if (VTy->getElementType() == Type::getInt64Ty(VTy->getContext())) return ScalableVectorType::get(VTy->getElementType(), 2); if (VTy->getElementType() == Type::getInt32Ty(VTy->getContext())) return ScalableVectorType::get(VTy->getElementType(), 4); if (VTy->getElementType() == Type::getInt16Ty(VTy->getContext())) return ScalableVectorType::get(VTy->getElementType(), 8); if (VTy->getElementType() == Type::getInt8Ty(VTy->getContext())) return ScalableVectorType::get(VTy->getElementType(), 16); llvm_unreachable("Cannot handle input vector type"); } static Function *getStructuredLoadFunction(Module *M, unsigned Factor, bool Scalable, Type *LDVTy, Type *PtrTy) { assert(Factor >= 2 && Factor <= 4 && "Invalid interleave factor"); static const Intrinsic::ID SVELoads[3] = {Intrinsic::aarch64_sve_ld2_sret, Intrinsic::aarch64_sve_ld3_sret, Intrinsic::aarch64_sve_ld4_sret}; static const Intrinsic::ID NEONLoads[3] = {Intrinsic::aarch64_neon_ld2, Intrinsic::aarch64_neon_ld3, Intrinsic::aarch64_neon_ld4}; if (Scalable) return Intrinsic::getDeclaration(M, SVELoads[Factor - 2], {LDVTy}); return Intrinsic::getDeclaration(M, NEONLoads[Factor - 2], {LDVTy, PtrTy}); } static Function *getStructuredStoreFunction(Module *M, unsigned Factor, bool Scalable, Type *STVTy, Type *PtrTy) { assert(Factor >= 2 && Factor <= 4 && "Invalid interleave factor"); static const Intrinsic::ID SVEStores[3] = {Intrinsic::aarch64_sve_st2, Intrinsic::aarch64_sve_st3, Intrinsic::aarch64_sve_st4}; static const Intrinsic::ID NEONStores[3] = {Intrinsic::aarch64_neon_st2, Intrinsic::aarch64_neon_st3, Intrinsic::aarch64_neon_st4}; if (Scalable) return Intrinsic::getDeclaration(M, SVEStores[Factor - 2], {STVTy}); return Intrinsic::getDeclaration(M, NEONStores[Factor - 2], {STVTy, PtrTy}); } /// Lower an interleaved load into a ldN intrinsic. /// /// E.g. Lower an interleaved load (Factor = 2): /// %wide.vec = load <8 x i32>, <8 x i32>* %ptr /// %v0 = shuffle %wide.vec, undef, <0, 2, 4, 6> ; Extract even elements /// %v1 = shuffle %wide.vec, undef, <1, 3, 5, 7> ; Extract odd elements /// /// Into: /// %ld2 = { <4 x i32>, <4 x i32> } call llvm.aarch64.neon.ld2(%ptr) /// %vec0 = extractelement { <4 x i32>, <4 x i32> } %ld2, i32 0 /// %vec1 = extractelement { <4 x i32>, <4 x i32> } %ld2, i32 1 bool AArch64TargetLowering::lowerInterleavedLoad( LoadInst *LI, ArrayRef Shuffles, ArrayRef Indices, unsigned Factor) const { assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() && "Invalid interleave factor"); assert(!Shuffles.empty() && "Empty shufflevector input"); assert(Shuffles.size() == Indices.size() && "Unmatched number of shufflevectors and indices"); const DataLayout &DL = LI->getModule()->getDataLayout(); VectorType *VTy = Shuffles[0]->getType(); // Skip if we do not have NEON and skip illegal vector types. We can // "legalize" wide vector types into multiple interleaved accesses as long as // the vector types are divisible by 128. bool UseScalable; if (!Subtarget->hasNEON() || !isLegalInterleavedAccessType(VTy, DL, UseScalable)) return false; unsigned NumLoads = getNumInterleavedAccesses(VTy, DL, UseScalable); auto *FVTy = cast(VTy); // A pointer vector can not be the return type of the ldN intrinsics. Need to // load integer vectors first and then convert to pointer vectors. Type *EltTy = FVTy->getElementType(); if (EltTy->isPointerTy()) FVTy = FixedVectorType::get(DL.getIntPtrType(EltTy), FVTy->getNumElements()); // If we're going to generate more than one load, reset the sub-vector type // to something legal. FVTy = FixedVectorType::get(FVTy->getElementType(), FVTy->getNumElements() / NumLoads); auto *LDVTy = UseScalable ? cast(getSVEContainerIRType(FVTy)) : FVTy; IRBuilder<> Builder(LI); // The base address of the load. Value *BaseAddr = LI->getPointerOperand(); Type *PtrTy = LI->getPointerOperandType(); Type *PredTy = VectorType::get(Type::getInt1Ty(LDVTy->getContext()), LDVTy->getElementCount()); Function *LdNFunc = getStructuredLoadFunction(LI->getModule(), Factor, UseScalable, LDVTy, PtrTy); // Holds sub-vectors extracted from the load intrinsic return values. The // sub-vectors are associated with the shufflevector instructions they will // replace. DenseMap> SubVecs; Value *PTrue = nullptr; if (UseScalable) { std::optional PgPattern = getSVEPredPatternFromNumElements(FVTy->getNumElements()); if (Subtarget->getMinSVEVectorSizeInBits() == Subtarget->getMaxSVEVectorSizeInBits() && Subtarget->getMinSVEVectorSizeInBits() == DL.getTypeSizeInBits(FVTy)) PgPattern = AArch64SVEPredPattern::all; auto *PTruePat = ConstantInt::get(Type::getInt32Ty(LDVTy->getContext()), *PgPattern); PTrue = Builder.CreateIntrinsic(Intrinsic::aarch64_sve_ptrue, {PredTy}, {PTruePat}); } for (unsigned LoadCount = 0; LoadCount < NumLoads; ++LoadCount) { // If we're generating more than one load, compute the base address of // subsequent loads as an offset from the previous. if (LoadCount > 0) BaseAddr = Builder.CreateConstGEP1_32(LDVTy->getElementType(), BaseAddr, FVTy->getNumElements() * Factor); CallInst *LdN; if (UseScalable) LdN = Builder.CreateCall(LdNFunc, {PTrue, BaseAddr}, "ldN"); else LdN = Builder.CreateCall(LdNFunc, BaseAddr, "ldN"); // Extract and store the sub-vectors returned by the load intrinsic. for (unsigned i = 0; i < Shuffles.size(); i++) { ShuffleVectorInst *SVI = Shuffles[i]; unsigned Index = Indices[i]; Value *SubVec = Builder.CreateExtractValue(LdN, Index); if (UseScalable) SubVec = Builder.CreateExtractVector( FVTy, SubVec, ConstantInt::get(Type::getInt64Ty(VTy->getContext()), 0)); // Convert the integer vector to pointer vector if the element is pointer. if (EltTy->isPointerTy()) SubVec = Builder.CreateIntToPtr( SubVec, FixedVectorType::get(SVI->getType()->getElementType(), FVTy->getNumElements())); SubVecs[SVI].push_back(SubVec); } } // Replace uses of the shufflevector instructions with the sub-vectors // returned by the load intrinsic. If a shufflevector instruction is // associated with more than one sub-vector, those sub-vectors will be // concatenated into a single wide vector. for (ShuffleVectorInst *SVI : Shuffles) { auto &SubVec = SubVecs[SVI]; auto *WideVec = SubVec.size() > 1 ? concatenateVectors(Builder, SubVec) : SubVec[0]; SVI->replaceAllUsesWith(WideVec); } return true; } template bool hasNearbyPairedStore(Iter It, Iter End, Value *Ptr, const DataLayout &DL) { int MaxLookupDist = 20; unsigned IdxWidth = DL.getIndexSizeInBits(0); APInt OffsetA(IdxWidth, 0), OffsetB(IdxWidth, 0); const Value *PtrA1 = Ptr->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA); while (++It != End) { if (It->isDebugOrPseudoInst()) continue; if (MaxLookupDist-- == 0) break; if (const auto *SI = dyn_cast(&*It)) { const Value *PtrB1 = SI->getPointerOperand()->stripAndAccumulateInBoundsConstantOffsets( DL, OffsetB); if (PtrA1 == PtrB1 && (OffsetA.sextOrTrunc(IdxWidth) - OffsetB.sextOrTrunc(IdxWidth)) .abs() == 16) return true; } } return false; } /// Lower an interleaved store into a stN intrinsic. /// /// E.g. Lower an interleaved store (Factor = 3): /// %i.vec = shuffle <8 x i32> %v0, <8 x i32> %v1, /// <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> /// store <12 x i32> %i.vec, <12 x i32>* %ptr /// /// Into: /// %sub.v0 = shuffle <8 x i32> %v0, <8 x i32> v1, <0, 1, 2, 3> /// %sub.v1 = shuffle <8 x i32> %v0, <8 x i32> v1, <4, 5, 6, 7> /// %sub.v2 = shuffle <8 x i32> %v0, <8 x i32> v1, <8, 9, 10, 11> /// call void llvm.aarch64.neon.st3(%sub.v0, %sub.v1, %sub.v2, %ptr) /// /// Note that the new shufflevectors will be removed and we'll only generate one /// st3 instruction in CodeGen. /// /// Example for a more general valid mask (Factor 3). Lower: /// %i.vec = shuffle <32 x i32> %v0, <32 x i32> %v1, /// <4, 32, 16, 5, 33, 17, 6, 34, 18, 7, 35, 19> /// store <12 x i32> %i.vec, <12 x i32>* %ptr /// /// Into: /// %sub.v0 = shuffle <32 x i32> %v0, <32 x i32> v1, <4, 5, 6, 7> /// %sub.v1 = shuffle <32 x i32> %v0, <32 x i32> v1, <32, 33, 34, 35> /// %sub.v2 = shuffle <32 x i32> %v0, <32 x i32> v1, <16, 17, 18, 19> /// call void llvm.aarch64.neon.st3(%sub.v0, %sub.v1, %sub.v2, %ptr) bool AArch64TargetLowering::lowerInterleavedStore(StoreInst *SI, ShuffleVectorInst *SVI, unsigned Factor) const { assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() && "Invalid interleave factor"); auto *VecTy = cast(SVI->getType()); assert(VecTy->getNumElements() % Factor == 0 && "Invalid interleaved store"); unsigned LaneLen = VecTy->getNumElements() / Factor; Type *EltTy = VecTy->getElementType(); auto *SubVecTy = FixedVectorType::get(EltTy, LaneLen); const DataLayout &DL = SI->getModule()->getDataLayout(); bool UseScalable; // Skip if we do not have NEON and skip illegal vector types. We can // "legalize" wide vector types into multiple interleaved accesses as long as // the vector types are divisible by 128. if (!Subtarget->hasNEON() || !isLegalInterleavedAccessType(SubVecTy, DL, UseScalable)) return false; unsigned NumStores = getNumInterleavedAccesses(SubVecTy, DL, UseScalable); Value *Op0 = SVI->getOperand(0); Value *Op1 = SVI->getOperand(1); IRBuilder<> Builder(SI); // StN intrinsics don't support pointer vectors as arguments. Convert pointer // vectors to integer vectors. if (EltTy->isPointerTy()) { Type *IntTy = DL.getIntPtrType(EltTy); unsigned NumOpElts = cast(Op0->getType())->getNumElements(); // Convert to the corresponding integer vector. auto *IntVecTy = FixedVectorType::get(IntTy, NumOpElts); Op0 = Builder.CreatePtrToInt(Op0, IntVecTy); Op1 = Builder.CreatePtrToInt(Op1, IntVecTy); SubVecTy = FixedVectorType::get(IntTy, LaneLen); } // If we're going to generate more than one store, reset the lane length // and sub-vector type to something legal. LaneLen /= NumStores; SubVecTy = FixedVectorType::get(SubVecTy->getElementType(), LaneLen); auto *STVTy = UseScalable ? cast(getSVEContainerIRType(SubVecTy)) : SubVecTy; // The base address of the store. Value *BaseAddr = SI->getPointerOperand(); auto Mask = SVI->getShuffleMask(); // Sanity check if all the indices are NOT in range. // If mask is `poison`, `Mask` may be a vector of -1s. // If all of them are `poison`, OOB read will happen later. if (llvm::all_of(Mask, [](int Idx) { return Idx == PoisonMaskElem; })) { return false; } // A 64bit st2 which does not start at element 0 will involved adding extra // ext elements making the st2 unprofitable, and if there is a nearby store // that points to BaseAddr+16 or BaseAddr-16 then it can be better left as a // zip;ldp pair which has higher throughput. if (Factor == 2 && SubVecTy->getPrimitiveSizeInBits() == 64 && (Mask[0] != 0 || hasNearbyPairedStore(SI->getIterator(), SI->getParent()->end(), BaseAddr, DL) || hasNearbyPairedStore(SI->getReverseIterator(), SI->getParent()->rend(), BaseAddr, DL))) return false; Type *PtrTy = SI->getPointerOperandType(); Type *PredTy = VectorType::get(Type::getInt1Ty(STVTy->getContext()), STVTy->getElementCount()); Function *StNFunc = getStructuredStoreFunction(SI->getModule(), Factor, UseScalable, STVTy, PtrTy); Value *PTrue = nullptr; if (UseScalable) { std::optional PgPattern = getSVEPredPatternFromNumElements(SubVecTy->getNumElements()); if (Subtarget->getMinSVEVectorSizeInBits() == Subtarget->getMaxSVEVectorSizeInBits() && Subtarget->getMinSVEVectorSizeInBits() == DL.getTypeSizeInBits(SubVecTy)) PgPattern = AArch64SVEPredPattern::all; auto *PTruePat = ConstantInt::get(Type::getInt32Ty(STVTy->getContext()), *PgPattern); PTrue = Builder.CreateIntrinsic(Intrinsic::aarch64_sve_ptrue, {PredTy}, {PTruePat}); } for (unsigned StoreCount = 0; StoreCount < NumStores; ++StoreCount) { SmallVector Ops; // Split the shufflevector operands into sub vectors for the new stN call. for (unsigned i = 0; i < Factor; i++) { Value *Shuffle; unsigned IdxI = StoreCount * LaneLen * Factor + i; if (Mask[IdxI] >= 0) { Shuffle = Builder.CreateShuffleVector( Op0, Op1, createSequentialMask(Mask[IdxI], LaneLen, 0)); } else { unsigned StartMask = 0; for (unsigned j = 1; j < LaneLen; j++) { unsigned IdxJ = StoreCount * LaneLen * Factor + j * Factor + i; if (Mask[IdxJ] >= 0) { StartMask = Mask[IdxJ] - j; break; } } // Note: Filling undef gaps with random elements is ok, since // those elements were being written anyway (with undefs). // In the case of all undefs we're defaulting to using elems from 0 // Note: StartMask cannot be negative, it's checked in // isReInterleaveMask Shuffle = Builder.CreateShuffleVector( Op0, Op1, createSequentialMask(StartMask, LaneLen, 0)); } if (UseScalable) Shuffle = Builder.CreateInsertVector( STVTy, UndefValue::get(STVTy), Shuffle, ConstantInt::get(Type::getInt64Ty(STVTy->getContext()), 0)); Ops.push_back(Shuffle); } if (UseScalable) Ops.push_back(PTrue); // If we generating more than one store, we compute the base address of // subsequent stores as an offset from the previous. if (StoreCount > 0) BaseAddr = Builder.CreateConstGEP1_32(SubVecTy->getElementType(), BaseAddr, LaneLen * Factor); Ops.push_back(BaseAddr); Builder.CreateCall(StNFunc, Ops); } return true; } bool AArch64TargetLowering::lowerDeinterleaveIntrinsicToLoad( IntrinsicInst *DI, LoadInst *LI) const { // Only deinterleave2 supported at present. if (DI->getIntrinsicID() != Intrinsic::experimental_vector_deinterleave2) return false; // Only a factor of 2 supported at present. const unsigned Factor = 2; VectorType *VTy = cast(DI->getType()->getContainedType(0)); const DataLayout &DL = DI->getModule()->getDataLayout(); bool UseScalable; if (!isLegalInterleavedAccessType(VTy, DL, UseScalable)) return false; // TODO: Add support for using SVE instructions with fixed types later, using // the code from lowerInterleavedLoad to obtain the correct container type. if (UseScalable && !VTy->isScalableTy()) return false; unsigned NumLoads = getNumInterleavedAccesses(VTy, DL, UseScalable); VectorType *LdTy = VectorType::get(VTy->getElementType(), VTy->getElementCount().divideCoefficientBy(NumLoads)); Type *PtrTy = LI->getPointerOperandType(); Function *LdNFunc = getStructuredLoadFunction(DI->getModule(), Factor, UseScalable, LdTy, PtrTy); IRBuilder<> Builder(LI); Value *Pred = nullptr; if (UseScalable) Pred = Builder.CreateVectorSplat(LdTy->getElementCount(), Builder.getTrue()); Value *BaseAddr = LI->getPointerOperand(); Value *Result; if (NumLoads > 1) { Value *Left = PoisonValue::get(VTy); Value *Right = PoisonValue::get(VTy); for (unsigned I = 0; I < NumLoads; ++I) { Value *Offset = Builder.getInt64(I * Factor); Value *Address = Builder.CreateGEP(LdTy, BaseAddr, {Offset}); Value *LdN = nullptr; if (UseScalable) LdN = Builder.CreateCall(LdNFunc, {Pred, Address}, "ldN"); else LdN = Builder.CreateCall(LdNFunc, Address, "ldN"); Value *Idx = Builder.getInt64(I * LdTy->getElementCount().getKnownMinValue()); Left = Builder.CreateInsertVector( VTy, Left, Builder.CreateExtractValue(LdN, 0), Idx); Right = Builder.CreateInsertVector( VTy, Right, Builder.CreateExtractValue(LdN, 1), Idx); } Result = PoisonValue::get(DI->getType()); Result = Builder.CreateInsertValue(Result, Left, 0); Result = Builder.CreateInsertValue(Result, Right, 1); } else { if (UseScalable) Result = Builder.CreateCall(LdNFunc, {Pred, BaseAddr}, "ldN"); else Result = Builder.CreateCall(LdNFunc, BaseAddr, "ldN"); } DI->replaceAllUsesWith(Result); return true; } bool AArch64TargetLowering::lowerInterleaveIntrinsicToStore( IntrinsicInst *II, StoreInst *SI) const { // Only interleave2 supported at present. if (II->getIntrinsicID() != Intrinsic::experimental_vector_interleave2) return false; // Only a factor of 2 supported at present. const unsigned Factor = 2; VectorType *VTy = cast(II->getOperand(0)->getType()); const DataLayout &DL = II->getModule()->getDataLayout(); bool UseScalable; if (!isLegalInterleavedAccessType(VTy, DL, UseScalable)) return false; // TODO: Add support for using SVE instructions with fixed types later, using // the code from lowerInterleavedStore to obtain the correct container type. if (UseScalable && !VTy->isScalableTy()) return false; unsigned NumStores = getNumInterleavedAccesses(VTy, DL, UseScalable); VectorType *StTy = VectorType::get(VTy->getElementType(), VTy->getElementCount().divideCoefficientBy(NumStores)); Type *PtrTy = SI->getPointerOperandType(); Function *StNFunc = getStructuredStoreFunction(SI->getModule(), Factor, UseScalable, StTy, PtrTy); IRBuilder<> Builder(SI); Value *BaseAddr = SI->getPointerOperand(); Value *Pred = nullptr; if (UseScalable) Pred = Builder.CreateVectorSplat(StTy->getElementCount(), Builder.getTrue()); Value *L = II->getOperand(0); Value *R = II->getOperand(1); for (unsigned I = 0; I < NumStores; ++I) { Value *Address = BaseAddr; if (NumStores > 1) { Value *Offset = Builder.getInt64(I * Factor); Address = Builder.CreateGEP(StTy, BaseAddr, {Offset}); Value *Idx = Builder.getInt64(I * StTy->getElementCount().getKnownMinValue()); L = Builder.CreateExtractVector(StTy, II->getOperand(0), Idx); R = Builder.CreateExtractVector(StTy, II->getOperand(1), Idx); } if (UseScalable) Builder.CreateCall(StNFunc, {L, R, Pred, Address}); else Builder.CreateCall(StNFunc, {L, R, Address}); } return true; } EVT AArch64TargetLowering::getOptimalMemOpType( const MemOp &Op, const AttributeList &FuncAttributes) const { bool CanImplicitFloat = !FuncAttributes.hasFnAttr(Attribute::NoImplicitFloat); bool CanUseNEON = Subtarget->hasNEON() && CanImplicitFloat; bool CanUseFP = Subtarget->hasFPARMv8() && CanImplicitFloat; // Only use AdvSIMD to implement memset of 32-byte and above. It would have // taken one instruction to materialize the v2i64 zero and one store (with // restrictive addressing mode). Just do i64 stores. bool IsSmallMemset = Op.isMemset() && Op.size() < 32; auto AlignmentIsAcceptable = [&](EVT VT, Align AlignCheck) { if (Op.isAligned(AlignCheck)) return true; unsigned Fast; return allowsMisalignedMemoryAccesses(VT, 0, Align(1), MachineMemOperand::MONone, &Fast) && Fast; }; if (CanUseNEON && Op.isMemset() && !IsSmallMemset && AlignmentIsAcceptable(MVT::v16i8, Align(16))) return MVT::v16i8; if (CanUseFP && !IsSmallMemset && AlignmentIsAcceptable(MVT::f128, Align(16))) return MVT::f128; if (Op.size() >= 8 && AlignmentIsAcceptable(MVT::i64, Align(8))) return MVT::i64; if (Op.size() >= 4 && AlignmentIsAcceptable(MVT::i32, Align(4))) return MVT::i32; return MVT::Other; } LLT AArch64TargetLowering::getOptimalMemOpLLT( const MemOp &Op, const AttributeList &FuncAttributes) const { bool CanImplicitFloat = !FuncAttributes.hasFnAttr(Attribute::NoImplicitFloat); bool CanUseNEON = Subtarget->hasNEON() && CanImplicitFloat; bool CanUseFP = Subtarget->hasFPARMv8() && CanImplicitFloat; // Only use AdvSIMD to implement memset of 32-byte and above. It would have // taken one instruction to materialize the v2i64 zero and one store (with // restrictive addressing mode). Just do i64 stores. bool IsSmallMemset = Op.isMemset() && Op.size() < 32; auto AlignmentIsAcceptable = [&](EVT VT, Align AlignCheck) { if (Op.isAligned(AlignCheck)) return true; unsigned Fast; return allowsMisalignedMemoryAccesses(VT, 0, Align(1), MachineMemOperand::MONone, &Fast) && Fast; }; if (CanUseNEON && Op.isMemset() && !IsSmallMemset && AlignmentIsAcceptable(MVT::v2i64, Align(16))) return LLT::fixed_vector(2, 64); if (CanUseFP && !IsSmallMemset && AlignmentIsAcceptable(MVT::f128, Align(16))) return LLT::scalar(128); if (Op.size() >= 8 && AlignmentIsAcceptable(MVT::i64, Align(8))) return LLT::scalar(64); if (Op.size() >= 4 && AlignmentIsAcceptable(MVT::i32, Align(4))) return LLT::scalar(32); return LLT(); } // 12-bit optionally shifted immediates are legal for adds. bool AArch64TargetLowering::isLegalAddImmediate(int64_t Immed) const { if (Immed == std::numeric_limits::min()) { LLVM_DEBUG(dbgs() << "Illegal add imm " << Immed << ": avoid UB for INT64_MIN\n"); return false; } // Same encoding for add/sub, just flip the sign. Immed = std::abs(Immed); bool IsLegal = ((Immed >> 12) == 0 || ((Immed & 0xfff) == 0 && Immed >> 24 == 0)); LLVM_DEBUG(dbgs() << "Is " << Immed << " legal add imm: " << (IsLegal ? "yes" : "no") << "\n"); return IsLegal; } bool AArch64TargetLowering::isLegalAddScalableImmediate(int64_t Imm) const { // We will only emit addvl/inc* instructions for SVE2 if (!Subtarget->hasSVE2()) return false; // addvl's immediates are in terms of the number of bytes in a register. // Since there are 16 in the base supported size (128bits), we need to // divide the immediate by that much to give us a useful immediate to // multiply by vscale. We can't have a remainder as a result of this. if (Imm % 16 == 0) return isInt<6>(Imm / 16); // Inc[b|h|w|d] instructions take a pattern and a positive immediate // multiplier. For now, assume a pattern of 'all'. Incb would be a subset // of addvl as a result, so only take h|w|d into account. // Dec[h|w|d] will cover subtractions. // Immediates are in the range [1,16], so we can't do a 2's complement check. // FIXME: Can we make use of other patterns to cover other immediates? // inch|dech if (Imm % 8 == 0) return std::labs(Imm / 8) <= 16; // incw|decw if (Imm % 4 == 0) return std::labs(Imm / 4) <= 16; // incd|decd if (Imm % 2 == 0) return std::labs(Imm / 2) <= 16; return false; } // Return false to prevent folding // (mul (add x, c1), c2) -> (add (mul x, c2), c2*c1) in DAGCombine, // if the folding leads to worse code. bool AArch64TargetLowering::isMulAddWithConstProfitable( SDValue AddNode, SDValue ConstNode) const { // Let the DAGCombiner decide for vector types and large types. const EVT VT = AddNode.getValueType(); if (VT.isVector() || VT.getScalarSizeInBits() > 64) return true; // It is worse if c1 is legal add immediate, while c1*c2 is not // and has to be composed by at least two instructions. const ConstantSDNode *C1Node = cast(AddNode.getOperand(1)); const ConstantSDNode *C2Node = cast(ConstNode); const int64_t C1 = C1Node->getSExtValue(); const APInt C1C2 = C1Node->getAPIntValue() * C2Node->getAPIntValue(); if (!isLegalAddImmediate(C1) || isLegalAddImmediate(C1C2.getSExtValue())) return true; SmallVector Insn; // Adapt to the width of a register. unsigned BitSize = VT.getSizeInBits() <= 32 ? 32 : 64; AArch64_IMM::expandMOVImm(C1C2.getZExtValue(), BitSize, Insn); if (Insn.size() > 1) return false; // Default to true and let the DAGCombiner decide. return true; } // Integer comparisons are implemented with ADDS/SUBS, so the range of valid // immediates is the same as for an add or a sub. bool AArch64TargetLowering::isLegalICmpImmediate(int64_t Immed) const { return isLegalAddImmediate(Immed); } /// isLegalAddressingMode - Return true if the addressing mode represented /// by AM is legal for this target, for a load/store of the specified type. bool AArch64TargetLowering::isLegalAddressingMode(const DataLayout &DL, const AddrMode &AMode, Type *Ty, unsigned AS, Instruction *I) const { // AArch64 has five basic addressing modes: // reg // reg + 9-bit signed offset // reg + SIZE_IN_BYTES * 12-bit unsigned offset // reg1 + reg2 // reg + SIZE_IN_BYTES * reg // No global is ever allowed as a base. if (AMode.BaseGV) return false; // No reg+reg+imm addressing. if (AMode.HasBaseReg && AMode.BaseOffs && AMode.Scale) return false; // Canonicalise `1*ScaledReg + imm` into `BaseReg + imm` and // `2*ScaledReg` into `BaseReg + ScaledReg` AddrMode AM = AMode; if (AM.Scale && !AM.HasBaseReg) { if (AM.Scale == 1) { AM.HasBaseReg = true; AM.Scale = 0; } else if (AM.Scale == 2) { AM.HasBaseReg = true; AM.Scale = 1; } else { return false; } } // A base register is required in all addressing modes. if (!AM.HasBaseReg) return false; if (Ty->isScalableTy()) { if (isa(Ty)) { // See if we have a foldable vscale-based offset, for vector types which // are either legal or smaller than the minimum; more work will be // required if we need to consider addressing for types which need // legalization by splitting. uint64_t VecNumBytes = DL.getTypeSizeInBits(Ty).getKnownMinValue() / 8; if (AM.HasBaseReg && !AM.BaseOffs && AM.ScalableOffset && !AM.Scale && (AM.ScalableOffset % VecNumBytes == 0) && VecNumBytes <= 16 && isPowerOf2_64(VecNumBytes)) return isInt<4>(AM.ScalableOffset / (int64_t)VecNumBytes); uint64_t VecElemNumBytes = DL.getTypeSizeInBits(cast(Ty)->getElementType()) / 8; return AM.HasBaseReg && !AM.BaseOffs && !AM.ScalableOffset && (AM.Scale == 0 || (uint64_t)AM.Scale == VecElemNumBytes); } return AM.HasBaseReg && !AM.BaseOffs && !AM.ScalableOffset && !AM.Scale; } // No scalable offsets allowed for non-scalable types. if (AM.ScalableOffset) return false; // check reg + imm case: // i.e., reg + 0, reg + imm9, reg + SIZE_IN_BYTES * uimm12 uint64_t NumBytes = 0; if (Ty->isSized()) { uint64_t NumBits = DL.getTypeSizeInBits(Ty); NumBytes = NumBits / 8; if (!isPowerOf2_64(NumBits)) NumBytes = 0; } return Subtarget->getInstrInfo()->isLegalAddressingMode(NumBytes, AM.BaseOffs, AM.Scale); } // Check whether the 2 offsets belong to the same imm24 range, and their high // 12bits are same, then their high part can be decoded with the offset of add. int64_t AArch64TargetLowering::getPreferredLargeGEPBaseOffset(int64_t MinOffset, int64_t MaxOffset) const { int64_t HighPart = MinOffset & ~0xfffULL; if (MinOffset >> 12 == MaxOffset >> 12 && isLegalAddImmediate(HighPart)) { // Rebase the value to an integer multiple of imm12. return HighPart; } return 0; } bool AArch64TargetLowering::shouldConsiderGEPOffsetSplit() const { // Consider splitting large offset of struct or array. return true; } bool AArch64TargetLowering::isFMAFasterThanFMulAndFAdd( const MachineFunction &MF, EVT VT) const { VT = VT.getScalarType(); if (!VT.isSimple()) return false; switch (VT.getSimpleVT().SimpleTy) { case MVT::f16: return Subtarget->hasFullFP16(); case MVT::f32: case MVT::f64: return true; default: break; } return false; } bool AArch64TargetLowering::isFMAFasterThanFMulAndFAdd(const Function &F, Type *Ty) const { switch (Ty->getScalarType()->getTypeID()) { case Type::FloatTyID: case Type::DoubleTyID: return true; default: return false; } } bool AArch64TargetLowering::generateFMAsInMachineCombiner( EVT VT, CodeGenOptLevel OptLevel) const { return (OptLevel >= CodeGenOptLevel::Aggressive) && !VT.isScalableVector() && !useSVEForFixedLengthVectorVT(VT); } const MCPhysReg * AArch64TargetLowering::getScratchRegisters(CallingConv::ID) const { // LR is a callee-save register, but we must treat it as clobbered by any call // site. Hence we include LR in the scratch registers, which are in turn added // as implicit-defs for stackmaps and patchpoints. static const MCPhysReg ScratchRegs[] = { AArch64::X16, AArch64::X17, AArch64::LR, 0 }; return ScratchRegs; } ArrayRef AArch64TargetLowering::getRoundingControlRegisters() const { static const MCPhysReg RCRegs[] = {AArch64::FPCR}; return RCRegs; } bool AArch64TargetLowering::isDesirableToCommuteWithShift(const SDNode *N, CombineLevel Level) const { assert((N->getOpcode() == ISD::SHL || N->getOpcode() == ISD::SRA || N->getOpcode() == ISD::SRL) && "Expected shift op"); SDValue ShiftLHS = N->getOperand(0); EVT VT = N->getValueType(0); // If ShiftLHS is unsigned bit extraction: ((x >> C) & mask), then do not // combine it with shift 'N' to let it be lowered to UBFX except: // ((x >> C) & mask) << C. if (ShiftLHS.getOpcode() == ISD::AND && (VT == MVT::i32 || VT == MVT::i64) && isa(ShiftLHS.getOperand(1))) { uint64_t TruncMask = ShiftLHS.getConstantOperandVal(1); if (isMask_64(TruncMask)) { SDValue AndLHS = ShiftLHS.getOperand(0); if (AndLHS.getOpcode() == ISD::SRL) { if (auto *SRLC = dyn_cast(AndLHS.getOperand(1))) { if (N->getOpcode() == ISD::SHL) if (auto *SHLC = dyn_cast(N->getOperand(1))) return SRLC->getZExtValue() == SHLC->getZExtValue(); return false; } } } } return true; } bool AArch64TargetLowering::isDesirableToCommuteXorWithShift( const SDNode *N) const { assert(N->getOpcode() == ISD::XOR && (N->getOperand(0).getOpcode() == ISD::SHL || N->getOperand(0).getOpcode() == ISD::SRL) && "Expected XOR(SHIFT) pattern"); // Only commute if the entire NOT mask is a hidden shifted mask. auto *XorC = dyn_cast(N->getOperand(1)); auto *ShiftC = dyn_cast(N->getOperand(0).getOperand(1)); if (XorC && ShiftC) { unsigned MaskIdx, MaskLen; if (XorC->getAPIntValue().isShiftedMask(MaskIdx, MaskLen)) { unsigned ShiftAmt = ShiftC->getZExtValue(); unsigned BitWidth = N->getValueType(0).getScalarSizeInBits(); if (N->getOperand(0).getOpcode() == ISD::SHL) return MaskIdx == ShiftAmt && MaskLen == (BitWidth - ShiftAmt); return MaskIdx == 0 && MaskLen == (BitWidth - ShiftAmt); } } return false; } bool AArch64TargetLowering::shouldFoldConstantShiftPairToMask( const SDNode *N, CombineLevel Level) const { assert(((N->getOpcode() == ISD::SHL && N->getOperand(0).getOpcode() == ISD::SRL) || (N->getOpcode() == ISD::SRL && N->getOperand(0).getOpcode() == ISD::SHL)) && "Expected shift-shift mask"); // Don't allow multiuse shift folding with the same shift amount. if (!N->getOperand(0)->hasOneUse()) return false; // Only fold srl(shl(x,c1),c2) iff C1 >= C2 to prevent loss of UBFX patterns. EVT VT = N->getValueType(0); if (N->getOpcode() == ISD::SRL && (VT == MVT::i32 || VT == MVT::i64)) { auto *C1 = dyn_cast(N->getOperand(0).getOperand(1)); auto *C2 = dyn_cast(N->getOperand(1)); return (!C1 || !C2 || C1->getZExtValue() >= C2->getZExtValue()); } return true; } bool AArch64TargetLowering::shouldFoldSelectWithIdentityConstant( unsigned BinOpcode, EVT VT) const { return VT.isScalableVector() && isTypeLegal(VT); } bool AArch64TargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm, Type *Ty) const { assert(Ty->isIntegerTy()); unsigned BitSize = Ty->getPrimitiveSizeInBits(); if (BitSize == 0) return false; int64_t Val = Imm.getSExtValue(); if (Val == 0 || AArch64_AM::isLogicalImmediate(Val, BitSize)) return true; if ((int64_t)Val < 0) Val = ~Val; if (BitSize == 32) Val &= (1LL << 32) - 1; unsigned Shift = llvm::Log2_64((uint64_t)Val) / 16; // MOVZ is free so return true for one or fewer MOVK. return Shift < 3; } bool AArch64TargetLowering::isExtractSubvectorCheap(EVT ResVT, EVT SrcVT, unsigned Index) const { if (!isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, ResVT)) return false; return (Index == 0 || Index == ResVT.getVectorMinNumElements()); } /// Turn vector tests of the signbit in the form of: /// xor (sra X, elt_size(X)-1), -1 /// into: /// cmge X, X, #0 static SDValue foldVectorXorShiftIntoCmp(SDNode *N, SelectionDAG &DAG, const AArch64Subtarget *Subtarget) { EVT VT = N->getValueType(0); if (!Subtarget->hasNEON() || !VT.isVector()) return SDValue(); // There must be a shift right algebraic before the xor, and the xor must be a // 'not' operation. SDValue Shift = N->getOperand(0); SDValue Ones = N->getOperand(1); if (Shift.getOpcode() != AArch64ISD::VASHR || !Shift.hasOneUse() || !ISD::isBuildVectorAllOnes(Ones.getNode())) return SDValue(); // The shift should be smearing the sign bit across each vector element. auto *ShiftAmt = dyn_cast(Shift.getOperand(1)); EVT ShiftEltTy = Shift.getValueType().getVectorElementType(); if (!ShiftAmt || ShiftAmt->getZExtValue() != ShiftEltTy.getSizeInBits() - 1) return SDValue(); return DAG.getNode(AArch64ISD::CMGEz, SDLoc(N), VT, Shift.getOperand(0)); } // Given a vecreduce_add node, detect the below pattern and convert it to the // node sequence with UABDL, [S|U]ADB and UADDLP. // // i32 vecreduce_add( // v16i32 abs( // v16i32 sub( // v16i32 [sign|zero]_extend(v16i8 a), v16i32 [sign|zero]_extend(v16i8 b)))) // =================> // i32 vecreduce_add( // v4i32 UADDLP( // v8i16 add( // v8i16 zext( // v8i8 [S|U]ABD low8:v16i8 a, low8:v16i8 b // v8i16 zext( // v8i8 [S|U]ABD high8:v16i8 a, high8:v16i8 b static SDValue performVecReduceAddCombineWithUADDLP(SDNode *N, SelectionDAG &DAG) { // Assumed i32 vecreduce_add if (N->getValueType(0) != MVT::i32) return SDValue(); SDValue VecReduceOp0 = N->getOperand(0); unsigned Opcode = VecReduceOp0.getOpcode(); // Assumed v16i32 abs if (Opcode != ISD::ABS || VecReduceOp0->getValueType(0) != MVT::v16i32) return SDValue(); SDValue ABS = VecReduceOp0; // Assumed v16i32 sub if (ABS->getOperand(0)->getOpcode() != ISD::SUB || ABS->getOperand(0)->getValueType(0) != MVT::v16i32) return SDValue(); SDValue SUB = ABS->getOperand(0); unsigned Opcode0 = SUB->getOperand(0).getOpcode(); unsigned Opcode1 = SUB->getOperand(1).getOpcode(); // Assumed v16i32 type if (SUB->getOperand(0)->getValueType(0) != MVT::v16i32 || SUB->getOperand(1)->getValueType(0) != MVT::v16i32) return SDValue(); // Assumed zext or sext bool IsZExt = false; if (Opcode0 == ISD::ZERO_EXTEND && Opcode1 == ISD::ZERO_EXTEND) { IsZExt = true; } else if (Opcode0 == ISD::SIGN_EXTEND && Opcode1 == ISD::SIGN_EXTEND) { IsZExt = false; } else return SDValue(); SDValue EXT0 = SUB->getOperand(0); SDValue EXT1 = SUB->getOperand(1); // Assumed zext's operand has v16i8 type if (EXT0->getOperand(0)->getValueType(0) != MVT::v16i8 || EXT1->getOperand(0)->getValueType(0) != MVT::v16i8) return SDValue(); // Pattern is dectected. Let's convert it to sequence of nodes. SDLoc DL(N); // First, create the node pattern of UABD/SABD. SDValue UABDHigh8Op0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v8i8, EXT0->getOperand(0), DAG.getConstant(8, DL, MVT::i64)); SDValue UABDHigh8Op1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v8i8, EXT1->getOperand(0), DAG.getConstant(8, DL, MVT::i64)); SDValue UABDHigh8 = DAG.getNode(IsZExt ? ISD::ABDU : ISD::ABDS, DL, MVT::v8i8, UABDHigh8Op0, UABDHigh8Op1); SDValue UABDL = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v8i16, UABDHigh8); // Second, create the node pattern of UABAL. SDValue UABDLo8Op0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v8i8, EXT0->getOperand(0), DAG.getConstant(0, DL, MVT::i64)); SDValue UABDLo8Op1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v8i8, EXT1->getOperand(0), DAG.getConstant(0, DL, MVT::i64)); SDValue UABDLo8 = DAG.getNode(IsZExt ? ISD::ABDU : ISD::ABDS, DL, MVT::v8i8, UABDLo8Op0, UABDLo8Op1); SDValue ZExtUABD = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v8i16, UABDLo8); SDValue UABAL = DAG.getNode(ISD::ADD, DL, MVT::v8i16, UABDL, ZExtUABD); // Third, create the node of UADDLP. SDValue UADDLP = DAG.getNode(AArch64ISD::UADDLP, DL, MVT::v4i32, UABAL); // Fourth, create the node of VECREDUCE_ADD. return DAG.getNode(ISD::VECREDUCE_ADD, DL, MVT::i32, UADDLP); } // Turn a v8i8/v16i8 extended vecreduce into a udot/sdot and vecreduce // vecreduce.add(ext(A)) to vecreduce.add(DOT(zero, A, one)) // vecreduce.add(mul(ext(A), ext(B))) to vecreduce.add(DOT(zero, A, B)) // If we have vectors larger than v16i8 we extract v16i8 vectors, // Follow the same steps above to get DOT instructions concatenate them // and generate vecreduce.add(concat_vector(DOT, DOT2, ..)). static SDValue performVecReduceAddCombine(SDNode *N, SelectionDAG &DAG, const AArch64Subtarget *ST) { if (!ST->hasDotProd()) return performVecReduceAddCombineWithUADDLP(N, DAG); SDValue Op0 = N->getOperand(0); if (N->getValueType(0) != MVT::i32 || Op0.getValueType().isScalableVT() || Op0.getValueType().getVectorElementType() != MVT::i32) return SDValue(); unsigned ExtOpcode = Op0.getOpcode(); SDValue A = Op0; SDValue B; if (ExtOpcode == ISD::MUL) { A = Op0.getOperand(0); B = Op0.getOperand(1); if (A.getOpcode() != B.getOpcode() || A.getOperand(0).getValueType() != B.getOperand(0).getValueType()) return SDValue(); ExtOpcode = A.getOpcode(); } if (ExtOpcode != ISD::ZERO_EXTEND && ExtOpcode != ISD::SIGN_EXTEND) return SDValue(); EVT Op0VT = A.getOperand(0).getValueType(); bool IsValidElementCount = Op0VT.getVectorNumElements() % 8 == 0; bool IsValidSize = Op0VT.getScalarSizeInBits() == 8; if (!IsValidElementCount || !IsValidSize) return SDValue(); SDLoc DL(Op0); // For non-mla reductions B can be set to 1. For MLA we take the operand of // the extend B. if (!B) B = DAG.getConstant(1, DL, Op0VT); else B = B.getOperand(0); unsigned IsMultipleOf16 = Op0VT.getVectorNumElements() % 16 == 0; unsigned NumOfVecReduce; EVT TargetType; if (IsMultipleOf16) { NumOfVecReduce = Op0VT.getVectorNumElements() / 16; TargetType = MVT::v4i32; } else { NumOfVecReduce = Op0VT.getVectorNumElements() / 8; TargetType = MVT::v2i32; } auto DotOpcode = (ExtOpcode == ISD::ZERO_EXTEND) ? AArch64ISD::UDOT : AArch64ISD::SDOT; // Handle the case where we need to generate only one Dot operation. if (NumOfVecReduce == 1) { SDValue Zeros = DAG.getConstant(0, DL, TargetType); SDValue Dot = DAG.getNode(DotOpcode, DL, Zeros.getValueType(), Zeros, A.getOperand(0), B); return DAG.getNode(ISD::VECREDUCE_ADD, DL, N->getValueType(0), Dot); } // Generate Dot instructions that are multiple of 16. unsigned VecReduce16Num = Op0VT.getVectorNumElements() / 16; SmallVector SDotVec16; unsigned I = 0; for (; I < VecReduce16Num; I += 1) { SDValue Zeros = DAG.getConstant(0, DL, MVT::v4i32); SDValue Op0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v16i8, A.getOperand(0), DAG.getConstant(I * 16, DL, MVT::i64)); SDValue Op1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v16i8, B, DAG.getConstant(I * 16, DL, MVT::i64)); SDValue Dot = DAG.getNode(DotOpcode, DL, Zeros.getValueType(), Zeros, Op0, Op1); SDotVec16.push_back(Dot); } // Concatenate dot operations. EVT SDot16EVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, 4 * VecReduce16Num); SDValue ConcatSDot16 = DAG.getNode(ISD::CONCAT_VECTORS, DL, SDot16EVT, SDotVec16); SDValue VecReduceAdd16 = DAG.getNode(ISD::VECREDUCE_ADD, DL, N->getValueType(0), ConcatSDot16); unsigned VecReduce8Num = (Op0VT.getVectorNumElements() % 16) / 8; if (VecReduce8Num == 0) return VecReduceAdd16; // Generate the remainder Dot operation that is multiple of 8. SmallVector SDotVec8; SDValue Zeros = DAG.getConstant(0, DL, MVT::v2i32); SDValue Vec8Op0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v8i8, A.getOperand(0), DAG.getConstant(I * 16, DL, MVT::i64)); SDValue Vec8Op1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v8i8, B, DAG.getConstant(I * 16, DL, MVT::i64)); SDValue Dot = DAG.getNode(DotOpcode, DL, Zeros.getValueType(), Zeros, Vec8Op0, Vec8Op1); SDValue VecReudceAdd8 = DAG.getNode(ISD::VECREDUCE_ADD, DL, N->getValueType(0), Dot); return DAG.getNode(ISD::ADD, DL, N->getValueType(0), VecReduceAdd16, VecReudceAdd8); } // Given an (integer) vecreduce, we know the order of the inputs does not // matter. We can convert UADDV(add(zext(extract_lo(x)), zext(extract_hi(x)))) // into UADDV(UADDLP(x)). This can also happen through an extra add, where we // transform UADDV(add(y, add(zext(extract_lo(x)), zext(extract_hi(x))))). static SDValue performUADDVAddCombine(SDValue A, SelectionDAG &DAG) { auto DetectAddExtract = [&](SDValue A) { // Look for add(zext(extract_lo(x)), zext(extract_hi(x))), returning // UADDLP(x) if found. assert(A.getOpcode() == ISD::ADD); EVT VT = A.getValueType(); SDValue Op0 = A.getOperand(0); SDValue Op1 = A.getOperand(1); if (Op0.getOpcode() != Op0.getOpcode() || (Op0.getOpcode() != ISD::ZERO_EXTEND && Op0.getOpcode() != ISD::SIGN_EXTEND)) return SDValue(); SDValue Ext0 = Op0.getOperand(0); SDValue Ext1 = Op1.getOperand(0); if (Ext0.getOpcode() != ISD::EXTRACT_SUBVECTOR || Ext1.getOpcode() != ISD::EXTRACT_SUBVECTOR || Ext0.getOperand(0) != Ext1.getOperand(0)) return SDValue(); // Check that the type is twice the add types, and the extract are from // upper/lower parts of the same source. if (Ext0.getOperand(0).getValueType().getVectorNumElements() != VT.getVectorNumElements() * 2) return SDValue(); if ((Ext0.getConstantOperandVal(1) != 0 || Ext1.getConstantOperandVal(1) != VT.getVectorNumElements()) && (Ext1.getConstantOperandVal(1) != 0 || Ext0.getConstantOperandVal(1) != VT.getVectorNumElements())) return SDValue(); unsigned Opcode = Op0.getOpcode() == ISD::ZERO_EXTEND ? AArch64ISD::UADDLP : AArch64ISD::SADDLP; return DAG.getNode(Opcode, SDLoc(A), VT, Ext0.getOperand(0)); }; if (SDValue R = DetectAddExtract(A)) return R; if (A.getOperand(0).getOpcode() == ISD::ADD && A.getOperand(0).hasOneUse()) if (SDValue R = performUADDVAddCombine(A.getOperand(0), DAG)) return DAG.getNode(ISD::ADD, SDLoc(A), A.getValueType(), R, A.getOperand(1)); if (A.getOperand(1).getOpcode() == ISD::ADD && A.getOperand(1).hasOneUse()) if (SDValue R = performUADDVAddCombine(A.getOperand(1), DAG)) return DAG.getNode(ISD::ADD, SDLoc(A), A.getValueType(), R, A.getOperand(0)); return SDValue(); } // We can convert a UADDV(add(zext(64-bit source), zext(64-bit source))) into // UADDLV(concat), where the concat represents the 64-bit zext sources. static SDValue performUADDVZextCombine(SDValue A, SelectionDAG &DAG) { // Look for add(zext(64-bit source), zext(64-bit source)), returning // UADDLV(concat(zext, zext)) if found. assert(A.getOpcode() == ISD::ADD); EVT VT = A.getValueType(); if (VT != MVT::v8i16 && VT != MVT::v4i32 && VT != MVT::v2i64) return SDValue(); SDValue Op0 = A.getOperand(0); SDValue Op1 = A.getOperand(1); if (Op0.getOpcode() != ISD::ZERO_EXTEND || Op0.getOpcode() != Op1.getOpcode()) return SDValue(); SDValue Ext0 = Op0.getOperand(0); SDValue Ext1 = Op1.getOperand(0); EVT ExtVT0 = Ext0.getValueType(); EVT ExtVT1 = Ext1.getValueType(); // Check zext VTs are the same and 64-bit length. if (ExtVT0 != ExtVT1 || VT.getScalarSizeInBits() != (2 * ExtVT0.getScalarSizeInBits())) return SDValue(); // Get VT for concat of zext sources. EVT PairVT = ExtVT0.getDoubleNumVectorElementsVT(*DAG.getContext()); SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(A), PairVT, Ext0, Ext1); switch (VT.getSimpleVT().SimpleTy) { case MVT::v2i64: case MVT::v4i32: return DAG.getNode(AArch64ISD::UADDLV, SDLoc(A), VT, Concat); case MVT::v8i16: { SDValue Uaddlv = DAG.getNode(AArch64ISD::UADDLV, SDLoc(A), MVT::v4i32, Concat); return DAG.getNode(AArch64ISD::NVCAST, SDLoc(A), MVT::v8i16, Uaddlv); } default: llvm_unreachable("Unhandled vector type"); } } static SDValue performUADDVCombine(SDNode *N, SelectionDAG &DAG) { SDValue A = N->getOperand(0); if (A.getOpcode() == ISD::ADD) { if (SDValue R = performUADDVAddCombine(A, DAG)) return DAG.getNode(N->getOpcode(), SDLoc(N), N->getValueType(0), R); else if (SDValue R = performUADDVZextCombine(A, DAG)) return R; } return SDValue(); } static SDValue performXorCombine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const AArch64Subtarget *Subtarget) { if (DCI.isBeforeLegalizeOps()) return SDValue(); return foldVectorXorShiftIntoCmp(N, DAG, Subtarget); } SDValue AArch64TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, SelectionDAG &DAG, SmallVectorImpl &Created) const { AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); if (isIntDivCheap(N->getValueType(0), Attr)) return SDValue(N,0); // Lower SDIV as SDIV EVT VT = N->getValueType(0); // For scalable and fixed types, mark them as cheap so we can handle it much // later. This allows us to handle larger than legal types. if (VT.isScalableVector() || Subtarget->useSVEForFixedLengthVectors()) return SDValue(N, 0); // fold (sdiv X, pow2) if ((VT != MVT::i32 && VT != MVT::i64) || !(Divisor.isPowerOf2() || Divisor.isNegatedPowerOf2())) return SDValue(); return TargetLowering::buildSDIVPow2WithCMov(N, Divisor, DAG, Created); } SDValue AArch64TargetLowering::BuildSREMPow2(SDNode *N, const APInt &Divisor, SelectionDAG &DAG, SmallVectorImpl &Created) const { AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); if (isIntDivCheap(N->getValueType(0), Attr)) return SDValue(N, 0); // Lower SREM as SREM EVT VT = N->getValueType(0); // For scalable and fixed types, mark them as cheap so we can handle it much // later. This allows us to handle larger than legal types. if (VT.isScalableVector() || Subtarget->useSVEForFixedLengthVectors()) return SDValue(N, 0); // fold (srem X, pow2) if ((VT != MVT::i32 && VT != MVT::i64) || !(Divisor.isPowerOf2() || Divisor.isNegatedPowerOf2())) return SDValue(); unsigned Lg2 = Divisor.countr_zero(); if (Lg2 == 0) return SDValue(); SDLoc DL(N); SDValue N0 = N->getOperand(0); SDValue Pow2MinusOne = DAG.getConstant((1ULL << Lg2) - 1, DL, VT); SDValue Zero = DAG.getConstant(0, DL, VT); SDValue CCVal, CSNeg; if (Lg2 == 1) { SDValue Cmp = getAArch64Cmp(N0, Zero, ISD::SETGE, CCVal, DAG, DL); SDValue And = DAG.getNode(ISD::AND, DL, VT, N0, Pow2MinusOne); CSNeg = DAG.getNode(AArch64ISD::CSNEG, DL, VT, And, And, CCVal, Cmp); Created.push_back(Cmp.getNode()); Created.push_back(And.getNode()); } else { SDValue CCVal = DAG.getConstant(AArch64CC::MI, DL, MVT_CC); SDVTList VTs = DAG.getVTList(VT, MVT::i32); SDValue Negs = DAG.getNode(AArch64ISD::SUBS, DL, VTs, Zero, N0); SDValue AndPos = DAG.getNode(ISD::AND, DL, VT, N0, Pow2MinusOne); SDValue AndNeg = DAG.getNode(ISD::AND, DL, VT, Negs, Pow2MinusOne); CSNeg = DAG.getNode(AArch64ISD::CSNEG, DL, VT, AndPos, AndNeg, CCVal, Negs.getValue(1)); Created.push_back(Negs.getNode()); Created.push_back(AndPos.getNode()); Created.push_back(AndNeg.getNode()); } return CSNeg; } static std::optional IsSVECntIntrinsic(SDValue S) { switch(getIntrinsicID(S.getNode())) { default: break; case Intrinsic::aarch64_sve_cntb: return 8; case Intrinsic::aarch64_sve_cnth: return 16; case Intrinsic::aarch64_sve_cntw: return 32; case Intrinsic::aarch64_sve_cntd: return 64; } return {}; } /// Calculates what the pre-extend type is, based on the extension /// operation node provided by \p Extend. /// /// In the case that \p Extend is a SIGN_EXTEND or a ZERO_EXTEND, the /// pre-extend type is pulled directly from the operand, while other extend /// operations need a bit more inspection to get this information. /// /// \param Extend The SDNode from the DAG that represents the extend operation /// /// \returns The type representing the \p Extend source type, or \p MVT::Other /// if no valid type can be determined static EVT calculatePreExtendType(SDValue Extend) { switch (Extend.getOpcode()) { case ISD::SIGN_EXTEND: case ISD::ZERO_EXTEND: return Extend.getOperand(0).getValueType(); case ISD::AssertSext: case ISD::AssertZext: case ISD::SIGN_EXTEND_INREG: { VTSDNode *TypeNode = dyn_cast(Extend.getOperand(1)); if (!TypeNode) return MVT::Other; return TypeNode->getVT(); } case ISD::AND: { ConstantSDNode *Constant = dyn_cast(Extend.getOperand(1).getNode()); if (!Constant) return MVT::Other; uint32_t Mask = Constant->getZExtValue(); if (Mask == UCHAR_MAX) return MVT::i8; else if (Mask == USHRT_MAX) return MVT::i16; else if (Mask == UINT_MAX) return MVT::i32; return MVT::Other; } default: return MVT::Other; } } /// Combines a buildvector(sext/zext) or shuffle(sext/zext, undef) node pattern /// into sext/zext(buildvector) or sext/zext(shuffle) making use of the vector /// SExt/ZExt rather than the scalar SExt/ZExt static SDValue performBuildShuffleExtendCombine(SDValue BV, SelectionDAG &DAG) { EVT VT = BV.getValueType(); if (BV.getOpcode() != ISD::BUILD_VECTOR && BV.getOpcode() != ISD::VECTOR_SHUFFLE) return SDValue(); // Use the first item in the buildvector/shuffle to get the size of the // extend, and make sure it looks valid. SDValue Extend = BV->getOperand(0); unsigned ExtendOpcode = Extend.getOpcode(); bool IsSExt = ExtendOpcode == ISD::SIGN_EXTEND || ExtendOpcode == ISD::SIGN_EXTEND_INREG || ExtendOpcode == ISD::AssertSext; if (!IsSExt && ExtendOpcode != ISD::ZERO_EXTEND && ExtendOpcode != ISD::AssertZext && ExtendOpcode != ISD::AND) return SDValue(); // Shuffle inputs are vector, limit to SIGN_EXTEND and ZERO_EXTEND to ensure // calculatePreExtendType will work without issue. if (BV.getOpcode() == ISD::VECTOR_SHUFFLE && ExtendOpcode != ISD::SIGN_EXTEND && ExtendOpcode != ISD::ZERO_EXTEND) return SDValue(); // Restrict valid pre-extend data type EVT PreExtendType = calculatePreExtendType(Extend); if (PreExtendType == MVT::Other || PreExtendType.getScalarSizeInBits() != VT.getScalarSizeInBits() / 2) return SDValue(); // Make sure all other operands are equally extended for (SDValue Op : drop_begin(BV->ops())) { if (Op.isUndef()) continue; unsigned Opc = Op.getOpcode(); bool OpcIsSExt = Opc == ISD::SIGN_EXTEND || Opc == ISD::SIGN_EXTEND_INREG || Opc == ISD::AssertSext; if (OpcIsSExt != IsSExt || calculatePreExtendType(Op) != PreExtendType) return SDValue(); } SDValue NBV; SDLoc DL(BV); if (BV.getOpcode() == ISD::BUILD_VECTOR) { EVT PreExtendVT = VT.changeVectorElementType(PreExtendType); EVT PreExtendLegalType = PreExtendType.getScalarSizeInBits() < 32 ? MVT::i32 : PreExtendType; SmallVector NewOps; for (SDValue Op : BV->ops()) NewOps.push_back(Op.isUndef() ? DAG.getUNDEF(PreExtendLegalType) : DAG.getAnyExtOrTrunc(Op.getOperand(0), DL, PreExtendLegalType)); NBV = DAG.getNode(ISD::BUILD_VECTOR, DL, PreExtendVT, NewOps); } else { // BV.getOpcode() == ISD::VECTOR_SHUFFLE EVT PreExtendVT = VT.changeVectorElementType(PreExtendType.getScalarType()); NBV = DAG.getVectorShuffle(PreExtendVT, DL, BV.getOperand(0).getOperand(0), BV.getOperand(1).isUndef() ? DAG.getUNDEF(PreExtendVT) : BV.getOperand(1).getOperand(0), cast(BV)->getMask()); } return DAG.getNode(IsSExt ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, DL, VT, NBV); } /// Combines a mul(dup(sext/zext)) node pattern into mul(sext/zext(dup)) /// making use of the vector SExt/ZExt rather than the scalar SExt/ZExt static SDValue performMulVectorExtendCombine(SDNode *Mul, SelectionDAG &DAG) { // If the value type isn't a vector, none of the operands are going to be dups EVT VT = Mul->getValueType(0); if (VT != MVT::v8i16 && VT != MVT::v4i32 && VT != MVT::v2i64) return SDValue(); SDValue Op0 = performBuildShuffleExtendCombine(Mul->getOperand(0), DAG); SDValue Op1 = performBuildShuffleExtendCombine(Mul->getOperand(1), DAG); // Neither operands have been changed, don't make any further changes if (!Op0 && !Op1) return SDValue(); SDLoc DL(Mul); return DAG.getNode(Mul->getOpcode(), DL, VT, Op0 ? Op0 : Mul->getOperand(0), Op1 ? Op1 : Mul->getOperand(1)); } // Combine v4i32 Mul(And(Srl(X, 15), 0x10001), 0xffff) -> v8i16 CMLTz // Same for other types with equivalent constants. static SDValue performMulVectorCmpZeroCombine(SDNode *N, SelectionDAG &DAG) { EVT VT = N->getValueType(0); if (VT != MVT::v2i64 && VT != MVT::v1i64 && VT != MVT::v2i32 && VT != MVT::v4i32 && VT != MVT::v4i16 && VT != MVT::v8i16) return SDValue(); if (N->getOperand(0).getOpcode() != ISD::AND || N->getOperand(0).getOperand(0).getOpcode() != ISD::SRL) return SDValue(); SDValue And = N->getOperand(0); SDValue Srl = And.getOperand(0); APInt V1, V2, V3; if (!ISD::isConstantSplatVector(N->getOperand(1).getNode(), V1) || !ISD::isConstantSplatVector(And.getOperand(1).getNode(), V2) || !ISD::isConstantSplatVector(Srl.getOperand(1).getNode(), V3)) return SDValue(); unsigned HalfSize = VT.getScalarSizeInBits() / 2; if (!V1.isMask(HalfSize) || V2 != (1ULL | 1ULL << HalfSize) || V3 != (HalfSize - 1)) return SDValue(); EVT HalfVT = EVT::getVectorVT(*DAG.getContext(), EVT::getIntegerVT(*DAG.getContext(), HalfSize), VT.getVectorElementCount() * 2); SDLoc DL(N); SDValue In = DAG.getNode(AArch64ISD::NVCAST, DL, HalfVT, Srl.getOperand(0)); SDValue CM = DAG.getNode(AArch64ISD::CMLTz, DL, HalfVT, In); return DAG.getNode(AArch64ISD::NVCAST, DL, VT, CM); } static SDValue performMulCombine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const AArch64Subtarget *Subtarget) { if (SDValue Ext = performMulVectorExtendCombine(N, DAG)) return Ext; if (SDValue Ext = performMulVectorCmpZeroCombine(N, DAG)) return Ext; if (DCI.isBeforeLegalizeOps()) return SDValue(); // Canonicalize X*(Y+1) -> X*Y+X and (X+1)*Y -> X*Y+Y, // and in MachineCombiner pass, add+mul will be combined into madd. // Similarly, X*(1-Y) -> X - X*Y and (1-Y)*X -> X - Y*X. SDLoc DL(N); EVT VT = N->getValueType(0); SDValue N0 = N->getOperand(0); SDValue N1 = N->getOperand(1); SDValue MulOper; unsigned AddSubOpc; auto IsAddSubWith1 = [&](SDValue V) -> bool { AddSubOpc = V->getOpcode(); if ((AddSubOpc == ISD::ADD || AddSubOpc == ISD::SUB) && V->hasOneUse()) { SDValue Opnd = V->getOperand(1); MulOper = V->getOperand(0); if (AddSubOpc == ISD::SUB) std::swap(Opnd, MulOper); if (auto C = dyn_cast(Opnd)) return C->isOne(); } return false; }; if (IsAddSubWith1(N0)) { SDValue MulVal = DAG.getNode(ISD::MUL, DL, VT, N1, MulOper); return DAG.getNode(AddSubOpc, DL, VT, N1, MulVal); } if (IsAddSubWith1(N1)) { SDValue MulVal = DAG.getNode(ISD::MUL, DL, VT, N0, MulOper); return DAG.getNode(AddSubOpc, DL, VT, N0, MulVal); } // The below optimizations require a constant RHS. if (!isa(N1)) return SDValue(); ConstantSDNode *C = cast(N1); const APInt &ConstValue = C->getAPIntValue(); // Allow the scaling to be folded into the `cnt` instruction by preventing // the scaling to be obscured here. This makes it easier to pattern match. if (IsSVECntIntrinsic(N0) || (N0->getOpcode() == ISD::TRUNCATE && (IsSVECntIntrinsic(N0->getOperand(0))))) if (ConstValue.sge(1) && ConstValue.sle(16)) return SDValue(); // Multiplication of a power of two plus/minus one can be done more // cheaply as shift+add/sub. For now, this is true unilaterally. If // future CPUs have a cheaper MADD instruction, this may need to be // gated on a subtarget feature. For Cyclone, 32-bit MADD is 4 cycles and // 64-bit is 5 cycles, so this is always a win. // More aggressively, some multiplications N0 * C can be lowered to // shift+add+shift if the constant C = A * B where A = 2^N + 1 and B = 2^M, // e.g. 6=3*2=(2+1)*2, 45=(1+4)*(1+8) // TODO: lower more cases. // TrailingZeroes is used to test if the mul can be lowered to // shift+add+shift. unsigned TrailingZeroes = ConstValue.countr_zero(); if (TrailingZeroes) { // Conservatively do not lower to shift+add+shift if the mul might be // folded into smul or umul. if (N0->hasOneUse() && (isSignExtended(N0, DAG) || isZeroExtended(N0, DAG))) return SDValue(); // Conservatively do not lower to shift+add+shift if the mul might be // folded into madd or msub. if (N->hasOneUse() && (N->use_begin()->getOpcode() == ISD::ADD || N->use_begin()->getOpcode() == ISD::SUB)) return SDValue(); } // Use ShiftedConstValue instead of ConstValue to support both shift+add/sub // and shift+add+shift. APInt ShiftedConstValue = ConstValue.ashr(TrailingZeroes); unsigned ShiftAmt; auto Shl = [&](SDValue N0, unsigned N1) { SDValue RHS = DAG.getConstant(N1, DL, MVT::i64); return DAG.getNode(ISD::SHL, DL, VT, N0, RHS); }; auto Add = [&](SDValue N0, SDValue N1) { return DAG.getNode(ISD::ADD, DL, VT, N0, N1); }; auto Sub = [&](SDValue N0, SDValue N1) { return DAG.getNode(ISD::SUB, DL, VT, N0, N1); }; auto Negate = [&](SDValue N) { SDValue Zero = DAG.getConstant(0, DL, VT); return DAG.getNode(ISD::SUB, DL, VT, Zero, N); }; // Can the const C be decomposed into (1+2^M1)*(1+2^N1), eg: // C = 45 is equal to (1+4)*(1+8), we don't decompose it into (1+2)*(16-1) as // the (2^N - 1) can't be execused via a single instruction. auto isPowPlusPlusConst = [](APInt C, APInt &M, APInt &N) { unsigned BitWidth = C.getBitWidth(); for (unsigned i = 1; i < BitWidth / 2; i++) { APInt Rem; APInt X(BitWidth, (1 << i) + 1); APInt::sdivrem(C, X, N, Rem); APInt NVMinus1 = N - 1; if (Rem == 0 && NVMinus1.isPowerOf2()) { M = X; return true; } } return false; }; if (ConstValue.isNonNegative()) { // (mul x, (2^N + 1) * 2^M) => (shl (add (shl x, N), x), M) // (mul x, 2^N - 1) => (sub (shl x, N), x) // (mul x, (2^(N-M) - 1) * 2^M) => (sub (shl x, N), (shl x, M)) // (mul x, (2^M + 1) * (2^N + 1)) // => MV = (add (shl x, M), x); (add (shl MV, N), MV) APInt SCVMinus1 = ShiftedConstValue - 1; APInt SCVPlus1 = ShiftedConstValue + 1; APInt CVPlus1 = ConstValue + 1; APInt CVM, CVN; if (SCVMinus1.isPowerOf2()) { ShiftAmt = SCVMinus1.logBase2(); return Shl(Add(Shl(N0, ShiftAmt), N0), TrailingZeroes); } else if (CVPlus1.isPowerOf2()) { ShiftAmt = CVPlus1.logBase2(); return Sub(Shl(N0, ShiftAmt), N0); } else if (SCVPlus1.isPowerOf2()) { ShiftAmt = SCVPlus1.logBase2() + TrailingZeroes; return Sub(Shl(N0, ShiftAmt), Shl(N0, TrailingZeroes)); } else if (Subtarget->hasALULSLFast() && isPowPlusPlusConst(ConstValue, CVM, CVN)) { APInt CVMMinus1 = CVM - 1; APInt CVNMinus1 = CVN - 1; unsigned ShiftM1 = CVMMinus1.logBase2(); unsigned ShiftN1 = CVNMinus1.logBase2(); // LSLFast implicate that Shifts <= 3 places are fast if (ShiftM1 <= 3 && ShiftN1 <= 3) { SDValue MVal = Add(Shl(N0, ShiftM1), N0); return Add(Shl(MVal, ShiftN1), MVal); } } } else { // (mul x, -(2^N - 1)) => (sub x, (shl x, N)) // (mul x, -(2^N + 1)) => - (add (shl x, N), x) // (mul x, -(2^(N-M) - 1) * 2^M) => (sub (shl x, M), (shl x, N)) APInt SCVPlus1 = -ShiftedConstValue + 1; APInt CVNegPlus1 = -ConstValue + 1; APInt CVNegMinus1 = -ConstValue - 1; if (CVNegPlus1.isPowerOf2()) { ShiftAmt = CVNegPlus1.logBase2(); return Sub(N0, Shl(N0, ShiftAmt)); } else if (CVNegMinus1.isPowerOf2()) { ShiftAmt = CVNegMinus1.logBase2(); return Negate(Add(Shl(N0, ShiftAmt), N0)); } else if (SCVPlus1.isPowerOf2()) { ShiftAmt = SCVPlus1.logBase2() + TrailingZeroes; return Sub(Shl(N0, TrailingZeroes), Shl(N0, ShiftAmt)); } } return SDValue(); } static SDValue performVectorCompareAndMaskUnaryOpCombine(SDNode *N, SelectionDAG &DAG) { // Take advantage of vector comparisons producing 0 or -1 in each lane to // optimize away operation when it's from a constant. // // The general transformation is: // UNARYOP(AND(VECTOR_CMP(x,y), constant)) --> // AND(VECTOR_CMP(x,y), constant2) // constant2 = UNARYOP(constant) // Early exit if this isn't a vector operation, the operand of the // unary operation isn't a bitwise AND, or if the sizes of the operations // aren't the same. EVT VT = N->getValueType(0); if (!VT.isVector() || N->getOperand(0)->getOpcode() != ISD::AND || N->getOperand(0)->getOperand(0)->getOpcode() != ISD::SETCC || VT.getSizeInBits() != N->getOperand(0)->getValueType(0).getSizeInBits()) return SDValue(); // Now check that the other operand of the AND is a constant. We could // make the transformation for non-constant splats as well, but it's unclear // that would be a benefit as it would not eliminate any operations, just // perform one more step in scalar code before moving to the vector unit. if (BuildVectorSDNode *BV = dyn_cast(N->getOperand(0)->getOperand(1))) { // Bail out if the vector isn't a constant. if (!BV->isConstant()) return SDValue(); // Everything checks out. Build up the new and improved node. SDLoc DL(N); EVT IntVT = BV->getValueType(0); // Create a new constant of the appropriate type for the transformed // DAG. SDValue SourceConst = DAG.getNode(N->getOpcode(), DL, VT, SDValue(BV, 0)); // The AND node needs bitcasts to/from an integer vector type around it. SDValue MaskConst = DAG.getNode(ISD::BITCAST, DL, IntVT, SourceConst); SDValue NewAnd = DAG.getNode(ISD::AND, DL, IntVT, N->getOperand(0)->getOperand(0), MaskConst); SDValue Res = DAG.getNode(ISD::BITCAST, DL, VT, NewAnd); return Res; } return SDValue(); } static SDValue performIntToFpCombine(SDNode *N, SelectionDAG &DAG, const AArch64Subtarget *Subtarget) { // First try to optimize away the conversion when it's conditionally from // a constant. Vectors only. if (SDValue Res = performVectorCompareAndMaskUnaryOpCombine(N, DAG)) return Res; EVT VT = N->getValueType(0); if (VT != MVT::f32 && VT != MVT::f64) return SDValue(); // Only optimize when the source and destination types have the same width. if (VT.getSizeInBits() != N->getOperand(0).getValueSizeInBits()) return SDValue(); // If the result of an integer load is only used by an integer-to-float // conversion, use a fp load instead and a AdvSIMD scalar {S|U}CVTF instead. // This eliminates an "integer-to-vector-move" UOP and improves throughput. SDValue N0 = N->getOperand(0); if (Subtarget->isNeonAvailable() && ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() && // Do not change the width of a volatile load. !cast(N0)->isVolatile()) { LoadSDNode *LN0 = cast(N0); SDValue Load = DAG.getLoad(VT, SDLoc(N), LN0->getChain(), LN0->getBasePtr(), LN0->getPointerInfo(), LN0->getAlign(), LN0->getMemOperand()->getFlags()); // Make sure successors of the original load stay after it by updating them // to use the new Chain. DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), Load.getValue(1)); unsigned Opcode = (N->getOpcode() == ISD::SINT_TO_FP) ? AArch64ISD::SITOF : AArch64ISD::UITOF; return DAG.getNode(Opcode, SDLoc(N), VT, Load); } return SDValue(); } /// Fold a floating-point multiply by power of two into floating-point to /// fixed-point conversion. static SDValue performFpToIntCombine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const AArch64Subtarget *Subtarget) { if (!Subtarget->isNeonAvailable()) return SDValue(); if (!N->getValueType(0).isSimple()) return SDValue(); SDValue Op = N->getOperand(0); if (!Op.getValueType().isSimple() || Op.getOpcode() != ISD::FMUL) return SDValue(); if (!Op.getValueType().is64BitVector() && !Op.getValueType().is128BitVector()) return SDValue(); SDValue ConstVec = Op->getOperand(1); if (!isa(ConstVec)) return SDValue(); MVT FloatTy = Op.getSimpleValueType().getVectorElementType(); uint32_t FloatBits = FloatTy.getSizeInBits(); if (FloatBits != 32 && FloatBits != 64 && (FloatBits != 16 || !Subtarget->hasFullFP16())) return SDValue(); MVT IntTy = N->getSimpleValueType(0).getVectorElementType(); uint32_t IntBits = IntTy.getSizeInBits(); if (IntBits != 16 && IntBits != 32 && IntBits != 64) return SDValue(); // Avoid conversions where iN is larger than the float (e.g., float -> i64). if (IntBits > FloatBits) return SDValue(); BitVector UndefElements; BuildVectorSDNode *BV = cast(ConstVec); int32_t Bits = IntBits == 64 ? 64 : 32; int32_t C = BV->getConstantFPSplatPow2ToLog2Int(&UndefElements, Bits + 1); if (C == -1 || C == 0 || C > Bits) return SDValue(); EVT ResTy = Op.getValueType().changeVectorElementTypeToInteger(); if (!DAG.getTargetLoweringInfo().isTypeLegal(ResTy)) return SDValue(); if (N->getOpcode() == ISD::FP_TO_SINT_SAT || N->getOpcode() == ISD::FP_TO_UINT_SAT) { EVT SatVT = cast(N->getOperand(1))->getVT(); if (SatVT.getScalarSizeInBits() != IntBits || IntBits != FloatBits) return SDValue(); } SDLoc DL(N); bool IsSigned = (N->getOpcode() == ISD::FP_TO_SINT || N->getOpcode() == ISD::FP_TO_SINT_SAT); unsigned IntrinsicOpcode = IsSigned ? Intrinsic::aarch64_neon_vcvtfp2fxs : Intrinsic::aarch64_neon_vcvtfp2fxu; SDValue FixConv = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, ResTy, DAG.getConstant(IntrinsicOpcode, DL, MVT::i32), Op->getOperand(0), DAG.getConstant(C, DL, MVT::i32)); // We can handle smaller integers by generating an extra trunc. if (IntBits < FloatBits) FixConv = DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), FixConv); return FixConv; } /// Fold a floating-point divide by power of two into fixed-point to /// floating-point conversion. static SDValue performFDivCombine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const AArch64Subtarget *Subtarget) { if (!Subtarget->hasNEON()) return SDValue(); SDValue Op = N->getOperand(0); unsigned Opc = Op->getOpcode(); if (!Op.getValueType().isVector() || !Op.getValueType().isSimple() || !Op.getOperand(0).getValueType().isSimple() || (Opc != ISD::SINT_TO_FP && Opc != ISD::UINT_TO_FP)) return SDValue(); SDValue ConstVec = N->getOperand(1); if (!isa(ConstVec)) return SDValue(); MVT IntTy = Op.getOperand(0).getSimpleValueType().getVectorElementType(); int32_t IntBits = IntTy.getSizeInBits(); if (IntBits != 16 && IntBits != 32 && IntBits != 64) return SDValue(); MVT FloatTy = N->getSimpleValueType(0).getVectorElementType(); int32_t FloatBits = FloatTy.getSizeInBits(); if (FloatBits != 32 && FloatBits != 64) return SDValue(); // Avoid conversions where iN is larger than the float (e.g., i64 -> float). if (IntBits > FloatBits) return SDValue(); BitVector UndefElements; BuildVectorSDNode *BV = cast(ConstVec); int32_t C = BV->getConstantFPSplatPow2ToLog2Int(&UndefElements, FloatBits + 1); if (C == -1 || C == 0 || C > FloatBits) return SDValue(); MVT ResTy; unsigned NumLanes = Op.getValueType().getVectorNumElements(); switch (NumLanes) { default: return SDValue(); case 2: ResTy = FloatBits == 32 ? MVT::v2i32 : MVT::v2i64; break; case 4: ResTy = FloatBits == 32 ? MVT::v4i32 : MVT::v4i64; break; } if (ResTy == MVT::v4i64 && DCI.isBeforeLegalizeOps()) return SDValue(); SDLoc DL(N); SDValue ConvInput = Op.getOperand(0); bool IsSigned = Opc == ISD::SINT_TO_FP; if (IntBits < FloatBits) ConvInput = DAG.getNode(IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, DL, ResTy, ConvInput); unsigned IntrinsicOpcode = IsSigned ? Intrinsic::aarch64_neon_vcvtfxs2fp : Intrinsic::aarch64_neon_vcvtfxu2fp; return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, Op.getValueType(), DAG.getConstant(IntrinsicOpcode, DL, MVT::i32), ConvInput, DAG.getConstant(C, DL, MVT::i32)); } static SDValue tryCombineToBSL(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, const AArch64TargetLowering &TLI) { EVT VT = N->getValueType(0); SelectionDAG &DAG = DCI.DAG; SDLoc DL(N); if (!VT.isVector()) return SDValue(); // The combining code currently only works for NEON vectors. In particular, // it does not work for SVE when dealing with vectors wider than 128 bits. // It also doesn't work for streaming mode because it causes generating // bsl instructions that are invalid in streaming mode. if (TLI.useSVEForFixedLengthVectorVT( VT, !DAG.getSubtarget().isNeonAvailable())) return SDValue(); SDValue N0 = N->getOperand(0); if (N0.getOpcode() != ISD::AND) return SDValue(); SDValue N1 = N->getOperand(1); if (N1.getOpcode() != ISD::AND) return SDValue(); // InstCombine does (not (neg a)) => (add a -1). // Try: (or (and (neg a) b) (and (add a -1) c)) => (bsl (neg a) b c) // Loop over all combinations of AND operands. for (int i = 1; i >= 0; --i) { for (int j = 1; j >= 0; --j) { SDValue O0 = N0->getOperand(i); SDValue O1 = N1->getOperand(j); SDValue Sub, Add, SubSibling, AddSibling; // Find a SUB and an ADD operand, one from each AND. if (O0.getOpcode() == ISD::SUB && O1.getOpcode() == ISD::ADD) { Sub = O0; Add = O1; SubSibling = N0->getOperand(1 - i); AddSibling = N1->getOperand(1 - j); } else if (O0.getOpcode() == ISD::ADD && O1.getOpcode() == ISD::SUB) { Add = O0; Sub = O1; AddSibling = N0->getOperand(1 - i); SubSibling = N1->getOperand(1 - j); } else continue; if (!ISD::isBuildVectorAllZeros(Sub.getOperand(0).getNode())) continue; // Constant ones is always righthand operand of the Add. if (!ISD::isBuildVectorAllOnes(Add.getOperand(1).getNode())) continue; if (Sub.getOperand(1) != Add.getOperand(0)) continue; return DAG.getNode(AArch64ISD::BSP, DL, VT, Sub, SubSibling, AddSibling); } } // (or (and a b) (and (not a) c)) => (bsl a b c) // We only have to look for constant vectors here since the general, variable // case can be handled in TableGen. unsigned Bits = VT.getScalarSizeInBits(); uint64_t BitMask = Bits == 64 ? -1ULL : ((1ULL << Bits) - 1); for (int i = 1; i >= 0; --i) for (int j = 1; j >= 0; --j) { BuildVectorSDNode *BVN0 = dyn_cast(N0->getOperand(i)); BuildVectorSDNode *BVN1 = dyn_cast(N1->getOperand(j)); if (!BVN0 || !BVN1) continue; bool FoundMatch = true; for (unsigned k = 0; k < VT.getVectorNumElements(); ++k) { ConstantSDNode *CN0 = dyn_cast(BVN0->getOperand(k)); ConstantSDNode *CN1 = dyn_cast(BVN1->getOperand(k)); if (!CN0 || !CN1 || CN0->getZExtValue() != (BitMask & ~CN1->getZExtValue())) { FoundMatch = false; break; } } if (FoundMatch) return DAG.getNode(AArch64ISD::BSP, DL, VT, SDValue(BVN0, 0), N0->getOperand(1 - i), N1->getOperand(1 - j)); } return SDValue(); } // Given a tree of and/or(csel(0, 1, cc0), csel(0, 1, cc1)), we may be able to // convert to csel(ccmp(.., cc0)), depending on cc1: // (AND (CSET cc0 cmp0) (CSET cc1 (CMP x1 y1))) // => // (CSET cc1 (CCMP x1 y1 !cc1 cc0 cmp0)) // // (OR (CSET cc0 cmp0) (CSET cc1 (CMP x1 y1))) // => // (CSET cc1 (CCMP x1 y1 cc1 !cc0 cmp0)) static SDValue performANDORCSELCombine(SDNode *N, SelectionDAG &DAG) { EVT VT = N->getValueType(0); SDValue CSel0 = N->getOperand(0); SDValue CSel1 = N->getOperand(1); if (CSel0.getOpcode() != AArch64ISD::CSEL || CSel1.getOpcode() != AArch64ISD::CSEL) return SDValue(); if (!CSel0->hasOneUse() || !CSel1->hasOneUse()) return SDValue(); if (!isNullConstant(CSel0.getOperand(0)) || !isOneConstant(CSel0.getOperand(1)) || !isNullConstant(CSel1.getOperand(0)) || !isOneConstant(CSel1.getOperand(1))) return SDValue(); SDValue Cmp0 = CSel0.getOperand(3); SDValue Cmp1 = CSel1.getOperand(3); AArch64CC::CondCode CC0 = (AArch64CC::CondCode)CSel0.getConstantOperandVal(2); AArch64CC::CondCode CC1 = (AArch64CC::CondCode)CSel1.getConstantOperandVal(2); if (!Cmp0->hasOneUse() || !Cmp1->hasOneUse()) return SDValue(); if (Cmp1.getOpcode() != AArch64ISD::SUBS && Cmp0.getOpcode() == AArch64ISD::SUBS) { std::swap(Cmp0, Cmp1); std::swap(CC0, CC1); } if (Cmp1.getOpcode() != AArch64ISD::SUBS) return SDValue(); SDLoc DL(N); SDValue CCmp, Condition; unsigned NZCV; if (N->getOpcode() == ISD::AND) { AArch64CC::CondCode InvCC0 = AArch64CC::getInvertedCondCode(CC0); Condition = DAG.getConstant(InvCC0, DL, MVT_CC); NZCV = AArch64CC::getNZCVToSatisfyCondCode(CC1); } else { AArch64CC::CondCode InvCC1 = AArch64CC::getInvertedCondCode(CC1); Condition = DAG.getConstant(CC0, DL, MVT_CC); NZCV = AArch64CC::getNZCVToSatisfyCondCode(InvCC1); } SDValue NZCVOp = DAG.getConstant(NZCV, DL, MVT::i32); auto *Op1 = dyn_cast(Cmp1.getOperand(1)); if (Op1 && Op1->getAPIntValue().isNegative() && Op1->getAPIntValue().sgt(-32)) { // CCMP accept the constant int the range [0, 31] // if the Op1 is a constant in the range [-31, -1], we // can select to CCMN to avoid the extra mov SDValue AbsOp1 = DAG.getConstant(Op1->getAPIntValue().abs(), DL, Op1->getValueType(0)); CCmp = DAG.getNode(AArch64ISD::CCMN, DL, MVT_CC, Cmp1.getOperand(0), AbsOp1, NZCVOp, Condition, Cmp0); } else { CCmp = DAG.getNode(AArch64ISD::CCMP, DL, MVT_CC, Cmp1.getOperand(0), Cmp1.getOperand(1), NZCVOp, Condition, Cmp0); } return DAG.getNode(AArch64ISD::CSEL, DL, VT, CSel0.getOperand(0), CSel0.getOperand(1), DAG.getConstant(CC1, DL, MVT::i32), CCmp); } static SDValue performORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, const AArch64Subtarget *Subtarget, const AArch64TargetLowering &TLI) { SelectionDAG &DAG = DCI.DAG; EVT VT = N->getValueType(0); if (SDValue R = performANDORCSELCombine(N, DAG)) return R; if (!DAG.getTargetLoweringInfo().isTypeLegal(VT)) return SDValue(); if (SDValue Res = tryCombineToBSL(N, DCI, TLI)) return Res; return SDValue(); } static bool isConstantSplatVectorMaskForType(SDNode *N, EVT MemVT) { if (!MemVT.getVectorElementType().isSimple()) return false; uint64_t MaskForTy = 0ull; switch (MemVT.getVectorElementType().getSimpleVT().SimpleTy) { case MVT::i8: MaskForTy = 0xffull; break; case MVT::i16: MaskForTy = 0xffffull; break; case MVT::i32: MaskForTy = 0xffffffffull; break; default: return false; break; } if (N->getOpcode() == AArch64ISD::DUP || N->getOpcode() == ISD::SPLAT_VECTOR) if (auto *Op0 = dyn_cast(N->getOperand(0))) return Op0->getAPIntValue().getLimitedValue() == MaskForTy; return false; } static SDValue performReinterpretCastCombine(SDNode *N) { SDValue LeafOp = SDValue(N, 0); SDValue Op = N->getOperand(0); while (Op.getOpcode() == AArch64ISD::REINTERPRET_CAST && LeafOp.getValueType() != Op.getValueType()) Op = Op->getOperand(0); if (LeafOp.getValueType() == Op.getValueType()) return Op; return SDValue(); } static SDValue performSVEAndCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { SelectionDAG &DAG = DCI.DAG; SDValue Src = N->getOperand(0); unsigned Opc = Src->getOpcode(); // Zero/any extend of an unsigned unpack if (Opc == AArch64ISD::UUNPKHI || Opc == AArch64ISD::UUNPKLO) { SDValue UnpkOp = Src->getOperand(0); SDValue Dup = N->getOperand(1); if (Dup.getOpcode() != ISD::SPLAT_VECTOR) return SDValue(); SDLoc DL(N); ConstantSDNode *C = dyn_cast(Dup->getOperand(0)); if (!C) return SDValue(); uint64_t ExtVal = C->getZExtValue(); auto MaskAndTypeMatch = [ExtVal](EVT VT) -> bool { return ((ExtVal == 0xFF && VT == MVT::i8) || (ExtVal == 0xFFFF && VT == MVT::i16) || (ExtVal == 0xFFFFFFFF && VT == MVT::i32)); }; // If the mask is fully covered by the unpack, we don't need to push // a new AND onto the operand EVT EltTy = UnpkOp->getValueType(0).getVectorElementType(); if (MaskAndTypeMatch(EltTy)) return Src; // If this is 'and (uunpklo/hi (extload MemTy -> ExtTy)), mask', then check // to see if the mask is all-ones of size MemTy. auto MaskedLoadOp = dyn_cast(UnpkOp); if (MaskedLoadOp && (MaskedLoadOp->getExtensionType() == ISD::ZEXTLOAD || MaskedLoadOp->getExtensionType() == ISD::EXTLOAD)) { EVT EltTy = MaskedLoadOp->getMemoryVT().getVectorElementType(); if (MaskAndTypeMatch(EltTy)) return Src; } // Truncate to prevent a DUP with an over wide constant APInt Mask = C->getAPIntValue().trunc(EltTy.getSizeInBits()); // Otherwise, make sure we propagate the AND to the operand // of the unpack Dup = DAG.getNode(ISD::SPLAT_VECTOR, DL, UnpkOp->getValueType(0), DAG.getConstant(Mask.zextOrTrunc(32), DL, MVT::i32)); SDValue And = DAG.getNode(ISD::AND, DL, UnpkOp->getValueType(0), UnpkOp, Dup); return DAG.getNode(Opc, DL, N->getValueType(0), And); } if (DCI.isBeforeLegalizeOps()) return SDValue(); // If both sides of AND operations are i1 splat_vectors then // we can produce just i1 splat_vector as the result. if (isAllActivePredicate(DAG, N->getOperand(0))) return N->getOperand(1); if (isAllActivePredicate(DAG, N->getOperand(1))) return N->getOperand(0); if (!EnableCombineMGatherIntrinsics) return SDValue(); SDValue Mask = N->getOperand(1); if (!Src.hasOneUse()) return SDValue(); EVT MemVT; // SVE load instructions perform an implicit zero-extend, which makes them // perfect candidates for combining. switch (Opc) { case AArch64ISD::LD1_MERGE_ZERO: case AArch64ISD::LDNF1_MERGE_ZERO: case AArch64ISD::LDFF1_MERGE_ZERO: MemVT = cast(Src->getOperand(3))->getVT(); break; case AArch64ISD::GLD1_MERGE_ZERO: case AArch64ISD::GLD1_SCALED_MERGE_ZERO: case AArch64ISD::GLD1_SXTW_MERGE_ZERO: case AArch64ISD::GLD1_SXTW_SCALED_MERGE_ZERO: case AArch64ISD::GLD1_UXTW_MERGE_ZERO: case AArch64ISD::GLD1_UXTW_SCALED_MERGE_ZERO: case AArch64ISD::GLD1_IMM_MERGE_ZERO: case AArch64ISD::GLDFF1_MERGE_ZERO: case AArch64ISD::GLDFF1_SCALED_MERGE_ZERO: case AArch64ISD::GLDFF1_SXTW_MERGE_ZERO: case AArch64ISD::GLDFF1_SXTW_SCALED_MERGE_ZERO: case AArch64ISD::GLDFF1_UXTW_MERGE_ZERO: case AArch64ISD::GLDFF1_UXTW_SCALED_MERGE_ZERO: case AArch64ISD::GLDFF1_IMM_MERGE_ZERO: case AArch64ISD::GLDNT1_MERGE_ZERO: MemVT = cast(Src->getOperand(4))->getVT(); break; default: return SDValue(); } if (isConstantSplatVectorMaskForType(Mask.getNode(), MemVT)) return Src; return SDValue(); } // Transform and(fcmp(a, b), fcmp(c, d)) into fccmp(fcmp(a, b), c, d) static SDValue performANDSETCCCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { // This function performs an optimization on a specific pattern involving // an AND operation and SETCC (Set Condition Code) node. SDValue SetCC = N->getOperand(0); EVT VT = N->getValueType(0); SelectionDAG &DAG = DCI.DAG; // Checks if the current node (N) is used by any SELECT instruction and // returns an empty SDValue to avoid applying the optimization to prevent // incorrect results for (auto U : N->uses()) if (U->getOpcode() == ISD::SELECT) return SDValue(); // Check if the operand is a SETCC node with floating-point comparison if (SetCC.getOpcode() == ISD::SETCC && SetCC.getOperand(0).getValueType() == MVT::f32) { SDValue Cmp; AArch64CC::CondCode CC; // Check if the DAG is after legalization and if we can emit the conjunction if (!DCI.isBeforeLegalize() && (Cmp = emitConjunction(DAG, SDValue(N, 0), CC))) { AArch64CC::CondCode InvertedCC = AArch64CC::getInvertedCondCode(CC); SDLoc DL(N); return DAG.getNode(AArch64ISD::CSINC, DL, VT, DAG.getConstant(0, DL, VT), DAG.getConstant(0, DL, VT), DAG.getConstant(InvertedCC, DL, MVT::i32), Cmp); } } return SDValue(); } static SDValue performANDCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { SelectionDAG &DAG = DCI.DAG; SDValue LHS = N->getOperand(0); SDValue RHS = N->getOperand(1); EVT VT = N->getValueType(0); if (SDValue R = performANDORCSELCombine(N, DAG)) return R; if (SDValue R = performANDSETCCCombine(N,DCI)) return R; if (!DAG.getTargetLoweringInfo().isTypeLegal(VT)) return SDValue(); if (VT.isScalableVector()) return performSVEAndCombine(N, DCI); // The combining code below works only for NEON vectors. In particular, it // does not work for SVE when dealing with vectors wider than 128 bits. if (!VT.is64BitVector() && !VT.is128BitVector()) return SDValue(); BuildVectorSDNode *BVN = dyn_cast(RHS.getNode()); if (!BVN) return SDValue(); // AND does not accept an immediate, so check if we can use a BIC immediate // instruction instead. We do this here instead of using a (and x, (mvni imm)) // pattern in isel, because some immediates may be lowered to the preferred // (and x, (movi imm)) form, even though an mvni representation also exists. APInt DefBits(VT.getSizeInBits(), 0); APInt UndefBits(VT.getSizeInBits(), 0); if (resolveBuildVector(BVN, DefBits, UndefBits)) { SDValue NewOp; // Any bits known to already be 0 need not be cleared again, which can help // reduce the size of the immediate to one supported by the instruction. KnownBits Known = DAG.computeKnownBits(LHS); APInt ZeroSplat(VT.getSizeInBits(), 0); for (unsigned I = 0; I < VT.getSizeInBits() / Known.Zero.getBitWidth(); I++) ZeroSplat |= Known.Zero.zext(VT.getSizeInBits()) << (Known.Zero.getBitWidth() * I); DefBits = ~(DefBits | ZeroSplat); if ((NewOp = tryAdvSIMDModImm32(AArch64ISD::BICi, SDValue(N, 0), DAG, DefBits, &LHS)) || (NewOp = tryAdvSIMDModImm16(AArch64ISD::BICi, SDValue(N, 0), DAG, DefBits, &LHS))) return NewOp; UndefBits = ~(UndefBits | ZeroSplat); if ((NewOp = tryAdvSIMDModImm32(AArch64ISD::BICi, SDValue(N, 0), DAG, UndefBits, &LHS)) || (NewOp = tryAdvSIMDModImm16(AArch64ISD::BICi, SDValue(N, 0), DAG, UndefBits, &LHS))) return NewOp; } return SDValue(); } static SDValue performFADDCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { SelectionDAG &DAG = DCI.DAG; SDValue LHS = N->getOperand(0); SDValue RHS = N->getOperand(1); EVT VT = N->getValueType(0); SDLoc DL(N); if (!N->getFlags().hasAllowReassociation()) return SDValue(); // Combine fadd(a, vcmla(b, c, d)) -> vcmla(fadd(a, b), b, c) auto ReassocComplex = [&](SDValue A, SDValue B) { if (A.getOpcode() != ISD::INTRINSIC_WO_CHAIN) return SDValue(); unsigned Opc = A.getConstantOperandVal(0); if (Opc != Intrinsic::aarch64_neon_vcmla_rot0 && Opc != Intrinsic::aarch64_neon_vcmla_rot90 && Opc != Intrinsic::aarch64_neon_vcmla_rot180 && Opc != Intrinsic::aarch64_neon_vcmla_rot270) return SDValue(); SDValue VCMLA = DAG.getNode( ISD::INTRINSIC_WO_CHAIN, DL, VT, A.getOperand(0), DAG.getNode(ISD::FADD, DL, VT, A.getOperand(1), B, N->getFlags()), A.getOperand(2), A.getOperand(3)); VCMLA->setFlags(A->getFlags()); return VCMLA; }; if (SDValue R = ReassocComplex(LHS, RHS)) return R; if (SDValue R = ReassocComplex(RHS, LHS)) return R; return SDValue(); } static bool hasPairwiseAdd(unsigned Opcode, EVT VT, bool FullFP16) { switch (Opcode) { case ISD::STRICT_FADD: case ISD::FADD: return (FullFP16 && VT == MVT::f16) || VT == MVT::f32 || VT == MVT::f64; case ISD::ADD: return VT == MVT::i64; default: return false; } } static SDValue getPTest(SelectionDAG &DAG, EVT VT, SDValue Pg, SDValue Op, AArch64CC::CondCode Cond); static bool isPredicateCCSettingOp(SDValue N) { if ((N.getOpcode() == ISD::SETCC) || (N.getOpcode() == ISD::INTRINSIC_WO_CHAIN && (N.getConstantOperandVal(0) == Intrinsic::aarch64_sve_whilege || N.getConstantOperandVal(0) == Intrinsic::aarch64_sve_whilegt || N.getConstantOperandVal(0) == Intrinsic::aarch64_sve_whilehi || N.getConstantOperandVal(0) == Intrinsic::aarch64_sve_whilehs || N.getConstantOperandVal(0) == Intrinsic::aarch64_sve_whilele || N.getConstantOperandVal(0) == Intrinsic::aarch64_sve_whilelo || N.getConstantOperandVal(0) == Intrinsic::aarch64_sve_whilels || N.getConstantOperandVal(0) == Intrinsic::aarch64_sve_whilelt || // get_active_lane_mask is lowered to a whilelo instruction. N.getConstantOperandVal(0) == Intrinsic::get_active_lane_mask))) return true; return false; } // Materialize : i1 = extract_vector_elt t37, Constant:i64<0> // ... into: "ptrue p, all" + PTEST static SDValue performFirstTrueTestVectorCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, const AArch64Subtarget *Subtarget) { assert(N->getOpcode() == ISD::EXTRACT_VECTOR_ELT); // Make sure PTEST can be legalised with illegal types. if (!Subtarget->hasSVE() || DCI.isBeforeLegalize()) return SDValue(); SDValue N0 = N->getOperand(0); EVT VT = N0.getValueType(); if (!VT.isScalableVector() || VT.getVectorElementType() != MVT::i1 || !isNullConstant(N->getOperand(1))) return SDValue(); // Restricted the DAG combine to only cases where we're extracting from a // flag-setting operation. if (!isPredicateCCSettingOp(N0)) return SDValue(); // Extracts of lane 0 for SVE can be expressed as PTEST(Op, FIRST) ? 1 : 0 SelectionDAG &DAG = DCI.DAG; SDValue Pg = getPTrue(DAG, SDLoc(N), VT, AArch64SVEPredPattern::all); return getPTest(DAG, N->getValueType(0), Pg, N0, AArch64CC::FIRST_ACTIVE); } // Materialize : Idx = (add (mul vscale, NumEls), -1) // i1 = extract_vector_elt t37, Constant:i64 // ... into: "ptrue p, all" + PTEST static SDValue performLastTrueTestVectorCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, const AArch64Subtarget *Subtarget) { assert(N->getOpcode() == ISD::EXTRACT_VECTOR_ELT); // Make sure PTEST is legal types. if (!Subtarget->hasSVE() || DCI.isBeforeLegalize()) return SDValue(); SDValue N0 = N->getOperand(0); EVT OpVT = N0.getValueType(); if (!OpVT.isScalableVector() || OpVT.getVectorElementType() != MVT::i1) return SDValue(); // Idx == (add (mul vscale, NumEls), -1) SDValue Idx = N->getOperand(1); if (Idx.getOpcode() != ISD::ADD || !isAllOnesConstant(Idx.getOperand(1))) return SDValue(); SDValue VS = Idx.getOperand(0); if (VS.getOpcode() != ISD::VSCALE) return SDValue(); unsigned NumEls = OpVT.getVectorElementCount().getKnownMinValue(); if (VS.getConstantOperandVal(0) != NumEls) return SDValue(); // Extracts of lane EC-1 for SVE can be expressed as PTEST(Op, LAST) ? 1 : 0 SelectionDAG &DAG = DCI.DAG; SDValue Pg = getPTrue(DAG, SDLoc(N), OpVT, AArch64SVEPredPattern::all); return getPTest(DAG, N->getValueType(0), Pg, N0, AArch64CC::LAST_ACTIVE); } static SDValue performExtractVectorEltCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, const AArch64Subtarget *Subtarget) { assert(N->getOpcode() == ISD::EXTRACT_VECTOR_ELT); if (SDValue Res = performFirstTrueTestVectorCombine(N, DCI, Subtarget)) return Res; if (SDValue Res = performLastTrueTestVectorCombine(N, DCI, Subtarget)) return Res; SelectionDAG &DAG = DCI.DAG; SDValue N0 = N->getOperand(0), N1 = N->getOperand(1); EVT VT = N->getValueType(0); const bool FullFP16 = DAG.getSubtarget().hasFullFP16(); bool IsStrict = N0->isStrictFPOpcode(); // extract(dup x) -> x if (N0.getOpcode() == AArch64ISD::DUP) return VT.isInteger() ? DAG.getZExtOrTrunc(N0.getOperand(0), SDLoc(N), VT) : N0.getOperand(0); // Rewrite for pairwise fadd pattern // (f32 (extract_vector_elt // (fadd (vXf32 Other) // (vector_shuffle (vXf32 Other) undef <1,X,...> )) 0)) // -> // (f32 (fadd (extract_vector_elt (vXf32 Other) 0) // (extract_vector_elt (vXf32 Other) 1)) // For strict_fadd we need to make sure the old strict_fadd can be deleted, so // we can only do this when it's used only by the extract_vector_elt. if (isNullConstant(N1) && hasPairwiseAdd(N0->getOpcode(), VT, FullFP16) && (!IsStrict || N0.hasOneUse())) { SDLoc DL(N0); SDValue N00 = N0->getOperand(IsStrict ? 1 : 0); SDValue N01 = N0->getOperand(IsStrict ? 2 : 1); ShuffleVectorSDNode *Shuffle = dyn_cast(N01); SDValue Other = N00; // And handle the commutative case. if (!Shuffle) { Shuffle = dyn_cast(N00); Other = N01; } if (Shuffle && Shuffle->getMaskElt(0) == 1 && Other == Shuffle->getOperand(0)) { SDValue Extract1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, Other, DAG.getConstant(0, DL, MVT::i64)); SDValue Extract2 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, Other, DAG.getConstant(1, DL, MVT::i64)); if (!IsStrict) return DAG.getNode(N0->getOpcode(), DL, VT, Extract1, Extract2); // For strict_fadd we need uses of the final extract_vector to be replaced // with the strict_fadd, but we also need uses of the chain output of the // original strict_fadd to use the chain output of the new strict_fadd as // otherwise it may not be deleted. SDValue Ret = DAG.getNode(N0->getOpcode(), DL, {VT, MVT::Other}, {N0->getOperand(0), Extract1, Extract2}); DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Ret); DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Ret.getValue(1)); return SDValue(N, 0); } } return SDValue(); } static SDValue performConcatVectorsCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, SelectionDAG &DAG) { SDLoc dl(N); EVT VT = N->getValueType(0); SDValue N0 = N->getOperand(0), N1 = N->getOperand(1); unsigned N0Opc = N0->getOpcode(), N1Opc = N1->getOpcode(); if (VT.isScalableVector()) return SDValue(); // Optimize concat_vectors of truncated vectors, where the intermediate // type is illegal, to avoid said illegality, e.g., // (v4i16 (concat_vectors (v2i16 (truncate (v2i64))), // (v2i16 (truncate (v2i64))))) // -> // (v4i16 (truncate (vector_shuffle (v4i32 (bitcast (v2i64))), // (v4i32 (bitcast (v2i64))), // <0, 2, 4, 6>))) // This isn't really target-specific, but ISD::TRUNCATE legality isn't keyed // on both input and result type, so we might generate worse code. // On AArch64 we know it's fine for v2i64->v4i16 and v4i32->v8i8. if (N->getNumOperands() == 2 && N0Opc == ISD::TRUNCATE && N1Opc == ISD::TRUNCATE) { SDValue N00 = N0->getOperand(0); SDValue N10 = N1->getOperand(0); EVT N00VT = N00.getValueType(); if (N00VT == N10.getValueType() && (N00VT == MVT::v2i64 || N00VT == MVT::v4i32) && N00VT.getScalarSizeInBits() == 4 * VT.getScalarSizeInBits()) { MVT MidVT = (N00VT == MVT::v2i64 ? MVT::v4i32 : MVT::v8i16); SmallVector Mask(MidVT.getVectorNumElements()); for (size_t i = 0; i < Mask.size(); ++i) Mask[i] = i * 2; return DAG.getNode(ISD::TRUNCATE, dl, VT, DAG.getVectorShuffle( MidVT, dl, DAG.getNode(ISD::BITCAST, dl, MidVT, N00), DAG.getNode(ISD::BITCAST, dl, MidVT, N10), Mask)); } } if (N->getOperand(0).getValueType() == MVT::v4i8 || N->getOperand(0).getValueType() == MVT::v2i16 || N->getOperand(0).getValueType() == MVT::v2i8) { EVT SrcVT = N->getOperand(0).getValueType(); // If we have a concat of v4i8 loads, convert them to a buildvector of f32 // loads to prevent having to go through the v4i8 load legalization that // needs to extend each element into a larger type. if (N->getNumOperands() % 2 == 0 && all_of(N->op_values(), [SrcVT](SDValue V) { if (V.getValueType() != SrcVT) return false; if (V.isUndef()) return true; LoadSDNode *LD = dyn_cast(V); return LD && V.hasOneUse() && LD->isSimple() && !LD->isIndexed() && LD->getExtensionType() == ISD::NON_EXTLOAD; })) { EVT FVT = SrcVT == MVT::v2i8 ? MVT::f16 : MVT::f32; EVT NVT = EVT::getVectorVT(*DAG.getContext(), FVT, N->getNumOperands()); SmallVector Ops; for (unsigned i = 0; i < N->getNumOperands(); i++) { SDValue V = N->getOperand(i); if (V.isUndef()) Ops.push_back(DAG.getUNDEF(FVT)); else { LoadSDNode *LD = cast(V); SDValue NewLoad = DAG.getLoad(FVT, dl, LD->getChain(), LD->getBasePtr(), LD->getMemOperand()); DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), NewLoad.getValue(1)); Ops.push_back(NewLoad); } } return DAG.getBitcast(N->getValueType(0), DAG.getBuildVector(NVT, dl, Ops)); } } // Canonicalise concat_vectors to replace concatenations of truncated nots // with nots of concatenated truncates. This in some cases allows for multiple // redundant negations to be eliminated. // (concat_vectors (v4i16 (truncate (not (v4i32)))), // (v4i16 (truncate (not (v4i32))))) // -> // (not (concat_vectors (v4i16 (truncate (v4i32))), // (v4i16 (truncate (v4i32))))) if (N->getNumOperands() == 2 && N0Opc == ISD::TRUNCATE && N1Opc == ISD::TRUNCATE && N->isOnlyUserOf(N0.getNode()) && N->isOnlyUserOf(N1.getNode())) { auto isBitwiseVectorNegate = [](SDValue V) { return V->getOpcode() == ISD::XOR && ISD::isConstantSplatVectorAllOnes(V.getOperand(1).getNode()); }; SDValue N00 = N0->getOperand(0); SDValue N10 = N1->getOperand(0); if (isBitwiseVectorNegate(N00) && N0->isOnlyUserOf(N00.getNode()) && isBitwiseVectorNegate(N10) && N1->isOnlyUserOf(N10.getNode())) { return DAG.getNOT( dl, DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, DAG.getNode(ISD::TRUNCATE, dl, N0.getValueType(), N00->getOperand(0)), DAG.getNode(ISD::TRUNCATE, dl, N1.getValueType(), N10->getOperand(0))), VT); } } // Wait till after everything is legalized to try this. That way we have // legal vector types and such. if (DCI.isBeforeLegalizeOps()) return SDValue(); // Optimise concat_vectors of two [us]avgceils or [us]avgfloors with a 128-bit // destination size, combine into an avg of two contacts of the source // vectors. eg: concat(uhadd(a,b), uhadd(c, d)) -> uhadd(concat(a, c), // concat(b, d)) if (N->getNumOperands() == 2 && N0Opc == N1Opc && VT.is128BitVector() && (N0Opc == ISD::AVGCEILU || N0Opc == ISD::AVGCEILS || N0Opc == ISD::AVGFLOORU || N0Opc == ISD::AVGFLOORS) && N0->hasOneUse() && N1->hasOneUse()) { SDValue N00 = N0->getOperand(0); SDValue N01 = N0->getOperand(1); SDValue N10 = N1->getOperand(0); SDValue N11 = N1->getOperand(1); if (!N00.isUndef() && !N01.isUndef() && !N10.isUndef() && !N11.isUndef()) { SDValue Concat0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, N00, N10); SDValue Concat1 = DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, N01, N11); return DAG.getNode(N0Opc, dl, VT, Concat0, Concat1); } } auto IsRSHRN = [](SDValue Shr) { if (Shr.getOpcode() != AArch64ISD::VLSHR) return false; SDValue Op = Shr.getOperand(0); EVT VT = Op.getValueType(); unsigned ShtAmt = Shr.getConstantOperandVal(1); if (ShtAmt > VT.getScalarSizeInBits() / 2 || Op.getOpcode() != ISD::ADD) return false; APInt Imm; if (Op.getOperand(1).getOpcode() == AArch64ISD::MOVIshift) Imm = APInt(VT.getScalarSizeInBits(), Op.getOperand(1).getConstantOperandVal(0) << Op.getOperand(1).getConstantOperandVal(1)); else if (Op.getOperand(1).getOpcode() == AArch64ISD::DUP && isa(Op.getOperand(1).getOperand(0))) Imm = APInt(VT.getScalarSizeInBits(), Op.getOperand(1).getConstantOperandVal(0)); else return false; if (Imm != 1ULL << (ShtAmt - 1)) return false; return true; }; // concat(rshrn(x), rshrn(y)) -> rshrn(concat(x, y)) if (N->getNumOperands() == 2 && IsRSHRN(N0) && ((IsRSHRN(N1) && N0.getConstantOperandVal(1) == N1.getConstantOperandVal(1)) || N1.isUndef())) { SDValue X = N0.getOperand(0).getOperand(0); SDValue Y = N1.isUndef() ? DAG.getUNDEF(X.getValueType()) : N1.getOperand(0).getOperand(0); EVT BVT = X.getValueType().getDoubleNumVectorElementsVT(*DCI.DAG.getContext()); SDValue CC = DAG.getNode(ISD::CONCAT_VECTORS, dl, BVT, X, Y); SDValue Add = DAG.getNode( ISD::ADD, dl, BVT, CC, DAG.getConstant(1ULL << (N0.getConstantOperandVal(1) - 1), dl, BVT)); SDValue Shr = DAG.getNode(AArch64ISD::VLSHR, dl, BVT, Add, N0.getOperand(1)); return Shr; } // concat(zip1(a, b), zip2(a, b)) is zip1(a, b) if (N->getNumOperands() == 2 && N0Opc == AArch64ISD::ZIP1 && N1Opc == AArch64ISD::ZIP2 && N0.getOperand(0) == N1.getOperand(0) && N0.getOperand(1) == N1.getOperand(1)) { SDValue E0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, N0.getOperand(0), DAG.getUNDEF(N0.getValueType())); SDValue E1 = DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, N0.getOperand(1), DAG.getUNDEF(N0.getValueType())); return DAG.getNode(AArch64ISD::ZIP1, dl, VT, E0, E1); } // If we see a (concat_vectors (v1x64 A), (v1x64 A)) it's really a vector // splat. The indexed instructions are going to be expecting a DUPLANE64, so // canonicalise to that. if (N->getNumOperands() == 2 && N0 == N1 && VT.getVectorNumElements() == 2) { assert(VT.getScalarSizeInBits() == 64); return DAG.getNode(AArch64ISD::DUPLANE64, dl, VT, WidenVector(N0, DAG), DAG.getConstant(0, dl, MVT::i64)); } // Canonicalise concat_vectors so that the right-hand vector has as few // bit-casts as possible before its real operation. The primary matching // destination for these operations will be the narrowing "2" instructions, // which depend on the operation being performed on this right-hand vector. // For example, // (concat_vectors LHS, (v1i64 (bitconvert (v4i16 RHS)))) // becomes // (bitconvert (concat_vectors (v4i16 (bitconvert LHS)), RHS)) if (N->getNumOperands() != 2 || N1Opc != ISD::BITCAST) return SDValue(); SDValue RHS = N1->getOperand(0); MVT RHSTy = RHS.getValueType().getSimpleVT(); // If the RHS is not a vector, this is not the pattern we're looking for. if (!RHSTy.isVector()) return SDValue(); LLVM_DEBUG( dbgs() << "aarch64-lower: concat_vectors bitcast simplification\n"); MVT ConcatTy = MVT::getVectorVT(RHSTy.getVectorElementType(), RHSTy.getVectorNumElements() * 2); return DAG.getNode(ISD::BITCAST, dl, VT, DAG.getNode(ISD::CONCAT_VECTORS, dl, ConcatTy, DAG.getNode(ISD::BITCAST, dl, RHSTy, N0), RHS)); } static SDValue performExtractSubvectorCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, SelectionDAG &DAG) { if (DCI.isBeforeLegalizeOps()) return SDValue(); EVT VT = N->getValueType(0); if (!VT.isScalableVector() || VT.getVectorElementType() != MVT::i1) return SDValue(); SDValue V = N->getOperand(0); // NOTE: This combine exists in DAGCombiner, but that version's legality check // blocks this combine because the non-const case requires custom lowering. // // ty1 extract_vector(ty2 splat(const))) -> ty1 splat(const) if (V.getOpcode() == ISD::SPLAT_VECTOR) if (isa(V.getOperand(0))) return DAG.getNode(ISD::SPLAT_VECTOR, SDLoc(N), VT, V.getOperand(0)); return SDValue(); } static SDValue performInsertSubvectorCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, SelectionDAG &DAG) { SDLoc DL(N); SDValue Vec = N->getOperand(0); SDValue SubVec = N->getOperand(1); uint64_t IdxVal = N->getConstantOperandVal(2); EVT VecVT = Vec.getValueType(); EVT SubVT = SubVec.getValueType(); // Only do this for legal fixed vector types. if (!VecVT.isFixedLengthVector() || !DAG.getTargetLoweringInfo().isTypeLegal(VecVT) || !DAG.getTargetLoweringInfo().isTypeLegal(SubVT)) return SDValue(); // Ignore widening patterns. if (IdxVal == 0 && Vec.isUndef()) return SDValue(); // Subvector must be half the width and an "aligned" insertion. unsigned NumSubElts = SubVT.getVectorNumElements(); if ((SubVT.getSizeInBits() * 2) != VecVT.getSizeInBits() || (IdxVal != 0 && IdxVal != NumSubElts)) return SDValue(); // Fold insert_subvector -> concat_vectors // insert_subvector(Vec,Sub,lo) -> concat_vectors(Sub,extract(Vec,hi)) // insert_subvector(Vec,Sub,hi) -> concat_vectors(extract(Vec,lo),Sub) SDValue Lo, Hi; if (IdxVal == 0) { Lo = SubVec; Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVT, Vec, DAG.getVectorIdxConstant(NumSubElts, DL)); } else { Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVT, Vec, DAG.getVectorIdxConstant(0, DL)); Hi = SubVec; } return DAG.getNode(ISD::CONCAT_VECTORS, DL, VecVT, Lo, Hi); } static SDValue tryCombineFixedPointConvert(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, SelectionDAG &DAG) { // Wait until after everything is legalized to try this. That way we have // legal vector types and such. if (DCI.isBeforeLegalizeOps()) return SDValue(); // Transform a scalar conversion of a value from a lane extract into a // lane extract of a vector conversion. E.g., from foo1 to foo2: // double foo1(int64x2_t a) { return vcvtd_n_f64_s64(a[1], 9); } // double foo2(int64x2_t a) { return vcvtq_n_f64_s64(a, 9)[1]; } // // The second form interacts better with instruction selection and the // register allocator to avoid cross-class register copies that aren't // coalescable due to a lane reference. // Check the operand and see if it originates from a lane extract. SDValue Op1 = N->getOperand(1); if (Op1.getOpcode() != ISD::EXTRACT_VECTOR_ELT) return SDValue(); // Yep, no additional predication needed. Perform the transform. SDValue IID = N->getOperand(0); SDValue Shift = N->getOperand(2); SDValue Vec = Op1.getOperand(0); SDValue Lane = Op1.getOperand(1); EVT ResTy = N->getValueType(0); EVT VecResTy; SDLoc DL(N); // The vector width should be 128 bits by the time we get here, even // if it started as 64 bits (the extract_vector handling will have // done so). Bail if it is not. if (Vec.getValueSizeInBits() != 128) return SDValue(); if (Vec.getValueType() == MVT::v4i32) VecResTy = MVT::v4f32; else if (Vec.getValueType() == MVT::v2i64) VecResTy = MVT::v2f64; else return SDValue(); SDValue Convert = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VecResTy, IID, Vec, Shift); return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResTy, Convert, Lane); } // AArch64 high-vector "long" operations are formed by performing the non-high // version on an extract_subvector of each operand which gets the high half: // // (longop2 LHS, RHS) == (longop (extract_high LHS), (extract_high RHS)) // // However, there are cases which don't have an extract_high explicitly, but // have another operation that can be made compatible with one for free. For // example: // // (dupv64 scalar) --> (extract_high (dup128 scalar)) // // This routine does the actual conversion of such DUPs, once outer routines // have determined that everything else is in order. // It also supports immediate DUP-like nodes (MOVI/MVNi), which we can fold // similarly here. static SDValue tryExtendDUPToExtractHigh(SDValue N, SelectionDAG &DAG) { MVT VT = N.getSimpleValueType(); if (N.getOpcode() == ISD::EXTRACT_SUBVECTOR && N.getConstantOperandVal(1) == 0) N = N.getOperand(0); switch (N.getOpcode()) { case AArch64ISD::DUP: case AArch64ISD::DUPLANE8: case AArch64ISD::DUPLANE16: case AArch64ISD::DUPLANE32: case AArch64ISD::DUPLANE64: case AArch64ISD::MOVI: case AArch64ISD::MOVIshift: case AArch64ISD::MOVIedit: case AArch64ISD::MOVImsl: case AArch64ISD::MVNIshift: case AArch64ISD::MVNImsl: break; default: // FMOV could be supported, but isn't very useful, as it would only occur // if you passed a bitcast' floating point immediate to an eligible long // integer op (addl, smull, ...). return SDValue(); } if (!VT.is64BitVector()) return SDValue(); SDLoc DL(N); unsigned NumElems = VT.getVectorNumElements(); if (N.getValueType().is64BitVector()) { MVT ElementTy = VT.getVectorElementType(); MVT NewVT = MVT::getVectorVT(ElementTy, NumElems * 2); N = DAG.getNode(N->getOpcode(), DL, NewVT, N->ops()); } return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, N, DAG.getConstant(NumElems, DL, MVT::i64)); } static bool isEssentiallyExtractHighSubvector(SDValue N) { if (N.getOpcode() == ISD::BITCAST) N = N.getOperand(0); if (N.getOpcode() != ISD::EXTRACT_SUBVECTOR) return false; if (N.getOperand(0).getValueType().isScalableVector()) return false; return N.getConstantOperandAPInt(1) == N.getOperand(0).getValueType().getVectorNumElements() / 2; } /// Helper structure to keep track of ISD::SET_CC operands. struct GenericSetCCInfo { const SDValue *Opnd0; const SDValue *Opnd1; ISD::CondCode CC; }; /// Helper structure to keep track of a SET_CC lowered into AArch64 code. struct AArch64SetCCInfo { const SDValue *Cmp; AArch64CC::CondCode CC; }; /// Helper structure to keep track of SetCC information. union SetCCInfo { GenericSetCCInfo Generic; AArch64SetCCInfo AArch64; }; /// Helper structure to be able to read SetCC information. If set to /// true, IsAArch64 field, Info is a AArch64SetCCInfo, otherwise Info is a /// GenericSetCCInfo. struct SetCCInfoAndKind { SetCCInfo Info; bool IsAArch64; }; /// Check whether or not \p Op is a SET_CC operation, either a generic or /// an /// AArch64 lowered one. /// \p SetCCInfo is filled accordingly. /// \post SetCCInfo is meanginfull only when this function returns true. /// \return True when Op is a kind of SET_CC operation. static bool isSetCC(SDValue Op, SetCCInfoAndKind &SetCCInfo) { // If this is a setcc, this is straight forward. if (Op.getOpcode() == ISD::SETCC) { SetCCInfo.Info.Generic.Opnd0 = &Op.getOperand(0); SetCCInfo.Info.Generic.Opnd1 = &Op.getOperand(1); SetCCInfo.Info.Generic.CC = cast(Op.getOperand(2))->get(); SetCCInfo.IsAArch64 = false; return true; } // Otherwise, check if this is a matching csel instruction. // In other words: // - csel 1, 0, cc // - csel 0, 1, !cc if (Op.getOpcode() != AArch64ISD::CSEL) return false; // Set the information about the operands. // TODO: we want the operands of the Cmp not the csel SetCCInfo.Info.AArch64.Cmp = &Op.getOperand(3); SetCCInfo.IsAArch64 = true; SetCCInfo.Info.AArch64.CC = static_cast(Op.getConstantOperandVal(2)); // Check that the operands matches the constraints: // (1) Both operands must be constants. // (2) One must be 1 and the other must be 0. ConstantSDNode *TValue = dyn_cast(Op.getOperand(0)); ConstantSDNode *FValue = dyn_cast(Op.getOperand(1)); // Check (1). if (!TValue || !FValue) return false; // Check (2). if (!TValue->isOne()) { // Update the comparison when we are interested in !cc. std::swap(TValue, FValue); SetCCInfo.Info.AArch64.CC = AArch64CC::getInvertedCondCode(SetCCInfo.Info.AArch64.CC); } return TValue->isOne() && FValue->isZero(); } // Returns true if Op is setcc or zext of setcc. static bool isSetCCOrZExtSetCC(const SDValue& Op, SetCCInfoAndKind &Info) { if (isSetCC(Op, Info)) return true; return ((Op.getOpcode() == ISD::ZERO_EXTEND) && isSetCC(Op->getOperand(0), Info)); } // The folding we want to perform is: // (add x, [zext] (setcc cc ...) ) // --> // (csel x, (add x, 1), !cc ...) // // The latter will get matched to a CSINC instruction. static SDValue performSetccAddFolding(SDNode *Op, SelectionDAG &DAG) { assert(Op && Op->getOpcode() == ISD::ADD && "Unexpected operation!"); SDValue LHS = Op->getOperand(0); SDValue RHS = Op->getOperand(1); SetCCInfoAndKind InfoAndKind; // If both operands are a SET_CC, then we don't want to perform this // folding and create another csel as this results in more instructions // (and higher register usage). if (isSetCCOrZExtSetCC(LHS, InfoAndKind) && isSetCCOrZExtSetCC(RHS, InfoAndKind)) return SDValue(); // If neither operand is a SET_CC, give up. if (!isSetCCOrZExtSetCC(LHS, InfoAndKind)) { std::swap(LHS, RHS); if (!isSetCCOrZExtSetCC(LHS, InfoAndKind)) return SDValue(); } // FIXME: This could be generatized to work for FP comparisons. EVT CmpVT = InfoAndKind.IsAArch64 ? InfoAndKind.Info.AArch64.Cmp->getOperand(0).getValueType() : InfoAndKind.Info.Generic.Opnd0->getValueType(); if (CmpVT != MVT::i32 && CmpVT != MVT::i64) return SDValue(); SDValue CCVal; SDValue Cmp; SDLoc dl(Op); if (InfoAndKind.IsAArch64) { CCVal = DAG.getConstant( AArch64CC::getInvertedCondCode(InfoAndKind.Info.AArch64.CC), dl, MVT::i32); Cmp = *InfoAndKind.Info.AArch64.Cmp; } else Cmp = getAArch64Cmp( *InfoAndKind.Info.Generic.Opnd0, *InfoAndKind.Info.Generic.Opnd1, ISD::getSetCCInverse(InfoAndKind.Info.Generic.CC, CmpVT), CCVal, DAG, dl); EVT VT = Op->getValueType(0); LHS = DAG.getNode(ISD::ADD, dl, VT, RHS, DAG.getConstant(1, dl, VT)); return DAG.getNode(AArch64ISD::CSEL, dl, VT, RHS, LHS, CCVal, Cmp); } // ADD(UADDV a, UADDV b) --> UADDV(ADD a, b) static SDValue performAddUADDVCombine(SDNode *N, SelectionDAG &DAG) { EVT VT = N->getValueType(0); // Only scalar integer and vector types. if (N->getOpcode() != ISD::ADD || !VT.isScalarInteger()) return SDValue(); SDValue LHS = N->getOperand(0); SDValue RHS = N->getOperand(1); if (LHS.getOpcode() != ISD::EXTRACT_VECTOR_ELT || RHS.getOpcode() != ISD::EXTRACT_VECTOR_ELT || LHS.getValueType() != VT) return SDValue(); auto *LHSN1 = dyn_cast(LHS->getOperand(1)); auto *RHSN1 = dyn_cast(RHS->getOperand(1)); if (!LHSN1 || LHSN1 != RHSN1 || !RHSN1->isZero()) return SDValue(); SDValue Op1 = LHS->getOperand(0); SDValue Op2 = RHS->getOperand(0); EVT OpVT1 = Op1.getValueType(); EVT OpVT2 = Op2.getValueType(); if (Op1.getOpcode() != AArch64ISD::UADDV || OpVT1 != OpVT2 || Op2.getOpcode() != AArch64ISD::UADDV || OpVT1.getVectorElementType() != VT) return SDValue(); SDValue Val1 = Op1.getOperand(0); SDValue Val2 = Op2.getOperand(0); EVT ValVT = Val1->getValueType(0); SDLoc DL(N); SDValue AddVal = DAG.getNode(ISD::ADD, DL, ValVT, Val1, Val2); return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, DAG.getNode(AArch64ISD::UADDV, DL, ValVT, AddVal), DAG.getConstant(0, DL, MVT::i64)); } /// Perform the scalar expression combine in the form of: /// CSEL(c, 1, cc) + b => CSINC(b+c, b, cc) /// CSNEG(c, -1, cc) + b => CSINC(b+c, b, cc) static SDValue performAddCSelIntoCSinc(SDNode *N, SelectionDAG &DAG) { EVT VT = N->getValueType(0); if (!VT.isScalarInteger() || N->getOpcode() != ISD::ADD) return SDValue(); SDValue LHS = N->getOperand(0); SDValue RHS = N->getOperand(1); // Handle commutivity. if (LHS.getOpcode() != AArch64ISD::CSEL && LHS.getOpcode() != AArch64ISD::CSNEG) { std::swap(LHS, RHS); if (LHS.getOpcode() != AArch64ISD::CSEL && LHS.getOpcode() != AArch64ISD::CSNEG) { return SDValue(); } } if (!LHS.hasOneUse()) return SDValue(); AArch64CC::CondCode AArch64CC = static_cast(LHS.getConstantOperandVal(2)); // The CSEL should include a const one operand, and the CSNEG should include // One or NegOne operand. ConstantSDNode *CTVal = dyn_cast(LHS.getOperand(0)); ConstantSDNode *CFVal = dyn_cast(LHS.getOperand(1)); if (!CTVal || !CFVal) return SDValue(); if (!(LHS.getOpcode() == AArch64ISD::CSEL && (CTVal->isOne() || CFVal->isOne())) && !(LHS.getOpcode() == AArch64ISD::CSNEG && (CTVal->isOne() || CFVal->isAllOnes()))) return SDValue(); // Switch CSEL(1, c, cc) to CSEL(c, 1, !cc) if (LHS.getOpcode() == AArch64ISD::CSEL && CTVal->isOne() && !CFVal->isOne()) { std::swap(CTVal, CFVal); AArch64CC = AArch64CC::getInvertedCondCode(AArch64CC); } SDLoc DL(N); // Switch CSNEG(1, c, cc) to CSNEG(-c, -1, !cc) if (LHS.getOpcode() == AArch64ISD::CSNEG && CTVal->isOne() && !CFVal->isAllOnes()) { APInt C = -1 * CFVal->getAPIntValue(); CTVal = cast(DAG.getConstant(C, DL, VT)); CFVal = cast(DAG.getAllOnesConstant(DL, VT)); AArch64CC = AArch64CC::getInvertedCondCode(AArch64CC); } // It might be neutral for larger constants, as the immediate need to be // materialized in a register. APInt ADDC = CTVal->getAPIntValue(); const TargetLowering &TLI = DAG.getTargetLoweringInfo(); if (!TLI.isLegalAddImmediate(ADDC.getSExtValue())) return SDValue(); assert(((LHS.getOpcode() == AArch64ISD::CSEL && CFVal->isOne()) || (LHS.getOpcode() == AArch64ISD::CSNEG && CFVal->isAllOnes())) && "Unexpected constant value"); SDValue NewNode = DAG.getNode(ISD::ADD, DL, VT, RHS, SDValue(CTVal, 0)); SDValue CCVal = DAG.getConstant(AArch64CC, DL, MVT::i32); SDValue Cmp = LHS.getOperand(3); return DAG.getNode(AArch64ISD::CSINC, DL, VT, NewNode, RHS, CCVal, Cmp); } // ADD(UDOT(zero, x, y), A) --> UDOT(A, x, y) static SDValue performAddDotCombine(SDNode *N, SelectionDAG &DAG) { EVT VT = N->getValueType(0); if (N->getOpcode() != ISD::ADD) return SDValue(); SDValue Dot = N->getOperand(0); SDValue A = N->getOperand(1); // Handle commutivity auto isZeroDot = [](SDValue Dot) { return (Dot.getOpcode() == AArch64ISD::UDOT || Dot.getOpcode() == AArch64ISD::SDOT) && isZerosVector(Dot.getOperand(0).getNode()); }; if (!isZeroDot(Dot)) std::swap(Dot, A); if (!isZeroDot(Dot)) return SDValue(); return DAG.getNode(Dot.getOpcode(), SDLoc(N), VT, A, Dot.getOperand(1), Dot.getOperand(2)); } static bool isNegatedInteger(SDValue Op) { return Op.getOpcode() == ISD::SUB && isNullConstant(Op.getOperand(0)); } static SDValue getNegatedInteger(SDValue Op, SelectionDAG &DAG) { SDLoc DL(Op); EVT VT = Op.getValueType(); SDValue Zero = DAG.getConstant(0, DL, VT); return DAG.getNode(ISD::SUB, DL, VT, Zero, Op); } // Try to fold // // (neg (csel X, Y)) -> (csel (neg X), (neg Y)) // // The folding helps csel to be matched with csneg without generating // redundant neg instruction, which includes negation of the csel expansion // of abs node lowered by lowerABS. static SDValue performNegCSelCombine(SDNode *N, SelectionDAG &DAG) { if (!isNegatedInteger(SDValue(N, 0))) return SDValue(); SDValue CSel = N->getOperand(1); if (CSel.getOpcode() != AArch64ISD::CSEL || !CSel->hasOneUse()) return SDValue(); SDValue N0 = CSel.getOperand(0); SDValue N1 = CSel.getOperand(1); // If both of them is not negations, it's not worth the folding as it // introduces two additional negations while reducing one negation. if (!isNegatedInteger(N0) && !isNegatedInteger(N1)) return SDValue(); SDValue N0N = getNegatedInteger(N0, DAG); SDValue N1N = getNegatedInteger(N1, DAG); SDLoc DL(N); EVT VT = CSel.getValueType(); return DAG.getNode(AArch64ISD::CSEL, DL, VT, N0N, N1N, CSel.getOperand(2), CSel.getOperand(3)); } // The basic add/sub long vector instructions have variants with "2" on the end // which act on the high-half of their inputs. They are normally matched by // patterns like: // // (add (zeroext (extract_high LHS)), // (zeroext (extract_high RHS))) // -> uaddl2 vD, vN, vM // // However, if one of the extracts is something like a duplicate, this // instruction can still be used profitably. This function puts the DAG into a // more appropriate form for those patterns to trigger. static SDValue performAddSubLongCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { SelectionDAG &DAG = DCI.DAG; if (DCI.isBeforeLegalizeOps()) return SDValue(); MVT VT = N->getSimpleValueType(0); if (!VT.is128BitVector()) { if (N->getOpcode() == ISD::ADD) return performSetccAddFolding(N, DAG); return SDValue(); } // Make sure both branches are extended in the same way. SDValue LHS = N->getOperand(0); SDValue RHS = N->getOperand(1); if ((LHS.getOpcode() != ISD::ZERO_EXTEND && LHS.getOpcode() != ISD::SIGN_EXTEND) || LHS.getOpcode() != RHS.getOpcode()) return SDValue(); unsigned ExtType = LHS.getOpcode(); // It's not worth doing if at least one of the inputs isn't already an // extract, but we don't know which it'll be so we have to try both. if (isEssentiallyExtractHighSubvector(LHS.getOperand(0))) { RHS = tryExtendDUPToExtractHigh(RHS.getOperand(0), DAG); if (!RHS.getNode()) return SDValue(); RHS = DAG.getNode(ExtType, SDLoc(N), VT, RHS); } else if (isEssentiallyExtractHighSubvector(RHS.getOperand(0))) { LHS = tryExtendDUPToExtractHigh(LHS.getOperand(0), DAG); if (!LHS.getNode()) return SDValue(); LHS = DAG.getNode(ExtType, SDLoc(N), VT, LHS); } return DAG.getNode(N->getOpcode(), SDLoc(N), VT, LHS, RHS); } static bool isCMP(SDValue Op) { return Op.getOpcode() == AArch64ISD::SUBS && !Op.getNode()->hasAnyUseOfValue(0); } // (CSEL 1 0 CC Cond) => CC // (CSEL 0 1 CC Cond) => !CC static std::optional getCSETCondCode(SDValue Op) { if (Op.getOpcode() != AArch64ISD::CSEL) return std::nullopt; auto CC = static_cast(Op.getConstantOperandVal(2)); if (CC == AArch64CC::AL || CC == AArch64CC::NV) return std::nullopt; SDValue OpLHS = Op.getOperand(0); SDValue OpRHS = Op.getOperand(1); if (isOneConstant(OpLHS) && isNullConstant(OpRHS)) return CC; if (isNullConstant(OpLHS) && isOneConstant(OpRHS)) return getInvertedCondCode(CC); return std::nullopt; } // (ADC{S} l r (CMP (CSET HS carry) 1)) => (ADC{S} l r carry) // (SBC{S} l r (CMP 0 (CSET LO carry))) => (SBC{S} l r carry) static SDValue foldOverflowCheck(SDNode *Op, SelectionDAG &DAG, bool IsAdd) { SDValue CmpOp = Op->getOperand(2); if (!isCMP(CmpOp)) return SDValue(); if (IsAdd) { if (!isOneConstant(CmpOp.getOperand(1))) return SDValue(); } else { if (!isNullConstant(CmpOp.getOperand(0))) return SDValue(); } SDValue CsetOp = CmpOp->getOperand(IsAdd ? 0 : 1); auto CC = getCSETCondCode(CsetOp); if (CC != (IsAdd ? AArch64CC::HS : AArch64CC::LO)) return SDValue(); return DAG.getNode(Op->getOpcode(), SDLoc(Op), Op->getVTList(), Op->getOperand(0), Op->getOperand(1), CsetOp.getOperand(3)); } // (ADC x 0 cond) => (CINC x HS cond) static SDValue foldADCToCINC(SDNode *N, SelectionDAG &DAG) { SDValue LHS = N->getOperand(0); SDValue RHS = N->getOperand(1); SDValue Cond = N->getOperand(2); if (!isNullConstant(RHS)) return SDValue(); EVT VT = N->getValueType(0); SDLoc DL(N); // (CINC x cc cond) <=> (CSINC x x !cc cond) SDValue CC = DAG.getConstant(AArch64CC::LO, DL, MVT::i32); return DAG.getNode(AArch64ISD::CSINC, DL, VT, LHS, LHS, CC, Cond); } // Transform vector add(zext i8 to i32, zext i8 to i32) // into sext(add(zext(i8 to i16), zext(i8 to i16)) to i32) // This allows extra uses of saddl/uaddl at the lower vector widths, and less // extends. static SDValue performVectorAddSubExtCombine(SDNode *N, SelectionDAG &DAG) { EVT VT = N->getValueType(0); if (!VT.isFixedLengthVector() || VT.getSizeInBits() <= 128 || (N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND && N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND) || (N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND && N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND) || N->getOperand(0).getOperand(0).getValueType() != N->getOperand(1).getOperand(0).getValueType()) return SDValue(); SDValue N0 = N->getOperand(0).getOperand(0); SDValue N1 = N->getOperand(1).getOperand(0); EVT InVT = N0.getValueType(); EVT S1 = InVT.getScalarType(); EVT S2 = VT.getScalarType(); if ((S2 == MVT::i32 && S1 == MVT::i8) || (S2 == MVT::i64 && (S1 == MVT::i8 || S1 == MVT::i16))) { SDLoc DL(N); EVT HalfVT = EVT::getVectorVT(*DAG.getContext(), S2.getHalfSizedIntegerVT(*DAG.getContext()), VT.getVectorElementCount()); SDValue NewN0 = DAG.getNode(N->getOperand(0).getOpcode(), DL, HalfVT, N0); SDValue NewN1 = DAG.getNode(N->getOperand(1).getOpcode(), DL, HalfVT, N1); SDValue NewOp = DAG.getNode(N->getOpcode(), DL, HalfVT, NewN0, NewN1); return DAG.getNode(ISD::SIGN_EXTEND, DL, VT, NewOp); } return SDValue(); } static SDValue performBuildVectorCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, SelectionDAG &DAG) { SDLoc DL(N); EVT VT = N->getValueType(0); if (VT == MVT::v4f16 || VT == MVT::v4bf16) { SDValue Elt0 = N->getOperand(0), Elt1 = N->getOperand(1), Elt2 = N->getOperand(2), Elt3 = N->getOperand(3); if (Elt0->getOpcode() == ISD::FP_ROUND && Elt1->getOpcode() == ISD::FP_ROUND && isa(Elt0->getOperand(1)) && isa(Elt1->getOperand(1)) && Elt0->getConstantOperandVal(1) == Elt1->getConstantOperandVal(1) && Elt0->getOperand(0)->getOpcode() == ISD::EXTRACT_VECTOR_ELT && Elt1->getOperand(0)->getOpcode() == ISD::EXTRACT_VECTOR_ELT && // Constant index. isa(Elt0->getOperand(0)->getOperand(1)) && isa(Elt1->getOperand(0)->getOperand(1)) && Elt0->getOperand(0)->getOperand(0) == Elt1->getOperand(0)->getOperand(0) && Elt0->getOperand(0)->getConstantOperandVal(1) == 0 && Elt1->getOperand(0)->getConstantOperandVal(1) == 1) { SDValue LowLanesSrcVec = Elt0->getOperand(0)->getOperand(0); if (LowLanesSrcVec.getValueType() == MVT::v2f64) { SDValue HighLanes; if (Elt2->getOpcode() == ISD::UNDEF && Elt3->getOpcode() == ISD::UNDEF) { HighLanes = DAG.getUNDEF(MVT::v2f32); } else if (Elt2->getOpcode() == ISD::FP_ROUND && Elt3->getOpcode() == ISD::FP_ROUND && isa(Elt2->getOperand(1)) && isa(Elt3->getOperand(1)) && Elt2->getConstantOperandVal(1) == Elt3->getConstantOperandVal(1) && Elt2->getOperand(0)->getOpcode() == ISD::EXTRACT_VECTOR_ELT && Elt3->getOperand(0)->getOpcode() == ISD::EXTRACT_VECTOR_ELT && // Constant index. isa(Elt2->getOperand(0)->getOperand(1)) && isa(Elt3->getOperand(0)->getOperand(1)) && Elt2->getOperand(0)->getOperand(0) == Elt3->getOperand(0)->getOperand(0) && Elt2->getOperand(0)->getConstantOperandVal(1) == 0 && Elt3->getOperand(0)->getConstantOperandVal(1) == 1) { SDValue HighLanesSrcVec = Elt2->getOperand(0)->getOperand(0); HighLanes = DAG.getNode(AArch64ISD::FCVTXN, DL, MVT::v2f32, HighLanesSrcVec); } if (HighLanes) { SDValue DoubleToSingleSticky = DAG.getNode(AArch64ISD::FCVTXN, DL, MVT::v2f32, LowLanesSrcVec); SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v4f32, DoubleToSingleSticky, HighLanes); return DAG.getNode(ISD::FP_ROUND, DL, VT, Concat, Elt0->getOperand(1)); } } } } if (VT == MVT::v2f64) { SDValue Elt0 = N->getOperand(0), Elt1 = N->getOperand(1); if (Elt0->getOpcode() == ISD::FP_EXTEND && Elt1->getOpcode() == ISD::FP_EXTEND && Elt0->getOperand(0)->getOpcode() == ISD::EXTRACT_VECTOR_ELT && Elt1->getOperand(0)->getOpcode() == ISD::EXTRACT_VECTOR_ELT && Elt0->getOperand(0)->getOperand(0) == Elt1->getOperand(0)->getOperand(0) && // Constant index. isa(Elt0->getOperand(0)->getOperand(1)) && isa(Elt1->getOperand(0)->getOperand(1)) && Elt0->getOperand(0)->getConstantOperandVal(1) + 1 == Elt1->getOperand(0)->getConstantOperandVal(1) && // EXTRACT_SUBVECTOR requires that Idx be a constant multiple of // ResultType's known minimum vector length. Elt0->getOperand(0)->getConstantOperandVal(1) % VT.getVectorMinNumElements() == 0) { SDValue SrcVec = Elt0->getOperand(0)->getOperand(0); if (SrcVec.getValueType() == MVT::v4f16 || SrcVec.getValueType() == MVT::v4bf16) { SDValue HalfToSingle = DAG.getNode(ISD::FP_EXTEND, DL, MVT::v4f32, SrcVec); SDValue SubvectorIdx = Elt0->getOperand(0)->getOperand(1); SDValue Extract = DAG.getNode( ISD::EXTRACT_SUBVECTOR, DL, VT.changeVectorElementType(MVT::f32), HalfToSingle, SubvectorIdx); return DAG.getNode(ISD::FP_EXTEND, DL, VT, Extract); } } } // A build vector of two extracted elements is equivalent to an // extract subvector where the inner vector is any-extended to the // extract_vector_elt VT. // (build_vector (extract_elt_iXX_to_i32 vec Idx+0) // (extract_elt_iXX_to_i32 vec Idx+1)) // => (extract_subvector (anyext_iXX_to_i32 vec) Idx) // For now, only consider the v2i32 case, which arises as a result of // legalization. if (VT != MVT::v2i32) return SDValue(); SDValue Elt0 = N->getOperand(0), Elt1 = N->getOperand(1); // Reminder, EXTRACT_VECTOR_ELT has the effect of any-extending to its VT. if (Elt0->getOpcode() == ISD::EXTRACT_VECTOR_ELT && Elt1->getOpcode() == ISD::EXTRACT_VECTOR_ELT && // Constant index. isa(Elt0->getOperand(1)) && isa(Elt1->getOperand(1)) && // Both EXTRACT_VECTOR_ELT from same vector... Elt0->getOperand(0) == Elt1->getOperand(0) && // ... and contiguous. First element's index +1 == second element's index. Elt0->getConstantOperandVal(1) + 1 == Elt1->getConstantOperandVal(1) && // EXTRACT_SUBVECTOR requires that Idx be a constant multiple of // ResultType's known minimum vector length. Elt0->getConstantOperandVal(1) % VT.getVectorMinNumElements() == 0) { SDValue VecToExtend = Elt0->getOperand(0); EVT ExtVT = VecToExtend.getValueType().changeVectorElementType(MVT::i32); if (!DAG.getTargetLoweringInfo().isTypeLegal(ExtVT)) return SDValue(); SDValue SubvectorIdx = DAG.getVectorIdxConstant(Elt0->getConstantOperandVal(1), DL); SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, DL, ExtVT, VecToExtend); return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i32, Ext, SubvectorIdx); } return SDValue(); } static SDValue performTruncateCombine(SDNode *N, SelectionDAG &DAG) { EVT VT = N->getValueType(0); SDValue N0 = N->getOperand(0); if (VT.isFixedLengthVector() && VT.is64BitVector() && N0.hasOneUse() && N0.getOpcode() == AArch64ISD::DUP) { SDValue Op = N0.getOperand(0); if (VT.getScalarType() == MVT::i32 && N0.getOperand(0).getValueType().getScalarType() == MVT::i64) Op = DAG.getNode(ISD::TRUNCATE, SDLoc(N), MVT::i32, Op); return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, Op); } return SDValue(); } // Check an node is an extend or shift operand static bool isExtendOrShiftOperand(SDValue N) { unsigned Opcode = N.getOpcode(); if (ISD::isExtOpcode(Opcode) || Opcode == ISD::SIGN_EXTEND_INREG) { EVT SrcVT; if (Opcode == ISD::SIGN_EXTEND_INREG) SrcVT = cast(N.getOperand(1))->getVT(); else SrcVT = N.getOperand(0).getValueType(); return SrcVT == MVT::i32 || SrcVT == MVT::i16 || SrcVT == MVT::i8; } else if (Opcode == ISD::AND) { ConstantSDNode *CSD = dyn_cast(N.getOperand(1)); if (!CSD) return false; uint64_t AndMask = CSD->getZExtValue(); return AndMask == 0xff || AndMask == 0xffff || AndMask == 0xffffffff; } else if (Opcode == ISD::SHL || Opcode == ISD::SRL || Opcode == ISD::SRA) { return isa(N.getOperand(1)); } return false; } // (N - Y) + Z --> (Z - Y) + N // when N is an extend or shift operand static SDValue performAddCombineSubShift(SDNode *N, SDValue SUB, SDValue Z, SelectionDAG &DAG) { auto IsOneUseExtend = [](SDValue N) { return N.hasOneUse() && isExtendOrShiftOperand(N); }; // DAGCombiner will revert the combination when Z is constant cause // dead loop. So don't enable the combination when Z is constant. // If Z is one use shift C, we also can't do the optimization. // It will falling to self infinite loop. if (isa(Z) || IsOneUseExtend(Z)) return SDValue(); if (SUB.getOpcode() != ISD::SUB || !SUB.hasOneUse()) return SDValue(); SDValue Shift = SUB.getOperand(0); if (!IsOneUseExtend(Shift)) return SDValue(); SDLoc DL(N); EVT VT = N->getValueType(0); SDValue Y = SUB.getOperand(1); SDValue NewSub = DAG.getNode(ISD::SUB, DL, VT, Z, Y); return DAG.getNode(ISD::ADD, DL, VT, NewSub, Shift); } static SDValue performAddCombineForShiftedOperands(SDNode *N, SelectionDAG &DAG) { // NOTE: Swapping LHS and RHS is not done for SUB, since SUB is not // commutative. if (N->getOpcode() != ISD::ADD) return SDValue(); // Bail out when value type is not one of {i32, i64}, since AArch64 ADD with // shifted register is only available for i32 and i64. EVT VT = N->getValueType(0); if (VT != MVT::i32 && VT != MVT::i64) return SDValue(); SDLoc DL(N); SDValue LHS = N->getOperand(0); SDValue RHS = N->getOperand(1); if (SDValue Val = performAddCombineSubShift(N, LHS, RHS, DAG)) return Val; if (SDValue Val = performAddCombineSubShift(N, RHS, LHS, DAG)) return Val; uint64_t LHSImm = 0, RHSImm = 0; // If both operand are shifted by imm and shift amount is not greater than 4 // for one operand, swap LHS and RHS to put operand with smaller shift amount // on RHS. // // On many AArch64 processors (Cortex A78, Neoverse N1/N2/V1, etc), ADD with // LSL shift (shift <= 4) has smaller latency and larger throughput than ADD // with LSL (shift > 4). For the rest of processors, this is no-op for // performance or correctness. if (isOpcWithIntImmediate(LHS.getNode(), ISD::SHL, LHSImm) && isOpcWithIntImmediate(RHS.getNode(), ISD::SHL, RHSImm) && LHSImm <= 4 && RHSImm > 4 && LHS.hasOneUse()) return DAG.getNode(ISD::ADD, DL, VT, RHS, LHS); return SDValue(); } // The mid end will reassociate sub(sub(x, m1), m2) to sub(x, add(m1, m2)) // This reassociates it back to allow the creation of more mls instructions. static SDValue performSubAddMULCombine(SDNode *N, SelectionDAG &DAG) { if (N->getOpcode() != ISD::SUB) return SDValue(); SDValue Add = N->getOperand(1); SDValue X = N->getOperand(0); if (Add.getOpcode() != ISD::ADD) return SDValue(); if (!Add.hasOneUse()) return SDValue(); if (DAG.isConstantIntBuildVectorOrConstantInt(peekThroughBitcasts(X))) return SDValue(); SDValue M1 = Add.getOperand(0); SDValue M2 = Add.getOperand(1); if (M1.getOpcode() != ISD::MUL && M1.getOpcode() != AArch64ISD::SMULL && M1.getOpcode() != AArch64ISD::UMULL) return SDValue(); if (M2.getOpcode() != ISD::MUL && M2.getOpcode() != AArch64ISD::SMULL && M2.getOpcode() != AArch64ISD::UMULL) return SDValue(); EVT VT = N->getValueType(0); SDValue Sub = DAG.getNode(ISD::SUB, SDLoc(N), VT, X, M1); return DAG.getNode(ISD::SUB, SDLoc(N), VT, Sub, M2); } // Combine into mla/mls. // This works on the patterns of: // add v1, (mul v2, v3) // sub v1, (mul v2, v3) // for vectors of type <1 x i64> and <2 x i64> when SVE is available. // It will transform the add/sub to a scalable version, so that we can // make use of SVE's MLA/MLS that will be generated for that pattern static SDValue performSVEMulAddSubCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { SelectionDAG &DAG = DCI.DAG; // Make sure that the types are legal if (!DCI.isAfterLegalizeDAG()) return SDValue(); // Before using SVE's features, check first if it's available. if (!DAG.getSubtarget().hasSVE()) return SDValue(); if (N->getOpcode() != ISD::ADD && N->getOpcode() != ISD::SUB) return SDValue(); if (!N->getValueType(0).isFixedLengthVector()) return SDValue(); auto performOpt = [&DAG, &N](SDValue Op0, SDValue Op1) -> SDValue { if (Op1.getOpcode() != ISD::EXTRACT_SUBVECTOR) return SDValue(); if (!cast(Op1->getOperand(1))->isZero()) return SDValue(); SDValue MulValue = Op1->getOperand(0); if (MulValue.getOpcode() != AArch64ISD::MUL_PRED) return SDValue(); if (!Op1.hasOneUse() || !MulValue.hasOneUse()) return SDValue(); EVT ScalableVT = MulValue.getValueType(); if (!ScalableVT.isScalableVector()) return SDValue(); SDValue ScaledOp = convertToScalableVector(DAG, ScalableVT, Op0); SDValue NewValue = DAG.getNode(N->getOpcode(), SDLoc(N), ScalableVT, {ScaledOp, MulValue}); return convertFromScalableVector(DAG, N->getValueType(0), NewValue); }; if (SDValue res = performOpt(N->getOperand(0), N->getOperand(1))) return res; else if (N->getOpcode() == ISD::ADD) return performOpt(N->getOperand(1), N->getOperand(0)); return SDValue(); } // Given a i64 add from a v1i64 extract, convert to a neon v1i64 add. This can // help, for example, to produce ssra from sshr+add. static SDValue performAddSubIntoVectorOp(SDNode *N, SelectionDAG &DAG) { EVT VT = N->getValueType(0); if (VT != MVT::i64) return SDValue(); SDValue Op0 = N->getOperand(0); SDValue Op1 = N->getOperand(1); // At least one of the operands should be an extract, and the other should be // something that is easy to convert to v1i64 type (in this case a load). if (Op0.getOpcode() != ISD::EXTRACT_VECTOR_ELT && Op0.getOpcode() != ISD::LOAD) return SDValue(); if (Op1.getOpcode() != ISD::EXTRACT_VECTOR_ELT && Op1.getOpcode() != ISD::LOAD) return SDValue(); SDLoc DL(N); if (Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && Op0.getOperand(0).getValueType() == MVT::v1i64) { Op0 = Op0.getOperand(0); Op1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, MVT::v1i64, Op1); } else if (Op1.getOpcode() == ISD::EXTRACT_VECTOR_ELT && Op1.getOperand(0).getValueType() == MVT::v1i64) { Op0 = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, MVT::v1i64, Op0); Op1 = Op1.getOperand(0); } else return SDValue(); return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i64, DAG.getNode(N->getOpcode(), DL, MVT::v1i64, Op0, Op1), DAG.getConstant(0, DL, MVT::i64)); } static bool isLoadOrMultipleLoads(SDValue B, SmallVector &Loads) { SDValue BV = peekThroughOneUseBitcasts(B); if (!BV->hasOneUse()) return false; if (auto *Ld = dyn_cast(BV)) { if (!Ld || !Ld->isSimple()) return false; Loads.push_back(Ld); return true; } else if (BV.getOpcode() == ISD::BUILD_VECTOR || BV.getOpcode() == ISD::CONCAT_VECTORS) { for (unsigned Op = 0; Op < BV.getNumOperands(); Op++) { auto *Ld = dyn_cast(BV.getOperand(Op)); if (!Ld || !Ld->isSimple() || !BV.getOperand(Op).hasOneUse()) return false; Loads.push_back(Ld); } return true; } else if (B.getOpcode() == ISD::VECTOR_SHUFFLE) { // Try to find a tree of shuffles and concats from how IR shuffles of loads // are lowered. Note that this only comes up because we do not always visit // operands before uses. After that is fixed this can be removed and in the // meantime this is fairly specific to the lowering we expect from IR. // t46: v16i8 = vector_shuffle<0,1,2,3,4,5,6,7,8,9,10,11,16,17,18,19> t44, t45 // t44: v16i8 = vector_shuffle<0,1,2,3,4,5,6,7,16,17,18,19,u,u,u,u> t42, t43 // t42: v16i8 = concat_vectors t40, t36, undef:v4i8, undef:v4i8 // t40: v4i8,ch = load<(load (s32) from %ir.17)> t0, t22, undef:i64 // t36: v4i8,ch = load<(load (s32) from %ir.13)> t0, t18, undef:i64 // t43: v16i8 = concat_vectors t32, undef:v4i8, undef:v4i8, undef:v4i8 // t32: v4i8,ch = load<(load (s32) from %ir.9)> t0, t14, undef:i64 // t45: v16i8 = concat_vectors t28, undef:v4i8, undef:v4i8, undef:v4i8 // t28: v4i8,ch = load<(load (s32) from %ir.0)> t0, t2, undef:i64 if (B.getOperand(0).getOpcode() != ISD::VECTOR_SHUFFLE || B.getOperand(0).getOperand(0).getOpcode() != ISD::CONCAT_VECTORS || B.getOperand(0).getOperand(1).getOpcode() != ISD::CONCAT_VECTORS || B.getOperand(1).getOpcode() != ISD::CONCAT_VECTORS || B.getOperand(1).getNumOperands() != 4) return false; auto SV1 = cast(B); auto SV2 = cast(B.getOperand(0)); int NumElts = B.getValueType().getVectorNumElements(); int NumSubElts = NumElts / 4; for (int I = 0; I < NumSubElts; I++) { // <0,1,2,3,4,5,6,7,8,9,10,11,16,17,18,19> if (SV1->getMaskElt(I) != I || SV1->getMaskElt(I + NumSubElts) != I + NumSubElts || SV1->getMaskElt(I + NumSubElts * 2) != I + NumSubElts * 2 || SV1->getMaskElt(I + NumSubElts * 3) != I + NumElts) return false; // <0,1,2,3,4,5,6,7,16,17,18,19,u,u,u,u> if (SV2->getMaskElt(I) != I || SV2->getMaskElt(I + NumSubElts) != I + NumSubElts || SV2->getMaskElt(I + NumSubElts * 2) != I + NumElts) return false; } auto *Ld0 = dyn_cast(SV2->getOperand(0).getOperand(0)); auto *Ld1 = dyn_cast(SV2->getOperand(0).getOperand(1)); auto *Ld2 = dyn_cast(SV2->getOperand(1).getOperand(0)); auto *Ld3 = dyn_cast(B.getOperand(1).getOperand(0)); if (!Ld0 || !Ld1 || !Ld2 || !Ld3 || !Ld0->isSimple() || !Ld1->isSimple() || !Ld2->isSimple() || !Ld3->isSimple()) return false; Loads.push_back(Ld0); Loads.push_back(Ld1); Loads.push_back(Ld2); Loads.push_back(Ld3); return true; } return false; } static bool areLoadedOffsetButOtherwiseSame(SDValue Op0, SDValue Op1, SelectionDAG &DAG, unsigned &NumSubLoads) { if (!Op0.hasOneUse() || !Op1.hasOneUse()) return false; SmallVector Loads0, Loads1; if (isLoadOrMultipleLoads(Op0, Loads0) && isLoadOrMultipleLoads(Op1, Loads1)) { if (NumSubLoads && Loads0.size() != NumSubLoads) return false; NumSubLoads = Loads0.size(); return Loads0.size() == Loads1.size() && all_of(zip(Loads0, Loads1), [&DAG](auto L) { unsigned Size = get<0>(L)->getValueType(0).getSizeInBits(); return Size == get<1>(L)->getValueType(0).getSizeInBits() && DAG.areNonVolatileConsecutiveLoads(get<1>(L), get<0>(L), Size / 8, 1); }); } if (Op0.getOpcode() != Op1.getOpcode()) return false; switch (Op0.getOpcode()) { case ISD::ADD: case ISD::SUB: return areLoadedOffsetButOtherwiseSame(Op0.getOperand(0), Op1.getOperand(0), DAG, NumSubLoads) && areLoadedOffsetButOtherwiseSame(Op0.getOperand(1), Op1.getOperand(1), DAG, NumSubLoads); case ISD::SIGN_EXTEND: case ISD::ANY_EXTEND: case ISD::ZERO_EXTEND: EVT XVT = Op0.getOperand(0).getValueType(); if (XVT.getScalarSizeInBits() != 8 && XVT.getScalarSizeInBits() != 16 && XVT.getScalarSizeInBits() != 32) return false; return areLoadedOffsetButOtherwiseSame(Op0.getOperand(0), Op1.getOperand(0), DAG, NumSubLoads); } return false; } // This method attempts to fold trees of add(ext(load p), shl(ext(load p+4)) // into a single load of twice the size, that we extract the bottom part and top // part so that the shl can use a shll2 instruction. The two loads in that // example can also be larger trees of instructions, which are identical except // for the leaves which are all loads offset from the LHS, including // buildvectors of multiple loads. For example the RHS tree could be // sub(zext(buildvec(load p+4, load q+4)), zext(buildvec(load r+4, load s+4))) // Whilst it can be common for the larger loads to replace LDP instructions // (which doesn't gain anything on it's own), the larger loads can help create // more efficient code, and in buildvectors prevent the need for ld1 lane // inserts which can be slower than normal loads. static SDValue performExtBinopLoadFold(SDNode *N, SelectionDAG &DAG) { EVT VT = N->getValueType(0); if (!VT.isFixedLengthVector() || (VT.getScalarSizeInBits() != 16 && VT.getScalarSizeInBits() != 32 && VT.getScalarSizeInBits() != 64)) return SDValue(); SDValue Other = N->getOperand(0); SDValue Shift = N->getOperand(1); if (Shift.getOpcode() != ISD::SHL && N->getOpcode() != ISD::SUB) std::swap(Shift, Other); APInt ShiftAmt; if (Shift.getOpcode() != ISD::SHL || !Shift.hasOneUse() || !ISD::isConstantSplatVector(Shift.getOperand(1).getNode(), ShiftAmt)) return SDValue(); if (!ISD::isExtOpcode(Shift.getOperand(0).getOpcode()) || !ISD::isExtOpcode(Other.getOpcode()) || Shift.getOperand(0).getOperand(0).getValueType() != Other.getOperand(0).getValueType() || !Other.hasOneUse() || !Shift.getOperand(0).hasOneUse()) return SDValue(); SDValue Op0 = Other.getOperand(0); SDValue Op1 = Shift.getOperand(0).getOperand(0); unsigned NumSubLoads = 0; if (!areLoadedOffsetButOtherwiseSame(Op0, Op1, DAG, NumSubLoads)) return SDValue(); // Attempt to rule out some unprofitable cases using heuristics (some working // around suboptimal code generation), notably if the extend not be able to // use ushll2 instructions as the types are not large enough. Otherwise zip's // will need to be created which can increase the instruction count. unsigned NumElts = Op0.getValueType().getVectorNumElements(); unsigned NumSubElts = NumElts / NumSubLoads; if (NumSubElts * VT.getScalarSizeInBits() < 128 || (Other.getOpcode() != Shift.getOperand(0).getOpcode() && Op0.getValueType().getSizeInBits() < 128 && !DAG.getTargetLoweringInfo().isTypeLegal(Op0.getValueType()))) return SDValue(); // Recreate the tree with the new combined loads. std::function GenCombinedTree = [&GenCombinedTree](SDValue Op0, SDValue Op1, SelectionDAG &DAG) { EVT DVT = Op0.getValueType().getDoubleNumVectorElementsVT(*DAG.getContext()); SmallVector Loads0, Loads1; if (isLoadOrMultipleLoads(Op0, Loads0) && isLoadOrMultipleLoads(Op1, Loads1)) { EVT LoadVT = EVT::getVectorVT( *DAG.getContext(), Op0.getValueType().getScalarType(), Op0.getValueType().getVectorNumElements() / Loads0.size()); EVT DLoadVT = LoadVT.getDoubleNumVectorElementsVT(*DAG.getContext()); SmallVector NewLoads; for (const auto &[L0, L1] : zip(Loads0, Loads1)) { SDValue Load = DAG.getLoad(DLoadVT, SDLoc(L0), L0->getChain(), L0->getBasePtr(), L0->getPointerInfo(), L0->getOriginalAlign()); DAG.makeEquivalentMemoryOrdering(L0, Load.getValue(1)); DAG.makeEquivalentMemoryOrdering(L1, Load.getValue(1)); NewLoads.push_back(Load); } return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op0), DVT, NewLoads); } SmallVector Ops; for (const auto &[O0, O1] : zip(Op0->op_values(), Op1->op_values())) Ops.push_back(GenCombinedTree(O0, O1, DAG)); return DAG.getNode(Op0.getOpcode(), SDLoc(Op0), DVT, Ops); }; SDValue NewOp = GenCombinedTree(Op0, Op1, DAG); SmallVector LowMask(NumElts, 0), HighMask(NumElts, 0); int Hi = NumSubElts, Lo = 0; for (unsigned i = 0; i < NumSubLoads; i++) { for (unsigned j = 0; j < NumSubElts; j++) { LowMask[i * NumSubElts + j] = Lo++; HighMask[i * NumSubElts + j] = Hi++; } Lo += NumSubElts; Hi += NumSubElts; } SDLoc DL(N); SDValue Ext0, Ext1; // Extract the top and bottom lanes, then extend the result. Possibly extend // the result then extract the lanes if the two operands match as it produces // slightly smaller code. if (Other.getOpcode() != Shift.getOperand(0).getOpcode()) { SDValue SubL = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, Op0.getValueType(), NewOp, DAG.getConstant(0, DL, MVT::i64)); SDValue SubH = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, Op0.getValueType(), NewOp, DAG.getConstant(NumSubElts * NumSubLoads, DL, MVT::i64)); SDValue Extr0 = DAG.getVectorShuffle(Op0.getValueType(), DL, SubL, SubH, LowMask); SDValue Extr1 = DAG.getVectorShuffle(Op0.getValueType(), DL, SubL, SubH, HighMask); Ext0 = DAG.getNode(Other.getOpcode(), DL, VT, Extr0); Ext1 = DAG.getNode(Shift.getOperand(0).getOpcode(), DL, VT, Extr1); } else { EVT DVT = VT.getDoubleNumVectorElementsVT(*DAG.getContext()); SDValue Ext = DAG.getNode(Other.getOpcode(), DL, DVT, NewOp); SDValue SubL = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Ext, DAG.getConstant(0, DL, MVT::i64)); SDValue SubH = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Ext, DAG.getConstant(NumSubElts * NumSubLoads, DL, MVT::i64)); Ext0 = DAG.getVectorShuffle(VT, DL, SubL, SubH, LowMask); Ext1 = DAG.getVectorShuffle(VT, DL, SubL, SubH, HighMask); } SDValue NShift = DAG.getNode(Shift.getOpcode(), DL, VT, Ext1, Shift.getOperand(1)); return DAG.getNode(N->getOpcode(), DL, VT, Ext0, NShift); } static SDValue performAddSubCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { // Try to change sum of two reductions. if (SDValue Val = performAddUADDVCombine(N, DCI.DAG)) return Val; if (SDValue Val = performAddDotCombine(N, DCI.DAG)) return Val; if (SDValue Val = performAddCSelIntoCSinc(N, DCI.DAG)) return Val; if (SDValue Val = performNegCSelCombine(N, DCI.DAG)) return Val; if (SDValue Val = performVectorAddSubExtCombine(N, DCI.DAG)) return Val; if (SDValue Val = performAddCombineForShiftedOperands(N, DCI.DAG)) return Val; if (SDValue Val = performSubAddMULCombine(N, DCI.DAG)) return Val; if (SDValue Val = performSVEMulAddSubCombine(N, DCI)) return Val; if (SDValue Val = performAddSubIntoVectorOp(N, DCI.DAG)) return Val; if (SDValue Val = performExtBinopLoadFold(N, DCI.DAG)) return Val; return performAddSubLongCombine(N, DCI); } // Massage DAGs which we can use the high-half "long" operations on into // something isel will recognize better. E.g. // // (aarch64_neon_umull (extract_high vec) (dupv64 scalar)) --> // (aarch64_neon_umull (extract_high (v2i64 vec))) // (extract_high (v2i64 (dup128 scalar))))) // static SDValue tryCombineLongOpWithDup(unsigned IID, SDNode *N, TargetLowering::DAGCombinerInfo &DCI, SelectionDAG &DAG) { if (DCI.isBeforeLegalizeOps()) return SDValue(); SDValue LHS = N->getOperand((IID == Intrinsic::not_intrinsic) ? 0 : 1); SDValue RHS = N->getOperand((IID == Intrinsic::not_intrinsic) ? 1 : 2); assert(LHS.getValueType().is64BitVector() && RHS.getValueType().is64BitVector() && "unexpected shape for long operation"); // Either node could be a DUP, but it's not worth doing both of them (you'd // just as well use the non-high version) so look for a corresponding extract // operation on the other "wing". if (isEssentiallyExtractHighSubvector(LHS)) { RHS = tryExtendDUPToExtractHigh(RHS, DAG); if (!RHS.getNode()) return SDValue(); } else if (isEssentiallyExtractHighSubvector(RHS)) { LHS = tryExtendDUPToExtractHigh(LHS, DAG); if (!LHS.getNode()) return SDValue(); } else return SDValue(); if (IID == Intrinsic::not_intrinsic) return DAG.getNode(N->getOpcode(), SDLoc(N), N->getValueType(0), LHS, RHS); return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SDLoc(N), N->getValueType(0), N->getOperand(0), LHS, RHS); } static SDValue tryCombineShiftImm(unsigned IID, SDNode *N, SelectionDAG &DAG) { MVT ElemTy = N->getSimpleValueType(0).getScalarType(); unsigned ElemBits = ElemTy.getSizeInBits(); int64_t ShiftAmount; if (BuildVectorSDNode *BVN = dyn_cast(N->getOperand(2))) { APInt SplatValue, SplatUndef; unsigned SplatBitSize; bool HasAnyUndefs; if (!BVN->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, HasAnyUndefs, ElemBits) || SplatBitSize != ElemBits) return SDValue(); ShiftAmount = SplatValue.getSExtValue(); } else if (ConstantSDNode *CVN = dyn_cast(N->getOperand(2))) { ShiftAmount = CVN->getSExtValue(); } else return SDValue(); // If the shift amount is zero, remove the shift intrinsic. if (ShiftAmount == 0 && IID != Intrinsic::aarch64_neon_sqshlu) return N->getOperand(1); unsigned Opcode; bool IsRightShift; switch (IID) { default: llvm_unreachable("Unknown shift intrinsic"); case Intrinsic::aarch64_neon_sqshl: Opcode = AArch64ISD::SQSHL_I; IsRightShift = false; break; case Intrinsic::aarch64_neon_uqshl: Opcode = AArch64ISD::UQSHL_I; IsRightShift = false; break; case Intrinsic::aarch64_neon_srshl: Opcode = AArch64ISD::SRSHR_I; IsRightShift = true; break; case Intrinsic::aarch64_neon_urshl: Opcode = AArch64ISD::URSHR_I; IsRightShift = true; break; case Intrinsic::aarch64_neon_sqshlu: Opcode = AArch64ISD::SQSHLU_I; IsRightShift = false; break; case Intrinsic::aarch64_neon_sshl: case Intrinsic::aarch64_neon_ushl: // For positive shift amounts we can use SHL, as ushl/sshl perform a regular // left shift for positive shift amounts. For negative shifts we can use a // VASHR/VLSHR as appropiate. if (ShiftAmount < 0) { Opcode = IID == Intrinsic::aarch64_neon_sshl ? AArch64ISD::VASHR : AArch64ISD::VLSHR; ShiftAmount = -ShiftAmount; } else Opcode = AArch64ISD::VSHL; IsRightShift = false; break; } EVT VT = N->getValueType(0); SDValue Op = N->getOperand(1); SDLoc dl(N); if (VT == MVT::i64) { Op = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op); VT = MVT::v1i64; } if (IsRightShift && ShiftAmount <= -1 && ShiftAmount >= -(int)ElemBits) { Op = DAG.getNode(Opcode, dl, VT, Op, DAG.getConstant(-ShiftAmount, dl, MVT::i32)); if (N->getValueType(0) == MVT::i64) Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Op, DAG.getConstant(0, dl, MVT::i64)); return Op; } else if (!IsRightShift && ShiftAmount >= 0 && ShiftAmount < ElemBits) { Op = DAG.getNode(Opcode, dl, VT, Op, DAG.getConstant(ShiftAmount, dl, MVT::i32)); if (N->getValueType(0) == MVT::i64) Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Op, DAG.getConstant(0, dl, MVT::i64)); return Op; } return SDValue(); } // The CRC32[BH] instructions ignore the high bits of their data operand. Since // the intrinsics must be legal and take an i32, this means there's almost // certainly going to be a zext in the DAG which we can eliminate. static SDValue tryCombineCRC32(unsigned Mask, SDNode *N, SelectionDAG &DAG) { SDValue AndN = N->getOperand(2); if (AndN.getOpcode() != ISD::AND) return SDValue(); ConstantSDNode *CMask = dyn_cast(AndN.getOperand(1)); if (!CMask || CMask->getZExtValue() != Mask) return SDValue(); return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SDLoc(N), MVT::i32, N->getOperand(0), N->getOperand(1), AndN.getOperand(0)); } static SDValue combineAcrossLanesIntrinsic(unsigned Opc, SDNode *N, SelectionDAG &DAG) { SDLoc dl(N); return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, N->getValueType(0), DAG.getNode(Opc, dl, N->getOperand(1).getSimpleValueType(), N->getOperand(1)), DAG.getConstant(0, dl, MVT::i64)); } static SDValue LowerSVEIntrinsicIndex(SDNode *N, SelectionDAG &DAG) { SDLoc DL(N); SDValue Op1 = N->getOperand(1); SDValue Op2 = N->getOperand(2); EVT ScalarTy = Op2.getValueType(); if ((ScalarTy == MVT::i8) || (ScalarTy == MVT::i16)) ScalarTy = MVT::i32; // Lower index_vector(base, step) to mul(step step_vector(1)) + splat(base). SDValue StepVector = DAG.getStepVector(DL, N->getValueType(0)); SDValue Step = DAG.getNode(ISD::SPLAT_VECTOR, DL, N->getValueType(0), Op2); SDValue Mul = DAG.getNode(ISD::MUL, DL, N->getValueType(0), StepVector, Step); SDValue Base = DAG.getNode(ISD::SPLAT_VECTOR, DL, N->getValueType(0), Op1); return DAG.getNode(ISD::ADD, DL, N->getValueType(0), Mul, Base); } static SDValue LowerSVEIntrinsicDUP(SDNode *N, SelectionDAG &DAG) { SDLoc dl(N); SDValue Scalar = N->getOperand(3); EVT ScalarTy = Scalar.getValueType(); if ((ScalarTy == MVT::i8) || (ScalarTy == MVT::i16)) Scalar = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Scalar); SDValue Passthru = N->getOperand(1); SDValue Pred = N->getOperand(2); return DAG.getNode(AArch64ISD::DUP_MERGE_PASSTHRU, dl, N->getValueType(0), Pred, Scalar, Passthru); } static SDValue LowerSVEIntrinsicEXT(SDNode *N, SelectionDAG &DAG) { SDLoc dl(N); LLVMContext &Ctx = *DAG.getContext(); EVT VT = N->getValueType(0); assert(VT.isScalableVector() && "Expected a scalable vector."); // Current lowering only supports the SVE-ACLE types. if (VT.getSizeInBits().getKnownMinValue() != AArch64::SVEBitsPerBlock) return SDValue(); unsigned ElemSize = VT.getVectorElementType().getSizeInBits() / 8; unsigned ByteSize = VT.getSizeInBits().getKnownMinValue() / 8; EVT ByteVT = EVT::getVectorVT(Ctx, MVT::i8, ElementCount::getScalable(ByteSize)); // Convert everything to the domain of EXT (i.e bytes). SDValue Op0 = DAG.getNode(ISD::BITCAST, dl, ByteVT, N->getOperand(1)); SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, ByteVT, N->getOperand(2)); SDValue Op2 = DAG.getNode(ISD::MUL, dl, MVT::i32, N->getOperand(3), DAG.getConstant(ElemSize, dl, MVT::i32)); SDValue EXT = DAG.getNode(AArch64ISD::EXT, dl, ByteVT, Op0, Op1, Op2); return DAG.getNode(ISD::BITCAST, dl, VT, EXT); } static SDValue tryConvertSVEWideCompare(SDNode *N, ISD::CondCode CC, TargetLowering::DAGCombinerInfo &DCI, SelectionDAG &DAG) { if (DCI.isBeforeLegalize()) return SDValue(); SDValue Comparator = N->getOperand(3); if (Comparator.getOpcode() == AArch64ISD::DUP || Comparator.getOpcode() == ISD::SPLAT_VECTOR) { unsigned IID = getIntrinsicID(N); EVT VT = N->getValueType(0); EVT CmpVT = N->getOperand(2).getValueType(); SDValue Pred = N->getOperand(1); SDValue Imm; SDLoc DL(N); switch (IID) { default: llvm_unreachable("Called with wrong intrinsic!"); break; // Signed comparisons case Intrinsic::aarch64_sve_cmpeq_wide: case Intrinsic::aarch64_sve_cmpne_wide: case Intrinsic::aarch64_sve_cmpge_wide: case Intrinsic::aarch64_sve_cmpgt_wide: case Intrinsic::aarch64_sve_cmplt_wide: case Intrinsic::aarch64_sve_cmple_wide: { if (auto *CN = dyn_cast(Comparator.getOperand(0))) { int64_t ImmVal = CN->getSExtValue(); if (ImmVal >= -16 && ImmVal <= 15) Imm = DAG.getConstant(ImmVal, DL, MVT::i32); else return SDValue(); } break; } // Unsigned comparisons case Intrinsic::aarch64_sve_cmphs_wide: case Intrinsic::aarch64_sve_cmphi_wide: case Intrinsic::aarch64_sve_cmplo_wide: case Intrinsic::aarch64_sve_cmpls_wide: { if (auto *CN = dyn_cast(Comparator.getOperand(0))) { uint64_t ImmVal = CN->getZExtValue(); if (ImmVal <= 127) Imm = DAG.getConstant(ImmVal, DL, MVT::i32); else return SDValue(); } break; } } if (!Imm) return SDValue(); SDValue Splat = DAG.getNode(ISD::SPLAT_VECTOR, DL, CmpVT, Imm); return DAG.getNode(AArch64ISD::SETCC_MERGE_ZERO, DL, VT, Pred, N->getOperand(2), Splat, DAG.getCondCode(CC)); } return SDValue(); } static SDValue getPTest(SelectionDAG &DAG, EVT VT, SDValue Pg, SDValue Op, AArch64CC::CondCode Cond) { const TargetLowering &TLI = DAG.getTargetLoweringInfo(); SDLoc DL(Op); assert(Op.getValueType().isScalableVector() && TLI.isTypeLegal(Op.getValueType()) && "Expected legal scalable vector type!"); assert(Op.getValueType() == Pg.getValueType() && "Expected same type for PTEST operands"); // Ensure target specific opcodes are using legal type. EVT OutVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT); SDValue TVal = DAG.getConstant(1, DL, OutVT); SDValue FVal = DAG.getConstant(0, DL, OutVT); // Ensure operands have type nxv16i1. if (Op.getValueType() != MVT::nxv16i1) { if ((Cond == AArch64CC::ANY_ACTIVE || Cond == AArch64CC::NONE_ACTIVE) && isZeroingInactiveLanes(Op)) Pg = DAG.getNode(AArch64ISD::REINTERPRET_CAST, DL, MVT::nxv16i1, Pg); else Pg = getSVEPredicateBitCast(MVT::nxv16i1, Pg, DAG); Op = DAG.getNode(AArch64ISD::REINTERPRET_CAST, DL, MVT::nxv16i1, Op); } // Set condition code (CC) flags. SDValue Test = DAG.getNode( Cond == AArch64CC::ANY_ACTIVE ? AArch64ISD::PTEST_ANY : AArch64ISD::PTEST, DL, MVT::Other, Pg, Op); // Convert CC to integer based on requested condition. // NOTE: Cond is inverted to promote CSEL's removal when it feeds a compare. SDValue CC = DAG.getConstant(getInvertedCondCode(Cond), DL, MVT::i32); SDValue Res = DAG.getNode(AArch64ISD::CSEL, DL, OutVT, FVal, TVal, CC, Test); return DAG.getZExtOrTrunc(Res, DL, VT); } static SDValue combineSVEReductionInt(SDNode *N, unsigned Opc, SelectionDAG &DAG) { SDLoc DL(N); SDValue Pred = N->getOperand(1); SDValue VecToReduce = N->getOperand(2); // NOTE: The integer reduction's result type is not always linked to the // operand's element type so we construct it from the intrinsic's result type. EVT ReduceVT = getPackedSVEVectorVT(N->getValueType(0)); SDValue Reduce = DAG.getNode(Opc, DL, ReduceVT, Pred, VecToReduce); // SVE reductions set the whole vector register with the first element // containing the reduction result, which we'll now extract. SDValue Zero = DAG.getConstant(0, DL, MVT::i64); return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, N->getValueType(0), Reduce, Zero); } static SDValue combineSVEReductionFP(SDNode *N, unsigned Opc, SelectionDAG &DAG) { SDLoc DL(N); SDValue Pred = N->getOperand(1); SDValue VecToReduce = N->getOperand(2); EVT ReduceVT = VecToReduce.getValueType(); SDValue Reduce = DAG.getNode(Opc, DL, ReduceVT, Pred, VecToReduce); // SVE reductions set the whole vector register with the first element // containing the reduction result, which we'll now extract. SDValue Zero = DAG.getConstant(0, DL, MVT::i64); return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, N->getValueType(0), Reduce, Zero); } static SDValue combineSVEReductionOrderedFP(SDNode *N, unsigned Opc, SelectionDAG &DAG) { SDLoc DL(N); SDValue Pred = N->getOperand(1); SDValue InitVal = N->getOperand(2); SDValue VecToReduce = N->getOperand(3); EVT ReduceVT = VecToReduce.getValueType(); // Ordered reductions use the first lane of the result vector as the // reduction's initial value. SDValue Zero = DAG.getConstant(0, DL, MVT::i64); InitVal = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, ReduceVT, DAG.getUNDEF(ReduceVT), InitVal, Zero); SDValue Reduce = DAG.getNode(Opc, DL, ReduceVT, Pred, InitVal, VecToReduce); // SVE reductions set the whole vector register with the first element // containing the reduction result, which we'll now extract. return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, N->getValueType(0), Reduce, Zero); } // If a merged operation has no inactive lanes we can relax it to a predicated // or unpredicated operation, which potentially allows better isel (perhaps // using immediate forms) or relaxing register reuse requirements. static SDValue convertMergedOpToPredOp(SDNode *N, unsigned Opc, SelectionDAG &DAG, bool UnpredOp = false, bool SwapOperands = false) { assert(N->getOpcode() == ISD::INTRINSIC_WO_CHAIN && "Expected intrinsic!"); assert(N->getNumOperands() == 4 && "Expected 3 operand intrinsic!"); SDValue Pg = N->getOperand(1); SDValue Op1 = N->getOperand(SwapOperands ? 3 : 2); SDValue Op2 = N->getOperand(SwapOperands ? 2 : 3); // ISD way to specify an all active predicate. if (isAllActivePredicate(DAG, Pg)) { if (UnpredOp) return DAG.getNode(Opc, SDLoc(N), N->getValueType(0), Op1, Op2); return DAG.getNode(Opc, SDLoc(N), N->getValueType(0), Pg, Op1, Op2); } // FUTURE: SplatVector(true) return SDValue(); } static SDValue performIntrinsicCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, const AArch64Subtarget *Subtarget) { SelectionDAG &DAG = DCI.DAG; unsigned IID = getIntrinsicID(N); switch (IID) { default: break; case Intrinsic::get_active_lane_mask: { SDValue Res = SDValue(); EVT VT = N->getValueType(0); if (VT.isFixedLengthVector()) { // We can use the SVE whilelo instruction to lower this intrinsic by // creating the appropriate sequence of scalable vector operations and // then extracting a fixed-width subvector from the scalable vector. SDLoc DL(N); SDValue ID = DAG.getTargetConstant(Intrinsic::aarch64_sve_whilelo, DL, MVT::i64); EVT WhileVT = EVT::getVectorVT( *DAG.getContext(), MVT::i1, ElementCount::getScalable(VT.getVectorNumElements())); // Get promoted scalable vector VT, i.e. promote nxv4i1 -> nxv4i32. EVT PromVT = getPromotedVTForPredicate(WhileVT); // Get the fixed-width equivalent of PromVT for extraction. EVT ExtVT = EVT::getVectorVT(*DAG.getContext(), PromVT.getVectorElementType(), VT.getVectorElementCount()); Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, WhileVT, ID, N->getOperand(1), N->getOperand(2)); Res = DAG.getNode(ISD::SIGN_EXTEND, DL, PromVT, Res); Res = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ExtVT, Res, DAG.getConstant(0, DL, MVT::i64)); Res = DAG.getNode(ISD::TRUNCATE, DL, VT, Res); } return Res; } case Intrinsic::aarch64_neon_vcvtfxs2fp: case Intrinsic::aarch64_neon_vcvtfxu2fp: return tryCombineFixedPointConvert(N, DCI, DAG); case Intrinsic::aarch64_neon_saddv: return combineAcrossLanesIntrinsic(AArch64ISD::SADDV, N, DAG); case Intrinsic::aarch64_neon_uaddv: return combineAcrossLanesIntrinsic(AArch64ISD::UADDV, N, DAG); case Intrinsic::aarch64_neon_sminv: return combineAcrossLanesIntrinsic(AArch64ISD::SMINV, N, DAG); case Intrinsic::aarch64_neon_uminv: return combineAcrossLanesIntrinsic(AArch64ISD::UMINV, N, DAG); case Intrinsic::aarch64_neon_smaxv: return combineAcrossLanesIntrinsic(AArch64ISD::SMAXV, N, DAG); case Intrinsic::aarch64_neon_umaxv: return combineAcrossLanesIntrinsic(AArch64ISD::UMAXV, N, DAG); case Intrinsic::aarch64_neon_fmax: return DAG.getNode(ISD::FMAXIMUM, SDLoc(N), N->getValueType(0), N->getOperand(1), N->getOperand(2)); case Intrinsic::aarch64_neon_fmin: return DAG.getNode(ISD::FMINIMUM, SDLoc(N), N->getValueType(0), N->getOperand(1), N->getOperand(2)); case Intrinsic::aarch64_neon_fmaxnm: return DAG.getNode(ISD::FMAXNUM, SDLoc(N), N->getValueType(0), N->getOperand(1), N->getOperand(2)); case Intrinsic::aarch64_neon_fminnm: return DAG.getNode(ISD::FMINNUM, SDLoc(N), N->getValueType(0), N->getOperand(1), N->getOperand(2)); case Intrinsic::aarch64_neon_smull: return DAG.getNode(AArch64ISD::SMULL, SDLoc(N), N->getValueType(0), N->getOperand(1), N->getOperand(2)); case Intrinsic::aarch64_neon_umull: return DAG.getNode(AArch64ISD::UMULL, SDLoc(N), N->getValueType(0), N->getOperand(1), N->getOperand(2)); case Intrinsic::aarch64_neon_pmull: return DAG.getNode(AArch64ISD::PMULL, SDLoc(N), N->getValueType(0), N->getOperand(1), N->getOperand(2)); case Intrinsic::aarch64_neon_sqdmull: return tryCombineLongOpWithDup(IID, N, DCI, DAG); case Intrinsic::aarch64_neon_sqshl: case Intrinsic::aarch64_neon_uqshl: case Intrinsic::aarch64_neon_sqshlu: case Intrinsic::aarch64_neon_srshl: case Intrinsic::aarch64_neon_urshl: case Intrinsic::aarch64_neon_sshl: case Intrinsic::aarch64_neon_ushl: return tryCombineShiftImm(IID, N, DAG); case Intrinsic::aarch64_neon_sabd: return DAG.getNode(ISD::ABDS, SDLoc(N), N->getValueType(0), N->getOperand(1), N->getOperand(2)); case Intrinsic::aarch64_neon_uabd: return DAG.getNode(ISD::ABDU, SDLoc(N), N->getValueType(0), N->getOperand(1), N->getOperand(2)); case Intrinsic::aarch64_crc32b: case Intrinsic::aarch64_crc32cb: return tryCombineCRC32(0xff, N, DAG); case Intrinsic::aarch64_crc32h: case Intrinsic::aarch64_crc32ch: return tryCombineCRC32(0xffff, N, DAG); case Intrinsic::aarch64_sve_saddv: // There is no i64 version of SADDV because the sign is irrelevant. if (N->getOperand(2)->getValueType(0).getVectorElementType() == MVT::i64) return combineSVEReductionInt(N, AArch64ISD::UADDV_PRED, DAG); else return combineSVEReductionInt(N, AArch64ISD::SADDV_PRED, DAG); case Intrinsic::aarch64_sve_uaddv: return combineSVEReductionInt(N, AArch64ISD::UADDV_PRED, DAG); case Intrinsic::aarch64_sve_smaxv: return combineSVEReductionInt(N, AArch64ISD::SMAXV_PRED, DAG); case Intrinsic::aarch64_sve_umaxv: return combineSVEReductionInt(N, AArch64ISD::UMAXV_PRED, DAG); case Intrinsic::aarch64_sve_sminv: return combineSVEReductionInt(N, AArch64ISD::SMINV_PRED, DAG); case Intrinsic::aarch64_sve_uminv: return combineSVEReductionInt(N, AArch64ISD::UMINV_PRED, DAG); case Intrinsic::aarch64_sve_orv: return combineSVEReductionInt(N, AArch64ISD::ORV_PRED, DAG); case Intrinsic::aarch64_sve_eorv: return combineSVEReductionInt(N, AArch64ISD::EORV_PRED, DAG); case Intrinsic::aarch64_sve_andv: return combineSVEReductionInt(N, AArch64ISD::ANDV_PRED, DAG); case Intrinsic::aarch64_sve_index: return LowerSVEIntrinsicIndex(N, DAG); case Intrinsic::aarch64_sve_dup: return LowerSVEIntrinsicDUP(N, DAG); case Intrinsic::aarch64_sve_dup_x: return DAG.getNode(ISD::SPLAT_VECTOR, SDLoc(N), N->getValueType(0), N->getOperand(1)); case Intrinsic::aarch64_sve_ext: return LowerSVEIntrinsicEXT(N, DAG); case Intrinsic::aarch64_sve_mul_u: return DAG.getNode(AArch64ISD::MUL_PRED, SDLoc(N), N->getValueType(0), N->getOperand(1), N->getOperand(2), N->getOperand(3)); case Intrinsic::aarch64_sve_smulh_u: return DAG.getNode(AArch64ISD::MULHS_PRED, SDLoc(N), N->getValueType(0), N->getOperand(1), N->getOperand(2), N->getOperand(3)); case Intrinsic::aarch64_sve_umulh_u: return DAG.getNode(AArch64ISD::MULHU_PRED, SDLoc(N), N->getValueType(0), N->getOperand(1), N->getOperand(2), N->getOperand(3)); case Intrinsic::aarch64_sve_smin_u: return DAG.getNode(AArch64ISD::SMIN_PRED, SDLoc(N), N->getValueType(0), N->getOperand(1), N->getOperand(2), N->getOperand(3)); case Intrinsic::aarch64_sve_umin_u: return DAG.getNode(AArch64ISD::UMIN_PRED, SDLoc(N), N->getValueType(0), N->getOperand(1), N->getOperand(2), N->getOperand(3)); case Intrinsic::aarch64_sve_smax_u: return DAG.getNode(AArch64ISD::SMAX_PRED, SDLoc(N), N->getValueType(0), N->getOperand(1), N->getOperand(2), N->getOperand(3)); case Intrinsic::aarch64_sve_umax_u: return DAG.getNode(AArch64ISD::UMAX_PRED, SDLoc(N), N->getValueType(0), N->getOperand(1), N->getOperand(2), N->getOperand(3)); case Intrinsic::aarch64_sve_lsl_u: return DAG.getNode(AArch64ISD::SHL_PRED, SDLoc(N), N->getValueType(0), N->getOperand(1), N->getOperand(2), N->getOperand(3)); case Intrinsic::aarch64_sve_lsr_u: return DAG.getNode(AArch64ISD::SRL_PRED, SDLoc(N), N->getValueType(0), N->getOperand(1), N->getOperand(2), N->getOperand(3)); case Intrinsic::aarch64_sve_asr_u: return DAG.getNode(AArch64ISD::SRA_PRED, SDLoc(N), N->getValueType(0), N->getOperand(1), N->getOperand(2), N->getOperand(3)); case Intrinsic::aarch64_sve_fadd_u: return DAG.getNode(AArch64ISD::FADD_PRED, SDLoc(N), N->getValueType(0), N->getOperand(1), N->getOperand(2), N->getOperand(3)); case Intrinsic::aarch64_sve_fdiv_u: return DAG.getNode(AArch64ISD::FDIV_PRED, SDLoc(N), N->getValueType(0), N->getOperand(1), N->getOperand(2), N->getOperand(3)); case Intrinsic::aarch64_sve_fmax_u: return DAG.getNode(AArch64ISD::FMAX_PRED, SDLoc(N), N->getValueType(0), N->getOperand(1), N->getOperand(2), N->getOperand(3)); case Intrinsic::aarch64_sve_fmaxnm_u: return DAG.getNode(AArch64ISD::FMAXNM_PRED, SDLoc(N), N->getValueType(0), N->getOperand(1), N->getOperand(2), N->getOperand(3)); case Intrinsic::aarch64_sve_fmla_u: return DAG.getNode(AArch64ISD::FMA_PRED, SDLoc(N), N->getValueType(0), N->getOperand(1), N->getOperand(3), N->getOperand(4), N->getOperand(2)); case Intrinsic::aarch64_sve_fmin_u: return DAG.getNode(AArch64ISD::FMIN_PRED, SDLoc(N), N->getValueType(0), N->getOperand(1), N->getOperand(2), N->getOperand(3)); case Intrinsic::aarch64_sve_fminnm_u: return DAG.getNode(AArch64ISD::FMINNM_PRED, SDLoc(N), N->getValueType(0), N->getOperand(1), N->getOperand(2), N->getOperand(3)); case Intrinsic::aarch64_sve_fmul_u: return DAG.getNode(AArch64ISD::FMUL_PRED, SDLoc(N), N->getValueType(0), N->getOperand(1), N->getOperand(2), N->getOperand(3)); case Intrinsic::aarch64_sve_fsub_u: return DAG.getNode(AArch64ISD::FSUB_PRED, SDLoc(N), N->getValueType(0), N->getOperand(1), N->getOperand(2), N->getOperand(3)); case Intrinsic::aarch64_sve_add_u: return DAG.getNode(ISD::ADD, SDLoc(N), N->getValueType(0), N->getOperand(2), N->getOperand(3)); case Intrinsic::aarch64_sve_sub_u: return DAG.getNode(ISD::SUB, SDLoc(N), N->getValueType(0), N->getOperand(2), N->getOperand(3)); case Intrinsic::aarch64_sve_subr: return convertMergedOpToPredOp(N, ISD::SUB, DAG, true, true); case Intrinsic::aarch64_sve_and_u: return DAG.getNode(ISD::AND, SDLoc(N), N->getValueType(0), N->getOperand(2), N->getOperand(3)); case Intrinsic::aarch64_sve_bic_u: return DAG.getNode(AArch64ISD::BIC, SDLoc(N), N->getValueType(0), N->getOperand(2), N->getOperand(3)); case Intrinsic::aarch64_sve_eor_u: return DAG.getNode(ISD::XOR, SDLoc(N), N->getValueType(0), N->getOperand(2), N->getOperand(3)); case Intrinsic::aarch64_sve_orr_u: return DAG.getNode(ISD::OR, SDLoc(N), N->getValueType(0), N->getOperand(2), N->getOperand(3)); case Intrinsic::aarch64_sve_sabd_u: return DAG.getNode(ISD::ABDS, SDLoc(N), N->getValueType(0), N->getOperand(2), N->getOperand(3)); case Intrinsic::aarch64_sve_uabd_u: return DAG.getNode(ISD::ABDU, SDLoc(N), N->getValueType(0), N->getOperand(2), N->getOperand(3)); case Intrinsic::aarch64_sve_sdiv_u: return DAG.getNode(AArch64ISD::SDIV_PRED, SDLoc(N), N->getValueType(0), N->getOperand(1), N->getOperand(2), N->getOperand(3)); case Intrinsic::aarch64_sve_udiv_u: return DAG.getNode(AArch64ISD::UDIV_PRED, SDLoc(N), N->getValueType(0), N->getOperand(1), N->getOperand(2), N->getOperand(3)); case Intrinsic::aarch64_sve_sqadd: return convertMergedOpToPredOp(N, ISD::SADDSAT, DAG, true); case Intrinsic::aarch64_sve_sqsub_u: return DAG.getNode(ISD::SSUBSAT, SDLoc(N), N->getValueType(0), N->getOperand(2), N->getOperand(3)); case Intrinsic::aarch64_sve_uqadd: return convertMergedOpToPredOp(N, ISD::UADDSAT, DAG, true); case Intrinsic::aarch64_sve_uqsub_u: return DAG.getNode(ISD::USUBSAT, SDLoc(N), N->getValueType(0), N->getOperand(2), N->getOperand(3)); case Intrinsic::aarch64_sve_sqadd_x: return DAG.getNode(ISD::SADDSAT, SDLoc(N), N->getValueType(0), N->getOperand(1), N->getOperand(2)); case Intrinsic::aarch64_sve_sqsub_x: return DAG.getNode(ISD::SSUBSAT, SDLoc(N), N->getValueType(0), N->getOperand(1), N->getOperand(2)); case Intrinsic::aarch64_sve_uqadd_x: return DAG.getNode(ISD::UADDSAT, SDLoc(N), N->getValueType(0), N->getOperand(1), N->getOperand(2)); case Intrinsic::aarch64_sve_uqsub_x: return DAG.getNode(ISD::USUBSAT, SDLoc(N), N->getValueType(0), N->getOperand(1), N->getOperand(2)); case Intrinsic::aarch64_sve_asrd: return DAG.getNode(AArch64ISD::SRAD_MERGE_OP1, SDLoc(N), N->getValueType(0), N->getOperand(1), N->getOperand(2), N->getOperand(3)); case Intrinsic::aarch64_sve_cmphs: if (!N->getOperand(2).getValueType().isFloatingPoint()) return DAG.getNode(AArch64ISD::SETCC_MERGE_ZERO, SDLoc(N), N->getValueType(0), N->getOperand(1), N->getOperand(2), N->getOperand(3), DAG.getCondCode(ISD::SETUGE)); break; case Intrinsic::aarch64_sve_cmphi: if (!N->getOperand(2).getValueType().isFloatingPoint()) return DAG.getNode(AArch64ISD::SETCC_MERGE_ZERO, SDLoc(N), N->getValueType(0), N->getOperand(1), N->getOperand(2), N->getOperand(3), DAG.getCondCode(ISD::SETUGT)); break; case Intrinsic::aarch64_sve_fcmpge: case Intrinsic::aarch64_sve_cmpge: return DAG.getNode(AArch64ISD::SETCC_MERGE_ZERO, SDLoc(N), N->getValueType(0), N->getOperand(1), N->getOperand(2), N->getOperand(3), DAG.getCondCode(ISD::SETGE)); break; case Intrinsic::aarch64_sve_fcmpgt: case Intrinsic::aarch64_sve_cmpgt: return DAG.getNode(AArch64ISD::SETCC_MERGE_ZERO, SDLoc(N), N->getValueType(0), N->getOperand(1), N->getOperand(2), N->getOperand(3), DAG.getCondCode(ISD::SETGT)); break; case Intrinsic::aarch64_sve_fcmpeq: case Intrinsic::aarch64_sve_cmpeq: return DAG.getNode(AArch64ISD::SETCC_MERGE_ZERO, SDLoc(N), N->getValueType(0), N->getOperand(1), N->getOperand(2), N->getOperand(3), DAG.getCondCode(ISD::SETEQ)); break; case Intrinsic::aarch64_sve_fcmpne: case Intrinsic::aarch64_sve_cmpne: return DAG.getNode(AArch64ISD::SETCC_MERGE_ZERO, SDLoc(N), N->getValueType(0), N->getOperand(1), N->getOperand(2), N->getOperand(3), DAG.getCondCode(ISD::SETNE)); break; case Intrinsic::aarch64_sve_fcmpuo: return DAG.getNode(AArch64ISD::SETCC_MERGE_ZERO, SDLoc(N), N->getValueType(0), N->getOperand(1), N->getOperand(2), N->getOperand(3), DAG.getCondCode(ISD::SETUO)); break; case Intrinsic::aarch64_sve_fadda: return combineSVEReductionOrderedFP(N, AArch64ISD::FADDA_PRED, DAG); case Intrinsic::aarch64_sve_faddv: return combineSVEReductionFP(N, AArch64ISD::FADDV_PRED, DAG); case Intrinsic::aarch64_sve_fmaxnmv: return combineSVEReductionFP(N, AArch64ISD::FMAXNMV_PRED, DAG); case Intrinsic::aarch64_sve_fmaxv: return combineSVEReductionFP(N, AArch64ISD::FMAXV_PRED, DAG); case Intrinsic::aarch64_sve_fminnmv: return combineSVEReductionFP(N, AArch64ISD::FMINNMV_PRED, DAG); case Intrinsic::aarch64_sve_fminv: return combineSVEReductionFP(N, AArch64ISD::FMINV_PRED, DAG); case Intrinsic::aarch64_sve_sel: return DAG.getNode(ISD::VSELECT, SDLoc(N), N->getValueType(0), N->getOperand(1), N->getOperand(2), N->getOperand(3)); case Intrinsic::aarch64_sve_cmpeq_wide: return tryConvertSVEWideCompare(N, ISD::SETEQ, DCI, DAG); case Intrinsic::aarch64_sve_cmpne_wide: return tryConvertSVEWideCompare(N, ISD::SETNE, DCI, DAG); case Intrinsic::aarch64_sve_cmpge_wide: return tryConvertSVEWideCompare(N, ISD::SETGE, DCI, DAG); case Intrinsic::aarch64_sve_cmpgt_wide: return tryConvertSVEWideCompare(N, ISD::SETGT, DCI, DAG); case Intrinsic::aarch64_sve_cmplt_wide: return tryConvertSVEWideCompare(N, ISD::SETLT, DCI, DAG); case Intrinsic::aarch64_sve_cmple_wide: return tryConvertSVEWideCompare(N, ISD::SETLE, DCI, DAG); case Intrinsic::aarch64_sve_cmphs_wide: return tryConvertSVEWideCompare(N, ISD::SETUGE, DCI, DAG); case Intrinsic::aarch64_sve_cmphi_wide: return tryConvertSVEWideCompare(N, ISD::SETUGT, DCI, DAG); case Intrinsic::aarch64_sve_cmplo_wide: return tryConvertSVEWideCompare(N, ISD::SETULT, DCI, DAG); case Intrinsic::aarch64_sve_cmpls_wide: return tryConvertSVEWideCompare(N, ISD::SETULE, DCI, DAG); case Intrinsic::aarch64_sve_ptest_any: return getPTest(DAG, N->getValueType(0), N->getOperand(1), N->getOperand(2), AArch64CC::ANY_ACTIVE); case Intrinsic::aarch64_sve_ptest_first: return getPTest(DAG, N->getValueType(0), N->getOperand(1), N->getOperand(2), AArch64CC::FIRST_ACTIVE); case Intrinsic::aarch64_sve_ptest_last: return getPTest(DAG, N->getValueType(0), N->getOperand(1), N->getOperand(2), AArch64CC::LAST_ACTIVE); } return SDValue(); } static bool isCheapToExtend(const SDValue &N) { unsigned OC = N->getOpcode(); return OC == ISD::LOAD || OC == ISD::MLOAD || ISD::isConstantSplatVectorAllZeros(N.getNode()); } static SDValue performSignExtendSetCCCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, SelectionDAG &DAG) { // If we have (sext (setcc A B)) and A and B are cheap to extend, // we can move the sext into the arguments and have the same result. For // example, if A and B are both loads, we can make those extending loads and // avoid an extra instruction. This pattern appears often in VLS code // generation where the inputs to the setcc have a different size to the // instruction that wants to use the result of the setcc. assert(N->getOpcode() == ISD::SIGN_EXTEND && N->getOperand(0)->getOpcode() == ISD::SETCC); const SDValue SetCC = N->getOperand(0); const SDValue CCOp0 = SetCC.getOperand(0); const SDValue CCOp1 = SetCC.getOperand(1); if (!CCOp0->getValueType(0).isInteger() || !CCOp1->getValueType(0).isInteger()) return SDValue(); ISD::CondCode Code = cast(SetCC->getOperand(2).getNode())->get(); ISD::NodeType ExtType = isSignedIntSetCC(Code) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; if (isCheapToExtend(SetCC.getOperand(0)) && isCheapToExtend(SetCC.getOperand(1))) { const SDValue Ext1 = DAG.getNode(ExtType, SDLoc(N), N->getValueType(0), CCOp0); const SDValue Ext2 = DAG.getNode(ExtType, SDLoc(N), N->getValueType(0), CCOp1); return DAG.getSetCC( SDLoc(SetCC), N->getValueType(0), Ext1, Ext2, cast(SetCC->getOperand(2).getNode())->get()); } return SDValue(); } static SDValue performExtendCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, SelectionDAG &DAG) { // If we see something like (zext (sabd (extract_high ...), (DUP ...))) then // we can convert that DUP into another extract_high (of a bigger DUP), which // helps the backend to decide that an sabdl2 would be useful, saving a real // extract_high operation. if (!DCI.isBeforeLegalizeOps() && N->getOpcode() == ISD::ZERO_EXTEND && (N->getOperand(0).getOpcode() == ISD::ABDU || N->getOperand(0).getOpcode() == ISD::ABDS)) { SDNode *ABDNode = N->getOperand(0).getNode(); SDValue NewABD = tryCombineLongOpWithDup(Intrinsic::not_intrinsic, ABDNode, DCI, DAG); if (!NewABD.getNode()) return SDValue(); return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), N->getValueType(0), NewABD); } if (N->getValueType(0).isFixedLengthVector() && N->getOpcode() == ISD::SIGN_EXTEND && N->getOperand(0)->getOpcode() == ISD::SETCC) return performSignExtendSetCCCombine(N, DCI, DAG); return SDValue(); } static SDValue splitStoreSplat(SelectionDAG &DAG, StoreSDNode &St, SDValue SplatVal, unsigned NumVecElts) { assert(!St.isTruncatingStore() && "cannot split truncating vector store"); Align OrigAlignment = St.getAlign(); unsigned EltOffset = SplatVal.getValueType().getSizeInBits() / 8; // Create scalar stores. This is at least as good as the code sequence for a // split unaligned store which is a dup.s, ext.b, and two stores. // Most of the time the three stores should be replaced by store pair // instructions (stp). SDLoc DL(&St); SDValue BasePtr = St.getBasePtr(); uint64_t BaseOffset = 0; const MachinePointerInfo &PtrInfo = St.getPointerInfo(); SDValue NewST1 = DAG.getStore(St.getChain(), DL, SplatVal, BasePtr, PtrInfo, OrigAlignment, St.getMemOperand()->getFlags()); // As this in ISel, we will not merge this add which may degrade results. if (BasePtr->getOpcode() == ISD::ADD && isa(BasePtr->getOperand(1))) { BaseOffset = cast(BasePtr->getOperand(1))->getSExtValue(); BasePtr = BasePtr->getOperand(0); } unsigned Offset = EltOffset; while (--NumVecElts) { Align Alignment = commonAlignment(OrigAlignment, Offset); SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i64, BasePtr, DAG.getConstant(BaseOffset + Offset, DL, MVT::i64)); NewST1 = DAG.getStore(NewST1.getValue(0), DL, SplatVal, OffsetPtr, PtrInfo.getWithOffset(Offset), Alignment, St.getMemOperand()->getFlags()); Offset += EltOffset; } return NewST1; } // Returns an SVE type that ContentTy can be trivially sign or zero extended // into. static MVT getSVEContainerType(EVT ContentTy) { assert(ContentTy.isSimple() && "No SVE containers for extended types"); switch (ContentTy.getSimpleVT().SimpleTy) { default: llvm_unreachable("No known SVE container for this MVT type"); case MVT::nxv2i8: case MVT::nxv2i16: case MVT::nxv2i32: case MVT::nxv2i64: case MVT::nxv2f32: case MVT::nxv2f64: return MVT::nxv2i64; case MVT::nxv4i8: case MVT::nxv4i16: case MVT::nxv4i32: case MVT::nxv4f32: return MVT::nxv4i32; case MVT::nxv8i8: case MVT::nxv8i16: case MVT::nxv8f16: case MVT::nxv8bf16: return MVT::nxv8i16; case MVT::nxv16i8: return MVT::nxv16i8; } } static SDValue performLD1Combine(SDNode *N, SelectionDAG &DAG, unsigned Opc) { SDLoc DL(N); EVT VT = N->getValueType(0); if (VT.getSizeInBits().getKnownMinValue() > AArch64::SVEBitsPerBlock) return SDValue(); EVT ContainerVT = VT; if (ContainerVT.isInteger()) ContainerVT = getSVEContainerType(ContainerVT); SDVTList VTs = DAG.getVTList(ContainerVT, MVT::Other); SDValue Ops[] = { N->getOperand(0), // Chain N->getOperand(2), // Pg N->getOperand(3), // Base DAG.getValueType(VT) }; SDValue Load = DAG.getNode(Opc, DL, VTs, Ops); SDValue LoadChain = SDValue(Load.getNode(), 1); if (ContainerVT.isInteger() && (VT != ContainerVT)) Load = DAG.getNode(ISD::TRUNCATE, DL, VT, Load.getValue(0)); return DAG.getMergeValues({ Load, LoadChain }, DL); } static SDValue performLDNT1Combine(SDNode *N, SelectionDAG &DAG) { SDLoc DL(N); EVT VT = N->getValueType(0); EVT PtrTy = N->getOperand(3).getValueType(); EVT LoadVT = VT; if (VT.isFloatingPoint()) LoadVT = VT.changeTypeToInteger(); auto *MINode = cast(N); SDValue PassThru = DAG.getConstant(0, DL, LoadVT); SDValue L = DAG.getMaskedLoad(LoadVT, DL, MINode->getChain(), MINode->getOperand(3), DAG.getUNDEF(PtrTy), MINode->getOperand(2), PassThru, MINode->getMemoryVT(), MINode->getMemOperand(), ISD::UNINDEXED, ISD::NON_EXTLOAD, false); if (VT.isFloatingPoint()) { SDValue Ops[] = { DAG.getNode(ISD::BITCAST, DL, VT, L), L.getValue(1) }; return DAG.getMergeValues(Ops, DL); } return L; } template static SDValue performLD1ReplicateCombine(SDNode *N, SelectionDAG &DAG) { static_assert(Opcode == AArch64ISD::LD1RQ_MERGE_ZERO || Opcode == AArch64ISD::LD1RO_MERGE_ZERO, "Unsupported opcode."); SDLoc DL(N); EVT VT = N->getValueType(0); EVT LoadVT = VT; if (VT.isFloatingPoint()) LoadVT = VT.changeTypeToInteger(); SDValue Ops[] = {N->getOperand(0), N->getOperand(2), N->getOperand(3)}; SDValue Load = DAG.getNode(Opcode, DL, {LoadVT, MVT::Other}, Ops); SDValue LoadChain = SDValue(Load.getNode(), 1); if (VT.isFloatingPoint()) Load = DAG.getNode(ISD::BITCAST, DL, VT, Load.getValue(0)); return DAG.getMergeValues({Load, LoadChain}, DL); } static SDValue performST1Combine(SDNode *N, SelectionDAG &DAG) { SDLoc DL(N); SDValue Data = N->getOperand(2); EVT DataVT = Data.getValueType(); EVT HwSrcVt = getSVEContainerType(DataVT); SDValue InputVT = DAG.getValueType(DataVT); if (DataVT.isFloatingPoint()) InputVT = DAG.getValueType(HwSrcVt); SDValue SrcNew; if (Data.getValueType().isFloatingPoint()) SrcNew = DAG.getNode(ISD::BITCAST, DL, HwSrcVt, Data); else SrcNew = DAG.getNode(ISD::ANY_EXTEND, DL, HwSrcVt, Data); SDValue Ops[] = { N->getOperand(0), // Chain SrcNew, N->getOperand(4), // Base N->getOperand(3), // Pg InputVT }; return DAG.getNode(AArch64ISD::ST1_PRED, DL, N->getValueType(0), Ops); } static SDValue performSTNT1Combine(SDNode *N, SelectionDAG &DAG) { SDLoc DL(N); SDValue Data = N->getOperand(2); EVT DataVT = Data.getValueType(); EVT PtrTy = N->getOperand(4).getValueType(); if (DataVT.isFloatingPoint()) Data = DAG.getNode(ISD::BITCAST, DL, DataVT.changeTypeToInteger(), Data); auto *MINode = cast(N); return DAG.getMaskedStore(MINode->getChain(), DL, Data, MINode->getOperand(4), DAG.getUNDEF(PtrTy), MINode->getOperand(3), MINode->getMemoryVT(), MINode->getMemOperand(), ISD::UNINDEXED, false, false); } /// Replace a splat of zeros to a vector store by scalar stores of WZR/XZR. The /// load store optimizer pass will merge them to store pair stores. This should /// be better than a movi to create the vector zero followed by a vector store /// if the zero constant is not re-used, since one instructions and one register /// live range will be removed. /// /// For example, the final generated code should be: /// /// stp xzr, xzr, [x0] /// /// instead of: /// /// movi v0.2d, #0 /// str q0, [x0] /// static SDValue replaceZeroVectorStore(SelectionDAG &DAG, StoreSDNode &St) { SDValue StVal = St.getValue(); EVT VT = StVal.getValueType(); // Avoid scalarizing zero splat stores for scalable vectors. if (VT.isScalableVector()) return SDValue(); // It is beneficial to scalarize a zero splat store for 2 or 3 i64 elements or // 2, 3 or 4 i32 elements. int NumVecElts = VT.getVectorNumElements(); if (!(((NumVecElts == 2 || NumVecElts == 3) && VT.getVectorElementType().getSizeInBits() == 64) || ((NumVecElts == 2 || NumVecElts == 3 || NumVecElts == 4) && VT.getVectorElementType().getSizeInBits() == 32))) return SDValue(); if (StVal.getOpcode() != ISD::BUILD_VECTOR) return SDValue(); // If the zero constant has more than one use then the vector store could be // better since the constant mov will be amortized and stp q instructions // should be able to be formed. if (!StVal.hasOneUse()) return SDValue(); // If the store is truncating then it's going down to i16 or smaller, which // means it can be implemented in a single store anyway. if (St.isTruncatingStore()) return SDValue(); // If the immediate offset of the address operand is too large for the stp // instruction, then bail out. if (DAG.isBaseWithConstantOffset(St.getBasePtr())) { int64_t Offset = St.getBasePtr()->getConstantOperandVal(1); if (Offset < -512 || Offset > 504) return SDValue(); } for (int I = 0; I < NumVecElts; ++I) { SDValue EltVal = StVal.getOperand(I); if (!isNullConstant(EltVal) && !isNullFPConstant(EltVal)) return SDValue(); } // Use a CopyFromReg WZR/XZR here to prevent // DAGCombiner::MergeConsecutiveStores from undoing this transformation. SDLoc DL(&St); unsigned ZeroReg; EVT ZeroVT; if (VT.getVectorElementType().getSizeInBits() == 32) { ZeroReg = AArch64::WZR; ZeroVT = MVT::i32; } else { ZeroReg = AArch64::XZR; ZeroVT = MVT::i64; } SDValue SplatVal = DAG.getCopyFromReg(DAG.getEntryNode(), DL, ZeroReg, ZeroVT); return splitStoreSplat(DAG, St, SplatVal, NumVecElts); } /// Replace a splat of a scalar to a vector store by scalar stores of the scalar /// value. The load store optimizer pass will merge them to store pair stores. /// This has better performance than a splat of the scalar followed by a split /// vector store. Even if the stores are not merged it is four stores vs a dup, /// followed by an ext.b and two stores. static SDValue replaceSplatVectorStore(SelectionDAG &DAG, StoreSDNode &St) { SDValue StVal = St.getValue(); EVT VT = StVal.getValueType(); // Don't replace floating point stores, they possibly won't be transformed to // stp because of the store pair suppress pass. if (VT.isFloatingPoint()) return SDValue(); // We can express a splat as store pair(s) for 2 or 4 elements. unsigned NumVecElts = VT.getVectorNumElements(); if (NumVecElts != 4 && NumVecElts != 2) return SDValue(); // If the store is truncating then it's going down to i16 or smaller, which // means it can be implemented in a single store anyway. if (St.isTruncatingStore()) return SDValue(); // Check that this is a splat. // Make sure that each of the relevant vector element locations are inserted // to, i.e. 0 and 1 for v2i64 and 0, 1, 2, 3 for v4i32. std::bitset<4> IndexNotInserted((1 << NumVecElts) - 1); SDValue SplatVal; for (unsigned I = 0; I < NumVecElts; ++I) { // Check for insert vector elements. if (StVal.getOpcode() != ISD::INSERT_VECTOR_ELT) return SDValue(); // Check that same value is inserted at each vector element. if (I == 0) SplatVal = StVal.getOperand(1); else if (StVal.getOperand(1) != SplatVal) return SDValue(); // Check insert element index. ConstantSDNode *CIndex = dyn_cast(StVal.getOperand(2)); if (!CIndex) return SDValue(); uint64_t IndexVal = CIndex->getZExtValue(); if (IndexVal >= NumVecElts) return SDValue(); IndexNotInserted.reset(IndexVal); StVal = StVal.getOperand(0); } // Check that all vector element locations were inserted to. if (IndexNotInserted.any()) return SDValue(); return splitStoreSplat(DAG, St, SplatVal, NumVecElts); } static SDValue splitStores(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, SelectionDAG &DAG, const AArch64Subtarget *Subtarget) { StoreSDNode *S = cast(N); if (S->isVolatile() || S->isIndexed()) return SDValue(); SDValue StVal = S->getValue(); EVT VT = StVal.getValueType(); if (!VT.isFixedLengthVector()) return SDValue(); // If we get a splat of zeros, convert this vector store to a store of // scalars. They will be merged into store pairs of xzr thereby removing one // instruction and one register. if (SDValue ReplacedZeroSplat = replaceZeroVectorStore(DAG, *S)) return ReplacedZeroSplat; // FIXME: The logic for deciding if an unaligned store should be split should // be included in TLI.allowsMisalignedMemoryAccesses(), and there should be // a call to that function here. if (!Subtarget->isMisaligned128StoreSlow()) return SDValue(); // Don't split at -Oz. if (DAG.getMachineFunction().getFunction().hasMinSize()) return SDValue(); // Don't split v2i64 vectors. Memcpy lowering produces those and splitting // those up regresses performance on micro-benchmarks and olden/bh. if (VT.getVectorNumElements() < 2 || VT == MVT::v2i64) return SDValue(); // Split unaligned 16B stores. They are terrible for performance. // Don't split stores with alignment of 1 or 2. Code that uses clang vector // extensions can use this to mark that it does not want splitting to happen // (by underspecifying alignment to be 1 or 2). Furthermore, the chance of // eliminating alignment hazards is only 1 in 8 for alignment of 2. if (VT.getSizeInBits() != 128 || S->getAlign() >= Align(16) || S->getAlign() <= Align(2)) return SDValue(); // If we get a splat of a scalar convert this vector store to a store of // scalars. They will be merged into store pairs thereby removing two // instructions. if (SDValue ReplacedSplat = replaceSplatVectorStore(DAG, *S)) return ReplacedSplat; SDLoc DL(S); // Split VT into two. EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext()); unsigned NumElts = HalfVT.getVectorNumElements(); SDValue SubVector0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, StVal, DAG.getConstant(0, DL, MVT::i64)); SDValue SubVector1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, StVal, DAG.getConstant(NumElts, DL, MVT::i64)); SDValue BasePtr = S->getBasePtr(); SDValue NewST1 = DAG.getStore(S->getChain(), DL, SubVector0, BasePtr, S->getPointerInfo(), S->getAlign(), S->getMemOperand()->getFlags()); SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i64, BasePtr, DAG.getConstant(8, DL, MVT::i64)); return DAG.getStore(NewST1.getValue(0), DL, SubVector1, OffsetPtr, S->getPointerInfo(), S->getAlign(), S->getMemOperand()->getFlags()); } static SDValue performSpliceCombine(SDNode *N, SelectionDAG &DAG) { assert(N->getOpcode() == AArch64ISD::SPLICE && "Unexepected Opcode!"); // splice(pg, op1, undef) -> op1 if (N->getOperand(2).isUndef()) return N->getOperand(1); return SDValue(); } static SDValue performUnpackCombine(SDNode *N, SelectionDAG &DAG, const AArch64Subtarget *Subtarget) { assert((N->getOpcode() == AArch64ISD::UUNPKHI || N->getOpcode() == AArch64ISD::UUNPKLO) && "Unexpected Opcode!"); // uunpklo/hi undef -> undef if (N->getOperand(0).isUndef()) return DAG.getUNDEF(N->getValueType(0)); // If this is a masked load followed by an UUNPKLO, fold this into a masked // extending load. We can do this even if this is already a masked // {z,}extload. if (N->getOperand(0).getOpcode() == ISD::MLOAD && N->getOpcode() == AArch64ISD::UUNPKLO) { MaskedLoadSDNode *MLD = cast(N->getOperand(0)); SDValue Mask = MLD->getMask(); SDLoc DL(N); if (MLD->isUnindexed() && MLD->getExtensionType() != ISD::SEXTLOAD && SDValue(MLD, 0).hasOneUse() && Mask->getOpcode() == AArch64ISD::PTRUE && (MLD->getPassThru()->isUndef() || isZerosVector(MLD->getPassThru().getNode()))) { unsigned MinSVESize = Subtarget->getMinSVEVectorSizeInBits(); unsigned PgPattern = Mask->getConstantOperandVal(0); EVT VT = N->getValueType(0); // Ensure we can double the size of the predicate pattern unsigned NumElts = getNumElementsFromSVEPredPattern(PgPattern); if (NumElts && NumElts * VT.getVectorElementType().getSizeInBits() <= MinSVESize) { Mask = getPTrue(DAG, DL, VT.changeVectorElementType(MVT::i1), PgPattern); SDValue PassThru = DAG.getConstant(0, DL, VT); SDValue NewLoad = DAG.getMaskedLoad( VT, DL, MLD->getChain(), MLD->getBasePtr(), MLD->getOffset(), Mask, PassThru, MLD->getMemoryVT(), MLD->getMemOperand(), MLD->getAddressingMode(), ISD::ZEXTLOAD); DAG.ReplaceAllUsesOfValueWith(SDValue(MLD, 1), NewLoad.getValue(1)); return NewLoad; } } } return SDValue(); } static bool isHalvingTruncateAndConcatOfLegalIntScalableType(SDNode *N) { if (N->getOpcode() != AArch64ISD::UZP1) return false; SDValue Op0 = N->getOperand(0); EVT SrcVT = Op0->getValueType(0); EVT DstVT = N->getValueType(0); return (SrcVT == MVT::nxv8i16 && DstVT == MVT::nxv16i8) || (SrcVT == MVT::nxv4i32 && DstVT == MVT::nxv8i16) || (SrcVT == MVT::nxv2i64 && DstVT == MVT::nxv4i32); } // Try to combine rounding shifts where the operands come from an extend, and // the result is truncated and combined into one vector. // uzp1(rshrnb(uunpklo(X),C), rshrnb(uunpkhi(X), C)) -> urshr(X, C) static SDValue tryCombineExtendRShTrunc(SDNode *N, SelectionDAG &DAG) { assert(N->getOpcode() == AArch64ISD::UZP1 && "Only UZP1 expected."); SDValue Op0 = N->getOperand(0); SDValue Op1 = N->getOperand(1); EVT ResVT = N->getValueType(0); unsigned RshOpc = Op0.getOpcode(); if (RshOpc != AArch64ISD::RSHRNB_I) return SDValue(); // Same op code and imm value? SDValue ShiftValue = Op0.getOperand(1); if (RshOpc != Op1.getOpcode() || ShiftValue != Op1.getOperand(1)) return SDValue(); // Same unextended operand value? SDValue Lo = Op0.getOperand(0); SDValue Hi = Op1.getOperand(0); if (Lo.getOpcode() != AArch64ISD::UUNPKLO && Hi.getOpcode() != AArch64ISD::UUNPKHI) return SDValue(); SDValue OrigArg = Lo.getOperand(0); if (OrigArg != Hi.getOperand(0)) return SDValue(); SDLoc DL(N); return DAG.getNode(AArch64ISD::URSHR_I_PRED, DL, ResVT, getPredicateForVector(DAG, DL, ResVT), OrigArg, ShiftValue); } // Try to simplify: // t1 = nxv8i16 add(X, 1 << (ShiftValue - 1)) // t2 = nxv8i16 srl(t1, ShiftValue) // to // t1 = nxv8i16 rshrnb(X, shiftvalue). // rshrnb will zero the top half bits of each element. Therefore, this combine // should only be performed when a following instruction with the rshrnb // as an operand does not care about the top half of each element. For example, // a uzp1 or a truncating store. static SDValue trySimplifySrlAddToRshrnb(SDValue Srl, SelectionDAG &DAG, const AArch64Subtarget *Subtarget) { EVT VT = Srl->getValueType(0); if (!VT.isScalableVector() || !Subtarget->hasSVE2()) return SDValue(); EVT ResVT; if (VT == MVT::nxv8i16) ResVT = MVT::nxv16i8; else if (VT == MVT::nxv4i32) ResVT = MVT::nxv8i16; else if (VT == MVT::nxv2i64) ResVT = MVT::nxv4i32; else return SDValue(); SDLoc DL(Srl); unsigned ShiftValue; SDValue RShOperand; if (!canLowerSRLToRoundingShiftForVT(Srl, ResVT, DAG, ShiftValue, RShOperand)) return SDValue(); SDValue Rshrnb = DAG.getNode( AArch64ISD::RSHRNB_I, DL, ResVT, {RShOperand, DAG.getTargetConstant(ShiftValue, DL, MVT::i32)}); return DAG.getNode(ISD::BITCAST, DL, VT, Rshrnb); } static SDValue performUzpCombine(SDNode *N, SelectionDAG &DAG, const AArch64Subtarget *Subtarget) { SDLoc DL(N); SDValue Op0 = N->getOperand(0); SDValue Op1 = N->getOperand(1); EVT ResVT = N->getValueType(0); // uzp1(x, undef) -> concat(truncate(x), undef) if (Op1.getOpcode() == ISD::UNDEF) { EVT BCVT = MVT::Other, HalfVT = MVT::Other; switch (ResVT.getSimpleVT().SimpleTy) { default: break; case MVT::v16i8: BCVT = MVT::v8i16; HalfVT = MVT::v8i8; break; case MVT::v8i16: BCVT = MVT::v4i32; HalfVT = MVT::v4i16; break; case MVT::v4i32: BCVT = MVT::v2i64; HalfVT = MVT::v2i32; break; } if (BCVT != MVT::Other) { SDValue BC = DAG.getBitcast(BCVT, Op0); SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, HalfVT, BC); return DAG.getNode(ISD::CONCAT_VECTORS, DL, ResVT, Trunc, DAG.getUNDEF(HalfVT)); } } if (SDValue Urshr = tryCombineExtendRShTrunc(N, DAG)) return Urshr; if (SDValue Rshrnb = trySimplifySrlAddToRshrnb(Op0, DAG, Subtarget)) return DAG.getNode(AArch64ISD::UZP1, DL, ResVT, Rshrnb, Op1); if (SDValue Rshrnb = trySimplifySrlAddToRshrnb(Op1, DAG, Subtarget)) return DAG.getNode(AArch64ISD::UZP1, DL, ResVT, Op0, Rshrnb); // uzp1(unpklo(uzp1(x, y)), z) => uzp1(x, z) if (Op0.getOpcode() == AArch64ISD::UUNPKLO) { if (Op0.getOperand(0).getOpcode() == AArch64ISD::UZP1) { SDValue X = Op0.getOperand(0).getOperand(0); return DAG.getNode(AArch64ISD::UZP1, DL, ResVT, X, Op1); } } // uzp1(x, unpkhi(uzp1(y, z))) => uzp1(x, z) if (Op1.getOpcode() == AArch64ISD::UUNPKHI) { if (Op1.getOperand(0).getOpcode() == AArch64ISD::UZP1) { SDValue Z = Op1.getOperand(0).getOperand(1); return DAG.getNode(AArch64ISD::UZP1, DL, ResVT, Op0, Z); } } // These optimizations only work on little endian. if (!DAG.getDataLayout().isLittleEndian()) return SDValue(); // uzp1(bitcast(x), bitcast(y)) -> uzp1(x, y) // Example: // nxv4i32 = uzp1 bitcast(nxv4i32 x to nxv2i64), bitcast(nxv4i32 y to nxv2i64) // to // nxv4i32 = uzp1 nxv4i32 x, nxv4i32 y if (isHalvingTruncateAndConcatOfLegalIntScalableType(N) && Op0.getOpcode() == ISD::BITCAST && Op1.getOpcode() == ISD::BITCAST) { if (Op0.getOperand(0).getValueType() == Op1.getOperand(0).getValueType()) { return DAG.getNode(AArch64ISD::UZP1, DL, ResVT, Op0.getOperand(0), Op1.getOperand(0)); } } if (ResVT != MVT::v2i32 && ResVT != MVT::v4i16 && ResVT != MVT::v8i8) return SDValue(); SDValue SourceOp0 = peekThroughBitcasts(Op0); SDValue SourceOp1 = peekThroughBitcasts(Op1); // truncating uzp1(x, y) -> xtn(concat (x, y)) if (SourceOp0.getValueType() == SourceOp1.getValueType()) { EVT Op0Ty = SourceOp0.getValueType(); if ((ResVT == MVT::v4i16 && Op0Ty == MVT::v2i32) || (ResVT == MVT::v8i8 && Op0Ty == MVT::v4i16)) { SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, DL, Op0Ty.getDoubleNumVectorElementsVT(*DAG.getContext()), SourceOp0, SourceOp1); return DAG.getNode(ISD::TRUNCATE, DL, ResVT, Concat); } } // uzp1(xtn x, xtn y) -> xtn(uzp1 (x, y)) if (SourceOp0.getOpcode() != ISD::TRUNCATE || SourceOp1.getOpcode() != ISD::TRUNCATE) return SDValue(); SourceOp0 = SourceOp0.getOperand(0); SourceOp1 = SourceOp1.getOperand(0); if (SourceOp0.getValueType() != SourceOp1.getValueType() || !SourceOp0.getValueType().isSimple()) return SDValue(); EVT ResultTy; switch (SourceOp0.getSimpleValueType().SimpleTy) { case MVT::v2i64: ResultTy = MVT::v4i32; break; case MVT::v4i32: ResultTy = MVT::v8i16; break; case MVT::v8i16: ResultTy = MVT::v16i8; break; default: return SDValue(); } SDValue UzpOp0 = DAG.getNode(ISD::BITCAST, DL, ResultTy, SourceOp0); SDValue UzpOp1 = DAG.getNode(ISD::BITCAST, DL, ResultTy, SourceOp1); SDValue UzpResult = DAG.getNode(AArch64ISD::UZP1, DL, UzpOp0.getValueType(), UzpOp0, UzpOp1); EVT BitcastResultTy; switch (ResVT.getSimpleVT().SimpleTy) { case MVT::v2i32: BitcastResultTy = MVT::v2i64; break; case MVT::v4i16: BitcastResultTy = MVT::v4i32; break; case MVT::v8i8: BitcastResultTy = MVT::v8i16; break; default: llvm_unreachable("Should be one of {v2i32, v4i16, v8i8}"); } return DAG.getNode(ISD::TRUNCATE, DL, ResVT, DAG.getNode(ISD::BITCAST, DL, BitcastResultTy, UzpResult)); } static SDValue performGLD1Combine(SDNode *N, SelectionDAG &DAG) { unsigned Opc = N->getOpcode(); assert(((Opc >= AArch64ISD::GLD1_MERGE_ZERO && // unsigned gather loads Opc <= AArch64ISD::GLD1_IMM_MERGE_ZERO) || (Opc >= AArch64ISD::GLD1S_MERGE_ZERO && // signed gather loads Opc <= AArch64ISD::GLD1S_IMM_MERGE_ZERO)) && "Invalid opcode."); const bool Scaled = Opc == AArch64ISD::GLD1_SCALED_MERGE_ZERO || Opc == AArch64ISD::GLD1S_SCALED_MERGE_ZERO; const bool Signed = Opc == AArch64ISD::GLD1S_MERGE_ZERO || Opc == AArch64ISD::GLD1S_SCALED_MERGE_ZERO; const bool Extended = Opc == AArch64ISD::GLD1_SXTW_MERGE_ZERO || Opc == AArch64ISD::GLD1_SXTW_SCALED_MERGE_ZERO || Opc == AArch64ISD::GLD1_UXTW_MERGE_ZERO || Opc == AArch64ISD::GLD1_UXTW_SCALED_MERGE_ZERO; SDLoc DL(N); SDValue Chain = N->getOperand(0); SDValue Pg = N->getOperand(1); SDValue Base = N->getOperand(2); SDValue Offset = N->getOperand(3); SDValue Ty = N->getOperand(4); EVT ResVT = N->getValueType(0); const auto OffsetOpc = Offset.getOpcode(); const bool OffsetIsZExt = OffsetOpc == AArch64ISD::ZERO_EXTEND_INREG_MERGE_PASSTHRU; const bool OffsetIsSExt = OffsetOpc == AArch64ISD::SIGN_EXTEND_INREG_MERGE_PASSTHRU; // Fold sign/zero extensions of vector offsets into GLD1 nodes where possible. if (!Extended && (OffsetIsSExt || OffsetIsZExt)) { SDValue ExtPg = Offset.getOperand(0); VTSDNode *ExtFrom = cast(Offset.getOperand(2).getNode()); EVT ExtFromEVT = ExtFrom->getVT().getVectorElementType(); // If the predicate for the sign- or zero-extended offset is the // same as the predicate used for this load and the sign-/zero-extension // was from a 32-bits... if (ExtPg == Pg && ExtFromEVT == MVT::i32) { SDValue UnextendedOffset = Offset.getOperand(1); unsigned NewOpc = getGatherVecOpcode(Scaled, OffsetIsSExt, true); if (Signed) NewOpc = getSignExtendedGatherOpcode(NewOpc); return DAG.getNode(NewOpc, DL, {ResVT, MVT::Other}, {Chain, Pg, Base, UnextendedOffset, Ty}); } } return SDValue(); } /// Optimize a vector shift instruction and its operand if shifted out /// bits are not used. static SDValue performVectorShiftCombine(SDNode *N, const AArch64TargetLowering &TLI, TargetLowering::DAGCombinerInfo &DCI) { assert(N->getOpcode() == AArch64ISD::VASHR || N->getOpcode() == AArch64ISD::VLSHR); SDValue Op = N->getOperand(0); unsigned OpScalarSize = Op.getScalarValueSizeInBits(); unsigned ShiftImm = N->getConstantOperandVal(1); assert(OpScalarSize > ShiftImm && "Invalid shift imm"); // Remove sign_extend_inreg (ashr(shl(x)) based on the number of sign bits. if (N->getOpcode() == AArch64ISD::VASHR && Op.getOpcode() == AArch64ISD::VSHL && N->getOperand(1) == Op.getOperand(1)) if (DCI.DAG.ComputeNumSignBits(Op.getOperand(0)) > ShiftImm) return Op.getOperand(0); APInt ShiftedOutBits = APInt::getLowBitsSet(OpScalarSize, ShiftImm); APInt DemandedMask = ~ShiftedOutBits; if (TLI.SimplifyDemandedBits(Op, DemandedMask, DCI)) return SDValue(N, 0); return SDValue(); } static SDValue performSunpkloCombine(SDNode *N, SelectionDAG &DAG) { // sunpklo(sext(pred)) -> sext(extract_low_half(pred)) // This transform works in partnership with performSetCCPunpkCombine to // remove unnecessary transfer of predicates into standard registers and back if (N->getOperand(0).getOpcode() == ISD::SIGN_EXTEND && N->getOperand(0)->getOperand(0)->getValueType(0).getScalarType() == MVT::i1) { SDValue CC = N->getOperand(0)->getOperand(0); auto VT = CC->getValueType(0).getHalfNumVectorElementsVT(*DAG.getContext()); SDValue Unpk = DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N), VT, CC, DAG.getVectorIdxConstant(0, SDLoc(N))); return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), N->getValueType(0), Unpk); } return SDValue(); } /// Target-specific DAG combine function for post-increment LD1 (lane) and /// post-increment LD1R. static SDValue performPostLD1Combine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, bool IsLaneOp) { if (DCI.isBeforeLegalizeOps()) return SDValue(); SelectionDAG &DAG = DCI.DAG; EVT VT = N->getValueType(0); if (!VT.is128BitVector() && !VT.is64BitVector()) return SDValue(); unsigned LoadIdx = IsLaneOp ? 1 : 0; SDNode *LD = N->getOperand(LoadIdx).getNode(); // If it is not LOAD, can not do such combine. if (LD->getOpcode() != ISD::LOAD) return SDValue(); // The vector lane must be a constant in the LD1LANE opcode. SDValue Lane; if (IsLaneOp) { Lane = N->getOperand(2); auto *LaneC = dyn_cast(Lane); if (!LaneC || LaneC->getZExtValue() >= VT.getVectorNumElements()) return SDValue(); } LoadSDNode *LoadSDN = cast(LD); EVT MemVT = LoadSDN->getMemoryVT(); // Check if memory operand is the same type as the vector element. if (MemVT != VT.getVectorElementType()) return SDValue(); // Check if there are other uses. If so, do not combine as it will introduce // an extra load. for (SDNode::use_iterator UI = LD->use_begin(), UE = LD->use_end(); UI != UE; ++UI) { if (UI.getUse().getResNo() == 1) // Ignore uses of the chain result. continue; if (*UI != N) return SDValue(); } // If there is one use and it can splat the value, prefer that operation. // TODO: This could be expanded to more operations if they reliably use the // index variants. if (N->hasOneUse()) { unsigned UseOpc = N->use_begin()->getOpcode(); if (UseOpc == ISD::FMUL || UseOpc == ISD::FMA) return SDValue(); } SDValue Addr = LD->getOperand(1); SDValue Vector = N->getOperand(0); // Search for a use of the address operand that is an increment. for (SDNode::use_iterator UI = Addr.getNode()->use_begin(), UE = Addr.getNode()->use_end(); UI != UE; ++UI) { SDNode *User = *UI; if (User->getOpcode() != ISD::ADD || UI.getUse().getResNo() != Addr.getResNo()) continue; // If the increment is a constant, it must match the memory ref size. SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0); if (ConstantSDNode *CInc = dyn_cast(Inc.getNode())) { uint32_t IncVal = CInc->getZExtValue(); unsigned NumBytes = VT.getScalarSizeInBits() / 8; if (IncVal != NumBytes) continue; Inc = DAG.getRegister(AArch64::XZR, MVT::i64); } // To avoid cycle construction make sure that neither the load nor the add // are predecessors to each other or the Vector. SmallPtrSet Visited; SmallVector Worklist; Visited.insert(Addr.getNode()); Worklist.push_back(User); Worklist.push_back(LD); Worklist.push_back(Vector.getNode()); if (SDNode::hasPredecessorHelper(LD, Visited, Worklist) || SDNode::hasPredecessorHelper(User, Visited, Worklist)) continue; SmallVector Ops; Ops.push_back(LD->getOperand(0)); // Chain if (IsLaneOp) { Ops.push_back(Vector); // The vector to be inserted Ops.push_back(Lane); // The lane to be inserted in the vector } Ops.push_back(Addr); Ops.push_back(Inc); EVT Tys[3] = { VT, MVT::i64, MVT::Other }; SDVTList SDTys = DAG.getVTList(Tys); unsigned NewOp = IsLaneOp ? AArch64ISD::LD1LANEpost : AArch64ISD::LD1DUPpost; SDValue UpdN = DAG.getMemIntrinsicNode(NewOp, SDLoc(N), SDTys, Ops, MemVT, LoadSDN->getMemOperand()); // Update the uses. SDValue NewResults[] = { SDValue(LD, 0), // The result of load SDValue(UpdN.getNode(), 2) // Chain }; DCI.CombineTo(LD, NewResults); DCI.CombineTo(N, SDValue(UpdN.getNode(), 0)); // Dup/Inserted Result DCI.CombineTo(User, SDValue(UpdN.getNode(), 1)); // Write back register break; } return SDValue(); } /// Simplify ``Addr`` given that the top byte of it is ignored by HW during /// address translation. static bool performTBISimplification(SDValue Addr, TargetLowering::DAGCombinerInfo &DCI, SelectionDAG &DAG) { APInt DemandedMask = APInt::getLowBitsSet(64, 56); KnownBits Known; TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), !DCI.isBeforeLegalizeOps()); const TargetLowering &TLI = DAG.getTargetLoweringInfo(); if (TLI.SimplifyDemandedBits(Addr, DemandedMask, Known, TLO)) { DCI.CommitTargetLoweringOpt(TLO); return true; } return false; } static SDValue foldTruncStoreOfExt(SelectionDAG &DAG, SDNode *N) { assert((N->getOpcode() == ISD::STORE || N->getOpcode() == ISD::MSTORE) && "Expected STORE dag node in input!"); if (auto Store = dyn_cast(N)) { if (!Store->isTruncatingStore() || Store->isIndexed()) return SDValue(); SDValue Ext = Store->getValue(); auto ExtOpCode = Ext.getOpcode(); if (ExtOpCode != ISD::ZERO_EXTEND && ExtOpCode != ISD::SIGN_EXTEND && ExtOpCode != ISD::ANY_EXTEND) return SDValue(); SDValue Orig = Ext->getOperand(0); if (Store->getMemoryVT() != Orig.getValueType()) return SDValue(); return DAG.getStore(Store->getChain(), SDLoc(Store), Orig, Store->getBasePtr(), Store->getMemOperand()); } return SDValue(); } // A custom combine to lower load <3 x i8> as the more efficient sequence // below: // ldrb wX, [x0, #2] // ldrh wY, [x0] // orr wX, wY, wX, lsl #16 // fmov s0, wX // // Note that an alternative sequence with even fewer (although usually more // complex/expensive) instructions would be: // ld1r.4h { v0 }, [x0], #2 // ld1.b { v0 }[2], [x0] // // Generating this sequence unfortunately results in noticeably worse codegen // for code that extends the loaded v3i8, due to legalization breaking vector // shuffle detection in a way that is very difficult to work around. // TODO: Revisit once v3i8 legalization has been improved in general. static SDValue combineV3I8LoadExt(LoadSDNode *LD, SelectionDAG &DAG) { EVT MemVT = LD->getMemoryVT(); if (MemVT != EVT::getVectorVT(*DAG.getContext(), MVT::i8, 3) || LD->getOriginalAlign() >= 4) return SDValue(); SDLoc DL(LD); MachineFunction &MF = DAG.getMachineFunction(); SDValue Chain = LD->getChain(); SDValue BasePtr = LD->getBasePtr(); MachineMemOperand *MMO = LD->getMemOperand(); assert(LD->getOffset().isUndef() && "undef offset expected"); // Load 2 x i8, then 1 x i8. SDValue L16 = DAG.getLoad(MVT::i16, DL, Chain, BasePtr, MMO); TypeSize Offset2 = TypeSize::getFixed(2); SDValue L8 = DAG.getLoad(MVT::i8, DL, Chain, DAG.getMemBasePlusOffset(BasePtr, Offset2, DL), MF.getMachineMemOperand(MMO, 2, 1)); // Extend to i32. SDValue Ext16 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, L16); SDValue Ext8 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, L8); // Pack 2 x i8 and 1 x i8 in an i32 and convert to v4i8. SDValue Shl = DAG.getNode(ISD::SHL, DL, MVT::i32, Ext8, DAG.getConstant(16, DL, MVT::i32)); SDValue Or = DAG.getNode(ISD::OR, DL, MVT::i32, Ext16, Shl); SDValue Cast = DAG.getNode(ISD::BITCAST, DL, MVT::v4i8, Or); // Extract v3i8 again. SDValue Extract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MemVT, Cast, DAG.getConstant(0, DL, MVT::i64)); SDValue TokenFactor = DAG.getNode( ISD::TokenFactor, DL, MVT::Other, {SDValue(cast(L16), 1), SDValue(cast(L8), 1)}); return DAG.getMergeValues({Extract, TokenFactor}, DL); } // Perform TBI simplification if supported by the target and try to break up // nontemporal loads larger than 256-bits loads for odd types so LDNPQ 256-bit // load instructions can be selected. static SDValue performLOADCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, SelectionDAG &DAG, const AArch64Subtarget *Subtarget) { if (Subtarget->supportsAddressTopByteIgnored()) performTBISimplification(N->getOperand(1), DCI, DAG); LoadSDNode *LD = cast(N); if (LD->isVolatile() || !Subtarget->isLittleEndian()) return SDValue(N, 0); if (SDValue Res = combineV3I8LoadExt(LD, DAG)) return Res; if (!LD->isNonTemporal()) return SDValue(N, 0); EVT MemVT = LD->getMemoryVT(); if (MemVT.isScalableVector() || MemVT.getSizeInBits() <= 256 || MemVT.getSizeInBits() % 256 == 0 || 256 % MemVT.getScalarSizeInBits() != 0) return SDValue(N, 0); SDLoc DL(LD); SDValue Chain = LD->getChain(); SDValue BasePtr = LD->getBasePtr(); SDNodeFlags Flags = LD->getFlags(); SmallVector LoadOps; SmallVector LoadOpsChain; // Replace any non temporal load over 256-bit with a series of 256 bit loads // and a scalar/vector load less than 256. This way we can utilize 256-bit // loads and reduce the amount of load instructions generated. MVT NewVT = MVT::getVectorVT(MemVT.getVectorElementType().getSimpleVT(), 256 / MemVT.getVectorElementType().getSizeInBits()); unsigned Num256Loads = MemVT.getSizeInBits() / 256; // Create all 256-bit loads starting from offset 0 and up to Num256Loads-1*32. for (unsigned I = 0; I < Num256Loads; I++) { unsigned PtrOffset = I * 32; SDValue NewPtr = DAG.getMemBasePlusOffset( BasePtr, TypeSize::getFixed(PtrOffset), DL, Flags); Align NewAlign = commonAlignment(LD->getAlign(), PtrOffset); SDValue NewLoad = DAG.getLoad( NewVT, DL, Chain, NewPtr, LD->getPointerInfo().getWithOffset(PtrOffset), NewAlign, LD->getMemOperand()->getFlags(), LD->getAAInfo()); LoadOps.push_back(NewLoad); LoadOpsChain.push_back(SDValue(cast(NewLoad), 1)); } // Process remaining bits of the load operation. // This is done by creating an UNDEF vector to match the size of the // 256-bit loads and inserting the remaining load to it. We extract the // original load type at the end using EXTRACT_SUBVECTOR instruction. unsigned BitsRemaining = MemVT.getSizeInBits() % 256; unsigned PtrOffset = (MemVT.getSizeInBits() - BitsRemaining) / 8; MVT RemainingVT = MVT::getVectorVT( MemVT.getVectorElementType().getSimpleVT(), BitsRemaining / MemVT.getVectorElementType().getSizeInBits()); SDValue NewPtr = DAG.getMemBasePlusOffset( BasePtr, TypeSize::getFixed(PtrOffset), DL, Flags); Align NewAlign = commonAlignment(LD->getAlign(), PtrOffset); SDValue RemainingLoad = DAG.getLoad(RemainingVT, DL, Chain, NewPtr, LD->getPointerInfo().getWithOffset(PtrOffset), NewAlign, LD->getMemOperand()->getFlags(), LD->getAAInfo()); SDValue UndefVector = DAG.getUNDEF(NewVT); SDValue InsertIdx = DAG.getVectorIdxConstant(0, DL); SDValue ExtendedReminingLoad = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, NewVT, {UndefVector, RemainingLoad, InsertIdx}); LoadOps.push_back(ExtendedReminingLoad); LoadOpsChain.push_back(SDValue(cast(RemainingLoad), 1)); EVT ConcatVT = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(), LoadOps.size() * NewVT.getVectorNumElements()); SDValue ConcatVectors = DAG.getNode(ISD::CONCAT_VECTORS, DL, ConcatVT, LoadOps); // Extract the original vector type size. SDValue ExtractSubVector = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MemVT, {ConcatVectors, DAG.getVectorIdxConstant(0, DL)}); SDValue TokenFactor = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, LoadOpsChain); return DAG.getMergeValues({ExtractSubVector, TokenFactor}, DL); } static EVT tryGetOriginalBoolVectorType(SDValue Op, int Depth = 0) { EVT VecVT = Op.getValueType(); assert(VecVT.isVector() && VecVT.getVectorElementType() == MVT::i1 && "Need boolean vector type."); if (Depth > 3) return MVT::INVALID_SIMPLE_VALUE_TYPE; // We can get the base type from a vector compare or truncate. if (Op.getOpcode() == ISD::SETCC || Op.getOpcode() == ISD::TRUNCATE) return Op.getOperand(0).getValueType(); // If an operand is a bool vector, continue looking. EVT BaseVT = MVT::INVALID_SIMPLE_VALUE_TYPE; for (SDValue Operand : Op->op_values()) { if (Operand.getValueType() != VecVT) continue; EVT OperandVT = tryGetOriginalBoolVectorType(Operand, Depth + 1); if (!BaseVT.isSimple()) BaseVT = OperandVT; else if (OperandVT != BaseVT) return MVT::INVALID_SIMPLE_VALUE_TYPE; } return BaseVT; } // When converting a vector to to store or use as a scalar // iN, we can use a trick that extracts the i^th bit from the i^th element and // then performs a vector add to get a scalar bitmask. This requires that each // element's bits are either all 1 or all 0. static SDValue vectorToScalarBitmask(SDNode *N, SelectionDAG &DAG) { SDLoc DL(N); SDValue ComparisonResult(N, 0); EVT VecVT = ComparisonResult.getValueType(); assert(VecVT.isVector() && "Must be a vector type"); unsigned NumElts = VecVT.getVectorNumElements(); if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16) return SDValue(); if (VecVT.getVectorElementType() != MVT::i1 && !DAG.getTargetLoweringInfo().isTypeLegal(VecVT)) return SDValue(); // If we can find the original types to work on instead of a vector of i1, // we can avoid extend/extract conversion instructions. if (VecVT.getVectorElementType() == MVT::i1) { VecVT = tryGetOriginalBoolVectorType(ComparisonResult); if (!VecVT.isSimple()) { unsigned BitsPerElement = std::max(64 / NumElts, 8u); // >= 64-bit vector VecVT = MVT::getVectorVT(MVT::getIntegerVT(BitsPerElement), NumElts); } } VecVT = VecVT.changeVectorElementTypeToInteger(); // Large vectors don't map directly to this conversion, so to avoid too many // edge cases, we don't apply it here. The conversion will likely still be // applied later via multiple smaller vectors, whose results are concatenated. if (VecVT.getSizeInBits() > 128) return SDValue(); // Ensure that all elements' bits are either 0s or 1s. ComparisonResult = DAG.getSExtOrTrunc(ComparisonResult, DL, VecVT); SmallVector MaskConstants; if (VecVT == MVT::v16i8) { // v16i8 is a special case, as we have 16 entries but only 8 positional bits // per entry. We split it into two halves, apply the mask, zip the halves to // create 8x 16-bit values, and the perform the vector reduce. for (unsigned Half = 0; Half < 2; ++Half) { for (unsigned MaskBit = 1; MaskBit <= 128; MaskBit *= 2) { MaskConstants.push_back(DAG.getConstant(MaskBit, DL, MVT::i32)); } } SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, DL, VecVT, MaskConstants); SDValue RepresentativeBits = DAG.getNode(ISD::AND, DL, VecVT, ComparisonResult, Mask); SDValue UpperRepresentativeBits = DAG.getNode(AArch64ISD::EXT, DL, VecVT, RepresentativeBits, RepresentativeBits, DAG.getConstant(8, DL, MVT::i32)); SDValue Zipped = DAG.getNode(AArch64ISD::ZIP1, DL, VecVT, RepresentativeBits, UpperRepresentativeBits); Zipped = DAG.getNode(ISD::BITCAST, DL, MVT::v8i16, Zipped); return DAG.getNode(ISD::VECREDUCE_ADD, DL, MVT::i16, Zipped); } // All other vector sizes. unsigned MaxBitMask = 1u << (VecVT.getVectorNumElements() - 1); for (unsigned MaskBit = 1; MaskBit <= MaxBitMask; MaskBit *= 2) { MaskConstants.push_back(DAG.getConstant(MaskBit, DL, MVT::i64)); } SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, DL, VecVT, MaskConstants); SDValue RepresentativeBits = DAG.getNode(ISD::AND, DL, VecVT, ComparisonResult, Mask); EVT ResultVT = MVT::getIntegerVT(std::max( NumElts, VecVT.getVectorElementType().getSizeInBits())); return DAG.getNode(ISD::VECREDUCE_ADD, DL, ResultVT, RepresentativeBits); } static SDValue combineBoolVectorAndTruncateStore(SelectionDAG &DAG, StoreSDNode *Store) { if (!Store->isTruncatingStore()) return SDValue(); SDLoc DL(Store); SDValue VecOp = Store->getValue(); EVT VT = VecOp.getValueType(); EVT MemVT = Store->getMemoryVT(); if (!MemVT.isVector() || !VT.isVector() || MemVT.getVectorElementType() != MVT::i1) return SDValue(); // If we are storing a vector that we are currently building, let // `scalarizeVectorStore()` handle this more efficiently. if (VecOp.getOpcode() == ISD::BUILD_VECTOR) return SDValue(); VecOp = DAG.getNode(ISD::TRUNCATE, DL, MemVT, VecOp); SDValue VectorBits = vectorToScalarBitmask(VecOp.getNode(), DAG); if (!VectorBits) return SDValue(); EVT StoreVT = EVT::getIntegerVT(*DAG.getContext(), MemVT.getStoreSizeInBits()); SDValue ExtendedBits = DAG.getZExtOrTrunc(VectorBits, DL, StoreVT); return DAG.getStore(Store->getChain(), DL, ExtendedBits, Store->getBasePtr(), Store->getMemOperand()); } bool isHalvingTruncateOfLegalScalableType(EVT SrcVT, EVT DstVT) { return (SrcVT == MVT::nxv8i16 && DstVT == MVT::nxv8i8) || (SrcVT == MVT::nxv4i32 && DstVT == MVT::nxv4i16) || (SrcVT == MVT::nxv2i64 && DstVT == MVT::nxv2i32); } // Combine store (trunc X to <3 x i8>) to sequence of ST1.b. static SDValue combineI8TruncStore(StoreSDNode *ST, SelectionDAG &DAG, const AArch64Subtarget *Subtarget) { SDValue Value = ST->getValue(); EVT ValueVT = Value.getValueType(); if (ST->isVolatile() || !Subtarget->isLittleEndian() || Value.getOpcode() != ISD::TRUNCATE || ValueVT != EVT::getVectorVT(*DAG.getContext(), MVT::i8, 3)) return SDValue(); assert(ST->getOffset().isUndef() && "undef offset expected"); SDLoc DL(ST); auto WideVT = EVT::getVectorVT( *DAG.getContext(), Value->getOperand(0).getValueType().getVectorElementType(), 4); SDValue UndefVector = DAG.getUNDEF(WideVT); SDValue WideTrunc = DAG.getNode( ISD::INSERT_SUBVECTOR, DL, WideVT, {UndefVector, Value->getOperand(0), DAG.getVectorIdxConstant(0, DL)}); SDValue Cast = DAG.getNode( ISD::BITCAST, DL, WideVT.getSizeInBits() == 64 ? MVT::v8i8 : MVT::v16i8, WideTrunc); MachineFunction &MF = DAG.getMachineFunction(); SDValue Chain = ST->getChain(); MachineMemOperand *MMO = ST->getMemOperand(); unsigned IdxScale = WideVT.getScalarSizeInBits() / 8; SDValue E2 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i8, Cast, DAG.getConstant(2 * IdxScale, DL, MVT::i64)); TypeSize Offset2 = TypeSize::getFixed(2); SDValue Ptr2 = DAG.getMemBasePlusOffset(ST->getBasePtr(), Offset2, DL); Chain = DAG.getStore(Chain, DL, E2, Ptr2, MF.getMachineMemOperand(MMO, 2, 1)); SDValue E1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i8, Cast, DAG.getConstant(1 * IdxScale, DL, MVT::i64)); TypeSize Offset1 = TypeSize::getFixed(1); SDValue Ptr1 = DAG.getMemBasePlusOffset(ST->getBasePtr(), Offset1, DL); Chain = DAG.getStore(Chain, DL, E1, Ptr1, MF.getMachineMemOperand(MMO, 1, 1)); SDValue E0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i8, Cast, DAG.getConstant(0, DL, MVT::i64)); Chain = DAG.getStore(Chain, DL, E0, ST->getBasePtr(), MF.getMachineMemOperand(MMO, 0, 1)); return Chain; } static SDValue performSTORECombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, SelectionDAG &DAG, const AArch64Subtarget *Subtarget) { StoreSDNode *ST = cast(N); SDValue Chain = ST->getChain(); SDValue Value = ST->getValue(); SDValue Ptr = ST->getBasePtr(); EVT ValueVT = Value.getValueType(); auto hasValidElementTypeForFPTruncStore = [](EVT VT) { EVT EltVT = VT.getVectorElementType(); return EltVT == MVT::f32 || EltVT == MVT::f64; }; if (SDValue Res = combineI8TruncStore(ST, DAG, Subtarget)) return Res; // If this is an FP_ROUND followed by a store, fold this into a truncating // store. We can do this even if this is already a truncstore. // We purposefully don't care about legality of the nodes here as we know // they can be split down into something legal. if (DCI.isBeforeLegalizeOps() && Value.getOpcode() == ISD::FP_ROUND && Value.getNode()->hasOneUse() && ST->isUnindexed() && Subtarget->useSVEForFixedLengthVectors() && ValueVT.isFixedLengthVector() && ValueVT.getFixedSizeInBits() >= Subtarget->getMinSVEVectorSizeInBits() && hasValidElementTypeForFPTruncStore(Value.getOperand(0).getValueType())) return DAG.getTruncStore(Chain, SDLoc(N), Value.getOperand(0), Ptr, ST->getMemoryVT(), ST->getMemOperand()); if (SDValue Split = splitStores(N, DCI, DAG, Subtarget)) return Split; if (Subtarget->supportsAddressTopByteIgnored() && performTBISimplification(N->getOperand(2), DCI, DAG)) return SDValue(N, 0); if (SDValue Store = foldTruncStoreOfExt(DAG, N)) return Store; if (SDValue Store = combineBoolVectorAndTruncateStore(DAG, ST)) return Store; if (ST->isTruncatingStore()) { EVT StoreVT = ST->getMemoryVT(); if (!isHalvingTruncateOfLegalScalableType(ValueVT, StoreVT)) return SDValue(); if (SDValue Rshrnb = trySimplifySrlAddToRshrnb(ST->getOperand(1), DAG, Subtarget)) { return DAG.getTruncStore(ST->getChain(), ST, Rshrnb, ST->getBasePtr(), StoreVT, ST->getMemOperand()); } } return SDValue(); } static SDValue performMSTORECombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, SelectionDAG &DAG, const AArch64Subtarget *Subtarget) { MaskedStoreSDNode *MST = cast(N); SDValue Value = MST->getValue(); SDValue Mask = MST->getMask(); SDLoc DL(N); // If this is a UZP1 followed by a masked store, fold this into a masked // truncating store. We can do this even if this is already a masked // truncstore. if (Value.getOpcode() == AArch64ISD::UZP1 && Value->hasOneUse() && MST->isUnindexed() && Mask->getOpcode() == AArch64ISD::PTRUE && Value.getValueType().isInteger()) { Value = Value.getOperand(0); if (Value.getOpcode() == ISD::BITCAST) { EVT HalfVT = Value.getValueType().getHalfNumVectorElementsVT(*DAG.getContext()); EVT InVT = Value.getOperand(0).getValueType(); if (HalfVT.widenIntegerVectorElementType(*DAG.getContext()) == InVT) { unsigned MinSVESize = Subtarget->getMinSVEVectorSizeInBits(); unsigned PgPattern = Mask->getConstantOperandVal(0); // Ensure we can double the size of the predicate pattern unsigned NumElts = getNumElementsFromSVEPredPattern(PgPattern); if (NumElts && NumElts * InVT.getVectorElementType().getSizeInBits() <= MinSVESize) { Mask = getPTrue(DAG, DL, InVT.changeVectorElementType(MVT::i1), PgPattern); return DAG.getMaskedStore(MST->getChain(), DL, Value.getOperand(0), MST->getBasePtr(), MST->getOffset(), Mask, MST->getMemoryVT(), MST->getMemOperand(), MST->getAddressingMode(), /*IsTruncating=*/true); } } } } if (MST->isTruncatingStore()) { EVT ValueVT = Value->getValueType(0); EVT MemVT = MST->getMemoryVT(); if (!isHalvingTruncateOfLegalScalableType(ValueVT, MemVT)) return SDValue(); if (SDValue Rshrnb = trySimplifySrlAddToRshrnb(Value, DAG, Subtarget)) { return DAG.getMaskedStore(MST->getChain(), DL, Rshrnb, MST->getBasePtr(), MST->getOffset(), MST->getMask(), MST->getMemoryVT(), MST->getMemOperand(), MST->getAddressingMode(), true); } } return SDValue(); } /// \return true if part of the index was folded into the Base. static bool foldIndexIntoBase(SDValue &BasePtr, SDValue &Index, SDValue Scale, SDLoc DL, SelectionDAG &DAG) { // This function assumes a vector of i64 indices. EVT IndexVT = Index.getValueType(); if (!IndexVT.isVector() || IndexVT.getVectorElementType() != MVT::i64) return false; // Simplify: // BasePtr = Ptr // Index = X + splat(Offset) // -> // BasePtr = Ptr + Offset * scale. // Index = X if (Index.getOpcode() == ISD::ADD) { if (auto Offset = DAG.getSplatValue(Index.getOperand(1))) { Offset = DAG.getNode(ISD::MUL, DL, MVT::i64, Offset, Scale); BasePtr = DAG.getNode(ISD::ADD, DL, MVT::i64, BasePtr, Offset); Index = Index.getOperand(0); return true; } } // Simplify: // BasePtr = Ptr // Index = (X + splat(Offset)) << splat(Shift) // -> // BasePtr = Ptr + (Offset << Shift) * scale) // Index = X << splat(shift) if (Index.getOpcode() == ISD::SHL && Index.getOperand(0).getOpcode() == ISD::ADD) { SDValue Add = Index.getOperand(0); SDValue ShiftOp = Index.getOperand(1); SDValue OffsetOp = Add.getOperand(1); if (auto Shift = DAG.getSplatValue(ShiftOp)) if (auto Offset = DAG.getSplatValue(OffsetOp)) { Offset = DAG.getNode(ISD::SHL, DL, MVT::i64, Offset, Shift); Offset = DAG.getNode(ISD::MUL, DL, MVT::i64, Offset, Scale); BasePtr = DAG.getNode(ISD::ADD, DL, MVT::i64, BasePtr, Offset); Index = DAG.getNode(ISD::SHL, DL, Index.getValueType(), Add.getOperand(0), ShiftOp); return true; } } return false; } // Analyse the specified address returning true if a more optimal addressing // mode is available. When returning true all parameters are updated to reflect // their recommended values. static bool findMoreOptimalIndexType(const MaskedGatherScatterSDNode *N, SDValue &BasePtr, SDValue &Index, SelectionDAG &DAG) { // Try to iteratively fold parts of the index into the base pointer to // simplify the index as much as possible. bool Changed = false; while (foldIndexIntoBase(BasePtr, Index, N->getScale(), SDLoc(N), DAG)) Changed = true; // Only consider element types that are pointer sized as smaller types can // be easily promoted. EVT IndexVT = Index.getValueType(); if (IndexVT.getVectorElementType() != MVT::i64 || IndexVT == MVT::nxv2i64) return Changed; // Can indices be trivially shrunk? EVT DataVT = N->getOperand(1).getValueType(); // Don't attempt to shrink the index for fixed vectors of 64 bit data since it // will later be re-extended to 64 bits in legalization if (DataVT.isFixedLengthVector() && DataVT.getScalarSizeInBits() == 64) return Changed; if (ISD::isVectorShrinkable(Index.getNode(), 32, N->isIndexSigned())) { EVT NewIndexVT = IndexVT.changeVectorElementType(MVT::i32); Index = DAG.getNode(ISD::TRUNCATE, SDLoc(N), NewIndexVT, Index); return true; } // Match: // Index = step(const) int64_t Stride = 0; if (Index.getOpcode() == ISD::STEP_VECTOR) { Stride = cast(Index.getOperand(0))->getSExtValue(); } // Match: // Index = step(const) << shift(const) else if (Index.getOpcode() == ISD::SHL && Index.getOperand(0).getOpcode() == ISD::STEP_VECTOR) { SDValue RHS = Index.getOperand(1); if (auto *Shift = dyn_cast_or_null(DAG.getSplatValue(RHS))) { int64_t Step = (int64_t)Index.getOperand(0).getConstantOperandVal(1); Stride = Step << Shift->getZExtValue(); } } // Return early because no supported pattern is found. if (Stride == 0) return Changed; if (Stride < std::numeric_limits::min() || Stride > std::numeric_limits::max()) return Changed; const auto &Subtarget = DAG.getSubtarget(); unsigned MaxVScale = Subtarget.getMaxSVEVectorSizeInBits() / AArch64::SVEBitsPerBlock; int64_t LastElementOffset = IndexVT.getVectorMinNumElements() * Stride * MaxVScale; if (LastElementOffset < std::numeric_limits::min() || LastElementOffset > std::numeric_limits::max()) return Changed; EVT NewIndexVT = IndexVT.changeVectorElementType(MVT::i32); // Stride does not scale explicitly by 'Scale', because it happens in // the gather/scatter addressing mode. Index = DAG.getStepVector(SDLoc(N), NewIndexVT, APInt(32, Stride)); return true; } static SDValue performMaskedGatherScatterCombine( SDNode *N, TargetLowering::DAGCombinerInfo &DCI, SelectionDAG &DAG) { MaskedGatherScatterSDNode *MGS = cast(N); assert(MGS && "Can only combine gather load or scatter store nodes"); if (!DCI.isBeforeLegalize()) return SDValue(); SDLoc DL(MGS); SDValue Chain = MGS->getChain(); SDValue Scale = MGS->getScale(); SDValue Index = MGS->getIndex(); SDValue Mask = MGS->getMask(); SDValue BasePtr = MGS->getBasePtr(); ISD::MemIndexType IndexType = MGS->getIndexType(); if (!findMoreOptimalIndexType(MGS, BasePtr, Index, DAG)) return SDValue(); // Here we catch such cases early and change MGATHER's IndexType to allow // the use of an Index that's more legalisation friendly. if (auto *MGT = dyn_cast(MGS)) { SDValue PassThru = MGT->getPassThru(); SDValue Ops[] = {Chain, PassThru, Mask, BasePtr, Index, Scale}; return DAG.getMaskedGather( DAG.getVTList(N->getValueType(0), MVT::Other), MGT->getMemoryVT(), DL, Ops, MGT->getMemOperand(), IndexType, MGT->getExtensionType()); } auto *MSC = cast(MGS); SDValue Data = MSC->getValue(); SDValue Ops[] = {Chain, Data, Mask, BasePtr, Index, Scale}; return DAG.getMaskedScatter(DAG.getVTList(MVT::Other), MSC->getMemoryVT(), DL, Ops, MSC->getMemOperand(), IndexType, MSC->isTruncatingStore()); } /// Target-specific DAG combine function for NEON load/store intrinsics /// to merge base address updates. static SDValue performNEONPostLDSTCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, SelectionDAG &DAG) { if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer()) return SDValue(); unsigned AddrOpIdx = N->getNumOperands() - 1; SDValue Addr = N->getOperand(AddrOpIdx); // Search for a use of the address operand that is an increment. for (SDNode::use_iterator UI = Addr.getNode()->use_begin(), UE = Addr.getNode()->use_end(); UI != UE; ++UI) { SDNode *User = *UI; if (User->getOpcode() != ISD::ADD || UI.getUse().getResNo() != Addr.getResNo()) continue; // Check that the add is independent of the load/store. Otherwise, folding // it would create a cycle. SmallPtrSet Visited; SmallVector Worklist; Visited.insert(Addr.getNode()); Worklist.push_back(N); Worklist.push_back(User); if (SDNode::hasPredecessorHelper(N, Visited, Worklist) || SDNode::hasPredecessorHelper(User, Visited, Worklist)) continue; // Find the new opcode for the updating load/store. bool IsStore = false; bool IsLaneOp = false; bool IsDupOp = false; unsigned NewOpc = 0; unsigned NumVecs = 0; unsigned IntNo = N->getConstantOperandVal(1); switch (IntNo) { default: llvm_unreachable("unexpected intrinsic for Neon base update"); case Intrinsic::aarch64_neon_ld2: NewOpc = AArch64ISD::LD2post; NumVecs = 2; break; case Intrinsic::aarch64_neon_ld3: NewOpc = AArch64ISD::LD3post; NumVecs = 3; break; case Intrinsic::aarch64_neon_ld4: NewOpc = AArch64ISD::LD4post; NumVecs = 4; break; case Intrinsic::aarch64_neon_st2: NewOpc = AArch64ISD::ST2post; NumVecs = 2; IsStore = true; break; case Intrinsic::aarch64_neon_st3: NewOpc = AArch64ISD::ST3post; NumVecs = 3; IsStore = true; break; case Intrinsic::aarch64_neon_st4: NewOpc = AArch64ISD::ST4post; NumVecs = 4; IsStore = true; break; case Intrinsic::aarch64_neon_ld1x2: NewOpc = AArch64ISD::LD1x2post; NumVecs = 2; break; case Intrinsic::aarch64_neon_ld1x3: NewOpc = AArch64ISD::LD1x3post; NumVecs = 3; break; case Intrinsic::aarch64_neon_ld1x4: NewOpc = AArch64ISD::LD1x4post; NumVecs = 4; break; case Intrinsic::aarch64_neon_st1x2: NewOpc = AArch64ISD::ST1x2post; NumVecs = 2; IsStore = true; break; case Intrinsic::aarch64_neon_st1x3: NewOpc = AArch64ISD::ST1x3post; NumVecs = 3; IsStore = true; break; case Intrinsic::aarch64_neon_st1x4: NewOpc = AArch64ISD::ST1x4post; NumVecs = 4; IsStore = true; break; case Intrinsic::aarch64_neon_ld2r: NewOpc = AArch64ISD::LD2DUPpost; NumVecs = 2; IsDupOp = true; break; case Intrinsic::aarch64_neon_ld3r: NewOpc = AArch64ISD::LD3DUPpost; NumVecs = 3; IsDupOp = true; break; case Intrinsic::aarch64_neon_ld4r: NewOpc = AArch64ISD::LD4DUPpost; NumVecs = 4; IsDupOp = true; break; case Intrinsic::aarch64_neon_ld2lane: NewOpc = AArch64ISD::LD2LANEpost; NumVecs = 2; IsLaneOp = true; break; case Intrinsic::aarch64_neon_ld3lane: NewOpc = AArch64ISD::LD3LANEpost; NumVecs = 3; IsLaneOp = true; break; case Intrinsic::aarch64_neon_ld4lane: NewOpc = AArch64ISD::LD4LANEpost; NumVecs = 4; IsLaneOp = true; break; case Intrinsic::aarch64_neon_st2lane: NewOpc = AArch64ISD::ST2LANEpost; NumVecs = 2; IsStore = true; IsLaneOp = true; break; case Intrinsic::aarch64_neon_st3lane: NewOpc = AArch64ISD::ST3LANEpost; NumVecs = 3; IsStore = true; IsLaneOp = true; break; case Intrinsic::aarch64_neon_st4lane: NewOpc = AArch64ISD::ST4LANEpost; NumVecs = 4; IsStore = true; IsLaneOp = true; break; } EVT VecTy; if (IsStore) VecTy = N->getOperand(2).getValueType(); else VecTy = N->getValueType(0); // If the increment is a constant, it must match the memory ref size. SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0); if (ConstantSDNode *CInc = dyn_cast(Inc.getNode())) { uint32_t IncVal = CInc->getZExtValue(); unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8; if (IsLaneOp || IsDupOp) NumBytes /= VecTy.getVectorNumElements(); if (IncVal != NumBytes) continue; Inc = DAG.getRegister(AArch64::XZR, MVT::i64); } SmallVector Ops; Ops.push_back(N->getOperand(0)); // Incoming chain // Load lane and store have vector list as input. if (IsLaneOp || IsStore) for (unsigned i = 2; i < AddrOpIdx; ++i) Ops.push_back(N->getOperand(i)); Ops.push_back(Addr); // Base register Ops.push_back(Inc); // Return Types. EVT Tys[6]; unsigned NumResultVecs = (IsStore ? 0 : NumVecs); unsigned n; for (n = 0; n < NumResultVecs; ++n) Tys[n] = VecTy; Tys[n++] = MVT::i64; // Type of write back register Tys[n] = MVT::Other; // Type of the chain SDVTList SDTys = DAG.getVTList(ArrayRef(Tys, NumResultVecs + 2)); MemIntrinsicSDNode *MemInt = cast(N); SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, SDLoc(N), SDTys, Ops, MemInt->getMemoryVT(), MemInt->getMemOperand()); // Update the uses. std::vector NewResults; for (unsigned i = 0; i < NumResultVecs; ++i) { NewResults.push_back(SDValue(UpdN.getNode(), i)); } NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs + 1)); DCI.CombineTo(N, NewResults); DCI.CombineTo(User, SDValue(UpdN.getNode(), NumResultVecs)); break; } return SDValue(); } // Checks to see if the value is the prescribed width and returns information // about its extension mode. static bool checkValueWidth(SDValue V, unsigned width, ISD::LoadExtType &ExtType) { ExtType = ISD::NON_EXTLOAD; switch(V.getNode()->getOpcode()) { default: return false; case ISD::LOAD: { LoadSDNode *LoadNode = cast(V.getNode()); if ((LoadNode->getMemoryVT() == MVT::i8 && width == 8) || (LoadNode->getMemoryVT() == MVT::i16 && width == 16)) { ExtType = LoadNode->getExtensionType(); return true; } return false; } case ISD::AssertSext: { VTSDNode *TypeNode = cast(V.getNode()->getOperand(1)); if ((TypeNode->getVT() == MVT::i8 && width == 8) || (TypeNode->getVT() == MVT::i16 && width == 16)) { ExtType = ISD::SEXTLOAD; return true; } return false; } case ISD::AssertZext: { VTSDNode *TypeNode = cast(V.getNode()->getOperand(1)); if ((TypeNode->getVT() == MVT::i8 && width == 8) || (TypeNode->getVT() == MVT::i16 && width == 16)) { ExtType = ISD::ZEXTLOAD; return true; } return false; } case ISD::Constant: case ISD::TargetConstant: { return std::abs(cast(V.getNode())->getSExtValue()) < 1LL << (width - 1); } } return true; } // This function does a whole lot of voodoo to determine if the tests are // equivalent without and with a mask. Essentially what happens is that given a // DAG resembling: // // +-------------+ +-------------+ +-------------+ +-------------+ // | Input | | AddConstant | | CompConstant| | CC | // +-------------+ +-------------+ +-------------+ +-------------+ // | | | | // V V | +----------+ // +-------------+ +----+ | | // | ADD | |0xff| | | // +-------------+ +----+ | | // | | | | // V V | | // +-------------+ | | // | AND | | | // +-------------+ | | // | | | // +-----+ | | // | | | // V V V // +-------------+ // | CMP | // +-------------+ // // The AND node may be safely removed for some combinations of inputs. In // particular we need to take into account the extension type of the Input, // the exact values of AddConstant, CompConstant, and CC, along with the nominal // width of the input (this can work for any width inputs, the above graph is // specific to 8 bits. // // The specific equations were worked out by generating output tables for each // AArch64CC value in terms of and AddConstant (w1), CompConstant(w2). The // problem was simplified by working with 4 bit inputs, which means we only // needed to reason about 24 distinct bit patterns: 8 patterns unique to zero // extension (8,15), 8 patterns unique to sign extensions (-8,-1), and 8 // patterns present in both extensions (0,7). For every distinct set of // AddConstant and CompConstants bit patterns we can consider the masked and // unmasked versions to be equivalent if the result of this function is true for // all 16 distinct bit patterns of for the current extension type of Input (w0). // // sub w8, w0, w1 // and w10, w8, #0x0f // cmp w8, w2 // cset w9, AArch64CC // cmp w10, w2 // cset w11, AArch64CC // cmp w9, w11 // cset w0, eq // ret // // Since the above function shows when the outputs are equivalent it defines // when it is safe to remove the AND. Unfortunately it only runs on AArch64 and // would be expensive to run during compiles. The equations below were written // in a test harness that confirmed they gave equivalent outputs to the above // for all inputs function, so they can be used determine if the removal is // legal instead. // // isEquivalentMaskless() is the code for testing if the AND can be removed // factored out of the DAG recognition as the DAG can take several forms. static bool isEquivalentMaskless(unsigned CC, unsigned width, ISD::LoadExtType ExtType, int AddConstant, int CompConstant) { // By being careful about our equations and only writing the in term // symbolic values and well known constants (0, 1, -1, MaxUInt) we can // make them generally applicable to all bit widths. int MaxUInt = (1 << width); // For the purposes of these comparisons sign extending the type is // equivalent to zero extending the add and displacing it by half the integer // width. Provided we are careful and make sure our equations are valid over // the whole range we can just adjust the input and avoid writing equations // for sign extended inputs. if (ExtType == ISD::SEXTLOAD) AddConstant -= (1 << (width-1)); switch(CC) { case AArch64CC::LE: case AArch64CC::GT: if ((AddConstant == 0) || (CompConstant == MaxUInt - 1 && AddConstant < 0) || (AddConstant >= 0 && CompConstant < 0) || (AddConstant <= 0 && CompConstant <= 0 && CompConstant < AddConstant)) return true; break; case AArch64CC::LT: case AArch64CC::GE: if ((AddConstant == 0) || (AddConstant >= 0 && CompConstant <= 0) || (AddConstant <= 0 && CompConstant <= 0 && CompConstant <= AddConstant)) return true; break; case AArch64CC::HI: case AArch64CC::LS: if ((AddConstant >= 0 && CompConstant < 0) || (AddConstant <= 0 && CompConstant >= -1 && CompConstant < AddConstant + MaxUInt)) return true; break; case AArch64CC::PL: case AArch64CC::MI: if ((AddConstant == 0) || (AddConstant > 0 && CompConstant <= 0) || (AddConstant < 0 && CompConstant <= AddConstant)) return true; break; case AArch64CC::LO: case AArch64CC::HS: if ((AddConstant >= 0 && CompConstant <= 0) || (AddConstant <= 0 && CompConstant >= 0 && CompConstant <= AddConstant + MaxUInt)) return true; break; case AArch64CC::EQ: case AArch64CC::NE: if ((AddConstant > 0 && CompConstant < 0) || (AddConstant < 0 && CompConstant >= 0 && CompConstant < AddConstant + MaxUInt) || (AddConstant >= 0 && CompConstant >= 0 && CompConstant >= AddConstant) || (AddConstant <= 0 && CompConstant < 0 && CompConstant < AddConstant)) return true; break; case AArch64CC::VS: case AArch64CC::VC: case AArch64CC::AL: case AArch64CC::NV: return true; case AArch64CC::Invalid: break; } return false; } // (X & C) >u Mask --> (X & (C & (~Mask)) != 0 // (X & C) (X & (C & ~(Pow2-1)) == 0 static SDValue performSubsToAndsCombine(SDNode *N, SDNode *SubsNode, SDNode *AndNode, SelectionDAG &DAG, unsigned CCIndex, unsigned CmpIndex, unsigned CC) { ConstantSDNode *SubsC = dyn_cast(SubsNode->getOperand(1)); if (!SubsC) return SDValue(); APInt SubsAP = SubsC->getAPIntValue(); if (CC == AArch64CC::HI) { if (!SubsAP.isMask()) return SDValue(); } else if (CC == AArch64CC::LO) { if (!SubsAP.isPowerOf2()) return SDValue(); } else return SDValue(); ConstantSDNode *AndC = dyn_cast(AndNode->getOperand(1)); if (!AndC) return SDValue(); APInt MaskAP = CC == AArch64CC::HI ? SubsAP : (SubsAP - 1); SDLoc DL(N); APInt AndSMask = (~MaskAP) & AndC->getAPIntValue(); SDValue ANDS = DAG.getNode( AArch64ISD::ANDS, DL, SubsNode->getVTList(), AndNode->getOperand(0), DAG.getConstant(AndSMask, DL, SubsC->getValueType(0))); SDValue AArch64_CC = DAG.getConstant(CC == AArch64CC::HI ? AArch64CC::NE : AArch64CC::EQ, DL, N->getOperand(CCIndex)->getValueType(0)); // For now, only performCSELCombine and performBRCONDCombine call this // function. And both of them pass 2 for CCIndex, 3 for CmpIndex with 4 // operands. So just init the ops direct to simplify the code. If we have some // other case with different CCIndex, CmpIndex, we need to use for loop to // rewrite the code here. // TODO: Do we need to assert number of operand is 4 here? assert((CCIndex == 2 && CmpIndex == 3) && "Expected CCIndex to be 2 and CmpIndex to be 3."); SDValue Ops[] = {N->getOperand(0), N->getOperand(1), AArch64_CC, ANDS.getValue(1)}; return DAG.getNode(N->getOpcode(), N, N->getVTList(), Ops); } static SDValue performCONDCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, SelectionDAG &DAG, unsigned CCIndex, unsigned CmpIndex) { unsigned CC = cast(N->getOperand(CCIndex))->getSExtValue(); SDNode *SubsNode = N->getOperand(CmpIndex).getNode(); unsigned CondOpcode = SubsNode->getOpcode(); if (CondOpcode != AArch64ISD::SUBS || SubsNode->hasAnyUseOfValue(0)) return SDValue(); // There is a SUBS feeding this condition. Is it fed by a mask we can // use? SDNode *AndNode = SubsNode->getOperand(0).getNode(); unsigned MaskBits = 0; if (AndNode->getOpcode() != ISD::AND) return SDValue(); if (SDValue Val = performSubsToAndsCombine(N, SubsNode, AndNode, DAG, CCIndex, CmpIndex, CC)) return Val; if (ConstantSDNode *CN = dyn_cast(AndNode->getOperand(1))) { uint32_t CNV = CN->getZExtValue(); if (CNV == 255) MaskBits = 8; else if (CNV == 65535) MaskBits = 16; } if (!MaskBits) return SDValue(); SDValue AddValue = AndNode->getOperand(0); if (AddValue.getOpcode() != ISD::ADD) return SDValue(); // The basic dag structure is correct, grab the inputs and validate them. SDValue AddInputValue1 = AddValue.getNode()->getOperand(0); SDValue AddInputValue2 = AddValue.getNode()->getOperand(1); SDValue SubsInputValue = SubsNode->getOperand(1); // The mask is present and the provenance of all the values is a smaller type, // lets see if the mask is superfluous. if (!isa(AddInputValue2.getNode()) || !isa(SubsInputValue.getNode())) return SDValue(); ISD::LoadExtType ExtType; if (!checkValueWidth(SubsInputValue, MaskBits, ExtType) || !checkValueWidth(AddInputValue2, MaskBits, ExtType) || !checkValueWidth(AddInputValue1, MaskBits, ExtType) ) return SDValue(); if(!isEquivalentMaskless(CC, MaskBits, ExtType, cast(AddInputValue2.getNode())->getSExtValue(), cast(SubsInputValue.getNode())->getSExtValue())) return SDValue(); // The AND is not necessary, remove it. SDVTList VTs = DAG.getVTList(SubsNode->getValueType(0), SubsNode->getValueType(1)); SDValue Ops[] = { AddValue, SubsNode->getOperand(1) }; SDValue NewValue = DAG.getNode(CondOpcode, SDLoc(SubsNode), VTs, Ops); DAG.ReplaceAllUsesWith(SubsNode, NewValue.getNode()); return SDValue(N, 0); } // Optimize compare with zero and branch. static SDValue performBRCONDCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, SelectionDAG &DAG) { MachineFunction &MF = DAG.getMachineFunction(); // Speculation tracking/SLH assumes that optimized TB(N)Z/CB(N)Z instructions // will not be produced, as they are conditional branch instructions that do // not set flags. if (MF.getFunction().hasFnAttribute(Attribute::SpeculativeLoadHardening)) return SDValue(); if (SDValue NV = performCONDCombine(N, DCI, DAG, 2, 3)) N = NV.getNode(); SDValue Chain = N->getOperand(0); SDValue Dest = N->getOperand(1); SDValue CCVal = N->getOperand(2); SDValue Cmp = N->getOperand(3); assert(isa(CCVal) && "Expected a ConstantSDNode here!"); unsigned CC = CCVal->getAsZExtVal(); if (CC != AArch64CC::EQ && CC != AArch64CC::NE) return SDValue(); unsigned CmpOpc = Cmp.getOpcode(); if (CmpOpc != AArch64ISD::ADDS && CmpOpc != AArch64ISD::SUBS) return SDValue(); // Only attempt folding if there is only one use of the flag and no use of the // value. if (!Cmp->hasNUsesOfValue(0, 0) || !Cmp->hasNUsesOfValue(1, 1)) return SDValue(); SDValue LHS = Cmp.getOperand(0); SDValue RHS = Cmp.getOperand(1); assert(LHS.getValueType() == RHS.getValueType() && "Expected the value type to be the same for both operands!"); if (LHS.getValueType() != MVT::i32 && LHS.getValueType() != MVT::i64) return SDValue(); if (isNullConstant(LHS)) std::swap(LHS, RHS); if (!isNullConstant(RHS)) return SDValue(); if (LHS.getOpcode() == ISD::SHL || LHS.getOpcode() == ISD::SRA || LHS.getOpcode() == ISD::SRL) return SDValue(); // Fold the compare into the branch instruction. SDValue BR; if (CC == AArch64CC::EQ) BR = DAG.getNode(AArch64ISD::CBZ, SDLoc(N), MVT::Other, Chain, LHS, Dest); else BR = DAG.getNode(AArch64ISD::CBNZ, SDLoc(N), MVT::Other, Chain, LHS, Dest); // Do not add new nodes to DAG combiner worklist. DCI.CombineTo(N, BR, false); return SDValue(); } static SDValue foldCSELofCTTZ(SDNode *N, SelectionDAG &DAG) { unsigned CC = N->getConstantOperandVal(2); SDValue SUBS = N->getOperand(3); SDValue Zero, CTTZ; if (CC == AArch64CC::EQ && SUBS.getOpcode() == AArch64ISD::SUBS) { Zero = N->getOperand(0); CTTZ = N->getOperand(1); } else if (CC == AArch64CC::NE && SUBS.getOpcode() == AArch64ISD::SUBS) { Zero = N->getOperand(1); CTTZ = N->getOperand(0); } else return SDValue(); if ((CTTZ.getOpcode() != ISD::CTTZ && CTTZ.getOpcode() != ISD::TRUNCATE) || (CTTZ.getOpcode() == ISD::TRUNCATE && CTTZ.getOperand(0).getOpcode() != ISD::CTTZ)) return SDValue(); assert((CTTZ.getValueType() == MVT::i32 || CTTZ.getValueType() == MVT::i64) && "Illegal type in CTTZ folding"); if (!isNullConstant(Zero) || !isNullConstant(SUBS.getOperand(1))) return SDValue(); SDValue X = CTTZ.getOpcode() == ISD::TRUNCATE ? CTTZ.getOperand(0).getOperand(0) : CTTZ.getOperand(0); if (X != SUBS.getOperand(0)) return SDValue(); unsigned BitWidth = CTTZ.getOpcode() == ISD::TRUNCATE ? CTTZ.getOperand(0).getValueSizeInBits() : CTTZ.getValueSizeInBits(); SDValue BitWidthMinusOne = DAG.getConstant(BitWidth - 1, SDLoc(N), CTTZ.getValueType()); return DAG.getNode(ISD::AND, SDLoc(N), CTTZ.getValueType(), CTTZ, BitWidthMinusOne); } // (CSEL l r EQ (CMP (CSEL x y cc2 cond) x)) => (CSEL l r cc2 cond) // (CSEL l r EQ (CMP (CSEL x y cc2 cond) y)) => (CSEL l r !cc2 cond) // Where x and y are constants and x != y // (CSEL l r NE (CMP (CSEL x y cc2 cond) x)) => (CSEL l r !cc2 cond) // (CSEL l r NE (CMP (CSEL x y cc2 cond) y)) => (CSEL l r cc2 cond) // Where x and y are constants and x != y static SDValue foldCSELOfCSEL(SDNode *Op, SelectionDAG &DAG) { SDValue L = Op->getOperand(0); SDValue R = Op->getOperand(1); AArch64CC::CondCode OpCC = static_cast(Op->getConstantOperandVal(2)); SDValue OpCmp = Op->getOperand(3); if (!isCMP(OpCmp)) return SDValue(); SDValue CmpLHS = OpCmp.getOperand(0); SDValue CmpRHS = OpCmp.getOperand(1); if (CmpRHS.getOpcode() == AArch64ISD::CSEL) std::swap(CmpLHS, CmpRHS); else if (CmpLHS.getOpcode() != AArch64ISD::CSEL) return SDValue(); SDValue X = CmpLHS->getOperand(0); SDValue Y = CmpLHS->getOperand(1); if (!isa(X) || !isa(Y) || X == Y) { return SDValue(); } // If one of the constant is opaque constant, x,y sdnode is still different // but the real value maybe the same. So check APInt here to make sure the // code is correct. ConstantSDNode *CX = cast(X); ConstantSDNode *CY = cast(Y); if (CX->getAPIntValue() == CY->getAPIntValue()) return SDValue(); AArch64CC::CondCode CC = static_cast(CmpLHS->getConstantOperandVal(2)); SDValue Cond = CmpLHS->getOperand(3); if (CmpRHS == Y) CC = AArch64CC::getInvertedCondCode(CC); else if (CmpRHS != X) return SDValue(); if (OpCC == AArch64CC::NE) CC = AArch64CC::getInvertedCondCode(CC); else if (OpCC != AArch64CC::EQ) return SDValue(); SDLoc DL(Op); EVT VT = Op->getValueType(0); SDValue CCValue = DAG.getConstant(CC, DL, MVT::i32); return DAG.getNode(AArch64ISD::CSEL, DL, VT, L, R, CCValue, Cond); } // Optimize CSEL instructions static SDValue performCSELCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, SelectionDAG &DAG) { // CSEL x, x, cc -> x if (N->getOperand(0) == N->getOperand(1)) return N->getOperand(0); if (SDValue R = foldCSELOfCSEL(N, DAG)) return R; // CSEL 0, cttz(X), eq(X, 0) -> AND cttz bitwidth-1 // CSEL cttz(X), 0, ne(X, 0) -> AND cttz bitwidth-1 if (SDValue Folded = foldCSELofCTTZ(N, DAG)) return Folded; return performCONDCombine(N, DCI, DAG, 2, 3); } // Try to re-use an already extended operand of a vector SetCC feeding a // extended select. Doing so avoids requiring another full extension of the // SET_CC result when lowering the select. static SDValue tryToWidenSetCCOperands(SDNode *Op, SelectionDAG &DAG) { EVT Op0MVT = Op->getOperand(0).getValueType(); if (!Op0MVT.isVector() || Op->use_empty()) return SDValue(); // Make sure that all uses of Op are VSELECTs with result matching types where // the result type has a larger element type than the SetCC operand. SDNode *FirstUse = *Op->use_begin(); if (FirstUse->getOpcode() != ISD::VSELECT) return SDValue(); EVT UseMVT = FirstUse->getValueType(0); if (UseMVT.getScalarSizeInBits() <= Op0MVT.getScalarSizeInBits()) return SDValue(); if (any_of(Op->uses(), [&UseMVT](const SDNode *N) { return N->getOpcode() != ISD::VSELECT || N->getValueType(0) != UseMVT; })) return SDValue(); APInt V; if (!ISD::isConstantSplatVector(Op->getOperand(1).getNode(), V)) return SDValue(); SDLoc DL(Op); SDValue Op0ExtV; SDValue Op1ExtV; ISD::CondCode CC = cast(Op->getOperand(2))->get(); // Check if the first operand of the SET_CC is already extended. If it is, // split the SET_CC and re-use the extended version of the operand. SDNode *Op0SExt = DAG.getNodeIfExists(ISD::SIGN_EXTEND, DAG.getVTList(UseMVT), Op->getOperand(0)); SDNode *Op0ZExt = DAG.getNodeIfExists(ISD::ZERO_EXTEND, DAG.getVTList(UseMVT), Op->getOperand(0)); if (Op0SExt && (isSignedIntSetCC(CC) || isIntEqualitySetCC(CC))) { Op0ExtV = SDValue(Op0SExt, 0); Op1ExtV = DAG.getNode(ISD::SIGN_EXTEND, DL, UseMVT, Op->getOperand(1)); } else if (Op0ZExt && (isUnsignedIntSetCC(CC) || isIntEqualitySetCC(CC))) { Op0ExtV = SDValue(Op0ZExt, 0); Op1ExtV = DAG.getNode(ISD::ZERO_EXTEND, DL, UseMVT, Op->getOperand(1)); } else return SDValue(); return DAG.getNode(ISD::SETCC, DL, UseMVT.changeVectorElementType(MVT::i1), Op0ExtV, Op1ExtV, Op->getOperand(2)); } static SDValue performVecReduceBitwiseCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, SelectionDAG &DAG) { SDValue Vec = N->getOperand(0); if (DCI.isBeforeLegalize() && Vec.getValueType().getVectorElementType() == MVT::i1 && Vec.getValueType().isFixedLengthVector() && Vec.getValueType().isPow2VectorType()) { SDLoc DL(N); return getVectorBitwiseReduce(N->getOpcode(), Vec, N->getValueType(0), DL, DAG); } return SDValue(); } static SDValue performSETCCCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, SelectionDAG &DAG) { assert(N->getOpcode() == ISD::SETCC && "Unexpected opcode!"); SDValue LHS = N->getOperand(0); SDValue RHS = N->getOperand(1); ISD::CondCode Cond = cast(N->getOperand(2))->get(); SDLoc DL(N); EVT VT = N->getValueType(0); if (SDValue V = tryToWidenSetCCOperands(N, DAG)) return V; // setcc (csel 0, 1, cond, X), 1, ne ==> csel 0, 1, !cond, X if (Cond == ISD::SETNE && isOneConstant(RHS) && LHS->getOpcode() == AArch64ISD::CSEL && isNullConstant(LHS->getOperand(0)) && isOneConstant(LHS->getOperand(1)) && LHS->hasOneUse()) { // Invert CSEL's condition. auto OldCond = static_cast(LHS.getConstantOperandVal(2)); auto NewCond = getInvertedCondCode(OldCond); // csel 0, 1, !cond, X SDValue CSEL = DAG.getNode(AArch64ISD::CSEL, DL, LHS.getValueType(), LHS.getOperand(0), LHS.getOperand(1), DAG.getConstant(NewCond, DL, MVT::i32), LHS.getOperand(3)); return DAG.getZExtOrTrunc(CSEL, DL, VT); } // setcc (srl x, imm), 0, ne ==> setcc (and x, (-1 << imm)), 0, ne if (Cond == ISD::SETNE && isNullConstant(RHS) && LHS->getOpcode() == ISD::SRL && isa(LHS->getOperand(1)) && LHS->getConstantOperandVal(1) < VT.getScalarSizeInBits() && LHS->hasOneUse()) { EVT TstVT = LHS->getValueType(0); if (TstVT.isScalarInteger() && TstVT.getFixedSizeInBits() <= 64) { // this pattern will get better opt in emitComparison uint64_t TstImm = -1ULL << LHS->getConstantOperandVal(1); SDValue TST = DAG.getNode(ISD::AND, DL, TstVT, LHS->getOperand(0), DAG.getConstant(TstImm, DL, TstVT)); return DAG.getNode(ISD::SETCC, DL, VT, TST, RHS, N->getOperand(2)); } } // setcc (iN (bitcast (vNi1 X))), 0, (eq|ne) // ==> setcc (iN (zext (i1 (vecreduce_or (vNi1 X))))), 0, (eq|ne) // setcc (iN (bitcast (vNi1 X))), -1, (eq|ne) // ==> setcc (iN (sext (i1 (vecreduce_and (vNi1 X))))), -1, (eq|ne) if (DCI.isBeforeLegalize() && VT.isScalarInteger() && (Cond == ISD::SETEQ || Cond == ISD::SETNE) && (isNullConstant(RHS) || isAllOnesConstant(RHS)) && LHS->getOpcode() == ISD::BITCAST) { EVT ToVT = LHS->getValueType(0); EVT FromVT = LHS->getOperand(0).getValueType(); if (FromVT.isFixedLengthVector() && FromVT.getVectorElementType() == MVT::i1) { bool IsNull = isNullConstant(RHS); LHS = DAG.getNode(IsNull ? ISD::VECREDUCE_OR : ISD::VECREDUCE_AND, DL, MVT::i1, LHS->getOperand(0)); LHS = DAG.getNode(IsNull ? ISD::ZERO_EXTEND : ISD::SIGN_EXTEND, DL, ToVT, LHS); return DAG.getSetCC(DL, VT, LHS, RHS, Cond); } } // Try to perform the memcmp when the result is tested for [in]equality with 0 if (SDValue V = performOrXorChainCombine(N, DAG)) return V; return SDValue(); } // Replace a flag-setting operator (eg ANDS) with the generic version // (eg AND) if the flag is unused. static SDValue performFlagSettingCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, unsigned GenericOpcode) { SDLoc DL(N); SDValue LHS = N->getOperand(0); SDValue RHS = N->getOperand(1); EVT VT = N->getValueType(0); // If the flag result isn't used, convert back to a generic opcode. if (!N->hasAnyUseOfValue(1)) { SDValue Res = DCI.DAG.getNode(GenericOpcode, DL, VT, N->ops()); return DCI.DAG.getMergeValues({Res, DCI.DAG.getConstant(0, DL, MVT::i32)}, DL); } // Combine identical generic nodes into this node, re-using the result. if (SDNode *Generic = DCI.DAG.getNodeIfExists( GenericOpcode, DCI.DAG.getVTList(VT), {LHS, RHS})) DCI.CombineTo(Generic, SDValue(N, 0)); return SDValue(); } static SDValue performSetCCPunpkCombine(SDNode *N, SelectionDAG &DAG) { // setcc_merge_zero pred // (sign_extend (extract_subvector (setcc_merge_zero ... pred ...))), 0, ne // => extract_subvector (inner setcc_merge_zero) SDValue Pred = N->getOperand(0); SDValue LHS = N->getOperand(1); SDValue RHS = N->getOperand(2); ISD::CondCode Cond = cast(N->getOperand(3))->get(); if (Cond != ISD::SETNE || !isZerosVector(RHS.getNode()) || LHS->getOpcode() != ISD::SIGN_EXTEND) return SDValue(); SDValue Extract = LHS->getOperand(0); if (Extract->getOpcode() != ISD::EXTRACT_SUBVECTOR || Extract->getValueType(0) != N->getValueType(0) || Extract->getConstantOperandVal(1) != 0) return SDValue(); SDValue InnerSetCC = Extract->getOperand(0); if (InnerSetCC->getOpcode() != AArch64ISD::SETCC_MERGE_ZERO) return SDValue(); // By this point we've effectively got // zero_inactive_lanes_and_trunc_i1(sext_i1(A)). If we can prove A's inactive // lanes are already zero then the trunc(sext()) sequence is redundant and we // can operate on A directly. SDValue InnerPred = InnerSetCC.getOperand(0); if (Pred.getOpcode() == AArch64ISD::PTRUE && InnerPred.getOpcode() == AArch64ISD::PTRUE && Pred.getConstantOperandVal(0) == InnerPred.getConstantOperandVal(0) && Pred->getConstantOperandVal(0) >= AArch64SVEPredPattern::vl1 && Pred->getConstantOperandVal(0) <= AArch64SVEPredPattern::vl256) return Extract; return SDValue(); } static SDValue performSetccMergeZeroCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { assert(N->getOpcode() == AArch64ISD::SETCC_MERGE_ZERO && "Unexpected opcode!"); SelectionDAG &DAG = DCI.DAG; SDValue Pred = N->getOperand(0); SDValue LHS = N->getOperand(1); SDValue RHS = N->getOperand(2); ISD::CondCode Cond = cast(N->getOperand(3))->get(); if (SDValue V = performSetCCPunpkCombine(N, DAG)) return V; if (Cond == ISD::SETNE && isZerosVector(RHS.getNode()) && LHS->getOpcode() == ISD::SIGN_EXTEND && LHS->getOperand(0)->getValueType(0) == N->getValueType(0)) { // setcc_merge_zero( // pred, extend(setcc_merge_zero(pred, ...)), != splat(0)) // => setcc_merge_zero(pred, ...) if (LHS->getOperand(0)->getOpcode() == AArch64ISD::SETCC_MERGE_ZERO && LHS->getOperand(0)->getOperand(0) == Pred) return LHS->getOperand(0); // setcc_merge_zero( // all_active, extend(nxvNi1 ...), != splat(0)) // -> nxvNi1 ... if (isAllActivePredicate(DAG, Pred)) return LHS->getOperand(0); // setcc_merge_zero( // pred, extend(nxvNi1 ...), != splat(0)) // -> nxvNi1 and(pred, ...) if (DCI.isAfterLegalizeDAG()) // Do this after legalization to allow more folds on setcc_merge_zero // to be recognized. return DAG.getNode(ISD::AND, SDLoc(N), N->getValueType(0), LHS->getOperand(0), Pred); } return SDValue(); } // Optimize some simple tbz/tbnz cases. Returns the new operand and bit to test // as well as whether the test should be inverted. This code is required to // catch these cases (as opposed to standard dag combines) because // AArch64ISD::TBZ is matched during legalization. static SDValue getTestBitOperand(SDValue Op, unsigned &Bit, bool &Invert, SelectionDAG &DAG) { if (!Op->hasOneUse()) return Op; // We don't handle undef/constant-fold cases below, as they should have // already been taken care of (e.g. and of 0, test of undefined shifted bits, // etc.) // (tbz (trunc x), b) -> (tbz x, b) // This case is just here to enable more of the below cases to be caught. if (Op->getOpcode() == ISD::TRUNCATE && Bit < Op->getValueType(0).getSizeInBits()) { return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG); } // (tbz (any_ext x), b) -> (tbz x, b) if we don't use the extended bits. if (Op->getOpcode() == ISD::ANY_EXTEND && Bit < Op->getOperand(0).getValueSizeInBits()) { return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG); } if (Op->getNumOperands() != 2) return Op; auto *C = dyn_cast(Op->getOperand(1)); if (!C) return Op; switch (Op->getOpcode()) { default: return Op; // (tbz (and x, m), b) -> (tbz x, b) case ISD::AND: if ((C->getZExtValue() >> Bit) & 1) return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG); return Op; // (tbz (shl x, c), b) -> (tbz x, b-c) case ISD::SHL: if (C->getZExtValue() <= Bit && (Bit - C->getZExtValue()) < Op->getValueType(0).getSizeInBits()) { Bit = Bit - C->getZExtValue(); return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG); } return Op; // (tbz (sra x, c), b) -> (tbz x, b+c) or (tbz x, msb) if b+c is > # bits in x case ISD::SRA: Bit = Bit + C->getZExtValue(); if (Bit >= Op->getValueType(0).getSizeInBits()) Bit = Op->getValueType(0).getSizeInBits() - 1; return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG); // (tbz (srl x, c), b) -> (tbz x, b+c) case ISD::SRL: if ((Bit + C->getZExtValue()) < Op->getValueType(0).getSizeInBits()) { Bit = Bit + C->getZExtValue(); return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG); } return Op; // (tbz (xor x, -1), b) -> (tbnz x, b) case ISD::XOR: if ((C->getZExtValue() >> Bit) & 1) Invert = !Invert; return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG); } } // Optimize test single bit zero/non-zero and branch. static SDValue performTBZCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, SelectionDAG &DAG) { unsigned Bit = N->getConstantOperandVal(2); bool Invert = false; SDValue TestSrc = N->getOperand(1); SDValue NewTestSrc = getTestBitOperand(TestSrc, Bit, Invert, DAG); if (TestSrc == NewTestSrc) return SDValue(); unsigned NewOpc = N->getOpcode(); if (Invert) { if (NewOpc == AArch64ISD::TBZ) NewOpc = AArch64ISD::TBNZ; else { assert(NewOpc == AArch64ISD::TBNZ); NewOpc = AArch64ISD::TBZ; } } SDLoc DL(N); return DAG.getNode(NewOpc, DL, MVT::Other, N->getOperand(0), NewTestSrc, DAG.getConstant(Bit, DL, MVT::i64), N->getOperand(3)); } // Swap vselect operands where it may allow a predicated operation to achieve // the `sel`. // // (vselect (setcc ( condcode) (_) (_)) (a) (op (a) (b))) // => (vselect (setcc (!condcode) (_) (_)) (op (a) (b)) (a)) static SDValue trySwapVSelectOperands(SDNode *N, SelectionDAG &DAG) { auto SelectA = N->getOperand(1); auto SelectB = N->getOperand(2); auto NTy = N->getValueType(0); if (!NTy.isScalableVector()) return SDValue(); SDValue SetCC = N->getOperand(0); if (SetCC.getOpcode() != ISD::SETCC || !SetCC.hasOneUse()) return SDValue(); switch (SelectB.getOpcode()) { default: return SDValue(); case ISD::FMUL: case ISD::FSUB: case ISD::FADD: break; } if (SelectA != SelectB.getOperand(0)) return SDValue(); ISD::CondCode CC = cast(SetCC.getOperand(2))->get(); ISD::CondCode InverseCC = ISD::getSetCCInverse(CC, SetCC.getOperand(0).getValueType()); auto InverseSetCC = DAG.getSetCC(SDLoc(SetCC), SetCC.getValueType(), SetCC.getOperand(0), SetCC.getOperand(1), InverseCC); return DAG.getNode(ISD::VSELECT, SDLoc(N), NTy, {InverseSetCC, SelectB, SelectA}); } // vselect (v1i1 setcc) -> // vselect (v1iXX setcc) (XX is the size of the compared operand type) // FIXME: Currently the type legalizer can't handle VSELECT having v1i1 as // condition. If it can legalize "VSELECT v1i1" correctly, no need to combine // such VSELECT. static SDValue performVSelectCombine(SDNode *N, SelectionDAG &DAG) { if (auto SwapResult = trySwapVSelectOperands(N, DAG)) return SwapResult; SDValue N0 = N->getOperand(0); EVT CCVT = N0.getValueType(); if (isAllActivePredicate(DAG, N0)) return N->getOperand(1); if (isAllInactivePredicate(N0)) return N->getOperand(2); // Check for sign pattern (VSELECT setgt, iN lhs, -1, 1, -1) and transform // into (OR (ASR lhs, N-1), 1), which requires less instructions for the // supported types. SDValue SetCC = N->getOperand(0); if (SetCC.getOpcode() == ISD::SETCC && SetCC.getOperand(2) == DAG.getCondCode(ISD::SETGT)) { SDValue CmpLHS = SetCC.getOperand(0); EVT VT = CmpLHS.getValueType(); SDNode *CmpRHS = SetCC.getOperand(1).getNode(); SDNode *SplatLHS = N->getOperand(1).getNode(); SDNode *SplatRHS = N->getOperand(2).getNode(); APInt SplatLHSVal; if (CmpLHS.getValueType() == N->getOperand(1).getValueType() && VT.isSimple() && is_contained(ArrayRef({MVT::v8i8, MVT::v16i8, MVT::v4i16, MVT::v8i16, MVT::v2i32, MVT::v4i32, MVT::v2i64}), VT.getSimpleVT().SimpleTy) && ISD::isConstantSplatVector(SplatLHS, SplatLHSVal) && SplatLHSVal.isOne() && ISD::isConstantSplatVectorAllOnes(CmpRHS) && ISD::isConstantSplatVectorAllOnes(SplatRHS)) { unsigned NumElts = VT.getVectorNumElements(); SmallVector Ops( NumElts, DAG.getConstant(VT.getScalarSizeInBits() - 1, SDLoc(N), VT.getScalarType())); SDValue Val = DAG.getBuildVector(VT, SDLoc(N), Ops); auto Shift = DAG.getNode(ISD::SRA, SDLoc(N), VT, CmpLHS, Val); auto Or = DAG.getNode(ISD::OR, SDLoc(N), VT, Shift, N->getOperand(1)); return Or; } } EVT CmpVT = N0.getOperand(0).getValueType(); if (N0.getOpcode() != ISD::SETCC || CCVT.getVectorElementCount() != ElementCount::getFixed(1) || CCVT.getVectorElementType() != MVT::i1 || CmpVT.getVectorElementType().isFloatingPoint()) return SDValue(); EVT ResVT = N->getValueType(0); // Only combine when the result type is of the same size as the compared // operands. if (ResVT.getSizeInBits() != CmpVT.getSizeInBits()) return SDValue(); SDValue IfTrue = N->getOperand(1); SDValue IfFalse = N->getOperand(2); SetCC = DAG.getSetCC(SDLoc(N), CmpVT.changeVectorElementTypeToInteger(), N0.getOperand(0), N0.getOperand(1), cast(N0.getOperand(2))->get()); return DAG.getNode(ISD::VSELECT, SDLoc(N), ResVT, SetCC, IfTrue, IfFalse); } /// A vector select: "(select vL, vR, (setcc LHS, RHS))" is best performed with /// the compare-mask instructions rather than going via NZCV, even if LHS and /// RHS are really scalar. This replaces any scalar setcc in the above pattern /// with a vector one followed by a DUP shuffle on the result. static SDValue performSelectCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { SelectionDAG &DAG = DCI.DAG; SDValue N0 = N->getOperand(0); EVT ResVT = N->getValueType(0); if (N0.getOpcode() != ISD::SETCC) return SDValue(); if (ResVT.isScalableVT()) return SDValue(); // Make sure the SETCC result is either i1 (initial DAG), or i32, the lowered // scalar SetCCResultType. We also don't expect vectors, because we assume // that selects fed by vector SETCCs are canonicalized to VSELECT. assert((N0.getValueType() == MVT::i1 || N0.getValueType() == MVT::i32) && "Scalar-SETCC feeding SELECT has unexpected result type!"); // If NumMaskElts == 0, the comparison is larger than select result. The // largest real NEON comparison is 64-bits per lane, which means the result is // at most 32-bits and an illegal vector. Just bail out for now. EVT SrcVT = N0.getOperand(0).getValueType(); // Don't try to do this optimization when the setcc itself has i1 operands. // There are no legal vectors of i1, so this would be pointless. v1f16 is // ruled out to prevent the creation of setcc that need to be scalarized. if (SrcVT == MVT::i1 || (SrcVT.isFloatingPoint() && SrcVT.getSizeInBits() <= 16)) return SDValue(); int NumMaskElts = ResVT.getSizeInBits() / SrcVT.getSizeInBits(); if (!ResVT.isVector() || NumMaskElts == 0) return SDValue(); SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT, NumMaskElts); EVT CCVT = SrcVT.changeVectorElementTypeToInteger(); // Also bail out if the vector CCVT isn't the same size as ResVT. // This can happen if the SETCC operand size doesn't divide the ResVT size // (e.g., f64 vs v3f32). if (CCVT.getSizeInBits() != ResVT.getSizeInBits()) return SDValue(); // Make sure we didn't create illegal types, if we're not supposed to. assert(DCI.isBeforeLegalize() || DAG.getTargetLoweringInfo().isTypeLegal(SrcVT)); // First perform a vector comparison, where lane 0 is the one we're interested // in. SDLoc DL(N0); SDValue LHS = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, SrcVT, N0.getOperand(0)); SDValue RHS = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, SrcVT, N0.getOperand(1)); SDValue SetCC = DAG.getNode(ISD::SETCC, DL, CCVT, LHS, RHS, N0.getOperand(2)); // Now duplicate the comparison mask we want across all other lanes. SmallVector DUPMask(CCVT.getVectorNumElements(), 0); SDValue Mask = DAG.getVectorShuffle(CCVT, DL, SetCC, SetCC, DUPMask); Mask = DAG.getNode(ISD::BITCAST, DL, ResVT.changeVectorElementTypeToInteger(), Mask); return DAG.getSelect(DL, ResVT, Mask, N->getOperand(1), N->getOperand(2)); } static SDValue performDUPCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { EVT VT = N->getValueType(0); SDLoc DL(N); // If "v2i32 DUP(x)" and "v4i32 DUP(x)" both exist, use an extract from the // 128bit vector version. if (VT.is64BitVector() && DCI.isAfterLegalizeDAG()) { EVT LVT = VT.getDoubleNumVectorElementsVT(*DCI.DAG.getContext()); SmallVector Ops(N->ops()); if (SDNode *LN = DCI.DAG.getNodeIfExists(N->getOpcode(), DCI.DAG.getVTList(LVT), Ops)) { return DCI.DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, SDValue(LN, 0), DCI.DAG.getConstant(0, DL, MVT::i64)); } } if (N->getOpcode() == AArch64ISD::DUP) { if (DCI.isAfterLegalizeDAG()) { // If scalar dup's operand is extract_vector_elt, try to combine them into // duplane. For example, // // t21: i32 = extract_vector_elt t19, Constant:i64<0> // t18: v4i32 = AArch64ISD::DUP t21 // ==> // t22: v4i32 = AArch64ISD::DUPLANE32 t19, Constant:i64<0> SDValue EXTRACT_VEC_ELT = N->getOperand(0); if (EXTRACT_VEC_ELT.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { if (VT == EXTRACT_VEC_ELT.getOperand(0).getValueType()) { unsigned Opcode = getDUPLANEOp(VT.getVectorElementType()); return DCI.DAG.getNode(Opcode, DL, VT, EXTRACT_VEC_ELT.getOperand(0), EXTRACT_VEC_ELT.getOperand(1)); } } } return performPostLD1Combine(N, DCI, false); } return SDValue(); } /// Get rid of unnecessary NVCASTs (that don't change the type). static SDValue performNVCASTCombine(SDNode *N, SelectionDAG &DAG) { if (N->getValueType(0) == N->getOperand(0).getValueType()) return N->getOperand(0); if (N->getOperand(0).getOpcode() == AArch64ISD::NVCAST) return DAG.getNode(AArch64ISD::NVCAST, SDLoc(N), N->getValueType(0), N->getOperand(0).getOperand(0)); return SDValue(); } // If all users of the globaladdr are of the form (globaladdr + constant), find // the smallest constant, fold it into the globaladdr's offset and rewrite the // globaladdr as (globaladdr + constant) - constant. static SDValue performGlobalAddressCombine(SDNode *N, SelectionDAG &DAG, const AArch64Subtarget *Subtarget, const TargetMachine &TM) { auto *GN = cast(N); if (Subtarget->ClassifyGlobalReference(GN->getGlobal(), TM) != AArch64II::MO_NO_FLAG) return SDValue(); uint64_t MinOffset = -1ull; for (SDNode *N : GN->uses()) { if (N->getOpcode() != ISD::ADD) return SDValue(); auto *C = dyn_cast(N->getOperand(0)); if (!C) C = dyn_cast(N->getOperand(1)); if (!C) return SDValue(); MinOffset = std::min(MinOffset, C->getZExtValue()); } uint64_t Offset = MinOffset + GN->getOffset(); // Require that the new offset is larger than the existing one. Otherwise, we // can end up oscillating between two possible DAGs, for example, // (add (add globaladdr + 10, -1), 1) and (add globaladdr + 9, 1). if (Offset <= uint64_t(GN->getOffset())) return SDValue(); // Check whether folding this offset is legal. It must not go out of bounds of // the referenced object to avoid violating the code model, and must be // smaller than 2^20 because this is the largest offset expressible in all // object formats. (The IMAGE_REL_ARM64_PAGEBASE_REL21 relocation in COFF // stores an immediate signed 21 bit offset.) // // This check also prevents us from folding negative offsets, which will end // up being treated in the same way as large positive ones. They could also // cause code model violations, and aren't really common enough to matter. if (Offset >= (1 << 20)) return SDValue(); const GlobalValue *GV = GN->getGlobal(); Type *T = GV->getValueType(); if (!T->isSized() || Offset > GV->getParent()->getDataLayout().getTypeAllocSize(T)) return SDValue(); SDLoc DL(GN); SDValue Result = DAG.getGlobalAddress(GV, DL, MVT::i64, Offset); return DAG.getNode(ISD::SUB, DL, MVT::i64, Result, DAG.getConstant(MinOffset, DL, MVT::i64)); } static SDValue performCTLZCombine(SDNode *N, SelectionDAG &DAG, const AArch64Subtarget *Subtarget) { SDValue BR = N->getOperand(0); if (!Subtarget->hasCSSC() || BR.getOpcode() != ISD::BITREVERSE || !BR.getValueType().isScalarInteger()) return SDValue(); SDLoc DL(N); return DAG.getNode(ISD::CTTZ, DL, BR.getValueType(), BR.getOperand(0)); } // Turns the vector of indices into a vector of byte offstes by scaling Offset // by (BitWidth / 8). static SDValue getScaledOffsetForBitWidth(SelectionDAG &DAG, SDValue Offset, SDLoc DL, unsigned BitWidth) { assert(Offset.getValueType().isScalableVector() && "This method is only for scalable vectors of offsets"); SDValue Shift = DAG.getConstant(Log2_32(BitWidth / 8), DL, MVT::i64); SDValue SplatShift = DAG.getNode(ISD::SPLAT_VECTOR, DL, MVT::nxv2i64, Shift); return DAG.getNode(ISD::SHL, DL, MVT::nxv2i64, Offset, SplatShift); } /// Check if the value of \p OffsetInBytes can be used as an immediate for /// the gather load/prefetch and scatter store instructions with vector base and /// immediate offset addressing mode: /// /// [.[S|D]{, #}] /// /// where = sizeof() * k, for k = 0, 1, ..., 31. inline static bool isValidImmForSVEVecImmAddrMode(unsigned OffsetInBytes, unsigned ScalarSizeInBytes) { // The immediate is not a multiple of the scalar size. if (OffsetInBytes % ScalarSizeInBytes) return false; // The immediate is out of range. if (OffsetInBytes / ScalarSizeInBytes > 31) return false; return true; } /// Check if the value of \p Offset represents a valid immediate for the SVE /// gather load/prefetch and scatter store instructiona with vector base and /// immediate offset addressing mode: /// /// [.[S|D]{, #}] /// /// where = sizeof() * k, for k = 0, 1, ..., 31. static bool isValidImmForSVEVecImmAddrMode(SDValue Offset, unsigned ScalarSizeInBytes) { ConstantSDNode *OffsetConst = dyn_cast(Offset.getNode()); return OffsetConst && isValidImmForSVEVecImmAddrMode( OffsetConst->getZExtValue(), ScalarSizeInBytes); } static SDValue performScatterStoreCombine(SDNode *N, SelectionDAG &DAG, unsigned Opcode, bool OnlyPackedOffsets = true) { const SDValue Src = N->getOperand(2); const EVT SrcVT = Src->getValueType(0); assert(SrcVT.isScalableVector() && "Scatter stores are only possible for SVE vectors"); SDLoc DL(N); MVT SrcElVT = SrcVT.getVectorElementType().getSimpleVT(); // Make sure that source data will fit into an SVE register if (SrcVT.getSizeInBits().getKnownMinValue() > AArch64::SVEBitsPerBlock) return SDValue(); // For FPs, ACLE only supports _packed_ single and double precision types. // SST1Q_[INDEX_]PRED is the ST1Q for sve2p1 and should allow all sizes. if (SrcElVT.isFloatingPoint()) if ((SrcVT != MVT::nxv4f32) && (SrcVT != MVT::nxv2f64) && ((Opcode != AArch64ISD::SST1Q_PRED && Opcode != AArch64ISD::SST1Q_INDEX_PRED) || ((SrcVT != MVT::nxv8f16) && (SrcVT != MVT::nxv8bf16)))) return SDValue(); // Depending on the addressing mode, this is either a pointer or a vector of // pointers (that fits into one register) SDValue Base = N->getOperand(4); // Depending on the addressing mode, this is either a single offset or a // vector of offsets (that fits into one register) SDValue Offset = N->getOperand(5); // For "scalar + vector of indices", just scale the indices. This only // applies to non-temporal scatters because there's no instruction that takes // indicies. if (Opcode == AArch64ISD::SSTNT1_INDEX_PRED) { Offset = getScaledOffsetForBitWidth(DAG, Offset, DL, SrcElVT.getSizeInBits()); Opcode = AArch64ISD::SSTNT1_PRED; } else if (Opcode == AArch64ISD::SST1Q_INDEX_PRED) { Offset = getScaledOffsetForBitWidth(DAG, Offset, DL, SrcElVT.getSizeInBits()); Opcode = AArch64ISD::SST1Q_PRED; } // In the case of non-temporal gather loads there's only one SVE instruction // per data-size: "scalar + vector", i.e. // * stnt1{b|h|w|d} { z0.s }, p0/z, [z0.s, x0] // Since we do have intrinsics that allow the arguments to be in a different // order, we may need to swap them to match the spec. if ((Opcode == AArch64ISD::SSTNT1_PRED || Opcode == AArch64ISD::SST1Q_PRED) && Offset.getValueType().isVector()) std::swap(Base, Offset); // SST1_IMM requires that the offset is an immediate that is: // * a multiple of #SizeInBytes, // * in the range [0, 31 x #SizeInBytes], // where #SizeInBytes is the size in bytes of the stored items. For // immediates outside that range and non-immediate scalar offsets use SST1 or // SST1_UXTW instead. if (Opcode == AArch64ISD::SST1_IMM_PRED) { if (!isValidImmForSVEVecImmAddrMode(Offset, SrcVT.getScalarSizeInBits() / 8)) { if (MVT::nxv4i32 == Base.getValueType().getSimpleVT().SimpleTy) Opcode = AArch64ISD::SST1_UXTW_PRED; else Opcode = AArch64ISD::SST1_PRED; std::swap(Base, Offset); } } auto &TLI = DAG.getTargetLoweringInfo(); if (!TLI.isTypeLegal(Base.getValueType())) return SDValue(); // Some scatter store variants allow unpacked offsets, but only as nxv2i32 // vectors. These are implicitly sign (sxtw) or zero (zxtw) extend to // nxv2i64. Legalize accordingly. if (!OnlyPackedOffsets && Offset.getValueType().getSimpleVT().SimpleTy == MVT::nxv2i32) Offset = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::nxv2i64, Offset).getValue(0); if (!TLI.isTypeLegal(Offset.getValueType())) return SDValue(); // Source value type that is representable in hardware EVT HwSrcVt = getSVEContainerType(SrcVT); // Keep the original type of the input data to store - this is needed to be // able to select the correct instruction, e.g. ST1B, ST1H, ST1W and ST1D. For // FP values we want the integer equivalent, so just use HwSrcVt. SDValue InputVT = DAG.getValueType(SrcVT); if (SrcVT.isFloatingPoint()) InputVT = DAG.getValueType(HwSrcVt); SDVTList VTs = DAG.getVTList(MVT::Other); SDValue SrcNew; if (Src.getValueType().isFloatingPoint()) SrcNew = DAG.getNode(ISD::BITCAST, DL, HwSrcVt, Src); else SrcNew = DAG.getNode(ISD::ANY_EXTEND, DL, HwSrcVt, Src); SDValue Ops[] = {N->getOperand(0), // Chain SrcNew, N->getOperand(3), // Pg Base, Offset, InputVT}; return DAG.getNode(Opcode, DL, VTs, Ops); } static SDValue performGatherLoadCombine(SDNode *N, SelectionDAG &DAG, unsigned Opcode, bool OnlyPackedOffsets = true) { const EVT RetVT = N->getValueType(0); assert(RetVT.isScalableVector() && "Gather loads are only possible for SVE vectors"); SDLoc DL(N); // Make sure that the loaded data will fit into an SVE register if (RetVT.getSizeInBits().getKnownMinValue() > AArch64::SVEBitsPerBlock) return SDValue(); // Depending on the addressing mode, this is either a pointer or a vector of // pointers (that fits into one register) SDValue Base = N->getOperand(3); // Depending on the addressing mode, this is either a single offset or a // vector of offsets (that fits into one register) SDValue Offset = N->getOperand(4); // For "scalar + vector of indices", scale the indices to obtain unscaled // offsets. This applies to non-temporal and quadword gathers, which do not // have an addressing mode with scaled offset. if (Opcode == AArch64ISD::GLDNT1_INDEX_MERGE_ZERO) { Offset = getScaledOffsetForBitWidth(DAG, Offset, DL, RetVT.getScalarSizeInBits()); Opcode = AArch64ISD::GLDNT1_MERGE_ZERO; } else if (Opcode == AArch64ISD::GLD1Q_INDEX_MERGE_ZERO) { Offset = getScaledOffsetForBitWidth(DAG, Offset, DL, RetVT.getScalarSizeInBits()); Opcode = AArch64ISD::GLD1Q_MERGE_ZERO; } // In the case of non-temporal gather loads and quadword gather loads there's // only one addressing mode : "vector + scalar", e.g. // ldnt1{b|h|w|d} { z0.s }, p0/z, [z0.s, x0] // Since we do have intrinsics that allow the arguments to be in a different // order, we may need to swap them to match the spec. if ((Opcode == AArch64ISD::GLDNT1_MERGE_ZERO || Opcode == AArch64ISD::GLD1Q_MERGE_ZERO) && Offset.getValueType().isVector()) std::swap(Base, Offset); // GLD{FF}1_IMM requires that the offset is an immediate that is: // * a multiple of #SizeInBytes, // * in the range [0, 31 x #SizeInBytes], // where #SizeInBytes is the size in bytes of the loaded items. For // immediates outside that range and non-immediate scalar offsets use // GLD1_MERGE_ZERO or GLD1_UXTW_MERGE_ZERO instead. if (Opcode == AArch64ISD::GLD1_IMM_MERGE_ZERO || Opcode == AArch64ISD::GLDFF1_IMM_MERGE_ZERO) { if (!isValidImmForSVEVecImmAddrMode(Offset, RetVT.getScalarSizeInBits() / 8)) { if (MVT::nxv4i32 == Base.getValueType().getSimpleVT().SimpleTy) Opcode = (Opcode == AArch64ISD::GLD1_IMM_MERGE_ZERO) ? AArch64ISD::GLD1_UXTW_MERGE_ZERO : AArch64ISD::GLDFF1_UXTW_MERGE_ZERO; else Opcode = (Opcode == AArch64ISD::GLD1_IMM_MERGE_ZERO) ? AArch64ISD::GLD1_MERGE_ZERO : AArch64ISD::GLDFF1_MERGE_ZERO; std::swap(Base, Offset); } } auto &TLI = DAG.getTargetLoweringInfo(); if (!TLI.isTypeLegal(Base.getValueType())) return SDValue(); // Some gather load variants allow unpacked offsets, but only as nxv2i32 // vectors. These are implicitly sign (sxtw) or zero (zxtw) extend to // nxv2i64. Legalize accordingly. if (!OnlyPackedOffsets && Offset.getValueType().getSimpleVT().SimpleTy == MVT::nxv2i32) Offset = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::nxv2i64, Offset).getValue(0); // Return value type that is representable in hardware EVT HwRetVt = getSVEContainerType(RetVT); // Keep the original output value type around - this is needed to be able to // select the correct instruction, e.g. LD1B, LD1H, LD1W and LD1D. For FP // values we want the integer equivalent, so just use HwRetVT. SDValue OutVT = DAG.getValueType(RetVT); if (RetVT.isFloatingPoint()) OutVT = DAG.getValueType(HwRetVt); SDVTList VTs = DAG.getVTList(HwRetVt, MVT::Other); SDValue Ops[] = {N->getOperand(0), // Chain N->getOperand(2), // Pg Base, Offset, OutVT}; SDValue Load = DAG.getNode(Opcode, DL, VTs, Ops); SDValue LoadChain = SDValue(Load.getNode(), 1); if (RetVT.isInteger() && (RetVT != HwRetVt)) Load = DAG.getNode(ISD::TRUNCATE, DL, RetVT, Load.getValue(0)); // If the original return value was FP, bitcast accordingly. Doing it here // means that we can avoid adding TableGen patterns for FPs. if (RetVT.isFloatingPoint()) Load = DAG.getNode(ISD::BITCAST, DL, RetVT, Load.getValue(0)); return DAG.getMergeValues({Load, LoadChain}, DL); } static SDValue performSignExtendInRegCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, SelectionDAG &DAG) { SDLoc DL(N); SDValue Src = N->getOperand(0); unsigned Opc = Src->getOpcode(); // Sign extend of an unsigned unpack -> signed unpack if (Opc == AArch64ISD::UUNPKHI || Opc == AArch64ISD::UUNPKLO) { unsigned SOpc = Opc == AArch64ISD::UUNPKHI ? AArch64ISD::SUNPKHI : AArch64ISD::SUNPKLO; // Push the sign extend to the operand of the unpack // This is necessary where, for example, the operand of the unpack // is another unpack: // 4i32 sign_extend_inreg (4i32 uunpklo(8i16 uunpklo (16i8 opnd)), from 4i8) // -> // 4i32 sunpklo (8i16 sign_extend_inreg(8i16 uunpklo (16i8 opnd), from 8i8) // -> // 4i32 sunpklo(8i16 sunpklo(16i8 opnd)) SDValue ExtOp = Src->getOperand(0); auto VT = cast(N->getOperand(1))->getVT(); EVT EltTy = VT.getVectorElementType(); (void)EltTy; assert((EltTy == MVT::i8 || EltTy == MVT::i16 || EltTy == MVT::i32) && "Sign extending from an invalid type"); EVT ExtVT = VT.getDoubleNumVectorElementsVT(*DAG.getContext()); SDValue Ext = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, ExtOp.getValueType(), ExtOp, DAG.getValueType(ExtVT)); return DAG.getNode(SOpc, DL, N->getValueType(0), Ext); } if (DCI.isBeforeLegalizeOps()) return SDValue(); if (!EnableCombineMGatherIntrinsics) return SDValue(); // SVE load nodes (e.g. AArch64ISD::GLD1) are straightforward candidates // for DAG Combine with SIGN_EXTEND_INREG. Bail out for all other nodes. unsigned NewOpc; unsigned MemVTOpNum = 4; switch (Opc) { case AArch64ISD::LD1_MERGE_ZERO: NewOpc = AArch64ISD::LD1S_MERGE_ZERO; MemVTOpNum = 3; break; case AArch64ISD::LDNF1_MERGE_ZERO: NewOpc = AArch64ISD::LDNF1S_MERGE_ZERO; MemVTOpNum = 3; break; case AArch64ISD::LDFF1_MERGE_ZERO: NewOpc = AArch64ISD::LDFF1S_MERGE_ZERO; MemVTOpNum = 3; break; case AArch64ISD::GLD1_MERGE_ZERO: NewOpc = AArch64ISD::GLD1S_MERGE_ZERO; break; case AArch64ISD::GLD1_SCALED_MERGE_ZERO: NewOpc = AArch64ISD::GLD1S_SCALED_MERGE_ZERO; break; case AArch64ISD::GLD1_SXTW_MERGE_ZERO: NewOpc = AArch64ISD::GLD1S_SXTW_MERGE_ZERO; break; case AArch64ISD::GLD1_SXTW_SCALED_MERGE_ZERO: NewOpc = AArch64ISD::GLD1S_SXTW_SCALED_MERGE_ZERO; break; case AArch64ISD::GLD1_UXTW_MERGE_ZERO: NewOpc = AArch64ISD::GLD1S_UXTW_MERGE_ZERO; break; case AArch64ISD::GLD1_UXTW_SCALED_MERGE_ZERO: NewOpc = AArch64ISD::GLD1S_UXTW_SCALED_MERGE_ZERO; break; case AArch64ISD::GLD1_IMM_MERGE_ZERO: NewOpc = AArch64ISD::GLD1S_IMM_MERGE_ZERO; break; case AArch64ISD::GLDFF1_MERGE_ZERO: NewOpc = AArch64ISD::GLDFF1S_MERGE_ZERO; break; case AArch64ISD::GLDFF1_SCALED_MERGE_ZERO: NewOpc = AArch64ISD::GLDFF1S_SCALED_MERGE_ZERO; break; case AArch64ISD::GLDFF1_SXTW_MERGE_ZERO: NewOpc = AArch64ISD::GLDFF1S_SXTW_MERGE_ZERO; break; case AArch64ISD::GLDFF1_SXTW_SCALED_MERGE_ZERO: NewOpc = AArch64ISD::GLDFF1S_SXTW_SCALED_MERGE_ZERO; break; case AArch64ISD::GLDFF1_UXTW_MERGE_ZERO: NewOpc = AArch64ISD::GLDFF1S_UXTW_MERGE_ZERO; break; case AArch64ISD::GLDFF1_UXTW_SCALED_MERGE_ZERO: NewOpc = AArch64ISD::GLDFF1S_UXTW_SCALED_MERGE_ZERO; break; case AArch64ISD::GLDFF1_IMM_MERGE_ZERO: NewOpc = AArch64ISD::GLDFF1S_IMM_MERGE_ZERO; break; case AArch64ISD::GLDNT1_MERGE_ZERO: NewOpc = AArch64ISD::GLDNT1S_MERGE_ZERO; break; default: return SDValue(); } EVT SignExtSrcVT = cast(N->getOperand(1))->getVT(); EVT SrcMemVT = cast(Src->getOperand(MemVTOpNum))->getVT(); if ((SignExtSrcVT != SrcMemVT) || !Src.hasOneUse()) return SDValue(); EVT DstVT = N->getValueType(0); SDVTList VTs = DAG.getVTList(DstVT, MVT::Other); SmallVector Ops; for (unsigned I = 0; I < Src->getNumOperands(); ++I) Ops.push_back(Src->getOperand(I)); SDValue ExtLoad = DAG.getNode(NewOpc, SDLoc(N), VTs, Ops); DCI.CombineTo(N, ExtLoad); DCI.CombineTo(Src.getNode(), ExtLoad, ExtLoad.getValue(1)); // Return N so it doesn't get rechecked return SDValue(N, 0); } /// Legalize the gather prefetch (scalar + vector addressing mode) when the /// offset vector is an unpacked 32-bit scalable vector. The other cases (Offset /// != nxv2i32) do not need legalization. static SDValue legalizeSVEGatherPrefetchOffsVec(SDNode *N, SelectionDAG &DAG) { const unsigned OffsetPos = 4; SDValue Offset = N->getOperand(OffsetPos); // Not an unpacked vector, bail out. if (Offset.getValueType().getSimpleVT().SimpleTy != MVT::nxv2i32) return SDValue(); // Extend the unpacked offset vector to 64-bit lanes. SDLoc DL(N); Offset = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::nxv2i64, Offset); SmallVector Ops(N->op_begin(), N->op_end()); // Replace the offset operand with the 64-bit one. Ops[OffsetPos] = Offset; return DAG.getNode(N->getOpcode(), DL, DAG.getVTList(MVT::Other), Ops); } /// Combines a node carrying the intrinsic /// `aarch64_sve_prf_gather_scalar_offset` into a node that uses /// `aarch64_sve_prfb_gather_uxtw_index` when the scalar offset passed to /// `aarch64_sve_prf_gather_scalar_offset` is not a valid immediate for the /// sve gather prefetch instruction with vector plus immediate addressing mode. static SDValue combineSVEPrefetchVecBaseImmOff(SDNode *N, SelectionDAG &DAG, unsigned ScalarSizeInBytes) { const unsigned ImmPos = 4, OffsetPos = 3; // No need to combine the node if the immediate is valid... if (isValidImmForSVEVecImmAddrMode(N->getOperand(ImmPos), ScalarSizeInBytes)) return SDValue(); // ...otherwise swap the offset base with the offset... SmallVector Ops(N->op_begin(), N->op_end()); std::swap(Ops[ImmPos], Ops[OffsetPos]); // ...and remap the intrinsic `aarch64_sve_prf_gather_scalar_offset` to // `aarch64_sve_prfb_gather_uxtw_index`. SDLoc DL(N); Ops[1] = DAG.getConstant(Intrinsic::aarch64_sve_prfb_gather_uxtw_index, DL, MVT::i64); return DAG.getNode(N->getOpcode(), DL, DAG.getVTList(MVT::Other), Ops); } // Return true if the vector operation can guarantee only the first lane of its // result contains data, with all bits in other lanes set to zero. static bool isLanes1toNKnownZero(SDValue Op) { switch (Op.getOpcode()) { default: return false; case AArch64ISD::ANDV_PRED: case AArch64ISD::EORV_PRED: case AArch64ISD::FADDA_PRED: case AArch64ISD::FADDV_PRED: case AArch64ISD::FMAXNMV_PRED: case AArch64ISD::FMAXV_PRED: case AArch64ISD::FMINNMV_PRED: case AArch64ISD::FMINV_PRED: case AArch64ISD::ORV_PRED: case AArch64ISD::SADDV_PRED: case AArch64ISD::SMAXV_PRED: case AArch64ISD::SMINV_PRED: case AArch64ISD::UADDV_PRED: case AArch64ISD::UMAXV_PRED: case AArch64ISD::UMINV_PRED: return true; } } static SDValue removeRedundantInsertVectorElt(SDNode *N) { assert(N->getOpcode() == ISD::INSERT_VECTOR_ELT && "Unexpected node!"); SDValue InsertVec = N->getOperand(0); SDValue InsertElt = N->getOperand(1); SDValue InsertIdx = N->getOperand(2); // We only care about inserts into the first element... if (!isNullConstant(InsertIdx)) return SDValue(); // ...of a zero'd vector... if (!ISD::isConstantSplatVectorAllZeros(InsertVec.getNode())) return SDValue(); // ...where the inserted data was previously extracted... if (InsertElt.getOpcode() != ISD::EXTRACT_VECTOR_ELT) return SDValue(); SDValue ExtractVec = InsertElt.getOperand(0); SDValue ExtractIdx = InsertElt.getOperand(1); // ...from the first element of a vector. if (!isNullConstant(ExtractIdx)) return SDValue(); // If we get here we are effectively trying to zero lanes 1-N of a vector. // Ensure there's no type conversion going on. if (N->getValueType(0) != ExtractVec.getValueType()) return SDValue(); if (!isLanes1toNKnownZero(ExtractVec)) return SDValue(); // The explicit zeroing is redundant. return ExtractVec; } static SDValue performInsertVectorEltCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { if (SDValue Res = removeRedundantInsertVectorElt(N)) return Res; return performPostLD1Combine(N, DCI, true); } static SDValue performSVESpliceCombine(SDNode *N, SelectionDAG &DAG) { EVT Ty = N->getValueType(0); if (Ty.isInteger()) return SDValue(); EVT IntTy = Ty.changeVectorElementTypeToInteger(); EVT ExtIntTy = getPackedSVEVectorVT(IntTy.getVectorElementCount()); if (ExtIntTy.getVectorElementType().getScalarSizeInBits() < IntTy.getVectorElementType().getScalarSizeInBits()) return SDValue(); SDLoc DL(N); SDValue LHS = DAG.getAnyExtOrTrunc(DAG.getBitcast(IntTy, N->getOperand(0)), DL, ExtIntTy); SDValue RHS = DAG.getAnyExtOrTrunc(DAG.getBitcast(IntTy, N->getOperand(1)), DL, ExtIntTy); SDValue Idx = N->getOperand(2); SDValue Splice = DAG.getNode(ISD::VECTOR_SPLICE, DL, ExtIntTy, LHS, RHS, Idx); SDValue Trunc = DAG.getAnyExtOrTrunc(Splice, DL, IntTy); return DAG.getBitcast(Ty, Trunc); } static SDValue performFPExtendCombine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const AArch64Subtarget *Subtarget) { SDValue N0 = N->getOperand(0); EVT VT = N->getValueType(0); // If this is fp_round(fpextend), don't fold it, allow ourselves to be folded. if (N->hasOneUse() && N->use_begin()->getOpcode() == ISD::FP_ROUND) return SDValue(); auto hasValidElementTypeForFPExtLoad = [](EVT VT) { EVT EltVT = VT.getVectorElementType(); return EltVT == MVT::f32 || EltVT == MVT::f64; }; // fold (fpext (load x)) -> (fpext (fptrunc (extload x))) // We purposefully don't care about legality of the nodes here as we know // they can be split down into something legal. if (DCI.isBeforeLegalizeOps() && ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() && Subtarget->useSVEForFixedLengthVectors() && VT.isFixedLengthVector() && hasValidElementTypeForFPExtLoad(VT) && VT.getFixedSizeInBits() >= Subtarget->getMinSVEVectorSizeInBits()) { LoadSDNode *LN0 = cast(N0); SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, SDLoc(N), VT, LN0->getChain(), LN0->getBasePtr(), N0.getValueType(), LN0->getMemOperand()); DCI.CombineTo(N, ExtLoad); DCI.CombineTo( N0.getNode(), DAG.getNode(ISD::FP_ROUND, SDLoc(N0), N0.getValueType(), ExtLoad, DAG.getIntPtrConstant(1, SDLoc(N0), /*isTarget=*/true)), ExtLoad.getValue(1)); return SDValue(N, 0); // Return N so it doesn't get rechecked! } return SDValue(); } static SDValue performBSPExpandForSVE(SDNode *N, SelectionDAG &DAG, const AArch64Subtarget *Subtarget) { EVT VT = N->getValueType(0); // Don't expand for NEON, SVE2 or SME if (!VT.isScalableVector() || Subtarget->hasSVE2() || Subtarget->hasSME()) return SDValue(); SDLoc DL(N); SDValue Mask = N->getOperand(0); SDValue In1 = N->getOperand(1); SDValue In2 = N->getOperand(2); SDValue InvMask = DAG.getNOT(DL, Mask, VT); SDValue Sel = DAG.getNode(ISD::AND, DL, VT, Mask, In1); SDValue SelInv = DAG.getNode(ISD::AND, DL, VT, InvMask, In2); return DAG.getNode(ISD::OR, DL, VT, Sel, SelInv); } static SDValue performDupLane128Combine(SDNode *N, SelectionDAG &DAG) { EVT VT = N->getValueType(0); SDValue Insert = N->getOperand(0); if (Insert.getOpcode() != ISD::INSERT_SUBVECTOR) return SDValue(); if (!Insert.getOperand(0).isUndef()) return SDValue(); uint64_t IdxInsert = Insert.getConstantOperandVal(2); uint64_t IdxDupLane = N->getConstantOperandVal(1); if (IdxInsert != 0 || IdxDupLane != 0) return SDValue(); SDValue Bitcast = Insert.getOperand(1); if (Bitcast.getOpcode() != ISD::BITCAST) return SDValue(); SDValue Subvec = Bitcast.getOperand(0); EVT SubvecVT = Subvec.getValueType(); if (!SubvecVT.is128BitVector()) return SDValue(); EVT NewSubvecVT = getPackedSVEVectorVT(Subvec.getValueType().getVectorElementType()); SDLoc DL(N); SDValue NewInsert = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, NewSubvecVT, DAG.getUNDEF(NewSubvecVT), Subvec, Insert->getOperand(2)); SDValue NewDuplane128 = DAG.getNode(AArch64ISD::DUPLANE128, DL, NewSubvecVT, NewInsert, N->getOperand(1)); return DAG.getNode(ISD::BITCAST, DL, VT, NewDuplane128); } // Try to combine mull with uzp1. static SDValue tryCombineMULLWithUZP1(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, SelectionDAG &DAG) { if (DCI.isBeforeLegalizeOps()) return SDValue(); SDValue LHS = N->getOperand(0); SDValue RHS = N->getOperand(1); SDValue ExtractHigh; SDValue ExtractLow; SDValue TruncHigh; SDValue TruncLow; SDLoc DL(N); // Check the operands are trunc and extract_high. if (isEssentiallyExtractHighSubvector(LHS) && RHS.getOpcode() == ISD::TRUNCATE) { TruncHigh = RHS; if (LHS.getOpcode() == ISD::BITCAST) ExtractHigh = LHS.getOperand(0); else ExtractHigh = LHS; } else if (isEssentiallyExtractHighSubvector(RHS) && LHS.getOpcode() == ISD::TRUNCATE) { TruncHigh = LHS; if (LHS.getOpcode() == ISD::BITCAST) ExtractHigh = RHS.getOperand(0); else ExtractHigh = RHS; } else return SDValue(); // If the truncate's operand is BUILD_VECTOR with DUP, do not combine the op // with uzp1. // You can see the regressions on test/CodeGen/AArch64/aarch64-smull.ll SDValue TruncHighOp = TruncHigh.getOperand(0); EVT TruncHighOpVT = TruncHighOp.getValueType(); if (TruncHighOp.getOpcode() == AArch64ISD::DUP || DAG.isSplatValue(TruncHighOp, false)) return SDValue(); // Check there is other extract_high with same source vector. // For example, // // t18: v4i16 = extract_subvector t2, Constant:i64<0> // t12: v4i16 = truncate t11 // t31: v4i32 = AArch64ISD::SMULL t18, t12 // t23: v4i16 = extract_subvector t2, Constant:i64<4> // t16: v4i16 = truncate t15 // t30: v4i32 = AArch64ISD::SMULL t23, t1 // // This dagcombine assumes the two extract_high uses same source vector in // order to detect the pair of the mull. If they have different source vector, // this code will not work. bool HasFoundMULLow = true; SDValue ExtractHighSrcVec = ExtractHigh.getOperand(0); if (ExtractHighSrcVec->use_size() != 2) HasFoundMULLow = false; // Find ExtractLow. for (SDNode *User : ExtractHighSrcVec.getNode()->uses()) { if (User == ExtractHigh.getNode()) continue; if (User->getOpcode() != ISD::EXTRACT_SUBVECTOR || !isNullConstant(User->getOperand(1))) { HasFoundMULLow = false; break; } ExtractLow.setNode(User); } if (!ExtractLow || !ExtractLow->hasOneUse()) HasFoundMULLow = false; // Check ExtractLow's user. if (HasFoundMULLow) { SDNode *ExtractLowUser = *ExtractLow.getNode()->use_begin(); if (ExtractLowUser->getOpcode() != N->getOpcode()) { HasFoundMULLow = false; } else { if (ExtractLowUser->getOperand(0) == ExtractLow) { if (ExtractLowUser->getOperand(1).getOpcode() == ISD::TRUNCATE) TruncLow = ExtractLowUser->getOperand(1); else HasFoundMULLow = false; } else { if (ExtractLowUser->getOperand(0).getOpcode() == ISD::TRUNCATE) TruncLow = ExtractLowUser->getOperand(0); else HasFoundMULLow = false; } } } // If the truncate's operand is BUILD_VECTOR with DUP, do not combine the op // with uzp1. // You can see the regressions on test/CodeGen/AArch64/aarch64-smull.ll EVT TruncHighVT = TruncHigh.getValueType(); EVT UZP1VT = TruncHighVT.getDoubleNumVectorElementsVT(*DAG.getContext()); SDValue TruncLowOp = HasFoundMULLow ? TruncLow.getOperand(0) : DAG.getUNDEF(UZP1VT); EVT TruncLowOpVT = TruncLowOp.getValueType(); if (HasFoundMULLow && (TruncLowOp.getOpcode() == AArch64ISD::DUP || DAG.isSplatValue(TruncLowOp, false))) return SDValue(); // Create uzp1, extract_high and extract_low. if (TruncHighOpVT != UZP1VT) TruncHighOp = DAG.getNode(ISD::BITCAST, DL, UZP1VT, TruncHighOp); if (TruncLowOpVT != UZP1VT) TruncLowOp = DAG.getNode(ISD::BITCAST, DL, UZP1VT, TruncLowOp); SDValue UZP1 = DAG.getNode(AArch64ISD::UZP1, DL, UZP1VT, TruncLowOp, TruncHighOp); SDValue HighIdxCst = DAG.getConstant(TruncHighVT.getVectorNumElements(), DL, MVT::i64); SDValue NewTruncHigh = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, TruncHighVT, UZP1, HighIdxCst); DAG.ReplaceAllUsesWith(TruncHigh, NewTruncHigh); if (HasFoundMULLow) { EVT TruncLowVT = TruncLow.getValueType(); SDValue NewTruncLow = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, TruncLowVT, UZP1, ExtractLow.getOperand(1)); DAG.ReplaceAllUsesWith(TruncLow, NewTruncLow); } return SDValue(N, 0); } static SDValue performMULLCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, SelectionDAG &DAG) { if (SDValue Val = tryCombineLongOpWithDup(Intrinsic::not_intrinsic, N, DCI, DAG)) return Val; if (SDValue Val = tryCombineMULLWithUZP1(N, DCI, DAG)) return Val; return SDValue(); } static SDValue performScalarToVectorCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, SelectionDAG &DAG) { // Let's do below transform. // // t34: v4i32 = AArch64ISD::UADDLV t2 // t35: i32 = extract_vector_elt t34, Constant:i64<0> // t7: i64 = zero_extend t35 // t20: v1i64 = scalar_to_vector t7 // ==> // t34: v4i32 = AArch64ISD::UADDLV t2 // t39: v2i32 = extract_subvector t34, Constant:i64<0> // t40: v1i64 = AArch64ISD::NVCAST t39 if (DCI.isBeforeLegalizeOps()) return SDValue(); EVT VT = N->getValueType(0); if (VT != MVT::v1i64) return SDValue(); SDValue ZEXT = N->getOperand(0); if (ZEXT.getOpcode() != ISD::ZERO_EXTEND || ZEXT.getValueType() != MVT::i64) return SDValue(); SDValue EXTRACT_VEC_ELT = ZEXT.getOperand(0); if (EXTRACT_VEC_ELT.getOpcode() != ISD::EXTRACT_VECTOR_ELT || EXTRACT_VEC_ELT.getValueType() != MVT::i32) return SDValue(); if (!isNullConstant(EXTRACT_VEC_ELT.getOperand(1))) return SDValue(); SDValue UADDLV = EXTRACT_VEC_ELT.getOperand(0); if (UADDLV.getOpcode() != AArch64ISD::UADDLV || UADDLV.getValueType() != MVT::v4i32 || UADDLV.getOperand(0).getValueType() != MVT::v8i8) return SDValue(); // Let's generate new sequence with AArch64ISD::NVCAST. SDLoc DL(N); SDValue EXTRACT_SUBVEC = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i32, UADDLV, DAG.getConstant(0, DL, MVT::i64)); SDValue NVCAST = DAG.getNode(AArch64ISD::NVCAST, DL, MVT::v1i64, EXTRACT_SUBVEC); return NVCAST; } SDValue AArch64TargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const { SelectionDAG &DAG = DCI.DAG; switch (N->getOpcode()) { default: LLVM_DEBUG(dbgs() << "Custom combining: skipping\n"); break; case ISD::VECREDUCE_AND: case ISD::VECREDUCE_OR: case ISD::VECREDUCE_XOR: return performVecReduceBitwiseCombine(N, DCI, DAG); case ISD::ADD: case ISD::SUB: return performAddSubCombine(N, DCI); case ISD::BUILD_VECTOR: return performBuildVectorCombine(N, DCI, DAG); case ISD::TRUNCATE: return performTruncateCombine(N, DAG); case AArch64ISD::ANDS: return performFlagSettingCombine(N, DCI, ISD::AND); case AArch64ISD::ADC: if (auto R = foldOverflowCheck(N, DAG, /* IsAdd */ true)) return R; return foldADCToCINC(N, DAG); case AArch64ISD::SBC: return foldOverflowCheck(N, DAG, /* IsAdd */ false); case AArch64ISD::ADCS: if (auto R = foldOverflowCheck(N, DAG, /* IsAdd */ true)) return R; return performFlagSettingCombine(N, DCI, AArch64ISD::ADC); case AArch64ISD::SBCS: if (auto R = foldOverflowCheck(N, DAG, /* IsAdd */ false)) return R; return performFlagSettingCombine(N, DCI, AArch64ISD::SBC); case ISD::XOR: return performXorCombine(N, DAG, DCI, Subtarget); case ISD::MUL: return performMulCombine(N, DAG, DCI, Subtarget); case ISD::SINT_TO_FP: case ISD::UINT_TO_FP: return performIntToFpCombine(N, DAG, Subtarget); case ISD::FP_TO_SINT: case ISD::FP_TO_UINT: case ISD::FP_TO_SINT_SAT: case ISD::FP_TO_UINT_SAT: return performFpToIntCombine(N, DAG, DCI, Subtarget); case ISD::FDIV: return performFDivCombine(N, DAG, DCI, Subtarget); case ISD::OR: return performORCombine(N, DCI, Subtarget, *this); case ISD::AND: return performANDCombine(N, DCI); case ISD::FADD: return performFADDCombine(N, DCI); case ISD::INTRINSIC_WO_CHAIN: return performIntrinsicCombine(N, DCI, Subtarget); case ISD::ANY_EXTEND: case ISD::ZERO_EXTEND: case ISD::SIGN_EXTEND: return performExtendCombine(N, DCI, DAG); case ISD::SIGN_EXTEND_INREG: return performSignExtendInRegCombine(N, DCI, DAG); case ISD::CONCAT_VECTORS: return performConcatVectorsCombine(N, DCI, DAG); case ISD::EXTRACT_SUBVECTOR: return performExtractSubvectorCombine(N, DCI, DAG); case ISD::INSERT_SUBVECTOR: return performInsertSubvectorCombine(N, DCI, DAG); case ISD::SELECT: return performSelectCombine(N, DCI); case ISD::VSELECT: return performVSelectCombine(N, DCI.DAG); case ISD::SETCC: return performSETCCCombine(N, DCI, DAG); case ISD::LOAD: return performLOADCombine(N, DCI, DAG, Subtarget); case ISD::STORE: return performSTORECombine(N, DCI, DAG, Subtarget); case ISD::MSTORE: return performMSTORECombine(N, DCI, DAG, Subtarget); case ISD::MGATHER: case ISD::MSCATTER: return performMaskedGatherScatterCombine(N, DCI, DAG); case ISD::VECTOR_SPLICE: return performSVESpliceCombine(N, DAG); case ISD::FP_EXTEND: return performFPExtendCombine(N, DAG, DCI, Subtarget); case AArch64ISD::BRCOND: return performBRCONDCombine(N, DCI, DAG); case AArch64ISD::TBNZ: case AArch64ISD::TBZ: return performTBZCombine(N, DCI, DAG); case AArch64ISD::CSEL: return performCSELCombine(N, DCI, DAG); case AArch64ISD::DUP: case AArch64ISD::DUPLANE8: case AArch64ISD::DUPLANE16: case AArch64ISD::DUPLANE32: case AArch64ISD::DUPLANE64: return performDUPCombine(N, DCI); case AArch64ISD::DUPLANE128: return performDupLane128Combine(N, DAG); case AArch64ISD::NVCAST: return performNVCASTCombine(N, DAG); case AArch64ISD::SPLICE: return performSpliceCombine(N, DAG); case AArch64ISD::UUNPKLO: case AArch64ISD::UUNPKHI: return performUnpackCombine(N, DAG, Subtarget); case AArch64ISD::UZP1: return performUzpCombine(N, DAG, Subtarget); case AArch64ISD::SETCC_MERGE_ZERO: return performSetccMergeZeroCombine(N, DCI); case AArch64ISD::REINTERPRET_CAST: return performReinterpretCastCombine(N); case AArch64ISD::GLD1_MERGE_ZERO: case AArch64ISD::GLD1_SCALED_MERGE_ZERO: case AArch64ISD::GLD1_UXTW_MERGE_ZERO: case AArch64ISD::GLD1_SXTW_MERGE_ZERO: case AArch64ISD::GLD1_UXTW_SCALED_MERGE_ZERO: case AArch64ISD::GLD1_SXTW_SCALED_MERGE_ZERO: case AArch64ISD::GLD1_IMM_MERGE_ZERO: case AArch64ISD::GLD1S_MERGE_ZERO: case AArch64ISD::GLD1S_SCALED_MERGE_ZERO: case AArch64ISD::GLD1S_UXTW_MERGE_ZERO: case AArch64ISD::GLD1S_SXTW_MERGE_ZERO: case AArch64ISD::GLD1S_UXTW_SCALED_MERGE_ZERO: case AArch64ISD::GLD1S_SXTW_SCALED_MERGE_ZERO: case AArch64ISD::GLD1S_IMM_MERGE_ZERO: return performGLD1Combine(N, DAG); case AArch64ISD::VASHR: case AArch64ISD::VLSHR: return performVectorShiftCombine(N, *this, DCI); case AArch64ISD::SUNPKLO: return performSunpkloCombine(N, DAG); case AArch64ISD::BSP: return performBSPExpandForSVE(N, DAG, Subtarget); case ISD::INSERT_VECTOR_ELT: return performInsertVectorEltCombine(N, DCI); case ISD::EXTRACT_VECTOR_ELT: return performExtractVectorEltCombine(N, DCI, Subtarget); case ISD::VECREDUCE_ADD: return performVecReduceAddCombine(N, DCI.DAG, Subtarget); case AArch64ISD::UADDV: return performUADDVCombine(N, DAG); case AArch64ISD::SMULL: case AArch64ISD::UMULL: case AArch64ISD::PMULL: return performMULLCombine(N, DCI, DAG); case ISD::INTRINSIC_VOID: case ISD::INTRINSIC_W_CHAIN: switch (N->getConstantOperandVal(1)) { case Intrinsic::aarch64_sve_prfb_gather_scalar_offset: return combineSVEPrefetchVecBaseImmOff(N, DAG, 1 /*=ScalarSizeInBytes*/); case Intrinsic::aarch64_sve_prfh_gather_scalar_offset: return combineSVEPrefetchVecBaseImmOff(N, DAG, 2 /*=ScalarSizeInBytes*/); case Intrinsic::aarch64_sve_prfw_gather_scalar_offset: return combineSVEPrefetchVecBaseImmOff(N, DAG, 4 /*=ScalarSizeInBytes*/); case Intrinsic::aarch64_sve_prfd_gather_scalar_offset: return combineSVEPrefetchVecBaseImmOff(N, DAG, 8 /*=ScalarSizeInBytes*/); case Intrinsic::aarch64_sve_prfb_gather_uxtw_index: case Intrinsic::aarch64_sve_prfb_gather_sxtw_index: case Intrinsic::aarch64_sve_prfh_gather_uxtw_index: case Intrinsic::aarch64_sve_prfh_gather_sxtw_index: case Intrinsic::aarch64_sve_prfw_gather_uxtw_index: case Intrinsic::aarch64_sve_prfw_gather_sxtw_index: case Intrinsic::aarch64_sve_prfd_gather_uxtw_index: case Intrinsic::aarch64_sve_prfd_gather_sxtw_index: return legalizeSVEGatherPrefetchOffsVec(N, DAG); case Intrinsic::aarch64_neon_ld2: case Intrinsic::aarch64_neon_ld3: case Intrinsic::aarch64_neon_ld4: case Intrinsic::aarch64_neon_ld1x2: case Intrinsic::aarch64_neon_ld1x3: case Intrinsic::aarch64_neon_ld1x4: case Intrinsic::aarch64_neon_ld2lane: case Intrinsic::aarch64_neon_ld3lane: case Intrinsic::aarch64_neon_ld4lane: case Intrinsic::aarch64_neon_ld2r: case Intrinsic::aarch64_neon_ld3r: case Intrinsic::aarch64_neon_ld4r: case Intrinsic::aarch64_neon_st2: case Intrinsic::aarch64_neon_st3: case Intrinsic::aarch64_neon_st4: case Intrinsic::aarch64_neon_st1x2: case Intrinsic::aarch64_neon_st1x3: case Intrinsic::aarch64_neon_st1x4: case Intrinsic::aarch64_neon_st2lane: case Intrinsic::aarch64_neon_st3lane: case Intrinsic::aarch64_neon_st4lane: return performNEONPostLDSTCombine(N, DCI, DAG); case Intrinsic::aarch64_sve_ldnt1: return performLDNT1Combine(N, DAG); case Intrinsic::aarch64_sve_ld1rq: return performLD1ReplicateCombine(N, DAG); case Intrinsic::aarch64_sve_ld1ro: return performLD1ReplicateCombine(N, DAG); case Intrinsic::aarch64_sve_ldnt1_gather_scalar_offset: return performGatherLoadCombine(N, DAG, AArch64ISD::GLDNT1_MERGE_ZERO); case Intrinsic::aarch64_sve_ldnt1_gather: return performGatherLoadCombine(N, DAG, AArch64ISD::GLDNT1_MERGE_ZERO); case Intrinsic::aarch64_sve_ldnt1_gather_index: return performGatherLoadCombine(N, DAG, AArch64ISD::GLDNT1_INDEX_MERGE_ZERO); case Intrinsic::aarch64_sve_ldnt1_gather_uxtw: return performGatherLoadCombine(N, DAG, AArch64ISD::GLDNT1_MERGE_ZERO); case Intrinsic::aarch64_sve_ld1: return performLD1Combine(N, DAG, AArch64ISD::LD1_MERGE_ZERO); case Intrinsic::aarch64_sve_ldnf1: return performLD1Combine(N, DAG, AArch64ISD::LDNF1_MERGE_ZERO); case Intrinsic::aarch64_sve_ldff1: return performLD1Combine(N, DAG, AArch64ISD::LDFF1_MERGE_ZERO); case Intrinsic::aarch64_sve_st1: return performST1Combine(N, DAG); case Intrinsic::aarch64_sve_stnt1: return performSTNT1Combine(N, DAG); case Intrinsic::aarch64_sve_stnt1_scatter_scalar_offset: return performScatterStoreCombine(N, DAG, AArch64ISD::SSTNT1_PRED); case Intrinsic::aarch64_sve_stnt1_scatter_uxtw: return performScatterStoreCombine(N, DAG, AArch64ISD::SSTNT1_PRED); case Intrinsic::aarch64_sve_stnt1_scatter: return performScatterStoreCombine(N, DAG, AArch64ISD::SSTNT1_PRED); case Intrinsic::aarch64_sve_stnt1_scatter_index: return performScatterStoreCombine(N, DAG, AArch64ISD::SSTNT1_INDEX_PRED); case Intrinsic::aarch64_sve_ld1_gather: return performGatherLoadCombine(N, DAG, AArch64ISD::GLD1_MERGE_ZERO); case Intrinsic::aarch64_sve_ld1q_gather_scalar_offset: case Intrinsic::aarch64_sve_ld1q_gather_vector_offset: return performGatherLoadCombine(N, DAG, AArch64ISD::GLD1Q_MERGE_ZERO); case Intrinsic::aarch64_sve_ld1q_gather_index: return performGatherLoadCombine(N, DAG, AArch64ISD::GLD1Q_INDEX_MERGE_ZERO); case Intrinsic::aarch64_sve_ld1_gather_index: return performGatherLoadCombine(N, DAG, AArch64ISD::GLD1_SCALED_MERGE_ZERO); case Intrinsic::aarch64_sve_ld1_gather_sxtw: return performGatherLoadCombine(N, DAG, AArch64ISD::GLD1_SXTW_MERGE_ZERO, /*OnlyPackedOffsets=*/false); case Intrinsic::aarch64_sve_ld1_gather_uxtw: return performGatherLoadCombine(N, DAG, AArch64ISD::GLD1_UXTW_MERGE_ZERO, /*OnlyPackedOffsets=*/false); case Intrinsic::aarch64_sve_ld1_gather_sxtw_index: return performGatherLoadCombine(N, DAG, AArch64ISD::GLD1_SXTW_SCALED_MERGE_ZERO, /*OnlyPackedOffsets=*/false); case Intrinsic::aarch64_sve_ld1_gather_uxtw_index: return performGatherLoadCombine(N, DAG, AArch64ISD::GLD1_UXTW_SCALED_MERGE_ZERO, /*OnlyPackedOffsets=*/false); case Intrinsic::aarch64_sve_ld1_gather_scalar_offset: return performGatherLoadCombine(N, DAG, AArch64ISD::GLD1_IMM_MERGE_ZERO); case Intrinsic::aarch64_sve_ldff1_gather: return performGatherLoadCombine(N, DAG, AArch64ISD::GLDFF1_MERGE_ZERO); case Intrinsic::aarch64_sve_ldff1_gather_index: return performGatherLoadCombine(N, DAG, AArch64ISD::GLDFF1_SCALED_MERGE_ZERO); case Intrinsic::aarch64_sve_ldff1_gather_sxtw: return performGatherLoadCombine(N, DAG, AArch64ISD::GLDFF1_SXTW_MERGE_ZERO, /*OnlyPackedOffsets=*/false); case Intrinsic::aarch64_sve_ldff1_gather_uxtw: return performGatherLoadCombine(N, DAG, AArch64ISD::GLDFF1_UXTW_MERGE_ZERO, /*OnlyPackedOffsets=*/false); case Intrinsic::aarch64_sve_ldff1_gather_sxtw_index: return performGatherLoadCombine(N, DAG, AArch64ISD::GLDFF1_SXTW_SCALED_MERGE_ZERO, /*OnlyPackedOffsets=*/false); case Intrinsic::aarch64_sve_ldff1_gather_uxtw_index: return performGatherLoadCombine(N, DAG, AArch64ISD::GLDFF1_UXTW_SCALED_MERGE_ZERO, /*OnlyPackedOffsets=*/false); case Intrinsic::aarch64_sve_ldff1_gather_scalar_offset: return performGatherLoadCombine(N, DAG, AArch64ISD::GLDFF1_IMM_MERGE_ZERO); case Intrinsic::aarch64_sve_st1q_scatter_scalar_offset: case Intrinsic::aarch64_sve_st1q_scatter_vector_offset: return performScatterStoreCombine(N, DAG, AArch64ISD::SST1Q_PRED); case Intrinsic::aarch64_sve_st1q_scatter_index: return performScatterStoreCombine(N, DAG, AArch64ISD::SST1Q_INDEX_PRED); case Intrinsic::aarch64_sve_st1_scatter: return performScatterStoreCombine(N, DAG, AArch64ISD::SST1_PRED); case Intrinsic::aarch64_sve_st1_scatter_index: return performScatterStoreCombine(N, DAG, AArch64ISD::SST1_SCALED_PRED); case Intrinsic::aarch64_sve_st1_scatter_sxtw: return performScatterStoreCombine(N, DAG, AArch64ISD::SST1_SXTW_PRED, /*OnlyPackedOffsets=*/false); case Intrinsic::aarch64_sve_st1_scatter_uxtw: return performScatterStoreCombine(N, DAG, AArch64ISD::SST1_UXTW_PRED, /*OnlyPackedOffsets=*/false); case Intrinsic::aarch64_sve_st1_scatter_sxtw_index: return performScatterStoreCombine(N, DAG, AArch64ISD::SST1_SXTW_SCALED_PRED, /*OnlyPackedOffsets=*/false); case Intrinsic::aarch64_sve_st1_scatter_uxtw_index: return performScatterStoreCombine(N, DAG, AArch64ISD::SST1_UXTW_SCALED_PRED, /*OnlyPackedOffsets=*/false); case Intrinsic::aarch64_sve_st1_scatter_scalar_offset: return performScatterStoreCombine(N, DAG, AArch64ISD::SST1_IMM_PRED); case Intrinsic::aarch64_rndr: case Intrinsic::aarch64_rndrrs: { unsigned IntrinsicID = N->getConstantOperandVal(1); auto Register = (IntrinsicID == Intrinsic::aarch64_rndr ? AArch64SysReg::RNDR : AArch64SysReg::RNDRRS); SDLoc DL(N); SDValue A = DAG.getNode( AArch64ISD::MRS, DL, DAG.getVTList(MVT::i64, MVT::Glue, MVT::Other), N->getOperand(0), DAG.getConstant(Register, DL, MVT::i64)); SDValue B = DAG.getNode( AArch64ISD::CSINC, DL, MVT::i32, DAG.getConstant(0, DL, MVT::i32), DAG.getConstant(0, DL, MVT::i32), DAG.getConstant(AArch64CC::NE, DL, MVT::i32), A.getValue(1)); return DAG.getMergeValues( {A, DAG.getZExtOrTrunc(B, DL, MVT::i1), A.getValue(2)}, DL); } case Intrinsic::aarch64_sme_ldr_zt: return DAG.getNode(AArch64ISD::RESTORE_ZT, SDLoc(N), DAG.getVTList(MVT::Other), N->getOperand(0), N->getOperand(2), N->getOperand(3)); case Intrinsic::aarch64_sme_str_zt: return DAG.getNode(AArch64ISD::SAVE_ZT, SDLoc(N), DAG.getVTList(MVT::Other), N->getOperand(0), N->getOperand(2), N->getOperand(3)); default: break; } break; case ISD::GlobalAddress: return performGlobalAddressCombine(N, DAG, Subtarget, getTargetMachine()); case ISD::CTLZ: return performCTLZCombine(N, DAG, Subtarget); case ISD::SCALAR_TO_VECTOR: return performScalarToVectorCombine(N, DCI, DAG); } return SDValue(); } // Check if the return value is used as only a return value, as otherwise // we can't perform a tail-call. In particular, we need to check for // target ISD nodes that are returns and any other "odd" constructs // that the generic analysis code won't necessarily catch. bool AArch64TargetLowering::isUsedByReturnOnly(SDNode *N, SDValue &Chain) const { if (N->getNumValues() != 1) return false; if (!N->hasNUsesOfValue(1, 0)) return false; SDValue TCChain = Chain; SDNode *Copy = *N->use_begin(); if (Copy->getOpcode() == ISD::CopyToReg) { // If the copy has a glue operand, we conservatively assume it isn't safe to // perform a tail call. if (Copy->getOperand(Copy->getNumOperands() - 1).getValueType() == MVT::Glue) return false; TCChain = Copy->getOperand(0); } else if (Copy->getOpcode() != ISD::FP_EXTEND) return false; bool HasRet = false; for (SDNode *Node : Copy->uses()) { if (Node->getOpcode() != AArch64ISD::RET_GLUE) return false; HasRet = true; } if (!HasRet) return false; Chain = TCChain; return true; } // Return whether the an instruction can potentially be optimized to a tail // call. This will cause the optimizers to attempt to move, or duplicate, // return instructions to help enable tail call optimizations for this // instruction. bool AArch64TargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { return CI->isTailCall(); } bool AArch64TargetLowering::isIndexingLegal(MachineInstr &MI, Register Base, Register Offset, bool IsPre, MachineRegisterInfo &MRI) const { auto CstOffset = getIConstantVRegVal(Offset, MRI); if (!CstOffset || CstOffset->isZero()) return false; // All of the indexed addressing mode instructions take a signed 9 bit // immediate offset. Our CstOffset is a G_PTR_ADD offset so it already // encodes the sign/indexing direction. return isInt<9>(CstOffset->getSExtValue()); } bool AArch64TargetLowering::getIndexedAddressParts(SDNode *N, SDNode *Op, SDValue &Base, SDValue &Offset, SelectionDAG &DAG) const { if (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB) return false; // Non-null if there is exactly one user of the loaded value (ignoring chain). SDNode *ValOnlyUser = nullptr; for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); UI != UE; ++UI) { if (UI.getUse().getResNo() == 1) continue; // Ignore chain. if (ValOnlyUser == nullptr) ValOnlyUser = *UI; else { ValOnlyUser = nullptr; // Multiple non-chain uses, bail out. break; } } auto IsUndefOrZero = [](SDValue V) { return V.isUndef() || isNullOrNullSplat(V, /*AllowUndefs*/ true); }; // If the only user of the value is a scalable vector splat, it is // preferable to do a replicating load (ld1r*). if (ValOnlyUser && ValOnlyUser->getValueType(0).isScalableVector() && (ValOnlyUser->getOpcode() == ISD::SPLAT_VECTOR || (ValOnlyUser->getOpcode() == AArch64ISD::DUP_MERGE_PASSTHRU && IsUndefOrZero(ValOnlyUser->getOperand(2))))) return false; Base = Op->getOperand(0); // All of the indexed addressing mode instructions take a signed // 9 bit immediate offset. if (ConstantSDNode *RHS = dyn_cast(Op->getOperand(1))) { int64_t RHSC = RHS->getSExtValue(); if (Op->getOpcode() == ISD::SUB) RHSC = -(uint64_t)RHSC; if (!isInt<9>(RHSC)) return false; // Always emit pre-inc/post-inc addressing mode. Use negated constant offset // when dealing with subtraction. Offset = DAG.getConstant(RHSC, SDLoc(N), RHS->getValueType(0)); return true; } return false; } bool AArch64TargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base, SDValue &Offset, ISD::MemIndexedMode &AM, SelectionDAG &DAG) const { EVT VT; SDValue Ptr; if (LoadSDNode *LD = dyn_cast(N)) { VT = LD->getMemoryVT(); Ptr = LD->getBasePtr(); } else if (StoreSDNode *ST = dyn_cast(N)) { VT = ST->getMemoryVT(); Ptr = ST->getBasePtr(); } else return false; if (!getIndexedAddressParts(N, Ptr.getNode(), Base, Offset, DAG)) return false; AM = ISD::PRE_INC; return true; } bool AArch64TargetLowering::getPostIndexedAddressParts( SDNode *N, SDNode *Op, SDValue &Base, SDValue &Offset, ISD::MemIndexedMode &AM, SelectionDAG &DAG) const { EVT VT; SDValue Ptr; if (LoadSDNode *LD = dyn_cast(N)) { VT = LD->getMemoryVT(); Ptr = LD->getBasePtr(); } else if (StoreSDNode *ST = dyn_cast(N)) { VT = ST->getMemoryVT(); Ptr = ST->getBasePtr(); } else return false; if (!getIndexedAddressParts(N, Op, Base, Offset, DAG)) return false; // Post-indexing updates the base, so it's not a valid transform // if that's not the same as the load's pointer. if (Ptr != Base) return false; AM = ISD::POST_INC; return true; } static void replaceBoolVectorBitcast(SDNode *N, SmallVectorImpl &Results, SelectionDAG &DAG) { SDLoc DL(N); SDValue Op = N->getOperand(0); EVT VT = N->getValueType(0); [[maybe_unused]] EVT SrcVT = Op.getValueType(); assert(SrcVT.isVector() && SrcVT.getVectorElementType() == MVT::i1 && "Must be bool vector."); // Special handling for Clang's __builtin_convertvector. For vectors with <8 // elements, it adds a vector concatenation with undef(s). If we encounter // this here, we can skip the concat. if (Op.getOpcode() == ISD::CONCAT_VECTORS && !Op.getOperand(0).isUndef()) { bool AllUndef = true; for (unsigned I = 1; I < Op.getNumOperands(); ++I) AllUndef &= Op.getOperand(I).isUndef(); if (AllUndef) Op = Op.getOperand(0); } SDValue VectorBits = vectorToScalarBitmask(Op.getNode(), DAG); if (VectorBits) Results.push_back(DAG.getZExtOrTrunc(VectorBits, DL, VT)); } static void CustomNonLegalBITCASTResults(SDNode *N, SmallVectorImpl &Results, SelectionDAG &DAG, EVT ExtendVT, EVT CastVT) { SDLoc DL(N); SDValue Op = N->getOperand(0); EVT VT = N->getValueType(0); // Use SCALAR_TO_VECTOR for lane zero SDValue Vec = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, ExtendVT, Op); SDValue CastVal = DAG.getNode(ISD::BITCAST, DL, CastVT, Vec); SDValue IdxZero = DAG.getVectorIdxConstant(0, DL); Results.push_back( DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, CastVal, IdxZero)); } void AArch64TargetLowering::ReplaceBITCASTResults( SDNode *N, SmallVectorImpl &Results, SelectionDAG &DAG) const { SDLoc DL(N); SDValue Op = N->getOperand(0); EVT VT = N->getValueType(0); EVT SrcVT = Op.getValueType(); if (VT == MVT::v2i16 && SrcVT == MVT::i32) { CustomNonLegalBITCASTResults(N, Results, DAG, MVT::v2i32, MVT::v4i16); return; } if (VT == MVT::v4i8 && SrcVT == MVT::i32) { CustomNonLegalBITCASTResults(N, Results, DAG, MVT::v2i32, MVT::v8i8); return; } if (VT == MVT::v2i8 && SrcVT == MVT::i16) { CustomNonLegalBITCASTResults(N, Results, DAG, MVT::v4i16, MVT::v8i8); return; } if (VT.isScalableVector() && !isTypeLegal(VT) && isTypeLegal(SrcVT)) { assert(!VT.isFloatingPoint() && SrcVT.isFloatingPoint() && "Expected fp->int bitcast!"); // Bitcasting between unpacked vector types of different element counts is // not a NOP because the live elements are laid out differently. // 01234567 // e.g. nxv2i32 = XX??XX?? // nxv4f16 = X?X?X?X? if (VT.getVectorElementCount() != SrcVT.getVectorElementCount()) return; SDValue CastResult = getSVESafeBitCast(getSVEContainerType(VT), Op, DAG); Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, CastResult)); return; } if (SrcVT.isVector() && SrcVT.getVectorElementType() == MVT::i1 && !VT.isVector()) return replaceBoolVectorBitcast(N, Results, DAG); if (VT != MVT::i16 || (SrcVT != MVT::f16 && SrcVT != MVT::bf16)) return; Op = DAG.getTargetInsertSubreg(AArch64::hsub, DL, MVT::f32, DAG.getUNDEF(MVT::i32), Op); Op = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op); Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Op)); } static void ReplaceAddWithADDP(SDNode *N, SmallVectorImpl &Results, SelectionDAG &DAG, const AArch64Subtarget *Subtarget) { EVT VT = N->getValueType(0); if (!VT.is256BitVector() || (VT.getScalarType().isFloatingPoint() && !N->getFlags().hasAllowReassociation()) || (VT.getScalarType() == MVT::f16 && !Subtarget->hasFullFP16()) || VT.getScalarType() == MVT::bf16) return; SDValue X = N->getOperand(0); auto *Shuf = dyn_cast(N->getOperand(1)); if (!Shuf) { Shuf = dyn_cast(N->getOperand(0)); X = N->getOperand(1); if (!Shuf) return; } if (Shuf->getOperand(0) != X || !Shuf->getOperand(1)->isUndef()) return; // Check the mask is 1,0,3,2,5,4,... ArrayRef Mask = Shuf->getMask(); for (int I = 0, E = Mask.size(); I < E; I++) if (Mask[I] != (I % 2 == 0 ? I + 1 : I - 1)) return; SDLoc DL(N); auto LoHi = DAG.SplitVector(X, DL); assert(LoHi.first.getValueType() == LoHi.second.getValueType()); SDValue Addp = DAG.getNode(AArch64ISD::ADDP, N, LoHi.first.getValueType(), LoHi.first, LoHi.second); // Shuffle the elements back into order. SmallVector NMask; for (unsigned I = 0, E = VT.getVectorNumElements() / 2; I < E; I++) { NMask.push_back(I); NMask.push_back(I); } Results.push_back( DAG.getVectorShuffle(VT, DL, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Addp, DAG.getUNDEF(LoHi.first.getValueType())), DAG.getUNDEF(VT), NMask)); } static void ReplaceReductionResults(SDNode *N, SmallVectorImpl &Results, SelectionDAG &DAG, unsigned InterOp, unsigned AcrossOp) { EVT LoVT, HiVT; SDValue Lo, Hi; SDLoc dl(N); std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(N->getValueType(0)); std::tie(Lo, Hi) = DAG.SplitVectorOperand(N, 0); SDValue InterVal = DAG.getNode(InterOp, dl, LoVT, Lo, Hi); SDValue SplitVal = DAG.getNode(AcrossOp, dl, LoVT, InterVal); Results.push_back(SplitVal); } void AArch64TargetLowering::ReplaceExtractSubVectorResults( SDNode *N, SmallVectorImpl &Results, SelectionDAG &DAG) const { SDValue In = N->getOperand(0); EVT InVT = In.getValueType(); // Common code will handle these just fine. if (!InVT.isScalableVector() || !InVT.isInteger()) return; SDLoc DL(N); EVT VT = N->getValueType(0); // The following checks bail if this is not a halving operation. ElementCount ResEC = VT.getVectorElementCount(); if (InVT.getVectorElementCount() != (ResEC * 2)) return; auto *CIndex = dyn_cast(N->getOperand(1)); if (!CIndex) return; unsigned Index = CIndex->getZExtValue(); if ((Index != 0) && (Index != ResEC.getKnownMinValue())) return; unsigned Opcode = (Index == 0) ? AArch64ISD::UUNPKLO : AArch64ISD::UUNPKHI; EVT ExtendedHalfVT = VT.widenIntegerVectorElementType(*DAG.getContext()); SDValue Half = DAG.getNode(Opcode, DL, ExtendedHalfVT, N->getOperand(0)); Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, Half)); } // Create an even/odd pair of X registers holding integer value V. static SDValue createGPRPairNode(SelectionDAG &DAG, SDValue V) { SDLoc dl(V.getNode()); auto [VLo, VHi] = DAG.SplitScalar(V, dl, MVT::i64, MVT::i64); if (DAG.getDataLayout().isBigEndian()) std::swap (VLo, VHi); SDValue RegClass = DAG.getTargetConstant(AArch64::XSeqPairsClassRegClassID, dl, MVT::i32); SDValue SubReg0 = DAG.getTargetConstant(AArch64::sube64, dl, MVT::i32); SDValue SubReg1 = DAG.getTargetConstant(AArch64::subo64, dl, MVT::i32); const SDValue Ops[] = { RegClass, VLo, SubReg0, VHi, SubReg1 }; return SDValue( DAG.getMachineNode(TargetOpcode::REG_SEQUENCE, dl, MVT::Untyped, Ops), 0); } static void ReplaceCMP_SWAP_128Results(SDNode *N, SmallVectorImpl &Results, SelectionDAG &DAG, const AArch64Subtarget *Subtarget) { assert(N->getValueType(0) == MVT::i128 && "AtomicCmpSwap on types less than 128 should be legal"); MachineMemOperand *MemOp = cast(N)->getMemOperand(); if (Subtarget->hasLSE() || Subtarget->outlineAtomics()) { // LSE has a 128-bit compare and swap (CASP), but i128 is not a legal type, // so lower it here, wrapped in REG_SEQUENCE and EXTRACT_SUBREG. SDValue Ops[] = { createGPRPairNode(DAG, N->getOperand(2)), // Compare value createGPRPairNode(DAG, N->getOperand(3)), // Store value N->getOperand(1), // Ptr N->getOperand(0), // Chain in }; unsigned Opcode; switch (MemOp->getMergedOrdering()) { case AtomicOrdering::Monotonic: Opcode = AArch64::CASPX; break; case AtomicOrdering::Acquire: Opcode = AArch64::CASPAX; break; case AtomicOrdering::Release: Opcode = AArch64::CASPLX; break; case AtomicOrdering::AcquireRelease: case AtomicOrdering::SequentiallyConsistent: Opcode = AArch64::CASPALX; break; default: llvm_unreachable("Unexpected ordering!"); } MachineSDNode *CmpSwap = DAG.getMachineNode( Opcode, SDLoc(N), DAG.getVTList(MVT::Untyped, MVT::Other), Ops); DAG.setNodeMemRefs(CmpSwap, {MemOp}); unsigned SubReg1 = AArch64::sube64, SubReg2 = AArch64::subo64; if (DAG.getDataLayout().isBigEndian()) std::swap(SubReg1, SubReg2); SDValue Lo = DAG.getTargetExtractSubreg(SubReg1, SDLoc(N), MVT::i64, SDValue(CmpSwap, 0)); SDValue Hi = DAG.getTargetExtractSubreg(SubReg2, SDLoc(N), MVT::i64, SDValue(CmpSwap, 0)); Results.push_back( DAG.getNode(ISD::BUILD_PAIR, SDLoc(N), MVT::i128, Lo, Hi)); Results.push_back(SDValue(CmpSwap, 1)); // Chain out return; } unsigned Opcode; switch (MemOp->getMergedOrdering()) { case AtomicOrdering::Monotonic: Opcode = AArch64::CMP_SWAP_128_MONOTONIC; break; case AtomicOrdering::Acquire: Opcode = AArch64::CMP_SWAP_128_ACQUIRE; break; case AtomicOrdering::Release: Opcode = AArch64::CMP_SWAP_128_RELEASE; break; case AtomicOrdering::AcquireRelease: case AtomicOrdering::SequentiallyConsistent: Opcode = AArch64::CMP_SWAP_128; break; default: llvm_unreachable("Unexpected ordering!"); } SDLoc DL(N); auto Desired = DAG.SplitScalar(N->getOperand(2), DL, MVT::i64, MVT::i64); auto New = DAG.SplitScalar(N->getOperand(3), DL, MVT::i64, MVT::i64); SDValue Ops[] = {N->getOperand(1), Desired.first, Desired.second, New.first, New.second, N->getOperand(0)}; SDNode *CmpSwap = DAG.getMachineNode( Opcode, SDLoc(N), DAG.getVTList(MVT::i64, MVT::i64, MVT::i32, MVT::Other), Ops); DAG.setNodeMemRefs(cast(CmpSwap), {MemOp}); Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i128, SDValue(CmpSwap, 0), SDValue(CmpSwap, 1))); Results.push_back(SDValue(CmpSwap, 3)); } static unsigned getAtomicLoad128Opcode(unsigned ISDOpcode, AtomicOrdering Ordering) { // ATOMIC_LOAD_CLR only appears when lowering ATOMIC_LOAD_AND (see // LowerATOMIC_LOAD_AND). We can't take that approach with 128-bit, because // the type is not legal. Therefore we shouldn't expect to see a 128-bit // ATOMIC_LOAD_CLR at any point. assert(ISDOpcode != ISD::ATOMIC_LOAD_CLR && "ATOMIC_LOAD_AND should be lowered to LDCLRP directly"); assert(ISDOpcode != ISD::ATOMIC_LOAD_ADD && "There is no 128 bit LDADD"); assert(ISDOpcode != ISD::ATOMIC_LOAD_SUB && "There is no 128 bit LDSUB"); if (ISDOpcode == ISD::ATOMIC_LOAD_AND) { // The operand will need to be XORed in a separate step. switch (Ordering) { case AtomicOrdering::Monotonic: return AArch64::LDCLRP; break; case AtomicOrdering::Acquire: return AArch64::LDCLRPA; break; case AtomicOrdering::Release: return AArch64::LDCLRPL; break; case AtomicOrdering::AcquireRelease: case AtomicOrdering::SequentiallyConsistent: return AArch64::LDCLRPAL; break; default: llvm_unreachable("Unexpected ordering!"); } } if (ISDOpcode == ISD::ATOMIC_LOAD_OR) { switch (Ordering) { case AtomicOrdering::Monotonic: return AArch64::LDSETP; break; case AtomicOrdering::Acquire: return AArch64::LDSETPA; break; case AtomicOrdering::Release: return AArch64::LDSETPL; break; case AtomicOrdering::AcquireRelease: case AtomicOrdering::SequentiallyConsistent: return AArch64::LDSETPAL; break; default: llvm_unreachable("Unexpected ordering!"); } } if (ISDOpcode == ISD::ATOMIC_SWAP) { switch (Ordering) { case AtomicOrdering::Monotonic: return AArch64::SWPP; break; case AtomicOrdering::Acquire: return AArch64::SWPPA; break; case AtomicOrdering::Release: return AArch64::SWPPL; break; case AtomicOrdering::AcquireRelease: case AtomicOrdering::SequentiallyConsistent: return AArch64::SWPPAL; break; default: llvm_unreachable("Unexpected ordering!"); } } llvm_unreachable("Unexpected ISDOpcode!"); } static void ReplaceATOMIC_LOAD_128Results(SDNode *N, SmallVectorImpl &Results, SelectionDAG &DAG, const AArch64Subtarget *Subtarget) { // LSE128 has a 128-bit RMW ops, but i128 is not a legal type, so lower it // here. This follows the approach of the CMP_SWAP_XXX pseudo instructions // rather than the CASP instructions, because CASP has register classes for // the pairs of registers and therefore uses REG_SEQUENCE and EXTRACT_SUBREG // to present them as single operands. LSE128 instructions use the GPR64 // register class (because the pair does not have to be sequential), like // CMP_SWAP_XXX, and therefore we use TRUNCATE and BUILD_PAIR. assert(N->getValueType(0) == MVT::i128 && "AtomicLoadXXX on types less than 128 should be legal"); if (!Subtarget->hasLSE128()) return; MachineMemOperand *MemOp = cast(N)->getMemOperand(); const SDValue &Chain = N->getOperand(0); const SDValue &Ptr = N->getOperand(1); const SDValue &Val128 = N->getOperand(2); std::pair Val2x64 = DAG.SplitScalar(Val128, SDLoc(Val128), MVT::i64, MVT::i64); const unsigned ISDOpcode = N->getOpcode(); const unsigned MachineOpcode = getAtomicLoad128Opcode(ISDOpcode, MemOp->getMergedOrdering()); if (ISDOpcode == ISD::ATOMIC_LOAD_AND) { SDLoc dl(Val128); Val2x64.first = DAG.getNode(ISD::XOR, dl, MVT::i64, DAG.getConstant(-1ULL, dl, MVT::i64), Val2x64.first); Val2x64.second = DAG.getNode(ISD::XOR, dl, MVT::i64, DAG.getConstant(-1ULL, dl, MVT::i64), Val2x64.second); } SDValue Ops[] = {Val2x64.first, Val2x64.second, Ptr, Chain}; if (DAG.getDataLayout().isBigEndian()) std::swap(Ops[0], Ops[1]); MachineSDNode *AtomicInst = DAG.getMachineNode(MachineOpcode, SDLoc(N), DAG.getVTList(MVT::i64, MVT::i64, MVT::Other), Ops); DAG.setNodeMemRefs(AtomicInst, {MemOp}); SDValue Lo = SDValue(AtomicInst, 0), Hi = SDValue(AtomicInst, 1); if (DAG.getDataLayout().isBigEndian()) std::swap(Lo, Hi); Results.push_back(DAG.getNode(ISD::BUILD_PAIR, SDLoc(N), MVT::i128, Lo, Hi)); Results.push_back(SDValue(AtomicInst, 2)); // Chain out } void AArch64TargetLowering::ReplaceNodeResults( SDNode *N, SmallVectorImpl &Results, SelectionDAG &DAG) const { switch (N->getOpcode()) { default: llvm_unreachable("Don't know how to custom expand this"); case ISD::BITCAST: ReplaceBITCASTResults(N, Results, DAG); return; case ISD::VECREDUCE_ADD: case ISD::VECREDUCE_SMAX: case ISD::VECREDUCE_SMIN: case ISD::VECREDUCE_UMAX: case ISD::VECREDUCE_UMIN: Results.push_back(LowerVECREDUCE(SDValue(N, 0), DAG)); return; case ISD::ADD: case ISD::FADD: ReplaceAddWithADDP(N, Results, DAG, Subtarget); return; case ISD::CTPOP: case ISD::PARITY: if (SDValue Result = LowerCTPOP_PARITY(SDValue(N, 0), DAG)) Results.push_back(Result); return; case AArch64ISD::SADDV: ReplaceReductionResults(N, Results, DAG, ISD::ADD, AArch64ISD::SADDV); return; case AArch64ISD::UADDV: ReplaceReductionResults(N, Results, DAG, ISD::ADD, AArch64ISD::UADDV); return; case AArch64ISD::SMINV: ReplaceReductionResults(N, Results, DAG, ISD::SMIN, AArch64ISD::SMINV); return; case AArch64ISD::UMINV: ReplaceReductionResults(N, Results, DAG, ISD::UMIN, AArch64ISD::UMINV); return; case AArch64ISD::SMAXV: ReplaceReductionResults(N, Results, DAG, ISD::SMAX, AArch64ISD::SMAXV); return; case AArch64ISD::UMAXV: ReplaceReductionResults(N, Results, DAG, ISD::UMAX, AArch64ISD::UMAXV); return; case ISD::MULHS: if (useSVEForFixedLengthVectorVT(SDValue(N, 0).getValueType())) Results.push_back( LowerToPredicatedOp(SDValue(N, 0), DAG, AArch64ISD::MULHS_PRED)); return; case ISD::MULHU: if (useSVEForFixedLengthVectorVT(SDValue(N, 0).getValueType())) Results.push_back( LowerToPredicatedOp(SDValue(N, 0), DAG, AArch64ISD::MULHU_PRED)); return; case ISD::FP_TO_UINT: case ISD::FP_TO_SINT: case ISD::STRICT_FP_TO_SINT: case ISD::STRICT_FP_TO_UINT: assert(N->getValueType(0) == MVT::i128 && "unexpected illegal conversion"); // Let normal code take care of it by not adding anything to Results. return; case ISD::ATOMIC_CMP_SWAP: ReplaceCMP_SWAP_128Results(N, Results, DAG, Subtarget); return; case ISD::ATOMIC_LOAD_CLR: assert(N->getValueType(0) != MVT::i128 && "128-bit ATOMIC_LOAD_AND should be lowered directly to LDCLRP"); break; case ISD::ATOMIC_LOAD_AND: case ISD::ATOMIC_LOAD_OR: case ISD::ATOMIC_SWAP: { assert(cast(N)->getVal().getValueType() == MVT::i128 && "Expected 128-bit atomicrmw."); // These need custom type legalisation so we go directly to instruction. ReplaceATOMIC_LOAD_128Results(N, Results, DAG, Subtarget); return; } case ISD::ATOMIC_LOAD: case ISD::LOAD: { MemSDNode *LoadNode = cast(N); EVT MemVT = LoadNode->getMemoryVT(); // Handle lowering 256 bit non temporal loads into LDNP for little-endian // targets. if (LoadNode->isNonTemporal() && Subtarget->isLittleEndian() && MemVT.getSizeInBits() == 256u && (MemVT.getScalarSizeInBits() == 8u || MemVT.getScalarSizeInBits() == 16u || MemVT.getScalarSizeInBits() == 32u || MemVT.getScalarSizeInBits() == 64u)) { SDValue Result = DAG.getMemIntrinsicNode( AArch64ISD::LDNP, SDLoc(N), DAG.getVTList({MemVT.getHalfNumVectorElementsVT(*DAG.getContext()), MemVT.getHalfNumVectorElementsVT(*DAG.getContext()), MVT::Other}), {LoadNode->getChain(), LoadNode->getBasePtr()}, LoadNode->getMemoryVT(), LoadNode->getMemOperand()); SDValue Pair = DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), MemVT, Result.getValue(0), Result.getValue(1)); Results.append({Pair, Result.getValue(2) /* Chain */}); return; } if ((!LoadNode->isVolatile() && !LoadNode->isAtomic()) || LoadNode->getMemoryVT() != MVT::i128) { // Non-volatile or atomic loads are optimized later in AArch64's load/store // optimizer. return; } if (SDValue(N, 0).getValueType() == MVT::i128) { auto *AN = dyn_cast(LoadNode); bool isLoadAcquire = AN && AN->getSuccessOrdering() == AtomicOrdering::Acquire; unsigned Opcode = isLoadAcquire ? AArch64ISD::LDIAPP : AArch64ISD::LDP; if (isLoadAcquire) assert(Subtarget->hasFeature(AArch64::FeatureRCPC3)); SDValue Result = DAG.getMemIntrinsicNode( Opcode, SDLoc(N), DAG.getVTList({MVT::i64, MVT::i64, MVT::Other}), {LoadNode->getChain(), LoadNode->getBasePtr()}, LoadNode->getMemoryVT(), LoadNode->getMemOperand()); unsigned FirstRes = DAG.getDataLayout().isBigEndian() ? 1 : 0; SDValue Pair = DAG.getNode(ISD::BUILD_PAIR, SDLoc(N), MVT::i128, Result.getValue(FirstRes), Result.getValue(1 - FirstRes)); Results.append({Pair, Result.getValue(2) /* Chain */}); } return; } case ISD::EXTRACT_SUBVECTOR: ReplaceExtractSubVectorResults(N, Results, DAG); return; case ISD::INSERT_SUBVECTOR: case ISD::CONCAT_VECTORS: // Custom lowering has been requested for INSERT_SUBVECTOR and // CONCAT_VECTORS -- but delegate to common code for result type // legalisation return; case ISD::INTRINSIC_WO_CHAIN: { EVT VT = N->getValueType(0); assert((VT == MVT::i8 || VT == MVT::i16) && "custom lowering for unexpected type"); Intrinsic::ID IntID = static_cast(N->getConstantOperandVal(0)); switch (IntID) { default: return; case Intrinsic::aarch64_sve_clasta_n: { SDLoc DL(N); auto Op2 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, N->getOperand(2)); auto V = DAG.getNode(AArch64ISD::CLASTA_N, DL, MVT::i32, N->getOperand(1), Op2, N->getOperand(3)); Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, V)); return; } case Intrinsic::aarch64_sve_clastb_n: { SDLoc DL(N); auto Op2 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, N->getOperand(2)); auto V = DAG.getNode(AArch64ISD::CLASTB_N, DL, MVT::i32, N->getOperand(1), Op2, N->getOperand(3)); Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, V)); return; } case Intrinsic::aarch64_sve_lasta: { SDLoc DL(N); auto V = DAG.getNode(AArch64ISD::LASTA, DL, MVT::i32, N->getOperand(1), N->getOperand(2)); Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, V)); return; } case Intrinsic::aarch64_sve_lastb: { SDLoc DL(N); auto V = DAG.getNode(AArch64ISD::LASTB, DL, MVT::i32, N->getOperand(1), N->getOperand(2)); Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, V)); return; } } } case ISD::READ_REGISTER: { SDLoc DL(N); assert(N->getValueType(0) == MVT::i128 && "READ_REGISTER custom lowering is only for 128-bit sysregs"); SDValue Chain = N->getOperand(0); SDValue SysRegName = N->getOperand(1); SDValue Result = DAG.getNode( AArch64ISD::MRRS, DL, DAG.getVTList({MVT::i64, MVT::i64, MVT::Other}), Chain, SysRegName); // Sysregs are not endian. Result.getValue(0) always contains the lower half // of the 128-bit System Register value. SDValue Pair = DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i128, Result.getValue(0), Result.getValue(1)); Results.push_back(Pair); Results.push_back(Result.getValue(2)); // Chain return; } } } bool AArch64TargetLowering::useLoadStackGuardNode() const { if (Subtarget->isTargetAndroid() || Subtarget->isTargetFuchsia()) return TargetLowering::useLoadStackGuardNode(); return true; } unsigned AArch64TargetLowering::combineRepeatedFPDivisors() const { // Combine multiple FDIVs with the same divisor into multiple FMULs by the // reciprocal if there are three or more FDIVs. return 3; } TargetLoweringBase::LegalizeTypeAction AArch64TargetLowering::getPreferredVectorAction(MVT VT) const { // During type legalization, we prefer to widen v1i8, v1i16, v1i32 to v8i8, // v4i16, v2i32 instead of to promote. if (VT == MVT::v1i8 || VT == MVT::v1i16 || VT == MVT::v1i32 || VT == MVT::v1f32) return TypeWidenVector; return TargetLoweringBase::getPreferredVectorAction(VT); } // In v8.4a, ldp and stp instructions are guaranteed to be single-copy atomic // provided the address is 16-byte aligned. bool AArch64TargetLowering::isOpSuitableForLDPSTP(const Instruction *I) const { if (!Subtarget->hasLSE2()) return false; if (auto LI = dyn_cast(I)) return LI->getType()->getPrimitiveSizeInBits() == 128 && LI->getAlign() >= Align(16); if (auto SI = dyn_cast(I)) return SI->getValueOperand()->getType()->getPrimitiveSizeInBits() == 128 && SI->getAlign() >= Align(16); return false; } bool AArch64TargetLowering::isOpSuitableForLSE128(const Instruction *I) const { if (!Subtarget->hasLSE128()) return false; // Only use SWPP for stores where LSE2 would require a fence. Unlike STP, SWPP // will clobber the two registers. if (const auto *SI = dyn_cast(I)) return SI->getValueOperand()->getType()->getPrimitiveSizeInBits() == 128 && SI->getAlign() >= Align(16) && (SI->getOrdering() == AtomicOrdering::Release || SI->getOrdering() == AtomicOrdering::SequentiallyConsistent); if (const auto *RMW = dyn_cast(I)) return RMW->getValOperand()->getType()->getPrimitiveSizeInBits() == 128 && RMW->getAlign() >= Align(16) && (RMW->getOperation() == AtomicRMWInst::Xchg || RMW->getOperation() == AtomicRMWInst::And || RMW->getOperation() == AtomicRMWInst::Or); return false; } bool AArch64TargetLowering::isOpSuitableForRCPC3(const Instruction *I) const { if (!Subtarget->hasLSE2() || !Subtarget->hasRCPC3()) return false; if (auto LI = dyn_cast(I)) return LI->getType()->getPrimitiveSizeInBits() == 128 && LI->getAlign() >= Align(16) && LI->getOrdering() == AtomicOrdering::Acquire; if (auto SI = dyn_cast(I)) return SI->getValueOperand()->getType()->getPrimitiveSizeInBits() == 128 && SI->getAlign() >= Align(16) && SI->getOrdering() == AtomicOrdering::Release; return false; } bool AArch64TargetLowering::shouldInsertFencesForAtomic( const Instruction *I) const { if (isOpSuitableForRCPC3(I)) return false; if (isOpSuitableForLSE128(I)) return false; if (isOpSuitableForLDPSTP(I)) return true; return false; } bool AArch64TargetLowering::shouldInsertTrailingFenceForAtomicStore( const Instruction *I) const { // Store-Release instructions only provide seq_cst guarantees when paired with // Load-Acquire instructions. MSVC CRT does not use these instructions to // implement seq_cst loads and stores, so we need additional explicit fences // after memory writes. if (!Subtarget->getTargetTriple().isWindowsMSVCEnvironment()) return false; switch (I->getOpcode()) { default: return false; case Instruction::AtomicCmpXchg: return cast(I)->getSuccessOrdering() == AtomicOrdering::SequentiallyConsistent; case Instruction::AtomicRMW: return cast(I)->getOrdering() == AtomicOrdering::SequentiallyConsistent; case Instruction::Store: return cast(I)->getOrdering() == AtomicOrdering::SequentiallyConsistent; } } // Loads and stores less than 128-bits are already atomic; ones above that // are doomed anyway, so defer to the default libcall and blame the OS when // things go wrong. TargetLoweringBase::AtomicExpansionKind AArch64TargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const { unsigned Size = SI->getValueOperand()->getType()->getPrimitiveSizeInBits(); if (Size != 128) return AtomicExpansionKind::None; if (isOpSuitableForRCPC3(SI)) return AtomicExpansionKind::None; if (isOpSuitableForLSE128(SI)) return AtomicExpansionKind::Expand; if (isOpSuitableForLDPSTP(SI)) return AtomicExpansionKind::None; return AtomicExpansionKind::Expand; } // Loads and stores less than 128-bits are already atomic; ones above that // are doomed anyway, so defer to the default libcall and blame the OS when // things go wrong. TargetLowering::AtomicExpansionKind AArch64TargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const { unsigned Size = LI->getType()->getPrimitiveSizeInBits(); if (Size != 128) return AtomicExpansionKind::None; if (isOpSuitableForRCPC3(LI)) return AtomicExpansionKind::None; // No LSE128 loads if (isOpSuitableForLDPSTP(LI)) return AtomicExpansionKind::None; // At -O0, fast-regalloc cannot cope with the live vregs necessary to // implement atomicrmw without spilling. If the target address is also on the // stack and close enough to the spill slot, this can lead to a situation // where the monitor always gets cleared and the atomic operation can never // succeed. So at -O0 lower this operation to a CAS loop. if (getTargetMachine().getOptLevel() == CodeGenOptLevel::None) return AtomicExpansionKind::CmpXChg; // Using CAS for an atomic load has a better chance of succeeding under high // contention situations. So use it if available. return Subtarget->hasLSE() ? AtomicExpansionKind::CmpXChg : AtomicExpansionKind::LLSC; } // The "default" for integer RMW operations is to expand to an LL/SC loop. // However, with the LSE instructions (or outline-atomics mode, which provides // library routines in place of the LSE-instructions), we can directly emit many // operations instead. // // Floating-point operations are always emitted to a cmpxchg loop, because they // may trigger a trap which aborts an LLSC sequence. TargetLowering::AtomicExpansionKind AArch64TargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { unsigned Size = AI->getType()->getPrimitiveSizeInBits(); assert(Size <= 128 && "AtomicExpandPass should've handled larger sizes."); if (AI->isFloatingPointOperation()) return AtomicExpansionKind::CmpXChg; bool CanUseLSE128 = Subtarget->hasLSE128() && Size == 128 && (AI->getOperation() == AtomicRMWInst::Xchg || AI->getOperation() == AtomicRMWInst::Or || AI->getOperation() == AtomicRMWInst::And); if (CanUseLSE128) return AtomicExpansionKind::None; // Nand is not supported in LSE. // Leave 128 bits to LLSC or CmpXChg. if (AI->getOperation() != AtomicRMWInst::Nand && Size < 128) { if (Subtarget->hasLSE()) return AtomicExpansionKind::None; if (Subtarget->outlineAtomics()) { // [U]Min/[U]Max RWM atomics are used in __sync_fetch_ libcalls so far. // Don't outline them unless // (1) high level support approved: // http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p0493r1.pdf // (2) low level libgcc and compiler-rt support implemented by: // min/max outline atomics helpers if (AI->getOperation() != AtomicRMWInst::Min && AI->getOperation() != AtomicRMWInst::Max && AI->getOperation() != AtomicRMWInst::UMin && AI->getOperation() != AtomicRMWInst::UMax) { return AtomicExpansionKind::None; } } } // At -O0, fast-regalloc cannot cope with the live vregs necessary to // implement atomicrmw without spilling. If the target address is also on the // stack and close enough to the spill slot, this can lead to a situation // where the monitor always gets cleared and the atomic operation can never // succeed. So at -O0 lower this operation to a CAS loop. Also worthwhile if // we have a single CAS instruction that can replace the loop. if (getTargetMachine().getOptLevel() == CodeGenOptLevel::None || Subtarget->hasLSE()) return AtomicExpansionKind::CmpXChg; return AtomicExpansionKind::LLSC; } TargetLowering::AtomicExpansionKind AArch64TargetLowering::shouldExpandAtomicCmpXchgInIR( AtomicCmpXchgInst *AI) const { // If subtarget has LSE, leave cmpxchg intact for codegen. if (Subtarget->hasLSE() || Subtarget->outlineAtomics()) return AtomicExpansionKind::None; // At -O0, fast-regalloc cannot cope with the live vregs necessary to // implement cmpxchg without spilling. If the address being exchanged is also // on the stack and close enough to the spill slot, this can lead to a // situation where the monitor always gets cleared and the atomic operation // can never succeed. So at -O0 we need a late-expanded pseudo-inst instead. if (getTargetMachine().getOptLevel() == CodeGenOptLevel::None) return AtomicExpansionKind::None; // 128-bit atomic cmpxchg is weird; AtomicExpand doesn't know how to expand // it. unsigned Size = AI->getCompareOperand()->getType()->getPrimitiveSizeInBits(); if (Size > 64) return AtomicExpansionKind::None; return AtomicExpansionKind::LLSC; } Value *AArch64TargetLowering::emitLoadLinked(IRBuilderBase &Builder, Type *ValueTy, Value *Addr, AtomicOrdering Ord) const { Module *M = Builder.GetInsertBlock()->getParent()->getParent(); bool IsAcquire = isAcquireOrStronger(Ord); // Since i128 isn't legal and intrinsics don't get type-lowered, the ldrexd // intrinsic must return {i64, i64} and we have to recombine them into a // single i128 here. if (ValueTy->getPrimitiveSizeInBits() == 128) { Intrinsic::ID Int = IsAcquire ? Intrinsic::aarch64_ldaxp : Intrinsic::aarch64_ldxp; Function *Ldxr = Intrinsic::getDeclaration(M, Int); Value *LoHi = Builder.CreateCall(Ldxr, Addr, "lohi"); Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo"); Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi"); Lo = Builder.CreateZExt(Lo, ValueTy, "lo64"); Hi = Builder.CreateZExt(Hi, ValueTy, "hi64"); return Builder.CreateOr( Lo, Builder.CreateShl(Hi, ConstantInt::get(ValueTy, 64)), "val64"); } Type *Tys[] = { Addr->getType() }; Intrinsic::ID Int = IsAcquire ? Intrinsic::aarch64_ldaxr : Intrinsic::aarch64_ldxr; Function *Ldxr = Intrinsic::getDeclaration(M, Int, Tys); const DataLayout &DL = M->getDataLayout(); IntegerType *IntEltTy = Builder.getIntNTy(DL.getTypeSizeInBits(ValueTy)); CallInst *CI = Builder.CreateCall(Ldxr, Addr); CI->addParamAttr( 0, Attribute::get(Builder.getContext(), Attribute::ElementType, ValueTy)); Value *Trunc = Builder.CreateTrunc(CI, IntEltTy); return Builder.CreateBitCast(Trunc, ValueTy); } void AArch64TargetLowering::emitAtomicCmpXchgNoStoreLLBalance( IRBuilderBase &Builder) const { Module *M = Builder.GetInsertBlock()->getParent()->getParent(); Builder.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::aarch64_clrex)); } Value *AArch64TargetLowering::emitStoreConditional(IRBuilderBase &Builder, Value *Val, Value *Addr, AtomicOrdering Ord) const { Module *M = Builder.GetInsertBlock()->getParent()->getParent(); bool IsRelease = isReleaseOrStronger(Ord); // Since the intrinsics must have legal type, the i128 intrinsics take two // parameters: "i64, i64". We must marshal Val into the appropriate form // before the call. if (Val->getType()->getPrimitiveSizeInBits() == 128) { Intrinsic::ID Int = IsRelease ? Intrinsic::aarch64_stlxp : Intrinsic::aarch64_stxp; Function *Stxr = Intrinsic::getDeclaration(M, Int); Type *Int64Ty = Type::getInt64Ty(M->getContext()); Value *Lo = Builder.CreateTrunc(Val, Int64Ty, "lo"); Value *Hi = Builder.CreateTrunc(Builder.CreateLShr(Val, 64), Int64Ty, "hi"); return Builder.CreateCall(Stxr, {Lo, Hi, Addr}); } Intrinsic::ID Int = IsRelease ? Intrinsic::aarch64_stlxr : Intrinsic::aarch64_stxr; Type *Tys[] = { Addr->getType() }; Function *Stxr = Intrinsic::getDeclaration(M, Int, Tys); const DataLayout &DL = M->getDataLayout(); IntegerType *IntValTy = Builder.getIntNTy(DL.getTypeSizeInBits(Val->getType())); Val = Builder.CreateBitCast(Val, IntValTy); CallInst *CI = Builder.CreateCall( Stxr, {Builder.CreateZExtOrBitCast( Val, Stxr->getFunctionType()->getParamType(0)), Addr}); CI->addParamAttr(1, Attribute::get(Builder.getContext(), Attribute::ElementType, Val->getType())); return CI; } bool AArch64TargetLowering::functionArgumentNeedsConsecutiveRegisters( Type *Ty, CallingConv::ID CallConv, bool isVarArg, const DataLayout &DL) const { if (!Ty->isArrayTy()) { const TypeSize &TySize = Ty->getPrimitiveSizeInBits(); return TySize.isScalable() && TySize.getKnownMinValue() > 128; } // All non aggregate members of the type must have the same type SmallVector ValueVTs; ComputeValueVTs(*this, DL, Ty, ValueVTs); return all_equal(ValueVTs); } bool AArch64TargetLowering::shouldNormalizeToSelectSequence(LLVMContext &, EVT) const { return false; } static Value *UseTlsOffset(IRBuilderBase &IRB, unsigned Offset) { Module *M = IRB.GetInsertBlock()->getParent()->getParent(); Function *ThreadPointerFunc = Intrinsic::getDeclaration(M, Intrinsic::thread_pointer); return IRB.CreatePointerCast( IRB.CreateConstGEP1_32(IRB.getInt8Ty(), IRB.CreateCall(ThreadPointerFunc), Offset), IRB.getPtrTy(0)); } Value *AArch64TargetLowering::getIRStackGuard(IRBuilderBase &IRB) const { // Android provides a fixed TLS slot for the stack cookie. See the definition // of TLS_SLOT_STACK_GUARD in // https://android.googlesource.com/platform/bionic/+/master/libc/private/bionic_tls.h if (Subtarget->isTargetAndroid()) return UseTlsOffset(IRB, 0x28); // Fuchsia is similar. // defines ZX_TLS_STACK_GUARD_OFFSET with this value. if (Subtarget->isTargetFuchsia()) return UseTlsOffset(IRB, -0x10); return TargetLowering::getIRStackGuard(IRB); } void AArch64TargetLowering::insertSSPDeclarations(Module &M) const { // MSVC CRT provides functionalities for stack protection. if (Subtarget->getTargetTriple().isWindowsMSVCEnvironment()) { // MSVC CRT has a global variable holding security cookie. M.getOrInsertGlobal("__security_cookie", PointerType::getUnqual(M.getContext())); // MSVC CRT has a function to validate security cookie. FunctionCallee SecurityCheckCookie = M.getOrInsertFunction(Subtarget->getSecurityCheckCookieName(), Type::getVoidTy(M.getContext()), PointerType::getUnqual(M.getContext())); if (Function *F = dyn_cast(SecurityCheckCookie.getCallee())) { F->setCallingConv(CallingConv::Win64); F->addParamAttr(0, Attribute::AttrKind::InReg); } return; } TargetLowering::insertSSPDeclarations(M); } Value *AArch64TargetLowering::getSDagStackGuard(const Module &M) const { // MSVC CRT has a global variable holding security cookie. if (Subtarget->getTargetTriple().isWindowsMSVCEnvironment()) return M.getGlobalVariable("__security_cookie"); return TargetLowering::getSDagStackGuard(M); } Function *AArch64TargetLowering::getSSPStackGuardCheck(const Module &M) const { // MSVC CRT has a function to validate security cookie. if (Subtarget->getTargetTriple().isWindowsMSVCEnvironment()) return M.getFunction(Subtarget->getSecurityCheckCookieName()); return TargetLowering::getSSPStackGuardCheck(M); } Value * AArch64TargetLowering::getSafeStackPointerLocation(IRBuilderBase &IRB) const { // Android provides a fixed TLS slot for the SafeStack pointer. See the // definition of TLS_SLOT_SAFESTACK in // https://android.googlesource.com/platform/bionic/+/master/libc/private/bionic_tls.h if (Subtarget->isTargetAndroid()) return UseTlsOffset(IRB, 0x48); // Fuchsia is similar. // defines ZX_TLS_UNSAFE_SP_OFFSET with this value. if (Subtarget->isTargetFuchsia()) return UseTlsOffset(IRB, -0x8); return TargetLowering::getSafeStackPointerLocation(IRB); } bool AArch64TargetLowering::isMaskAndCmp0FoldingBeneficial( const Instruction &AndI) const { // Only sink 'and' mask to cmp use block if it is masking a single bit, since // this is likely to be fold the and/cmp/br into a single tbz instruction. It // may be beneficial to sink in other cases, but we would have to check that // the cmp would not get folded into the br to form a cbz for these to be // beneficial. ConstantInt* Mask = dyn_cast(AndI.getOperand(1)); if (!Mask) return false; return Mask->getValue().isPowerOf2(); } bool AArch64TargetLowering:: shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd( SDValue X, ConstantSDNode *XC, ConstantSDNode *CC, SDValue Y, unsigned OldShiftOpcode, unsigned NewShiftOpcode, SelectionDAG &DAG) const { // Does baseline recommend not to perform the fold by default? if (!TargetLowering::shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd( X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG)) return false; // Else, if this is a vector shift, prefer 'shl'. return X.getValueType().isScalarInteger() || NewShiftOpcode == ISD::SHL; } TargetLowering::ShiftLegalizationStrategy AArch64TargetLowering::preferredShiftLegalizationStrategy( SelectionDAG &DAG, SDNode *N, unsigned int ExpansionFactor) const { if (DAG.getMachineFunction().getFunction().hasMinSize() && !Subtarget->isTargetWindows() && !Subtarget->isTargetDarwin()) return ShiftLegalizationStrategy::LowerToLibcall; return TargetLowering::preferredShiftLegalizationStrategy(DAG, N, ExpansionFactor); } void AArch64TargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const { // Update IsSplitCSR in AArch64unctionInfo. AArch64FunctionInfo *AFI = Entry->getParent()->getInfo(); AFI->setIsSplitCSR(true); } void AArch64TargetLowering::insertCopiesSplitCSR( MachineBasicBlock *Entry, const SmallVectorImpl &Exits) const { const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo(); const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent()); if (!IStart) return; const TargetInstrInfo *TII = Subtarget->getInstrInfo(); MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo(); MachineBasicBlock::iterator MBBI = Entry->begin(); for (const MCPhysReg *I = IStart; *I; ++I) { const TargetRegisterClass *RC = nullptr; if (AArch64::GPR64RegClass.contains(*I)) RC = &AArch64::GPR64RegClass; else if (AArch64::FPR64RegClass.contains(*I)) RC = &AArch64::FPR64RegClass; else llvm_unreachable("Unexpected register class in CSRsViaCopy!"); Register NewVR = MRI->createVirtualRegister(RC); // Create copy from CSR to a virtual register. // FIXME: this currently does not emit CFI pseudo-instructions, it works // fine for CXX_FAST_TLS since the C++-style TLS access functions should be // nounwind. If we want to generalize this later, we may need to emit // CFI pseudo-instructions. assert(Entry->getParent()->getFunction().hasFnAttribute( Attribute::NoUnwind) && "Function should be nounwind in insertCopiesSplitCSR!"); Entry->addLiveIn(*I); BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR) .addReg(*I); // Insert the copy-back instructions right before the terminator. for (auto *Exit : Exits) BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(), TII->get(TargetOpcode::COPY), *I) .addReg(NewVR); } } bool AArch64TargetLowering::isIntDivCheap(EVT VT, AttributeList Attr) const { // Integer division on AArch64 is expensive. However, when aggressively // optimizing for code size, we prefer to use a div instruction, as it is // usually smaller than the alternative sequence. // The exception to this is vector division. Since AArch64 doesn't have vector // integer division, leaving the division as-is is a loss even in terms of // size, because it will have to be scalarized, while the alternative code // sequence can be performed in vector form. bool OptSize = Attr.hasFnAttr(Attribute::MinSize); return OptSize && !VT.isVector(); } bool AArch64TargetLowering::preferIncOfAddToSubOfNot(EVT VT) const { // We want inc-of-add for scalars and sub-of-not for vectors. return VT.isScalarInteger(); } bool AArch64TargetLowering::shouldConvertFpToSat(unsigned Op, EVT FPVT, EVT VT) const { // v8f16 without fp16 need to be extended to v8f32, which is more difficult to // legalize. if (FPVT == MVT::v8f16 && !Subtarget->hasFullFP16()) return false; if (FPVT == MVT::v8bf16) return false; return TargetLowering::shouldConvertFpToSat(Op, FPVT, VT); } MachineInstr * AArch64TargetLowering::EmitKCFICheck(MachineBasicBlock &MBB, MachineBasicBlock::instr_iterator &MBBI, const TargetInstrInfo *TII) const { assert(MBBI->isCall() && MBBI->getCFIType() && "Invalid call instruction for a KCFI check"); switch (MBBI->getOpcode()) { case AArch64::BLR: case AArch64::BLRNoIP: case AArch64::TCRETURNri: case AArch64::TCRETURNrix16x17: case AArch64::TCRETURNrix17: case AArch64::TCRETURNrinotx16: break; default: llvm_unreachable("Unexpected CFI call opcode"); } MachineOperand &Target = MBBI->getOperand(0); assert(Target.isReg() && "Invalid target operand for an indirect call"); Target.setIsRenamable(false); return BuildMI(MBB, MBBI, MBBI->getDebugLoc(), TII->get(AArch64::KCFI_CHECK)) .addReg(Target.getReg()) .addImm(MBBI->getCFIType()) .getInstr(); } bool AArch64TargetLowering::enableAggressiveFMAFusion(EVT VT) const { return Subtarget->hasAggressiveFMA() && VT.isFloatingPoint(); } unsigned AArch64TargetLowering::getVaListSizeInBits(const DataLayout &DL) const { if (Subtarget->isTargetDarwin() || Subtarget->isTargetWindows()) return getPointerTy(DL).getSizeInBits(); return 3 * getPointerTy(DL).getSizeInBits() + 2 * 32; } void AArch64TargetLowering::finalizeLowering(MachineFunction &MF) const { MachineFrameInfo &MFI = MF.getFrameInfo(); // If we have any vulnerable SVE stack objects then the stack protector // needs to be placed at the top of the SVE stack area, as the SVE locals // are placed above the other locals, so we allocate it as if it were a // scalable vector. // FIXME: It may be worthwhile having a specific interface for this rather // than doing it here in finalizeLowering. if (MFI.hasStackProtectorIndex()) { for (unsigned int i = 0, e = MFI.getObjectIndexEnd(); i != e; ++i) { if (MFI.getStackID(i) == TargetStackID::ScalableVector && MFI.getObjectSSPLayout(i) != MachineFrameInfo::SSPLK_None) { MFI.setStackID(MFI.getStackProtectorIndex(), TargetStackID::ScalableVector); MFI.setObjectAlignment(MFI.getStackProtectorIndex(), Align(16)); break; } } } MFI.computeMaxCallFrameSize(MF); TargetLoweringBase::finalizeLowering(MF); } // Unlike X86, we let frame lowering assign offsets to all catch objects. bool AArch64TargetLowering::needsFixedCatchObjects() const { return false; } bool AArch64TargetLowering::shouldLocalize( const MachineInstr &MI, const TargetTransformInfo *TTI) const { auto &MF = *MI.getMF(); auto &MRI = MF.getRegInfo(); auto maxUses = [](unsigned RematCost) { // A cost of 1 means remats are basically free. if (RematCost == 1) return std::numeric_limits::max(); if (RematCost == 2) return 2U; // Remat is too expensive, only sink if there's one user. if (RematCost > 2) return 1U; llvm_unreachable("Unexpected remat cost"); }; unsigned Opc = MI.getOpcode(); switch (Opc) { case TargetOpcode::G_GLOBAL_VALUE: { // On Darwin, TLS global vars get selected into function calls, which // we don't want localized, as they can get moved into the middle of a // another call sequence. const GlobalValue &GV = *MI.getOperand(1).getGlobal(); if (GV.isThreadLocal() && Subtarget->isTargetMachO()) return false; return true; // Always localize G_GLOBAL_VALUE to avoid high reg pressure. } case TargetOpcode::G_FCONSTANT: case TargetOpcode::G_CONSTANT: { const ConstantInt *CI; unsigned AdditionalCost = 0; if (Opc == TargetOpcode::G_CONSTANT) CI = MI.getOperand(1).getCImm(); else { LLT Ty = MRI.getType(MI.getOperand(0).getReg()); // We try to estimate cost of 32/64b fpimms, as they'll likely be // materialized as integers. if (Ty.getScalarSizeInBits() != 32 && Ty.getScalarSizeInBits() != 64) break; auto APF = MI.getOperand(1).getFPImm()->getValueAPF(); bool OptForSize = MF.getFunction().hasOptSize() || MF.getFunction().hasMinSize(); if (isFPImmLegal(APF, EVT::getFloatingPointVT(Ty.getScalarSizeInBits()), OptForSize)) return true; // Constant should be cheap. CI = ConstantInt::get(MF.getFunction().getContext(), APF.bitcastToAPInt()); // FP materialization also costs an extra move, from gpr to fpr. AdditionalCost = 1; } APInt Imm = CI->getValue(); InstructionCost Cost = TTI->getIntImmCost( Imm, CI->getType(), TargetTransformInfo::TCK_CodeSize); assert(Cost.isValid() && "Expected a valid imm cost"); unsigned RematCost = *Cost.getValue(); RematCost += AdditionalCost; Register Reg = MI.getOperand(0).getReg(); unsigned MaxUses = maxUses(RematCost); // Don't pass UINT_MAX sentinel value to hasAtMostUserInstrs(). if (MaxUses == std::numeric_limits::max()) --MaxUses; return MRI.hasAtMostUserInstrs(Reg, MaxUses); } // If we legalized G_GLOBAL_VALUE into ADRP + G_ADD_LOW, mark both as being // localizable. case AArch64::ADRP: case AArch64::G_ADD_LOW: // Need to localize G_PTR_ADD so that G_GLOBAL_VALUE can be localized too. case TargetOpcode::G_PTR_ADD: return true; default: break; } return TargetLoweringBase::shouldLocalize(MI, TTI); } bool AArch64TargetLowering::fallBackToDAGISel(const Instruction &Inst) const { if (Inst.getType()->isScalableTy()) return true; for (unsigned i = 0; i < Inst.getNumOperands(); ++i) if (Inst.getOperand(i)->getType()->isScalableTy()) return true; if (const AllocaInst *AI = dyn_cast(&Inst)) { if (AI->getAllocatedType()->isScalableTy()) return true; } // Checks to allow the use of SME instructions if (auto *Base = dyn_cast(&Inst)) { auto CallerAttrs = SMEAttrs(*Inst.getFunction()); auto CalleeAttrs = SMEAttrs(*Base); if (CallerAttrs.requiresSMChange(CalleeAttrs) || CallerAttrs.requiresLazySave(CalleeAttrs) || CallerAttrs.requiresPreservingZT0(CalleeAttrs)) return true; } return false; } // Return the largest legal scalable vector type that matches VT's element type. static EVT getContainerForFixedLengthVector(SelectionDAG &DAG, EVT VT) { assert(VT.isFixedLengthVector() && DAG.getTargetLoweringInfo().isTypeLegal(VT) && "Expected legal fixed length vector!"); switch (VT.getVectorElementType().getSimpleVT().SimpleTy) { default: llvm_unreachable("unexpected element type for SVE container"); case MVT::i8: return EVT(MVT::nxv16i8); case MVT::i16: return EVT(MVT::nxv8i16); case MVT::i32: return EVT(MVT::nxv4i32); case MVT::i64: return EVT(MVT::nxv2i64); case MVT::bf16: return EVT(MVT::nxv8bf16); case MVT::f16: return EVT(MVT::nxv8f16); case MVT::f32: return EVT(MVT::nxv4f32); case MVT::f64: return EVT(MVT::nxv2f64); } } // Return a PTRUE with active lanes corresponding to the extent of VT. static SDValue getPredicateForFixedLengthVector(SelectionDAG &DAG, SDLoc &DL, EVT VT) { assert(VT.isFixedLengthVector() && DAG.getTargetLoweringInfo().isTypeLegal(VT) && "Expected legal fixed length vector!"); std::optional PgPattern = getSVEPredPatternFromNumElements(VT.getVectorNumElements()); assert(PgPattern && "Unexpected element count for SVE predicate"); // For vectors that are exactly getMaxSVEVectorSizeInBits big, we can use // AArch64SVEPredPattern::all, which can enable the use of unpredicated // variants of instructions when available. const auto &Subtarget = DAG.getSubtarget(); unsigned MinSVESize = Subtarget.getMinSVEVectorSizeInBits(); unsigned MaxSVESize = Subtarget.getMaxSVEVectorSizeInBits(); if (MaxSVESize && MinSVESize == MaxSVESize && MaxSVESize == VT.getSizeInBits()) PgPattern = AArch64SVEPredPattern::all; MVT MaskVT; switch (VT.getVectorElementType().getSimpleVT().SimpleTy) { default: llvm_unreachable("unexpected element type for SVE predicate"); case MVT::i8: MaskVT = MVT::nxv16i1; break; case MVT::i16: case MVT::f16: case MVT::bf16: MaskVT = MVT::nxv8i1; break; case MVT::i32: case MVT::f32: MaskVT = MVT::nxv4i1; break; case MVT::i64: case MVT::f64: MaskVT = MVT::nxv2i1; break; } return getPTrue(DAG, DL, MaskVT, *PgPattern); } static SDValue getPredicateForScalableVector(SelectionDAG &DAG, SDLoc &DL, EVT VT) { assert(VT.isScalableVector() && DAG.getTargetLoweringInfo().isTypeLegal(VT) && "Expected legal scalable vector!"); auto PredTy = VT.changeVectorElementType(MVT::i1); return getPTrue(DAG, DL, PredTy, AArch64SVEPredPattern::all); } static SDValue getPredicateForVector(SelectionDAG &DAG, SDLoc &DL, EVT VT) { if (VT.isFixedLengthVector()) return getPredicateForFixedLengthVector(DAG, DL, VT); return getPredicateForScalableVector(DAG, DL, VT); } // Grow V to consume an entire SVE register. static SDValue convertToScalableVector(SelectionDAG &DAG, EVT VT, SDValue V) { assert(VT.isScalableVector() && "Expected to convert into a scalable vector!"); assert(V.getValueType().isFixedLengthVector() && "Expected a fixed length vector operand!"); SDLoc DL(V); SDValue Zero = DAG.getConstant(0, DL, MVT::i64); return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), V, Zero); } // Shrink V so it's just big enough to maintain a VT's worth of data. static SDValue convertFromScalableVector(SelectionDAG &DAG, EVT VT, SDValue V) { assert(VT.isFixedLengthVector() && "Expected to convert into a fixed length vector!"); assert(V.getValueType().isScalableVector() && "Expected a scalable vector operand!"); SDLoc DL(V); SDValue Zero = DAG.getConstant(0, DL, MVT::i64); return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V, Zero); } // Convert all fixed length vector loads larger than NEON to masked_loads. SDValue AArch64TargetLowering::LowerFixedLengthVectorLoadToSVE( SDValue Op, SelectionDAG &DAG) const { auto Load = cast(Op); SDLoc DL(Op); EVT VT = Op.getValueType(); EVT ContainerVT = getContainerForFixedLengthVector(DAG, VT); EVT LoadVT = ContainerVT; EVT MemVT = Load->getMemoryVT(); auto Pg = getPredicateForFixedLengthVector(DAG, DL, VT); if (VT.isFloatingPoint()) { LoadVT = ContainerVT.changeTypeToInteger(); MemVT = MemVT.changeTypeToInteger(); } SDValue NewLoad = DAG.getMaskedLoad( LoadVT, DL, Load->getChain(), Load->getBasePtr(), Load->getOffset(), Pg, DAG.getUNDEF(LoadVT), MemVT, Load->getMemOperand(), Load->getAddressingMode(), Load->getExtensionType()); SDValue Result = NewLoad; if (VT.isFloatingPoint() && Load->getExtensionType() == ISD::EXTLOAD) { EVT ExtendVT = ContainerVT.changeVectorElementType( Load->getMemoryVT().getVectorElementType()); Result = getSVESafeBitCast(ExtendVT, Result, DAG); Result = DAG.getNode(AArch64ISD::FP_EXTEND_MERGE_PASSTHRU, DL, ContainerVT, Pg, Result, DAG.getUNDEF(ContainerVT)); } else if (VT.isFloatingPoint()) { Result = DAG.getNode(ISD::BITCAST, DL, ContainerVT, Result); } Result = convertFromScalableVector(DAG, VT, Result); SDValue MergedValues[2] = {Result, NewLoad.getValue(1)}; return DAG.getMergeValues(MergedValues, DL); } static SDValue convertFixedMaskToScalableVector(SDValue Mask, SelectionDAG &DAG) { SDLoc DL(Mask); EVT InVT = Mask.getValueType(); EVT ContainerVT = getContainerForFixedLengthVector(DAG, InVT); auto Pg = getPredicateForFixedLengthVector(DAG, DL, InVT); if (ISD::isBuildVectorAllOnes(Mask.getNode())) return Pg; auto Op1 = convertToScalableVector(DAG, ContainerVT, Mask); auto Op2 = DAG.getConstant(0, DL, ContainerVT); return DAG.getNode(AArch64ISD::SETCC_MERGE_ZERO, DL, Pg.getValueType(), {Pg, Op1, Op2, DAG.getCondCode(ISD::SETNE)}); } // Convert all fixed length vector loads larger than NEON to masked_loads. SDValue AArch64TargetLowering::LowerFixedLengthVectorMLoadToSVE( SDValue Op, SelectionDAG &DAG) const { auto Load = cast(Op); SDLoc DL(Op); EVT VT = Op.getValueType(); EVT ContainerVT = getContainerForFixedLengthVector(DAG, VT); SDValue Mask = Load->getMask(); // If this is an extending load and the mask type is not the same as // load's type then we have to extend the mask type. if (VT.getScalarSizeInBits() > Mask.getValueType().getScalarSizeInBits()) { assert(Load->getExtensionType() != ISD::NON_EXTLOAD && "Incorrect mask type"); Mask = DAG.getNode(ISD::ANY_EXTEND, DL, VT, Mask); } Mask = convertFixedMaskToScalableVector(Mask, DAG); SDValue PassThru; bool IsPassThruZeroOrUndef = false; if (Load->getPassThru()->isUndef()) { PassThru = DAG.getUNDEF(ContainerVT); IsPassThruZeroOrUndef = true; } else { if (ContainerVT.isInteger()) PassThru = DAG.getConstant(0, DL, ContainerVT); else PassThru = DAG.getConstantFP(0, DL, ContainerVT); if (isZerosVector(Load->getPassThru().getNode())) IsPassThruZeroOrUndef = true; } SDValue NewLoad = DAG.getMaskedLoad( ContainerVT, DL, Load->getChain(), Load->getBasePtr(), Load->getOffset(), Mask, PassThru, Load->getMemoryVT(), Load->getMemOperand(), Load->getAddressingMode(), Load->getExtensionType()); SDValue Result = NewLoad; if (!IsPassThruZeroOrUndef) { SDValue OldPassThru = convertToScalableVector(DAG, ContainerVT, Load->getPassThru()); Result = DAG.getSelect(DL, ContainerVT, Mask, Result, OldPassThru); } Result = convertFromScalableVector(DAG, VT, Result); SDValue MergedValues[2] = {Result, NewLoad.getValue(1)}; return DAG.getMergeValues(MergedValues, DL); } // Convert all fixed length vector stores larger than NEON to masked_stores. SDValue AArch64TargetLowering::LowerFixedLengthVectorStoreToSVE( SDValue Op, SelectionDAG &DAG) const { auto Store = cast(Op); SDLoc DL(Op); EVT VT = Store->getValue().getValueType(); EVT ContainerVT = getContainerForFixedLengthVector(DAG, VT); EVT MemVT = Store->getMemoryVT(); auto Pg = getPredicateForFixedLengthVector(DAG, DL, VT); auto NewValue = convertToScalableVector(DAG, ContainerVT, Store->getValue()); if (VT.isFloatingPoint() && Store->isTruncatingStore()) { EVT TruncVT = ContainerVT.changeVectorElementType( Store->getMemoryVT().getVectorElementType()); MemVT = MemVT.changeTypeToInteger(); NewValue = DAG.getNode(AArch64ISD::FP_ROUND_MERGE_PASSTHRU, DL, TruncVT, Pg, NewValue, DAG.getTargetConstant(0, DL, MVT::i64), DAG.getUNDEF(TruncVT)); NewValue = getSVESafeBitCast(ContainerVT.changeTypeToInteger(), NewValue, DAG); } else if (VT.isFloatingPoint()) { MemVT = MemVT.changeTypeToInteger(); NewValue = getSVESafeBitCast(ContainerVT.changeTypeToInteger(), NewValue, DAG); } return DAG.getMaskedStore(Store->getChain(), DL, NewValue, Store->getBasePtr(), Store->getOffset(), Pg, MemVT, Store->getMemOperand(), Store->getAddressingMode(), Store->isTruncatingStore()); } SDValue AArch64TargetLowering::LowerFixedLengthVectorMStoreToSVE( SDValue Op, SelectionDAG &DAG) const { auto *Store = cast(Op); SDLoc DL(Op); EVT VT = Store->getValue().getValueType(); EVT ContainerVT = getContainerForFixedLengthVector(DAG, VT); auto NewValue = convertToScalableVector(DAG, ContainerVT, Store->getValue()); SDValue Mask = convertFixedMaskToScalableVector(Store->getMask(), DAG); return DAG.getMaskedStore( Store->getChain(), DL, NewValue, Store->getBasePtr(), Store->getOffset(), Mask, Store->getMemoryVT(), Store->getMemOperand(), Store->getAddressingMode(), Store->isTruncatingStore()); } SDValue AArch64TargetLowering::LowerFixedLengthVectorIntDivideToSVE( SDValue Op, SelectionDAG &DAG) const { SDLoc dl(Op); EVT VT = Op.getValueType(); EVT EltVT = VT.getVectorElementType(); bool Signed = Op.getOpcode() == ISD::SDIV; unsigned PredOpcode = Signed ? AArch64ISD::SDIV_PRED : AArch64ISD::UDIV_PRED; bool Negated; uint64_t SplatVal; if (Signed && isPow2Splat(Op.getOperand(1), SplatVal, Negated)) { EVT ContainerVT = getContainerForFixedLengthVector(DAG, VT); SDValue Op1 = convertToScalableVector(DAG, ContainerVT, Op.getOperand(0)); SDValue Op2 = DAG.getTargetConstant(Log2_64(SplatVal), dl, MVT::i32); SDValue Pg = getPredicateForFixedLengthVector(DAG, dl, VT); SDValue Res = DAG.getNode(AArch64ISD::SRAD_MERGE_OP1, dl, ContainerVT, Pg, Op1, Op2); if (Negated) Res = DAG.getNode(ISD::SUB, dl, ContainerVT, DAG.getConstant(0, dl, ContainerVT), Res); return convertFromScalableVector(DAG, VT, Res); } // Scalable vector i32/i64 DIV is supported. if (EltVT == MVT::i32 || EltVT == MVT::i64) return LowerToPredicatedOp(Op, DAG, PredOpcode); // Scalable vector i8/i16 DIV is not supported. Promote it to i32. EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext()); EVT PromVT = HalfVT.widenIntegerVectorElementType(*DAG.getContext()); unsigned ExtendOpcode = Signed ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; // If the wider type is legal: extend, op, and truncate. EVT WideVT = VT.widenIntegerVectorElementType(*DAG.getContext()); if (DAG.getTargetLoweringInfo().isTypeLegal(WideVT)) { SDValue Op0 = DAG.getNode(ExtendOpcode, dl, WideVT, Op.getOperand(0)); SDValue Op1 = DAG.getNode(ExtendOpcode, dl, WideVT, Op.getOperand(1)); SDValue Div = DAG.getNode(Op.getOpcode(), dl, WideVT, Op0, Op1); return DAG.getNode(ISD::TRUNCATE, dl, VT, Div); } auto HalveAndExtendVector = [&DAG, &dl, &HalfVT, &PromVT, &ExtendOpcode](SDValue Op) { SDValue IdxZero = DAG.getConstant(0, dl, MVT::i64); SDValue IdxHalf = DAG.getConstant(HalfVT.getVectorNumElements(), dl, MVT::i64); SDValue Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, HalfVT, Op, IdxZero); SDValue Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, HalfVT, Op, IdxHalf); return std::pair( {DAG.getNode(ExtendOpcode, dl, PromVT, Lo), DAG.getNode(ExtendOpcode, dl, PromVT, Hi)}); }; // If wider type is not legal: split, extend, op, trunc and concat. auto [Op0LoExt, Op0HiExt] = HalveAndExtendVector(Op.getOperand(0)); auto [Op1LoExt, Op1HiExt] = HalveAndExtendVector(Op.getOperand(1)); SDValue Lo = DAG.getNode(Op.getOpcode(), dl, PromVT, Op0LoExt, Op1LoExt); SDValue Hi = DAG.getNode(Op.getOpcode(), dl, PromVT, Op0HiExt, Op1HiExt); SDValue LoTrunc = DAG.getNode(ISD::TRUNCATE, dl, HalfVT, Lo); SDValue HiTrunc = DAG.getNode(ISD::TRUNCATE, dl, HalfVT, Hi); return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, {LoTrunc, HiTrunc}); } SDValue AArch64TargetLowering::LowerFixedLengthVectorIntExtendToSVE( SDValue Op, SelectionDAG &DAG) const { EVT VT = Op.getValueType(); assert(VT.isFixedLengthVector() && "Expected fixed length vector type!"); SDLoc DL(Op); SDValue Val = Op.getOperand(0); EVT ContainerVT = getContainerForFixedLengthVector(DAG, Val.getValueType()); Val = convertToScalableVector(DAG, ContainerVT, Val); bool Signed = Op.getOpcode() == ISD::SIGN_EXTEND; unsigned ExtendOpc = Signed ? AArch64ISD::SUNPKLO : AArch64ISD::UUNPKLO; // Repeatedly unpack Val until the result is of the desired element type. switch (ContainerVT.getSimpleVT().SimpleTy) { default: llvm_unreachable("unimplemented container type"); case MVT::nxv16i8: Val = DAG.getNode(ExtendOpc, DL, MVT::nxv8i16, Val); if (VT.getVectorElementType() == MVT::i16) break; [[fallthrough]]; case MVT::nxv8i16: Val = DAG.getNode(ExtendOpc, DL, MVT::nxv4i32, Val); if (VT.getVectorElementType() == MVT::i32) break; [[fallthrough]]; case MVT::nxv4i32: Val = DAG.getNode(ExtendOpc, DL, MVT::nxv2i64, Val); assert(VT.getVectorElementType() == MVT::i64 && "Unexpected element type!"); break; } return convertFromScalableVector(DAG, VT, Val); } SDValue AArch64TargetLowering::LowerFixedLengthVectorTruncateToSVE( SDValue Op, SelectionDAG &DAG) const { EVT VT = Op.getValueType(); assert(VT.isFixedLengthVector() && "Expected fixed length vector type!"); SDLoc DL(Op); SDValue Val = Op.getOperand(0); EVT ContainerVT = getContainerForFixedLengthVector(DAG, Val.getValueType()); Val = convertToScalableVector(DAG, ContainerVT, Val); // Repeatedly truncate Val until the result is of the desired element type. switch (ContainerVT.getSimpleVT().SimpleTy) { default: llvm_unreachable("unimplemented container type"); case MVT::nxv2i64: Val = DAG.getNode(ISD::BITCAST, DL, MVT::nxv4i32, Val); Val = DAG.getNode(AArch64ISD::UZP1, DL, MVT::nxv4i32, Val, Val); if (VT.getVectorElementType() == MVT::i32) break; [[fallthrough]]; case MVT::nxv4i32: Val = DAG.getNode(ISD::BITCAST, DL, MVT::nxv8i16, Val); Val = DAG.getNode(AArch64ISD::UZP1, DL, MVT::nxv8i16, Val, Val); if (VT.getVectorElementType() == MVT::i16) break; [[fallthrough]]; case MVT::nxv8i16: Val = DAG.getNode(ISD::BITCAST, DL, MVT::nxv16i8, Val); Val = DAG.getNode(AArch64ISD::UZP1, DL, MVT::nxv16i8, Val, Val); assert(VT.getVectorElementType() == MVT::i8 && "Unexpected element type!"); break; } return convertFromScalableVector(DAG, VT, Val); } SDValue AArch64TargetLowering::LowerFixedLengthExtractVectorElt( SDValue Op, SelectionDAG &DAG) const { EVT VT = Op.getValueType(); EVT InVT = Op.getOperand(0).getValueType(); assert(InVT.isFixedLengthVector() && "Expected fixed length vector type!"); SDLoc DL(Op); EVT ContainerVT = getContainerForFixedLengthVector(DAG, InVT); SDValue Op0 = convertToScalableVector(DAG, ContainerVT, Op->getOperand(0)); return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, Op0, Op.getOperand(1)); } SDValue AArch64TargetLowering::LowerFixedLengthInsertVectorElt( SDValue Op, SelectionDAG &DAG) const { EVT VT = Op.getValueType(); assert(VT.isFixedLengthVector() && "Expected fixed length vector type!"); SDLoc DL(Op); EVT InVT = Op.getOperand(0).getValueType(); EVT ContainerVT = getContainerForFixedLengthVector(DAG, InVT); SDValue Op0 = convertToScalableVector(DAG, ContainerVT, Op->getOperand(0)); auto ScalableRes = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, ContainerVT, Op0, Op.getOperand(1), Op.getOperand(2)); return convertFromScalableVector(DAG, VT, ScalableRes); } // Convert vector operation 'Op' to an equivalent predicated operation whereby // the original operation's type is used to construct a suitable predicate. // NOTE: The results for inactive lanes are undefined. SDValue AArch64TargetLowering::LowerToPredicatedOp(SDValue Op, SelectionDAG &DAG, unsigned NewOp) const { EVT VT = Op.getValueType(); SDLoc DL(Op); auto Pg = getPredicateForVector(DAG, DL, VT); if (VT.isFixedLengthVector()) { assert(isTypeLegal(VT) && "Expected only legal fixed-width types"); EVT ContainerVT = getContainerForFixedLengthVector(DAG, VT); // Create list of operands by converting existing ones to scalable types. SmallVector Operands = {Pg}; for (const SDValue &V : Op->op_values()) { if (isa(V)) { Operands.push_back(V); continue; } if (const VTSDNode *VTNode = dyn_cast(V)) { EVT VTArg = VTNode->getVT().getVectorElementType(); EVT NewVTArg = ContainerVT.changeVectorElementType(VTArg); Operands.push_back(DAG.getValueType(NewVTArg)); continue; } assert(isTypeLegal(V.getValueType()) && "Expected only legal fixed-width types"); Operands.push_back(convertToScalableVector(DAG, ContainerVT, V)); } if (isMergePassthruOpcode(NewOp)) Operands.push_back(DAG.getUNDEF(ContainerVT)); auto ScalableRes = DAG.getNode(NewOp, DL, ContainerVT, Operands); return convertFromScalableVector(DAG, VT, ScalableRes); } assert(VT.isScalableVector() && "Only expect to lower scalable vector op!"); SmallVector Operands = {Pg}; for (const SDValue &V : Op->op_values()) { assert((!V.getValueType().isVector() || V.getValueType().isScalableVector()) && "Only scalable vectors are supported!"); Operands.push_back(V); } if (isMergePassthruOpcode(NewOp)) Operands.push_back(DAG.getUNDEF(VT)); return DAG.getNode(NewOp, DL, VT, Operands, Op->getFlags()); } // If a fixed length vector operation has no side effects when applied to // undefined elements, we can safely use scalable vectors to perform the same // operation without needing to worry about predication. SDValue AArch64TargetLowering::LowerToScalableOp(SDValue Op, SelectionDAG &DAG) const { EVT VT = Op.getValueType(); assert(VT.isFixedLengthVector() && isTypeLegal(VT) && "Only expected to lower fixed length vector operation!"); EVT ContainerVT = getContainerForFixedLengthVector(DAG, VT); // Create list of operands by converting existing ones to scalable types. SmallVector Ops; for (const SDValue &V : Op->op_values()) { assert(!isa(V) && "Unexpected VTSDNode node!"); // Pass through non-vector operands. if (!V.getValueType().isVector()) { Ops.push_back(V); continue; } // "cast" fixed length vector to a scalable vector. assert(V.getValueType().isFixedLengthVector() && isTypeLegal(V.getValueType()) && "Only fixed length vectors are supported!"); Ops.push_back(convertToScalableVector(DAG, ContainerVT, V)); } auto ScalableRes = DAG.getNode(Op.getOpcode(), SDLoc(Op), ContainerVT, Ops); return convertFromScalableVector(DAG, VT, ScalableRes); } SDValue AArch64TargetLowering::LowerVECREDUCE_SEQ_FADD(SDValue ScalarOp, SelectionDAG &DAG) const { SDLoc DL(ScalarOp); SDValue AccOp = ScalarOp.getOperand(0); SDValue VecOp = ScalarOp.getOperand(1); EVT SrcVT = VecOp.getValueType(); EVT ResVT = SrcVT.getVectorElementType(); EVT ContainerVT = SrcVT; if (SrcVT.isFixedLengthVector()) { ContainerVT = getContainerForFixedLengthVector(DAG, SrcVT); VecOp = convertToScalableVector(DAG, ContainerVT, VecOp); } SDValue Pg = getPredicateForVector(DAG, DL, SrcVT); SDValue Zero = DAG.getConstant(0, DL, MVT::i64); // Convert operands to Scalable. AccOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, ContainerVT, DAG.getUNDEF(ContainerVT), AccOp, Zero); // Perform reduction. SDValue Rdx = DAG.getNode(AArch64ISD::FADDA_PRED, DL, ContainerVT, Pg, AccOp, VecOp); return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Rdx, Zero); } SDValue AArch64TargetLowering::LowerPredReductionToSVE(SDValue ReduceOp, SelectionDAG &DAG) const { SDLoc DL(ReduceOp); SDValue Op = ReduceOp.getOperand(0); EVT OpVT = Op.getValueType(); EVT VT = ReduceOp.getValueType(); if (!OpVT.isScalableVector() || OpVT.getVectorElementType() != MVT::i1) return SDValue(); SDValue Pg = getPredicateForVector(DAG, DL, OpVT); switch (ReduceOp.getOpcode()) { default: return SDValue(); case ISD::VECREDUCE_OR: if (isAllActivePredicate(DAG, Pg) && OpVT == MVT::nxv16i1) // The predicate can be 'Op' because // vecreduce_or(Op & ) <=> vecreduce_or(Op). return getPTest(DAG, VT, Op, Op, AArch64CC::ANY_ACTIVE); else return getPTest(DAG, VT, Pg, Op, AArch64CC::ANY_ACTIVE); case ISD::VECREDUCE_AND: { Op = DAG.getNode(ISD::XOR, DL, OpVT, Op, Pg); return getPTest(DAG, VT, Pg, Op, AArch64CC::NONE_ACTIVE); } case ISD::VECREDUCE_XOR: { SDValue ID = DAG.getTargetConstant(Intrinsic::aarch64_sve_cntp, DL, MVT::i64); if (OpVT == MVT::nxv1i1) { // Emulate a CNTP on .Q using .D and a different governing predicate. Pg = DAG.getNode(AArch64ISD::REINTERPRET_CAST, DL, MVT::nxv2i1, Pg); Op = DAG.getNode(AArch64ISD::REINTERPRET_CAST, DL, MVT::nxv2i1, Op); } SDValue Cntp = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, MVT::i64, ID, Pg, Op); return DAG.getAnyExtOrTrunc(Cntp, DL, VT); } } return SDValue(); } SDValue AArch64TargetLowering::LowerReductionToSVE(unsigned Opcode, SDValue ScalarOp, SelectionDAG &DAG) const { SDLoc DL(ScalarOp); SDValue VecOp = ScalarOp.getOperand(0); EVT SrcVT = VecOp.getValueType(); if (useSVEForFixedLengthVectorVT( SrcVT, /*OverrideNEON=*/Subtarget->useSVEForFixedLengthVectors())) { EVT ContainerVT = getContainerForFixedLengthVector(DAG, SrcVT); VecOp = convertToScalableVector(DAG, ContainerVT, VecOp); } // UADDV always returns an i64 result. EVT ResVT = (Opcode == AArch64ISD::UADDV_PRED) ? MVT::i64 : SrcVT.getVectorElementType(); EVT RdxVT = SrcVT; if (SrcVT.isFixedLengthVector() || Opcode == AArch64ISD::UADDV_PRED) RdxVT = getPackedSVEVectorVT(ResVT); SDValue Pg = getPredicateForVector(DAG, DL, SrcVT); SDValue Rdx = DAG.getNode(Opcode, DL, RdxVT, Pg, VecOp); SDValue Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Rdx, DAG.getConstant(0, DL, MVT::i64)); // The VEC_REDUCE nodes expect an element size result. if (ResVT != ScalarOp.getValueType()) Res = DAG.getAnyExtOrTrunc(Res, DL, ScalarOp.getValueType()); return Res; } SDValue AArch64TargetLowering::LowerFixedLengthVectorSelectToSVE(SDValue Op, SelectionDAG &DAG) const { EVT VT = Op.getValueType(); SDLoc DL(Op); EVT InVT = Op.getOperand(1).getValueType(); EVT ContainerVT = getContainerForFixedLengthVector(DAG, InVT); SDValue Op1 = convertToScalableVector(DAG, ContainerVT, Op->getOperand(1)); SDValue Op2 = convertToScalableVector(DAG, ContainerVT, Op->getOperand(2)); // Convert the mask to a predicated (NOTE: We don't need to worry about // inactive lanes since VSELECT is safe when given undefined elements). EVT MaskVT = Op.getOperand(0).getValueType(); EVT MaskContainerVT = getContainerForFixedLengthVector(DAG, MaskVT); auto Mask = convertToScalableVector(DAG, MaskContainerVT, Op.getOperand(0)); Mask = DAG.getNode(ISD::TRUNCATE, DL, MaskContainerVT.changeVectorElementType(MVT::i1), Mask); auto ScalableRes = DAG.getNode(ISD::VSELECT, DL, ContainerVT, Mask, Op1, Op2); return convertFromScalableVector(DAG, VT, ScalableRes); } SDValue AArch64TargetLowering::LowerFixedLengthVectorSetccToSVE( SDValue Op, SelectionDAG &DAG) const { SDLoc DL(Op); EVT InVT = Op.getOperand(0).getValueType(); EVT ContainerVT = getContainerForFixedLengthVector(DAG, InVT); assert(InVT.isFixedLengthVector() && isTypeLegal(InVT) && "Only expected to lower fixed length vector operation!"); assert(Op.getValueType() == InVT.changeTypeToInteger() && "Expected integer result of the same bit length as the inputs!"); auto Op1 = convertToScalableVector(DAG, ContainerVT, Op.getOperand(0)); auto Op2 = convertToScalableVector(DAG, ContainerVT, Op.getOperand(1)); auto Pg = getPredicateForFixedLengthVector(DAG, DL, InVT); EVT CmpVT = Pg.getValueType(); auto Cmp = DAG.getNode(AArch64ISD::SETCC_MERGE_ZERO, DL, CmpVT, {Pg, Op1, Op2, Op.getOperand(2)}); EVT PromoteVT = ContainerVT.changeTypeToInteger(); auto Promote = DAG.getBoolExtOrTrunc(Cmp, DL, PromoteVT, InVT); return convertFromScalableVector(DAG, Op.getValueType(), Promote); } SDValue AArch64TargetLowering::LowerFixedLengthBitcastToSVE(SDValue Op, SelectionDAG &DAG) const { SDLoc DL(Op); auto SrcOp = Op.getOperand(0); EVT VT = Op.getValueType(); EVT ContainerDstVT = getContainerForFixedLengthVector(DAG, VT); EVT ContainerSrcVT = getContainerForFixedLengthVector(DAG, SrcOp.getValueType()); SrcOp = convertToScalableVector(DAG, ContainerSrcVT, SrcOp); Op = DAG.getNode(ISD::BITCAST, DL, ContainerDstVT, SrcOp); return convertFromScalableVector(DAG, VT, Op); } SDValue AArch64TargetLowering::LowerFixedLengthConcatVectorsToSVE( SDValue Op, SelectionDAG &DAG) const { SDLoc DL(Op); unsigned NumOperands = Op->getNumOperands(); assert(NumOperands > 1 && isPowerOf2_32(NumOperands) && "Unexpected number of operands in CONCAT_VECTORS"); auto SrcOp1 = Op.getOperand(0); auto SrcOp2 = Op.getOperand(1); EVT VT = Op.getValueType(); EVT SrcVT = SrcOp1.getValueType(); if (NumOperands > 2) { SmallVector Ops; EVT PairVT = SrcVT.getDoubleNumVectorElementsVT(*DAG.getContext()); for (unsigned I = 0; I < NumOperands; I += 2) Ops.push_back(DAG.getNode(ISD::CONCAT_VECTORS, DL, PairVT, Op->getOperand(I), Op->getOperand(I + 1))); return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Ops); } EVT ContainerVT = getContainerForFixedLengthVector(DAG, VT); SDValue Pg = getPredicateForFixedLengthVector(DAG, DL, SrcVT); SrcOp1 = convertToScalableVector(DAG, ContainerVT, SrcOp1); SrcOp2 = convertToScalableVector(DAG, ContainerVT, SrcOp2); Op = DAG.getNode(AArch64ISD::SPLICE, DL, ContainerVT, Pg, SrcOp1, SrcOp2); return convertFromScalableVector(DAG, VT, Op); } SDValue AArch64TargetLowering::LowerFixedLengthFPExtendToSVE(SDValue Op, SelectionDAG &DAG) const { EVT VT = Op.getValueType(); assert(VT.isFixedLengthVector() && "Expected fixed length vector type!"); SDLoc DL(Op); SDValue Val = Op.getOperand(0); SDValue Pg = getPredicateForVector(DAG, DL, VT); EVT SrcVT = Val.getValueType(); EVT ContainerVT = getContainerForFixedLengthVector(DAG, VT); EVT ExtendVT = ContainerVT.changeVectorElementType( SrcVT.getVectorElementType()); Val = DAG.getNode(ISD::BITCAST, DL, SrcVT.changeTypeToInteger(), Val); Val = DAG.getNode(ISD::ANY_EXTEND, DL, VT.changeTypeToInteger(), Val); Val = convertToScalableVector(DAG, ContainerVT.changeTypeToInteger(), Val); Val = getSVESafeBitCast(ExtendVT, Val, DAG); Val = DAG.getNode(AArch64ISD::FP_EXTEND_MERGE_PASSTHRU, DL, ContainerVT, Pg, Val, DAG.getUNDEF(ContainerVT)); return convertFromScalableVector(DAG, VT, Val); } SDValue AArch64TargetLowering::LowerFixedLengthFPRoundToSVE(SDValue Op, SelectionDAG &DAG) const { EVT VT = Op.getValueType(); assert(VT.isFixedLengthVector() && "Expected fixed length vector type!"); SDLoc DL(Op); SDValue Val = Op.getOperand(0); EVT SrcVT = Val.getValueType(); EVT ContainerSrcVT = getContainerForFixedLengthVector(DAG, SrcVT); EVT RoundVT = ContainerSrcVT.changeVectorElementType( VT.getVectorElementType()); SDValue Pg = getPredicateForVector(DAG, DL, RoundVT); Val = convertToScalableVector(DAG, ContainerSrcVT, Val); Val = DAG.getNode(AArch64ISD::FP_ROUND_MERGE_PASSTHRU, DL, RoundVT, Pg, Val, Op.getOperand(1), DAG.getUNDEF(RoundVT)); Val = getSVESafeBitCast(ContainerSrcVT.changeTypeToInteger(), Val, DAG); Val = convertFromScalableVector(DAG, SrcVT.changeTypeToInteger(), Val); Val = DAG.getNode(ISD::TRUNCATE, DL, VT.changeTypeToInteger(), Val); return DAG.getNode(ISD::BITCAST, DL, VT, Val); } SDValue AArch64TargetLowering::LowerFixedLengthIntToFPToSVE(SDValue Op, SelectionDAG &DAG) const { EVT VT = Op.getValueType(); assert(VT.isFixedLengthVector() && "Expected fixed length vector type!"); bool IsSigned = Op.getOpcode() == ISD::SINT_TO_FP; unsigned Opcode = IsSigned ? AArch64ISD::SINT_TO_FP_MERGE_PASSTHRU : AArch64ISD::UINT_TO_FP_MERGE_PASSTHRU; SDLoc DL(Op); SDValue Val = Op.getOperand(0); EVT SrcVT = Val.getValueType(); EVT ContainerDstVT = getContainerForFixedLengthVector(DAG, VT); EVT ContainerSrcVT = getContainerForFixedLengthVector(DAG, SrcVT); if (VT.bitsGE(SrcVT)) { SDValue Pg = getPredicateForFixedLengthVector(DAG, DL, VT); Val = DAG.getNode(IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, DL, VT.changeTypeToInteger(), Val); // Safe to use a larger than specified operand because by promoting the // value nothing has changed from an arithmetic point of view. Val = convertToScalableVector(DAG, ContainerDstVT.changeTypeToInteger(), Val); Val = DAG.getNode(Opcode, DL, ContainerDstVT, Pg, Val, DAG.getUNDEF(ContainerDstVT)); return convertFromScalableVector(DAG, VT, Val); } else { EVT CvtVT = ContainerSrcVT.changeVectorElementType( ContainerDstVT.getVectorElementType()); SDValue Pg = getPredicateForFixedLengthVector(DAG, DL, SrcVT); Val = convertToScalableVector(DAG, ContainerSrcVT, Val); Val = DAG.getNode(Opcode, DL, CvtVT, Pg, Val, DAG.getUNDEF(CvtVT)); Val = getSVESafeBitCast(ContainerSrcVT, Val, DAG); Val = convertFromScalableVector(DAG, SrcVT, Val); Val = DAG.getNode(ISD::TRUNCATE, DL, VT.changeTypeToInteger(), Val); return DAG.getNode(ISD::BITCAST, DL, VT, Val); } } SDValue AArch64TargetLowering::LowerVECTOR_DEINTERLEAVE(SDValue Op, SelectionDAG &DAG) const { SDLoc DL(Op); EVT OpVT = Op.getValueType(); assert(OpVT.isScalableVector() && "Expected scalable vector in LowerVECTOR_DEINTERLEAVE."); SDValue Even = DAG.getNode(AArch64ISD::UZP1, DL, OpVT, Op.getOperand(0), Op.getOperand(1)); SDValue Odd = DAG.getNode(AArch64ISD::UZP2, DL, OpVT, Op.getOperand(0), Op.getOperand(1)); return DAG.getMergeValues({Even, Odd}, DL); } SDValue AArch64TargetLowering::LowerVECTOR_INTERLEAVE(SDValue Op, SelectionDAG &DAG) const { SDLoc DL(Op); EVT OpVT = Op.getValueType(); assert(OpVT.isScalableVector() && "Expected scalable vector in LowerVECTOR_INTERLEAVE."); SDValue Lo = DAG.getNode(AArch64ISD::ZIP1, DL, OpVT, Op.getOperand(0), Op.getOperand(1)); SDValue Hi = DAG.getNode(AArch64ISD::ZIP2, DL, OpVT, Op.getOperand(0), Op.getOperand(1)); return DAG.getMergeValues({Lo, Hi}, DL); } SDValue AArch64TargetLowering::LowerFixedLengthFPToIntToSVE(SDValue Op, SelectionDAG &DAG) const { EVT VT = Op.getValueType(); assert(VT.isFixedLengthVector() && "Expected fixed length vector type!"); bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT; unsigned Opcode = IsSigned ? AArch64ISD::FCVTZS_MERGE_PASSTHRU : AArch64ISD::FCVTZU_MERGE_PASSTHRU; SDLoc DL(Op); SDValue Val = Op.getOperand(0); EVT SrcVT = Val.getValueType(); EVT ContainerDstVT = getContainerForFixedLengthVector(DAG, VT); EVT ContainerSrcVT = getContainerForFixedLengthVector(DAG, SrcVT); if (VT.bitsGT(SrcVT)) { EVT CvtVT = ContainerDstVT.changeVectorElementType( ContainerSrcVT.getVectorElementType()); SDValue Pg = getPredicateForFixedLengthVector(DAG, DL, VT); Val = DAG.getNode(ISD::BITCAST, DL, SrcVT.changeTypeToInteger(), Val); Val = DAG.getNode(ISD::ANY_EXTEND, DL, VT, Val); Val = convertToScalableVector(DAG, ContainerDstVT, Val); Val = getSVESafeBitCast(CvtVT, Val, DAG); Val = DAG.getNode(Opcode, DL, ContainerDstVT, Pg, Val, DAG.getUNDEF(ContainerDstVT)); return convertFromScalableVector(DAG, VT, Val); } else { EVT CvtVT = ContainerSrcVT.changeTypeToInteger(); SDValue Pg = getPredicateForFixedLengthVector(DAG, DL, SrcVT); // Safe to use a larger than specified result since an fp_to_int where the // result doesn't fit into the destination is undefined. Val = convertToScalableVector(DAG, ContainerSrcVT, Val); Val = DAG.getNode(Opcode, DL, CvtVT, Pg, Val, DAG.getUNDEF(CvtVT)); Val = convertFromScalableVector(DAG, SrcVT.changeTypeToInteger(), Val); return DAG.getNode(ISD::TRUNCATE, DL, VT, Val); } } static SDValue GenerateFixedLengthSVETBL(SDValue Op, SDValue Op1, SDValue Op2, ArrayRef ShuffleMask, EVT VT, EVT ContainerVT, SelectionDAG &DAG) { auto &Subtarget = DAG.getSubtarget(); SDLoc DL(Op); unsigned MinSVESize = Subtarget.getMinSVEVectorSizeInBits(); unsigned MaxSVESize = Subtarget.getMaxSVEVectorSizeInBits(); bool IsSingleOp = ShuffleVectorInst::isSingleSourceMask(ShuffleMask, ShuffleMask.size()); if (!Subtarget.isNeonAvailable() && !MinSVESize) MinSVESize = 128; // Ignore two operands if no SVE2 or all index numbers couldn't // be represented. if (!IsSingleOp && !Subtarget.hasSVE2()) return SDValue(); EVT VTOp1 = Op.getOperand(0).getValueType(); unsigned BitsPerElt = VTOp1.getVectorElementType().getSizeInBits(); unsigned IndexLen = MinSVESize / BitsPerElt; unsigned ElementsPerVectorReg = VTOp1.getVectorNumElements(); uint64_t MaxOffset = APInt(BitsPerElt, -1, false).getZExtValue(); EVT MaskEltType = VTOp1.getVectorElementType().changeTypeToInteger(); EVT MaskType = EVT::getVectorVT(*DAG.getContext(), MaskEltType, IndexLen); bool MinMaxEqual = (MinSVESize == MaxSVESize); assert(ElementsPerVectorReg <= IndexLen && ShuffleMask.size() <= IndexLen && "Incorrectly legalised shuffle operation"); SmallVector TBLMask; // If MinSVESize is not equal to MaxSVESize then we need to know which // TBL mask element needs adjustment. SmallVector AddRuntimeVLMask; // Bail out for 8-bits element types, because with 2048-bit SVE register // size 8 bits is only sufficient to index into the first source vector. if (!IsSingleOp && !MinMaxEqual && BitsPerElt == 8) return SDValue(); for (int Index : ShuffleMask) { // Handling poison index value. if (Index < 0) Index = 0; // If the mask refers to elements in the second operand, then we have to // offset the index by the number of elements in a vector. If this is number // is not known at compile-time, we need to maintain a mask with 'VL' values // to add at runtime. if ((unsigned)Index >= ElementsPerVectorReg) { if (MinMaxEqual) { Index += IndexLen - ElementsPerVectorReg; } else { Index = Index - ElementsPerVectorReg; AddRuntimeVLMask.push_back(DAG.getConstant(1, DL, MVT::i64)); } } else if (!MinMaxEqual) AddRuntimeVLMask.push_back(DAG.getConstant(0, DL, MVT::i64)); // For 8-bit elements and 1024-bit SVE registers and MaxOffset equals // to 255, this might point to the last element of in the second operand // of the shufflevector, thus we are rejecting this transform. if ((unsigned)Index >= MaxOffset) return SDValue(); TBLMask.push_back(DAG.getConstant(Index, DL, MVT::i64)); } // Choosing an out-of-range index leads to the lane being zeroed vs zero // value where it would perform first lane duplication for out of // index elements. For i8 elements an out-of-range index could be a valid // for 2048-bit vector register size. for (unsigned i = 0; i < IndexLen - ElementsPerVectorReg; ++i) { TBLMask.push_back(DAG.getConstant((int)MaxOffset, DL, MVT::i64)); if (!MinMaxEqual) AddRuntimeVLMask.push_back(DAG.getConstant(0, DL, MVT::i64)); } EVT MaskContainerVT = getContainerForFixedLengthVector(DAG, MaskType); SDValue VecMask = DAG.getBuildVector(MaskType, DL, ArrayRef(TBLMask.data(), IndexLen)); SDValue SVEMask = convertToScalableVector(DAG, MaskContainerVT, VecMask); SDValue Shuffle; if (IsSingleOp) Shuffle = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, ContainerVT, DAG.getConstant(Intrinsic::aarch64_sve_tbl, DL, MVT::i32), Op1, SVEMask); else if (Subtarget.hasSVE2()) { if (!MinMaxEqual) { unsigned MinNumElts = AArch64::SVEBitsPerBlock / BitsPerElt; SDValue VScale = (BitsPerElt == 64) ? DAG.getVScale(DL, MVT::i64, APInt(64, MinNumElts)) : DAG.getVScale(DL, MVT::i32, APInt(32, MinNumElts)); SDValue VecMask = DAG.getBuildVector(MaskType, DL, ArrayRef(TBLMask.data(), IndexLen)); SDValue MulByMask = DAG.getNode( ISD::MUL, DL, MaskType, DAG.getNode(ISD::SPLAT_VECTOR, DL, MaskType, VScale), DAG.getBuildVector(MaskType, DL, ArrayRef(AddRuntimeVLMask.data(), IndexLen))); SDValue UpdatedVecMask = DAG.getNode(ISD::ADD, DL, MaskType, VecMask, MulByMask); SVEMask = convertToScalableVector( DAG, getContainerForFixedLengthVector(DAG, MaskType), UpdatedVecMask); } Shuffle = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, ContainerVT, DAG.getConstant(Intrinsic::aarch64_sve_tbl2, DL, MVT::i32), Op1, Op2, SVEMask); } Shuffle = convertFromScalableVector(DAG, VT, Shuffle); return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Shuffle); } SDValue AArch64TargetLowering::LowerFixedLengthVECTOR_SHUFFLEToSVE( SDValue Op, SelectionDAG &DAG) const { EVT VT = Op.getValueType(); assert(VT.isFixedLengthVector() && "Expected fixed length vector type!"); auto *SVN = cast(Op.getNode()); auto ShuffleMask = SVN->getMask(); SDLoc DL(Op); SDValue Op1 = Op.getOperand(0); SDValue Op2 = Op.getOperand(1); EVT ContainerVT = getContainerForFixedLengthVector(DAG, VT); Op1 = convertToScalableVector(DAG, ContainerVT, Op1); Op2 = convertToScalableVector(DAG, ContainerVT, Op2); auto MinLegalExtractEltScalarTy = [](EVT ScalarTy) -> EVT { if (ScalarTy == MVT::i8 || ScalarTy == MVT::i16) return MVT::i32; return ScalarTy; }; if (SVN->isSplat()) { unsigned Lane = std::max(0, SVN->getSplatIndex()); EVT ScalarTy = MinLegalExtractEltScalarTy(VT.getVectorElementType()); SDValue SplatEl = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ScalarTy, Op1, DAG.getConstant(Lane, DL, MVT::i64)); Op = DAG.getNode(ISD::SPLAT_VECTOR, DL, ContainerVT, SplatEl); return convertFromScalableVector(DAG, VT, Op); } bool ReverseEXT = false; unsigned Imm; if (isEXTMask(ShuffleMask, VT, ReverseEXT, Imm) && Imm == VT.getVectorNumElements() - 1) { if (ReverseEXT) std::swap(Op1, Op2); EVT ScalarTy = MinLegalExtractEltScalarTy(VT.getVectorElementType()); SDValue Scalar = DAG.getNode( ISD::EXTRACT_VECTOR_ELT, DL, ScalarTy, Op1, DAG.getConstant(VT.getVectorNumElements() - 1, DL, MVT::i64)); Op = DAG.getNode(AArch64ISD::INSR, DL, ContainerVT, Op2, Scalar); return convertFromScalableVector(DAG, VT, Op); } for (unsigned LaneSize : {64U, 32U, 16U}) { if (isREVMask(ShuffleMask, VT, LaneSize)) { EVT NewVT = getPackedSVEVectorVT(EVT::getIntegerVT(*DAG.getContext(), LaneSize)); unsigned RevOp; unsigned EltSz = VT.getScalarSizeInBits(); if (EltSz == 8) RevOp = AArch64ISD::BSWAP_MERGE_PASSTHRU; else if (EltSz == 16) RevOp = AArch64ISD::REVH_MERGE_PASSTHRU; else RevOp = AArch64ISD::REVW_MERGE_PASSTHRU; Op = DAG.getNode(ISD::BITCAST, DL, NewVT, Op1); Op = LowerToPredicatedOp(Op, DAG, RevOp); Op = DAG.getNode(ISD::BITCAST, DL, ContainerVT, Op); return convertFromScalableVector(DAG, VT, Op); } } if (Subtarget->hasSVE2p1() && VT.getScalarSizeInBits() == 64 && isREVMask(ShuffleMask, VT, 128)) { if (!VT.isFloatingPoint()) return LowerToPredicatedOp(Op, DAG, AArch64ISD::REVD_MERGE_PASSTHRU); EVT NewVT = getPackedSVEVectorVT(EVT::getIntegerVT(*DAG.getContext(), 64)); Op = DAG.getNode(ISD::BITCAST, DL, NewVT, Op1); Op = LowerToPredicatedOp(Op, DAG, AArch64ISD::REVD_MERGE_PASSTHRU); Op = DAG.getNode(ISD::BITCAST, DL, ContainerVT, Op); return convertFromScalableVector(DAG, VT, Op); } unsigned WhichResult; if (isZIPMask(ShuffleMask, VT, WhichResult) && WhichResult == 0) return convertFromScalableVector( DAG, VT, DAG.getNode(AArch64ISD::ZIP1, DL, ContainerVT, Op1, Op2)); if (isTRNMask(ShuffleMask, VT, WhichResult)) { unsigned Opc = (WhichResult == 0) ? AArch64ISD::TRN1 : AArch64ISD::TRN2; return convertFromScalableVector( DAG, VT, DAG.getNode(Opc, DL, ContainerVT, Op1, Op2)); } if (isZIP_v_undef_Mask(ShuffleMask, VT, WhichResult) && WhichResult == 0) return convertFromScalableVector( DAG, VT, DAG.getNode(AArch64ISD::ZIP1, DL, ContainerVT, Op1, Op1)); if (isTRN_v_undef_Mask(ShuffleMask, VT, WhichResult)) { unsigned Opc = (WhichResult == 0) ? AArch64ISD::TRN1 : AArch64ISD::TRN2; return convertFromScalableVector( DAG, VT, DAG.getNode(Opc, DL, ContainerVT, Op1, Op1)); } // Functions like isZIPMask return true when a ISD::VECTOR_SHUFFLE's mask // represents the same logical operation as performed by a ZIP instruction. In // isolation these functions do not mean the ISD::VECTOR_SHUFFLE is exactly // equivalent to an AArch64 instruction. There's the extra component of // ISD::VECTOR_SHUFFLE's value type to consider. Prior to SVE these functions // only operated on 64/128bit vector types that have a direct mapping to a // target register and so an exact mapping is implied. // However, when using SVE for fixed length vectors, most legal vector types // are actually sub-vectors of a larger SVE register. When mapping // ISD::VECTOR_SHUFFLE to an SVE instruction care must be taken to consider // how the mask's indices translate. Specifically, when the mapping requires // an exact meaning for a specific vector index (e.g. Index X is the last // vector element in the register) then such mappings are often only safe when // the exact SVE register size is know. The main exception to this is when // indices are logically relative to the first element of either // ISD::VECTOR_SHUFFLE operand because these relative indices don't change // when converting from fixed-length to scalable vector types (i.e. the start // of a fixed length vector is always the start of a scalable vector). unsigned MinSVESize = Subtarget->getMinSVEVectorSizeInBits(); unsigned MaxSVESize = Subtarget->getMaxSVEVectorSizeInBits(); if (MinSVESize == MaxSVESize && MaxSVESize == VT.getSizeInBits()) { if (ShuffleVectorInst::isReverseMask(ShuffleMask, ShuffleMask.size()) && Op2.isUndef()) { Op = DAG.getNode(ISD::VECTOR_REVERSE, DL, ContainerVT, Op1); return convertFromScalableVector(DAG, VT, Op); } if (isZIPMask(ShuffleMask, VT, WhichResult) && WhichResult != 0) return convertFromScalableVector( DAG, VT, DAG.getNode(AArch64ISD::ZIP2, DL, ContainerVT, Op1, Op2)); if (isUZPMask(ShuffleMask, VT, WhichResult)) { unsigned Opc = (WhichResult == 0) ? AArch64ISD::UZP1 : AArch64ISD::UZP2; return convertFromScalableVector( DAG, VT, DAG.getNode(Opc, DL, ContainerVT, Op1, Op2)); } if (isZIP_v_undef_Mask(ShuffleMask, VT, WhichResult) && WhichResult != 0) return convertFromScalableVector( DAG, VT, DAG.getNode(AArch64ISD::ZIP2, DL, ContainerVT, Op1, Op1)); if (isUZP_v_undef_Mask(ShuffleMask, VT, WhichResult)) { unsigned Opc = (WhichResult == 0) ? AArch64ISD::UZP1 : AArch64ISD::UZP2; return convertFromScalableVector( DAG, VT, DAG.getNode(Opc, DL, ContainerVT, Op1, Op1)); } } // Avoid producing TBL instruction if we don't know SVE register minimal size, // unless NEON is not available and we can assume minimal SVE register size is // 128-bits. if (MinSVESize || !Subtarget->isNeonAvailable()) return GenerateFixedLengthSVETBL(Op, Op1, Op2, ShuffleMask, VT, ContainerVT, DAG); return SDValue(); } SDValue AArch64TargetLowering::getSVESafeBitCast(EVT VT, SDValue Op, SelectionDAG &DAG) const { SDLoc DL(Op); EVT InVT = Op.getValueType(); assert(VT.isScalableVector() && isTypeLegal(VT) && InVT.isScalableVector() && isTypeLegal(InVT) && "Only expect to cast between legal scalable vector types!"); assert(VT.getVectorElementType() != MVT::i1 && InVT.getVectorElementType() != MVT::i1 && "For predicate bitcasts, use getSVEPredicateBitCast"); if (InVT == VT) return Op; EVT PackedVT = getPackedSVEVectorVT(VT.getVectorElementType()); EVT PackedInVT = getPackedSVEVectorVT(InVT.getVectorElementType()); // Safe bitcasting between unpacked vector types of different element counts // is currently unsupported because the following is missing the necessary // work to ensure the result's elements live where they're supposed to within // an SVE register. // 01234567 // e.g. nxv2i32 = XX??XX?? // nxv4f16 = X?X?X?X? assert((VT.getVectorElementCount() == InVT.getVectorElementCount() || VT == PackedVT || InVT == PackedInVT) && "Unexpected bitcast!"); // Pack input if required. if (InVT != PackedInVT) Op = DAG.getNode(AArch64ISD::REINTERPRET_CAST, DL, PackedInVT, Op); Op = DAG.getNode(ISD::BITCAST, DL, PackedVT, Op); // Unpack result if required. if (VT != PackedVT) Op = DAG.getNode(AArch64ISD::REINTERPRET_CAST, DL, VT, Op); return Op; } bool AArch64TargetLowering::isAllActivePredicate(SelectionDAG &DAG, SDValue N) const { return ::isAllActivePredicate(DAG, N); } EVT AArch64TargetLowering::getPromotedVTForPredicate(EVT VT) const { return ::getPromotedVTForPredicate(VT); } bool AArch64TargetLowering::SimplifyDemandedBitsForTargetNode( SDValue Op, const APInt &OriginalDemandedBits, const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const { unsigned Opc = Op.getOpcode(); switch (Opc) { case AArch64ISD::VSHL: { // Match (VSHL (VLSHR Val X) X) SDValue ShiftL = Op; SDValue ShiftR = Op->getOperand(0); if (ShiftR->getOpcode() != AArch64ISD::VLSHR) return false; if (!ShiftL.hasOneUse() || !ShiftR.hasOneUse()) return false; unsigned ShiftLBits = ShiftL->getConstantOperandVal(1); unsigned ShiftRBits = ShiftR->getConstantOperandVal(1); // Other cases can be handled as well, but this is not // implemented. if (ShiftRBits != ShiftLBits) return false; unsigned ScalarSize = Op.getScalarValueSizeInBits(); assert(ScalarSize > ShiftLBits && "Invalid shift imm"); APInt ZeroBits = APInt::getLowBitsSet(ScalarSize, ShiftLBits); APInt UnusedBits = ~OriginalDemandedBits; if ((ZeroBits & UnusedBits) != ZeroBits) return false; // All bits that are zeroed by (VSHL (VLSHR Val X) X) are not // used - simplify to just Val. return TLO.CombineTo(Op, ShiftR->getOperand(0)); } case ISD::INTRINSIC_WO_CHAIN: { if (auto ElementSize = IsSVECntIntrinsic(Op)) { unsigned MaxSVEVectorSizeInBits = Subtarget->getMaxSVEVectorSizeInBits(); if (!MaxSVEVectorSizeInBits) MaxSVEVectorSizeInBits = AArch64::SVEMaxBitsPerVector; unsigned MaxElements = MaxSVEVectorSizeInBits / *ElementSize; // The SVE count intrinsics don't support the multiplier immediate so we // don't have to account for that here. The value returned may be slightly // over the true required bits, as this is based on the "ALL" pattern. The // other patterns are also exposed by these intrinsics, but they all // return a value that's strictly less than "ALL". unsigned RequiredBits = llvm::bit_width(MaxElements); unsigned BitWidth = Known.Zero.getBitWidth(); if (RequiredBits < BitWidth) Known.Zero.setHighBits(BitWidth - RequiredBits); return false; } } } return TargetLowering::SimplifyDemandedBitsForTargetNode( Op, OriginalDemandedBits, OriginalDemandedElts, Known, TLO, Depth); } bool AArch64TargetLowering::isTargetCanonicalConstantNode(SDValue Op) const { return Op.getOpcode() == AArch64ISD::DUP || Op.getOpcode() == AArch64ISD::MOVI || (Op.getOpcode() == ISD::EXTRACT_SUBVECTOR && Op.getOperand(0).getOpcode() == AArch64ISD::DUP) || TargetLowering::isTargetCanonicalConstantNode(Op); } bool AArch64TargetLowering::isComplexDeinterleavingSupported() const { return Subtarget->hasSVE() || Subtarget->hasSVE2() || Subtarget->hasComplxNum(); } bool AArch64TargetLowering::isComplexDeinterleavingOperationSupported( ComplexDeinterleavingOperation Operation, Type *Ty) const { auto *VTy = dyn_cast(Ty); if (!VTy) return false; // If the vector is scalable, SVE is enabled, implying support for complex // numbers. Otherwise, we need to ensure complex number support is available if (!VTy->isScalableTy() && !Subtarget->hasComplxNum()) return false; auto *ScalarTy = VTy->getScalarType(); unsigned NumElements = VTy->getElementCount().getKnownMinValue(); // We can only process vectors that have a bit size of 128 or higher (with an // additional 64 bits for Neon). Additionally, these vectors must have a // power-of-2 size, as we later split them into the smallest supported size // and merging them back together after applying complex operation. unsigned VTyWidth = VTy->getScalarSizeInBits() * NumElements; if ((VTyWidth < 128 && (VTy->isScalableTy() || VTyWidth != 64)) || !llvm::isPowerOf2_32(VTyWidth)) return false; if (ScalarTy->isIntegerTy() && Subtarget->hasSVE2() && VTy->isScalableTy()) { unsigned ScalarWidth = ScalarTy->getScalarSizeInBits(); return 8 <= ScalarWidth && ScalarWidth <= 64; } return (ScalarTy->isHalfTy() && Subtarget->hasFullFP16()) || ScalarTy->isFloatTy() || ScalarTy->isDoubleTy(); } Value *AArch64TargetLowering::createComplexDeinterleavingIR( IRBuilderBase &B, ComplexDeinterleavingOperation OperationType, ComplexDeinterleavingRotation Rotation, Value *InputA, Value *InputB, Value *Accumulator) const { VectorType *Ty = cast(InputA->getType()); bool IsScalable = Ty->isScalableTy(); bool IsInt = Ty->getElementType()->isIntegerTy(); unsigned TyWidth = Ty->getScalarSizeInBits() * Ty->getElementCount().getKnownMinValue(); assert(((TyWidth >= 128 && llvm::isPowerOf2_32(TyWidth)) || TyWidth == 64) && "Vector type must be either 64 or a power of 2 that is at least 128"); if (TyWidth > 128) { int Stride = Ty->getElementCount().getKnownMinValue() / 2; auto *HalfTy = VectorType::getHalfElementsVectorType(Ty); auto *LowerSplitA = B.CreateExtractVector(HalfTy, InputA, B.getInt64(0)); auto *LowerSplitB = B.CreateExtractVector(HalfTy, InputB, B.getInt64(0)); auto *UpperSplitA = B.CreateExtractVector(HalfTy, InputA, B.getInt64(Stride)); auto *UpperSplitB = B.CreateExtractVector(HalfTy, InputB, B.getInt64(Stride)); Value *LowerSplitAcc = nullptr; Value *UpperSplitAcc = nullptr; if (Accumulator) { LowerSplitAcc = B.CreateExtractVector(HalfTy, Accumulator, B.getInt64(0)); UpperSplitAcc = B.CreateExtractVector(HalfTy, Accumulator, B.getInt64(Stride)); } auto *LowerSplitInt = createComplexDeinterleavingIR( B, OperationType, Rotation, LowerSplitA, LowerSplitB, LowerSplitAcc); auto *UpperSplitInt = createComplexDeinterleavingIR( B, OperationType, Rotation, UpperSplitA, UpperSplitB, UpperSplitAcc); auto *Result = B.CreateInsertVector(Ty, PoisonValue::get(Ty), LowerSplitInt, B.getInt64(0)); return B.CreateInsertVector(Ty, Result, UpperSplitInt, B.getInt64(Stride)); } if (OperationType == ComplexDeinterleavingOperation::CMulPartial) { if (Accumulator == nullptr) Accumulator = Constant::getNullValue(Ty); if (IsScalable) { if (IsInt) return B.CreateIntrinsic( Intrinsic::aarch64_sve_cmla_x, Ty, {Accumulator, InputA, InputB, B.getInt32((int)Rotation * 90)}); auto *Mask = B.getAllOnesMask(Ty->getElementCount()); return B.CreateIntrinsic( Intrinsic::aarch64_sve_fcmla, Ty, {Mask, Accumulator, InputA, InputB, B.getInt32((int)Rotation * 90)}); } Intrinsic::ID IdMap[4] = {Intrinsic::aarch64_neon_vcmla_rot0, Intrinsic::aarch64_neon_vcmla_rot90, Intrinsic::aarch64_neon_vcmla_rot180, Intrinsic::aarch64_neon_vcmla_rot270}; return B.CreateIntrinsic(IdMap[(int)Rotation], Ty, {Accumulator, InputA, InputB}); } if (OperationType == ComplexDeinterleavingOperation::CAdd) { if (IsScalable) { if (Rotation == ComplexDeinterleavingRotation::Rotation_90 || Rotation == ComplexDeinterleavingRotation::Rotation_270) { if (IsInt) return B.CreateIntrinsic( Intrinsic::aarch64_sve_cadd_x, Ty, {InputA, InputB, B.getInt32((int)Rotation * 90)}); auto *Mask = B.getAllOnesMask(Ty->getElementCount()); return B.CreateIntrinsic( Intrinsic::aarch64_sve_fcadd, Ty, {Mask, InputA, InputB, B.getInt32((int)Rotation * 90)}); } return nullptr; } Intrinsic::ID IntId = Intrinsic::not_intrinsic; if (Rotation == ComplexDeinterleavingRotation::Rotation_90) IntId = Intrinsic::aarch64_neon_vcadd_rot90; else if (Rotation == ComplexDeinterleavingRotation::Rotation_270) IntId = Intrinsic::aarch64_neon_vcadd_rot270; if (IntId == Intrinsic::not_intrinsic) return nullptr; return B.CreateIntrinsic(IntId, Ty, {InputA, InputB}); } return nullptr; } bool AArch64TargetLowering::preferScalarizeSplat(SDNode *N) const { unsigned Opc = N->getOpcode(); if (ISD::isExtOpcode(Opc)) { if (any_of(N->uses(), [&](SDNode *Use) { return Use->getOpcode() == ISD::MUL; })) return false; } return true; } unsigned AArch64TargetLowering::getMinimumJumpTableEntries() const { return Subtarget->getMinimumJumpTableEntries(); } MVT AArch64TargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context, CallingConv::ID CC, EVT VT) const { bool NonUnitFixedLengthVector = VT.isFixedLengthVector() && !VT.getVectorElementCount().isScalar(); if (!NonUnitFixedLengthVector || !Subtarget->useSVEForFixedLengthVectors()) return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT); EVT VT1; MVT RegisterVT; unsigned NumIntermediates; getVectorTypeBreakdownForCallingConv(Context, CC, VT, VT1, NumIntermediates, RegisterVT); return RegisterVT; } unsigned AArch64TargetLowering::getNumRegistersForCallingConv( LLVMContext &Context, CallingConv::ID CC, EVT VT) const { bool NonUnitFixedLengthVector = VT.isFixedLengthVector() && !VT.getVectorElementCount().isScalar(); if (!NonUnitFixedLengthVector || !Subtarget->useSVEForFixedLengthVectors()) return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT); EVT VT1; MVT VT2; unsigned NumIntermediates; return getVectorTypeBreakdownForCallingConv(Context, CC, VT, VT1, NumIntermediates, VT2); } unsigned AArch64TargetLowering::getVectorTypeBreakdownForCallingConv( LLVMContext &Context, CallingConv::ID CC, EVT VT, EVT &IntermediateVT, unsigned &NumIntermediates, MVT &RegisterVT) const { int NumRegs = TargetLowering::getVectorTypeBreakdownForCallingConv( Context, CC, VT, IntermediateVT, NumIntermediates, RegisterVT); if (!RegisterVT.isFixedLengthVector() || RegisterVT.getFixedSizeInBits() <= 128) return NumRegs; assert(Subtarget->useSVEForFixedLengthVectors() && "Unexpected mode!"); assert(IntermediateVT == RegisterVT && "Unexpected VT mismatch!"); assert(RegisterVT.getFixedSizeInBits() % 128 == 0 && "Unexpected size!"); // A size mismatch here implies either type promotion or widening and would // have resulted in scalarisation if larger vectors had not be available. if (RegisterVT.getSizeInBits() * NumRegs != VT.getSizeInBits()) { EVT EltTy = VT.getVectorElementType(); EVT NewVT = EVT::getVectorVT(Context, EltTy, ElementCount::getFixed(1)); if (!isTypeLegal(NewVT)) NewVT = EltTy; IntermediateVT = NewVT; NumIntermediates = VT.getVectorNumElements(); RegisterVT = getRegisterType(Context, NewVT); return NumIntermediates; } // SVE VLS support does not introduce a new ABI so we should use NEON sized // types for vector arguments and returns. unsigned NumSubRegs = RegisterVT.getFixedSizeInBits() / 128; NumIntermediates *= NumSubRegs; NumRegs *= NumSubRegs; switch (RegisterVT.getVectorElementType().SimpleTy) { default: llvm_unreachable("unexpected element type for vector"); case MVT::i8: IntermediateVT = RegisterVT = MVT::v16i8; break; case MVT::i16: IntermediateVT = RegisterVT = MVT::v8i16; break; case MVT::i32: IntermediateVT = RegisterVT = MVT::v4i32; break; case MVT::i64: IntermediateVT = RegisterVT = MVT::v2i64; break; case MVT::f16: IntermediateVT = RegisterVT = MVT::v8f16; break; case MVT::f32: IntermediateVT = RegisterVT = MVT::v4f32; break; case MVT::f64: IntermediateVT = RegisterVT = MVT::v2f64; break; case MVT::bf16: IntermediateVT = RegisterVT = MVT::v8bf16; break; } return NumRegs; } bool AArch64TargetLowering::hasInlineStackProbe( const MachineFunction &MF) const { return !Subtarget->isTargetWindows() && MF.getInfo()->hasStackProbing(); }