summaryrefslogtreecommitdiffstats
path: root/llvm/lib/CodeGen/SelectionDAG/LegalizeVectorOps.cpp
blob: 7a9cfdf5c3fda9e678924ca06bfaa2119e6858e1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
//===- LegalizeVectorOps.cpp - Implement SelectionDAG::LegalizeVectors ----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the SelectionDAG::LegalizeVectors method.
//
// The vector legalizer looks for vector operations which might need to be
// scalarized and legalizes them. This is a separate step from Legalize because
// scalarizing can introduce illegal types.  For example, suppose we have an
// ISD::SDIV of type v2i64 on x86-32.  The type is legal (for example, addition
// on a v2i64 is legal), but ISD::SDIV isn't legal, so we have to unroll the
// operation, which introduces nodes with the illegal type i64 which must be
// expanded.  Similarly, suppose we have an ISD::SRA of type v16i8 on PowerPC;
// the operation must be unrolled, which introduces nodes with the illegal
// type i8 which must be promoted.
//
// This does not legalize vector manipulations like ISD::BUILD_VECTOR,
// or operations that happen to take a vector which are custom-lowered;
// the legalization for such operations never produces nodes
// with illegal types, so it's okay to put off legalizing them until
// SelectionDAG::Legalize runs.
//
//===----------------------------------------------------------------------===//

#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/VectorUtils.h"
#include "llvm/CodeGen/ISDOpcodes.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/CodeGen/SelectionDAGNodes.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/CodeGenTypes/MachineValueType.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include <cassert>
#include <cstdint>
#include <iterator>
#include <utility>

using namespace llvm;

#define DEBUG_TYPE "legalizevectorops"

namespace {

class VectorLegalizer {
  SelectionDAG& DAG;
  const TargetLowering &TLI;
  bool Changed = false; // Keep track of whether anything changed

  /// For nodes that are of legal width, and that have more than one use, this
  /// map indicates what regularized operand to use.  This allows us to avoid
  /// legalizing the same thing more than once.
  SmallDenseMap<SDValue, SDValue, 64> LegalizedNodes;

  /// Adds a node to the translation cache.
  void AddLegalizedOperand(SDValue From, SDValue To) {
    LegalizedNodes.insert(std::make_pair(From, To));
    // If someone requests legalization of the new node, return itself.
    if (From != To)
      LegalizedNodes.insert(std::make_pair(To, To));
  }

  /// Legalizes the given node.
  SDValue LegalizeOp(SDValue Op);

  /// Assuming the node is legal, "legalize" the results.
  SDValue TranslateLegalizeResults(SDValue Op, SDNode *Result);

  /// Make sure Results are legal and update the translation cache.
  SDValue RecursivelyLegalizeResults(SDValue Op,
                                     MutableArrayRef<SDValue> Results);

  /// Wrapper to interface LowerOperation with a vector of Results.
  /// Returns false if the target wants to use default expansion. Otherwise
  /// returns true. If return is true and the Results are empty, then the
  /// target wants to keep the input node as is.
  bool LowerOperationWrapper(SDNode *N, SmallVectorImpl<SDValue> &Results);

  /// Implements unrolling a VSETCC.
  SDValue UnrollVSETCC(SDNode *Node);

  /// Implement expand-based legalization of vector operations.
  ///
  /// This is just a high-level routine to dispatch to specific code paths for
  /// operations to legalize them.
  void Expand(SDNode *Node, SmallVectorImpl<SDValue> &Results);

  /// Implements expansion for FP_TO_UINT; falls back to UnrollVectorOp if
  /// FP_TO_SINT isn't legal.
  void ExpandFP_TO_UINT(SDNode *Node, SmallVectorImpl<SDValue> &Results);

  /// Implements expansion for UINT_TO_FLOAT; falls back to UnrollVectorOp if
  /// SINT_TO_FLOAT and SHR on vectors isn't legal.
  void ExpandUINT_TO_FLOAT(SDNode *Node, SmallVectorImpl<SDValue> &Results);

  /// Implement expansion for SIGN_EXTEND_INREG using SRL and SRA.
  SDValue ExpandSEXTINREG(SDNode *Node);

  /// Implement expansion for ANY_EXTEND_VECTOR_INREG.
  ///
  /// Shuffles the low lanes of the operand into place and bitcasts to the proper
  /// type. The contents of the bits in the extended part of each element are
  /// undef.
  SDValue ExpandANY_EXTEND_VECTOR_INREG(SDNode *Node);

  /// Implement expansion for SIGN_EXTEND_VECTOR_INREG.
  ///
  /// Shuffles the low lanes of the operand into place, bitcasts to the proper
  /// type, then shifts left and arithmetic shifts right to introduce a sign
  /// extension.
  SDValue ExpandSIGN_EXTEND_VECTOR_INREG(SDNode *Node);

  /// Implement expansion for ZERO_EXTEND_VECTOR_INREG.
  ///
  /// Shuffles the low lanes of the operand into place and blends zeros into
  /// the remaining lanes, finally bitcasting to the proper type.
  SDValue ExpandZERO_EXTEND_VECTOR_INREG(SDNode *Node);

  /// Expand bswap of vectors into a shuffle if legal.
  SDValue ExpandBSWAP(SDNode *Node);

  /// Implement vselect in terms of XOR, AND, OR when blend is not
  /// supported by the target.
  SDValue ExpandVSELECT(SDNode *Node);
  SDValue ExpandVP_SELECT(SDNode *Node);
  SDValue ExpandVP_MERGE(SDNode *Node);
  SDValue ExpandVP_REM(SDNode *Node);
  SDValue ExpandSELECT(SDNode *Node);
  std::pair<SDValue, SDValue> ExpandLoad(SDNode *N);
  SDValue ExpandStore(SDNode *N);
  SDValue ExpandFNEG(SDNode *Node);
  void ExpandFSUB(SDNode *Node, SmallVectorImpl<SDValue> &Results);
  void ExpandSETCC(SDNode *Node, SmallVectorImpl<SDValue> &Results);
  void ExpandBITREVERSE(SDNode *Node, SmallVectorImpl<SDValue> &Results);
  void ExpandUADDSUBO(SDNode *Node, SmallVectorImpl<SDValue> &Results);
  void ExpandSADDSUBO(SDNode *Node, SmallVectorImpl<SDValue> &Results);
  void ExpandMULO(SDNode *Node, SmallVectorImpl<SDValue> &Results);
  void ExpandFixedPointDiv(SDNode *Node, SmallVectorImpl<SDValue> &Results);
  void ExpandStrictFPOp(SDNode *Node, SmallVectorImpl<SDValue> &Results);
  void ExpandREM(SDNode *Node, SmallVectorImpl<SDValue> &Results);

  bool tryExpandVecMathCall(SDNode *Node, RTLIB::Libcall LC,
                            SmallVectorImpl<SDValue> &Results);
  bool tryExpandVecMathCall(SDNode *Node, RTLIB::Libcall Call_F32,
                            RTLIB::Libcall Call_F64, RTLIB::Libcall Call_F80,
                            RTLIB::Libcall Call_F128,
                            RTLIB::Libcall Call_PPCF128,
                            SmallVectorImpl<SDValue> &Results);

  void UnrollStrictFPOp(SDNode *Node, SmallVectorImpl<SDValue> &Results);

  /// Implements vector promotion.
  ///
  /// This is essentially just bitcasting the operands to a different type and
  /// bitcasting the result back to the original type.
  void Promote(SDNode *Node, SmallVectorImpl<SDValue> &Results);

  /// Implements [SU]INT_TO_FP vector promotion.
  ///
  /// This is a [zs]ext of the input operand to a larger integer type.
  void PromoteINT_TO_FP(SDNode *Node, SmallVectorImpl<SDValue> &Results);

  /// Implements FP_TO_[SU]INT vector promotion of the result type.
  ///
  /// It is promoted to a larger integer type.  The result is then
  /// truncated back to the original type.
  void PromoteFP_TO_INT(SDNode *Node, SmallVectorImpl<SDValue> &Results);

  /// Implements vector reduce operation promotion.
  ///
  /// All vector operands are promoted to a vector type with larger element
  /// type, and the start value is promoted to a larger scalar type. Then the
  /// result is truncated back to the original scalar type.
  void PromoteReduction(SDNode *Node, SmallVectorImpl<SDValue> &Results);

  /// Implements vector setcc operation promotion.
  ///
  /// All vector operands are promoted to a vector type with larger element
  /// type.
  void PromoteSETCC(SDNode *Node, SmallVectorImpl<SDValue> &Results);

  void PromoteSTRICT(SDNode *Node, SmallVectorImpl<SDValue> &Results);

public:
  VectorLegalizer(SelectionDAG& dag) :
      DAG(dag), TLI(dag.getTargetLoweringInfo()) {}

  /// Begin legalizer the vector operations in the DAG.
  bool Run();
};

} // end anonymous namespace

bool VectorLegalizer::Run() {
  // Before we start legalizing vector nodes, check if there are any vectors.
  bool HasVectors = false;
  for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
       E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I) {
    // Check if the values of the nodes contain vectors. We don't need to check
    // the operands because we are going to check their values at some point.
    HasVectors = llvm::any_of(I->values(), [](EVT T) { return T.isVector(); });

    // If we found a vector node we can start the legalization.
    if (HasVectors)
      break;
  }

  // If this basic block has no vectors then no need to legalize vectors.
  if (!HasVectors)
    return false;

  // The legalize process is inherently a bottom-up recursive process (users
  // legalize their uses before themselves).  Given infinite stack space, we
  // could just start legalizing on the root and traverse the whole graph.  In
  // practice however, this causes us to run out of stack space on large basic
  // blocks.  To avoid this problem, compute an ordering of the nodes where each
  // node is only legalized after all of its operands are legalized.
  DAG.AssignTopologicalOrder();
  for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
       E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I)
    LegalizeOp(SDValue(&*I, 0));

  // Finally, it's possible the root changed.  Get the new root.
  SDValue OldRoot = DAG.getRoot();
  assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?");
  DAG.setRoot(LegalizedNodes[OldRoot]);

  LegalizedNodes.clear();

  // Remove dead nodes now.
  DAG.RemoveDeadNodes();

  return Changed;
}

SDValue VectorLegalizer::TranslateLegalizeResults(SDValue Op, SDNode *Result) {
  assert(Op->getNumValues() == Result->getNumValues() &&
         "Unexpected number of results");
  // Generic legalization: just pass the operand through.
  for (unsigned i = 0, e = Op->getNumValues(); i != e; ++i)
    AddLegalizedOperand(Op.getValue(i), SDValue(Result, i));
  return SDValue(Result, Op.getResNo());
}

SDValue
VectorLegalizer::RecursivelyLegalizeResults(SDValue Op,
                                            MutableArrayRef<SDValue> Results) {
  assert(Results.size() == Op->getNumValues() &&
         "Unexpected number of results");
  // Make sure that the generated code is itself legal.
  for (unsigned i = 0, e = Results.size(); i != e; ++i) {
    Results[i] = LegalizeOp(Results[i]);
    AddLegalizedOperand(Op.getValue(i), Results[i]);
  }

  return Results[Op.getResNo()];
}

SDValue VectorLegalizer::LegalizeOp(SDValue Op) {
  // Note that LegalizeOp may be reentered even from single-use nodes, which
  // means that we always must cache transformed nodes.
  DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op);
  if (I != LegalizedNodes.end()) return I->second;

  // Legalize the operands
  SmallVector<SDValue, 8> Ops;
  for (const SDValue &Oper : Op->op_values())
    Ops.push_back(LegalizeOp(Oper));

  SDNode *Node = DAG.UpdateNodeOperands(Op.getNode(), Ops);

  bool HasVectorValueOrOp =
      llvm::any_of(Node->values(), [](EVT T) { return T.isVector(); }) ||
      llvm::any_of(Node->op_values(),
                   [](SDValue O) { return O.getValueType().isVector(); });
  if (!HasVectorValueOrOp)
    return TranslateLegalizeResults(Op, Node);

  TargetLowering::LegalizeAction Action = TargetLowering::Legal;
  EVT ValVT;
  switch (Op.getOpcode()) {
  default:
    return TranslateLegalizeResults(Op, Node);
  case ISD::LOAD: {
    LoadSDNode *LD = cast<LoadSDNode>(Node);
    ISD::LoadExtType ExtType = LD->getExtensionType();
    EVT LoadedVT = LD->getMemoryVT();
    if (LoadedVT.isVector() && ExtType != ISD::NON_EXTLOAD)
      Action = TLI.getLoadExtAction(ExtType, LD->getValueType(0), LoadedVT);
    break;
  }
  case ISD::STORE: {
    StoreSDNode *ST = cast<StoreSDNode>(Node);
    EVT StVT = ST->getMemoryVT();
    MVT ValVT = ST->getValue().getSimpleValueType();
    if (StVT.isVector() && ST->isTruncatingStore())
      Action = TLI.getTruncStoreAction(ValVT, StVT);
    break;
  }
  case ISD::MERGE_VALUES:
    Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
    // This operation lies about being legal: when it claims to be legal,
    // it should actually be expanded.
    if (Action == TargetLowering::Legal)
      Action = TargetLowering::Expand;
    break;
#define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
  case ISD::STRICT_##DAGN:
#include "llvm/IR/ConstrainedOps.def"
    ValVT = Node->getValueType(0);
    if (Op.getOpcode() == ISD::STRICT_SINT_TO_FP ||
        Op.getOpcode() == ISD::STRICT_UINT_TO_FP)
      ValVT = Node->getOperand(1).getValueType();
    if (Op.getOpcode() == ISD::STRICT_FSETCC ||
        Op.getOpcode() == ISD::STRICT_FSETCCS) {
      MVT OpVT = Node->getOperand(1).getSimpleValueType();
      ISD::CondCode CCCode = cast<CondCodeSDNode>(Node->getOperand(3))->get();
      Action = TLI.getCondCodeAction(CCCode, OpVT);
      if (Action == TargetLowering::Legal)
        Action = TLI.getOperationAction(Node->getOpcode(), OpVT);
    } else {
      Action = TLI.getOperationAction(Node->getOpcode(), ValVT);
    }
    // If we're asked to expand a strict vector floating-point operation,
    // by default we're going to simply unroll it.  That is usually the
    // best approach, except in the case where the resulting strict (scalar)
    // operations would themselves use the fallback mutation to non-strict.
    // In that specific case, just do the fallback on the vector op.
    if (Action == TargetLowering::Expand && !TLI.isStrictFPEnabled() &&
        TLI.getStrictFPOperationAction(Node->getOpcode(), ValVT) ==
            TargetLowering::Legal) {
      EVT EltVT = ValVT.getVectorElementType();
      if (TLI.getOperationAction(Node->getOpcode(), EltVT)
          == TargetLowering::Expand &&
          TLI.getStrictFPOperationAction(Node->getOpcode(), EltVT)
          == TargetLowering::Legal)
        Action = TargetLowering::Legal;
    }
    break;
  case ISD::ADD:
  case ISD::SUB:
  case ISD::MUL:
  case ISD::MULHS:
  case ISD::MULHU:
  case ISD::SDIV:
  case ISD::UDIV:
  case ISD::SREM:
  case ISD::UREM:
  case ISD::SDIVREM:
  case ISD::UDIVREM:
  case ISD::FADD:
  case ISD::FSUB:
  case ISD::FMUL:
  case ISD::FDIV:
  case ISD::FREM:
  case ISD::AND:
  case ISD::OR:
  case ISD::XOR:
  case ISD::SHL:
  case ISD::SRA:
  case ISD::SRL:
  case ISD::FSHL:
  case ISD::FSHR:
  case ISD::ROTL:
  case ISD::ROTR:
  case ISD::ABS:
  case ISD::BSWAP:
  case ISD::BITREVERSE:
  case ISD::CTLZ:
  case ISD::CTTZ:
  case ISD::CTLZ_ZERO_UNDEF:
  case ISD::CTTZ_ZERO_UNDEF:
  case ISD::CTPOP:
  case ISD::SELECT:
  case ISD::VSELECT:
  case ISD::SELECT_CC:
  case ISD::ZERO_EXTEND:
  case ISD::ANY_EXTEND:
  case ISD::TRUNCATE:
  case ISD::SIGN_EXTEND:
  case ISD::FP_TO_SINT:
  case ISD::FP_TO_UINT:
  case ISD::FNEG:
  case ISD::FABS:
  case ISD::FMINNUM:
  case ISD::FMAXNUM:
  case ISD::FMINNUM_IEEE:
  case ISD::FMAXNUM_IEEE:
  case ISD::FMINIMUM:
  case ISD::FMAXIMUM:
  case ISD::FCOPYSIGN:
  case ISD::FSQRT:
  case ISD::FSIN:
  case ISD::FCOS:
  case ISD::FLDEXP:
  case ISD::FPOWI:
  case ISD::FPOW:
  case ISD::FLOG:
  case ISD::FLOG2:
  case ISD::FLOG10:
  case ISD::FEXP:
  case ISD::FEXP2:
  case ISD::FEXP10:
  case ISD::FCEIL:
  case ISD::FTRUNC:
  case ISD::FRINT:
  case ISD::FNEARBYINT:
  case ISD::FROUND:
  case ISD::FROUNDEVEN:
  case ISD::FFLOOR:
  case ISD::FP_ROUND:
  case ISD::FP_EXTEND:
  case ISD::FMA:
  case ISD::SIGN_EXTEND_INREG:
  case ISD::ANY_EXTEND_VECTOR_INREG:
  case ISD::SIGN_EXTEND_VECTOR_INREG:
  case ISD::ZERO_EXTEND_VECTOR_INREG:
  case ISD::SMIN:
  case ISD::SMAX:
  case ISD::UMIN:
  case ISD::UMAX:
  case ISD::SMUL_LOHI:
  case ISD::UMUL_LOHI:
  case ISD::SADDO:
  case ISD::UADDO:
  case ISD::SSUBO:
  case ISD::USUBO:
  case ISD::SMULO:
  case ISD::UMULO:
  case ISD::FCANONICALIZE:
  case ISD::FFREXP:
  case ISD::SADDSAT:
  case ISD::UADDSAT:
  case ISD::SSUBSAT:
  case ISD::USUBSAT:
  case ISD::SSHLSAT:
  case ISD::USHLSAT:
  case ISD::FP_TO_SINT_SAT:
  case ISD::FP_TO_UINT_SAT:
  case ISD::MGATHER:
    Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
    break;
  case ISD::SMULFIX:
  case ISD::SMULFIXSAT:
  case ISD::UMULFIX:
  case ISD::UMULFIXSAT:
  case ISD::SDIVFIX:
  case ISD::SDIVFIXSAT:
  case ISD::UDIVFIX:
  case ISD::UDIVFIXSAT: {
    unsigned Scale = Node->getConstantOperandVal(2);
    Action = TLI.getFixedPointOperationAction(Node->getOpcode(),
                                              Node->getValueType(0), Scale);
    break;
  }
  case ISD::LRINT:
  case ISD::LLRINT:
  case ISD::SINT_TO_FP:
  case ISD::UINT_TO_FP:
  case ISD::VECREDUCE_ADD:
  case ISD::VECREDUCE_MUL:
  case ISD::VECREDUCE_AND:
  case ISD::VECREDUCE_OR:
  case ISD::VECREDUCE_XOR:
  case ISD::VECREDUCE_SMAX:
  case ISD::VECREDUCE_SMIN:
  case ISD::VECREDUCE_UMAX:
  case ISD::VECREDUCE_UMIN:
  case ISD::VECREDUCE_FADD:
  case ISD::VECREDUCE_FMUL:
  case ISD::VECREDUCE_FMAX:
  case ISD::VECREDUCE_FMIN:
  case ISD::VECREDUCE_FMAXIMUM:
  case ISD::VECREDUCE_FMINIMUM:
    Action = TLI.getOperationAction(Node->getOpcode(),
                                    Node->getOperand(0).getValueType());
    break;
  case ISD::VECREDUCE_SEQ_FADD:
  case ISD::VECREDUCE_SEQ_FMUL:
    Action = TLI.getOperationAction(Node->getOpcode(),
                                    Node->getOperand(1).getValueType());
    break;
  case ISD::SETCC: {
    MVT OpVT = Node->getOperand(0).getSimpleValueType();
    ISD::CondCode CCCode = cast<CondCodeSDNode>(Node->getOperand(2))->get();
    Action = TLI.getCondCodeAction(CCCode, OpVT);
    if (Action == TargetLowering::Legal)
      Action = TLI.getOperationAction(Node->getOpcode(), OpVT);
    break;
  }

#define BEGIN_REGISTER_VP_SDNODE(VPID, LEGALPOS, ...)                          \
  case ISD::VPID: {                                                            \
    EVT LegalizeVT = LEGALPOS < 0 ? Node->getValueType(-(1 + LEGALPOS))        \
                                  : Node->getOperand(LEGALPOS).getValueType(); \
    if (ISD::VPID == ISD::VP_SETCC) {                                          \
      ISD::CondCode CCCode = cast<CondCodeSDNode>(Node->getOperand(2))->get(); \
      Action = TLI.getCondCodeAction(CCCode, LegalizeVT.getSimpleVT());        \
      if (Action != TargetLowering::Legal)                                     \
        break;                                                                 \
    }                                                                          \
    Action = TLI.getOperationAction(Node->getOpcode(), LegalizeVT);            \
  } break;
#include "llvm/IR/VPIntrinsics.def"
  }

  LLVM_DEBUG(dbgs() << "\nLegalizing vector op: "; Node->dump(&DAG));

  SmallVector<SDValue, 8> ResultVals;
  switch (Action) {
  default: llvm_unreachable("This action is not supported yet!");
  case TargetLowering::Promote:
    assert((Op.getOpcode() != ISD::LOAD && Op.getOpcode() != ISD::STORE) &&
           "This action is not supported yet!");
    LLVM_DEBUG(dbgs() << "Promoting\n");
    Promote(Node, ResultVals);
    assert(!ResultVals.empty() && "No results for promotion?");
    break;
  case TargetLowering::Legal:
    LLVM_DEBUG(dbgs() << "Legal node: nothing to do\n");
    break;
  case TargetLowering::Custom:
    LLVM_DEBUG(dbgs() << "Trying custom legalization\n");
    if (LowerOperationWrapper(Node, ResultVals))
      break;
    LLVM_DEBUG(dbgs() << "Could not custom legalize node\n");
    [[fallthrough]];
  case TargetLowering::Expand:
    LLVM_DEBUG(dbgs() << "Expanding\n");
    Expand(Node, ResultVals);
    break;
  }

  if (ResultVals.empty())
    return TranslateLegalizeResults(Op, Node);

  Changed = true;
  return RecursivelyLegalizeResults(Op, ResultVals);
}

// FIXME: This is very similar to TargetLowering::LowerOperationWrapper. Can we
// merge them somehow?
bool VectorLegalizer::LowerOperationWrapper(SDNode *Node,
                                            SmallVectorImpl<SDValue> &Results) {
  SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG);

  if (!Res.getNode())
    return false;

  if (Res == SDValue(Node, 0))
    return true;

  // If the original node has one result, take the return value from
  // LowerOperation as is. It might not be result number 0.
  if (Node->getNumValues() == 1) {
    Results.push_back(Res);
    return true;
  }

  // If the original node has multiple results, then the return node should
  // have the same number of results.
  assert((Node->getNumValues() == Res->getNumValues()) &&
         "Lowering returned the wrong number of results!");

  // Places new result values base on N result number.
  for (unsigned I = 0, E = Node->getNumValues(); I != E; ++I)
    Results.push_back(Res.getValue(I));

  return true;
}

void VectorLegalizer::PromoteReduction(SDNode *Node,
                                       SmallVectorImpl<SDValue> &Results) {
  MVT VecVT = Node->getOperand(1).getSimpleValueType();
  MVT NewVecVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VecVT);
  MVT ScalarVT = Node->getSimpleValueType(0);
  MVT NewScalarVT = NewVecVT.getVectorElementType();

  SDLoc DL(Node);
  SmallVector<SDValue, 4> Operands(Node->getNumOperands());

  // promote the initial value.
  if (Node->getOperand(0).getValueType().isFloatingPoint())
    Operands[0] =
        DAG.getNode(ISD::FP_EXTEND, DL, NewScalarVT, Node->getOperand(0));
  else
    Operands[0] =
        DAG.getNode(ISD::ANY_EXTEND, DL, NewScalarVT, Node->getOperand(0));

  for (unsigned j = 1; j != Node->getNumOperands(); ++j)
    if (Node->getOperand(j).getValueType().isVector() &&
        !(ISD::isVPOpcode(Node->getOpcode()) &&
          ISD::getVPMaskIdx(Node->getOpcode()) == j)) // Skip mask operand.
      // promote the vector operand.
      if (Node->getOperand(j).getValueType().isFloatingPoint())
        Operands[j] =
            DAG.getNode(ISD::FP_EXTEND, DL, NewVecVT, Node->getOperand(j));
      else
        Operands[j] =
            DAG.getNode(ISD::ANY_EXTEND, DL, NewVecVT, Node->getOperand(j));
    else
      Operands[j] = Node->getOperand(j); // Skip VL operand.

  SDValue Res = DAG.getNode(Node->getOpcode(), DL, NewScalarVT, Operands,
                            Node->getFlags());

  if (ScalarVT.isFloatingPoint())
    Res = DAG.getNode(ISD::FP_ROUND, DL, ScalarVT, Res,
                      DAG.getIntPtrConstant(0, DL, /*isTarget=*/true));
  else
    Res = DAG.getNode(ISD::TRUNCATE, DL, ScalarVT, Res);

  Results.push_back(Res);
}

void VectorLegalizer::PromoteSETCC(SDNode *Node,
                                   SmallVectorImpl<SDValue> &Results) {
  MVT VecVT = Node->getOperand(0).getSimpleValueType();
  MVT NewVecVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VecVT);

  unsigned ExtOp = VecVT.isFloatingPoint() ? ISD::FP_EXTEND : ISD::ANY_EXTEND;

  SDLoc DL(Node);
  SmallVector<SDValue, 5> Operands(Node->getNumOperands());

  Operands[0] = DAG.getNode(ExtOp, DL, NewVecVT, Node->getOperand(0));
  Operands[1] = DAG.getNode(ExtOp, DL, NewVecVT, Node->getOperand(1));
  Operands[2] = Node->getOperand(2);

  if (Node->getOpcode() == ISD::VP_SETCC) {
    Operands[3] = Node->getOperand(3); // mask
    Operands[4] = Node->getOperand(4); // evl
  }

  SDValue Res = DAG.getNode(Node->getOpcode(), DL, Node->getSimpleValueType(0),
                            Operands, Node->getFlags());

  Results.push_back(Res);
}

void VectorLegalizer::PromoteSTRICT(SDNode *Node,
                                    SmallVectorImpl<SDValue> &Results) {
  MVT VecVT = Node->getOperand(1).getSimpleValueType();
  MVT NewVecVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VecVT);

  assert(VecVT.isFloatingPoint());

  SDLoc DL(Node);
  SmallVector<SDValue, 5> Operands(Node->getNumOperands());
  SmallVector<SDValue, 2> Chains;

  for (unsigned j = 1; j != Node->getNumOperands(); ++j)
    if (Node->getOperand(j).getValueType().isVector() &&
        !(ISD::isVPOpcode(Node->getOpcode()) &&
          ISD::getVPMaskIdx(Node->getOpcode()) == j)) // Skip mask operand.
    {
      // promote the vector operand.
      SDValue Ext =
          DAG.getNode(ISD::STRICT_FP_EXTEND, DL, {NewVecVT, MVT::Other},
                      {Node->getOperand(0), Node->getOperand(j)});
      Operands[j] = Ext.getValue(0);
      Chains.push_back(Ext.getValue(1));
    } else
      Operands[j] = Node->getOperand(j); // Skip no vector operand.

  SDVTList VTs = DAG.getVTList(NewVecVT, Node->getValueType(1));

  Operands[0] = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);

  SDValue Res =
      DAG.getNode(Node->getOpcode(), DL, VTs, Operands, Node->getFlags());

  SDValue Round =
      DAG.getNode(ISD::STRICT_FP_ROUND, DL, {VecVT, MVT::Other},
                  {Res.getValue(1), Res.getValue(0),
                   DAG.getIntPtrConstant(0, DL, /*isTarget=*/true)});

  Results.push_back(Round.getValue(0));
  Results.push_back(Round.getValue(1));
}

void VectorLegalizer::Promote(SDNode *Node, SmallVectorImpl<SDValue> &Results) {
  // For a few operations there is a specific concept for promotion based on
  // the operand's type.
  switch (Node->getOpcode()) {
  case ISD::SINT_TO_FP:
  case ISD::UINT_TO_FP:
  case ISD::STRICT_SINT_TO_FP:
  case ISD::STRICT_UINT_TO_FP:
    // "Promote" the operation by extending the operand.
    PromoteINT_TO_FP(Node, Results);
    return;
  case ISD::FP_TO_UINT:
  case ISD::FP_TO_SINT:
  case ISD::STRICT_FP_TO_UINT:
  case ISD::STRICT_FP_TO_SINT:
    // Promote the operation by extending the operand.
    PromoteFP_TO_INT(Node, Results);
    return;
  case ISD::VP_REDUCE_ADD:
  case ISD::VP_REDUCE_MUL:
  case ISD::VP_REDUCE_AND:
  case ISD::VP_REDUCE_OR:
  case ISD::VP_REDUCE_XOR:
  case ISD::VP_REDUCE_SMAX:
  case ISD::VP_REDUCE_SMIN:
  case ISD::VP_REDUCE_UMAX:
  case ISD::VP_REDUCE_UMIN:
  case ISD::VP_REDUCE_FADD:
  case ISD::VP_REDUCE_FMUL:
  case ISD::VP_REDUCE_FMAX:
  case ISD::VP_REDUCE_FMIN:
  case ISD::VP_REDUCE_SEQ_FADD:
    // Promote the operation by extending the operand.
    PromoteReduction(Node, Results);
    return;
  case ISD::VP_SETCC:
  case ISD::SETCC:
    // Promote the operation by extending the operand.
    PromoteSETCC(Node, Results);
    return;
  case ISD::STRICT_FADD:
  case ISD::STRICT_FSUB:
  case ISD::STRICT_FMUL:
  case ISD::STRICT_FDIV:
  case ISD::STRICT_FSQRT:
  case ISD::STRICT_FMA:
    PromoteSTRICT(Node, Results);
    return;
  case ISD::FP_ROUND:
  case ISD::FP_EXTEND:
    // These operations are used to do promotion so they can't be promoted
    // themselves.
    llvm_unreachable("Don't know how to promote this operation!");
  }

  // There are currently two cases of vector promotion:
  // 1) Bitcasting a vector of integers to a different type to a vector of the
  //    same overall length. For example, x86 promotes ISD::AND v2i32 to v1i64.
  // 2) Extending a vector of floats to a vector of the same number of larger
  //    floats. For example, AArch64 promotes ISD::FADD on v4f16 to v4f32.
  assert(Node->getNumValues() == 1 &&
         "Can't promote a vector with multiple results!");
  MVT VT = Node->getSimpleValueType(0);
  MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);
  SDLoc dl(Node);
  SmallVector<SDValue, 4> Operands(Node->getNumOperands());

  for (unsigned j = 0; j != Node->getNumOperands(); ++j) {
    // Do not promote the mask operand of a VP OP.
    bool SkipPromote = ISD::isVPOpcode(Node->getOpcode()) &&
                       ISD::getVPMaskIdx(Node->getOpcode()) == j;
    if (Node->getOperand(j).getValueType().isVector() && !SkipPromote)
      if (Node->getOperand(j)
              .getValueType()
              .getVectorElementType()
              .isFloatingPoint() &&
          NVT.isVector() && NVT.getVectorElementType().isFloatingPoint())
        Operands[j] = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(j));
      else
        Operands[j] = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(j));
    else
      Operands[j] = Node->getOperand(j);
  }

  SDValue Res =
      DAG.getNode(Node->getOpcode(), dl, NVT, Operands, Node->getFlags());

  if ((VT.isFloatingPoint() && NVT.isFloatingPoint()) ||
      (VT.isVector() && VT.getVectorElementType().isFloatingPoint() &&
       NVT.isVector() && NVT.getVectorElementType().isFloatingPoint()))
    Res = DAG.getNode(ISD::FP_ROUND, dl, VT, Res,
                      DAG.getIntPtrConstant(0, dl, /*isTarget=*/true));
  else
    Res = DAG.getNode(ISD::BITCAST, dl, VT, Res);

  Results.push_back(Res);
}

void VectorLegalizer::PromoteINT_TO_FP(SDNode *Node,
                                       SmallVectorImpl<SDValue> &Results) {
  // INT_TO_FP operations may require the input operand be promoted even
  // when the type is otherwise legal.
  bool IsStrict = Node->isStrictFPOpcode();
  MVT VT = Node->getOperand(IsStrict ? 1 : 0).getSimpleValueType();
  MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);
  assert(NVT.getVectorNumElements() == VT.getVectorNumElements() &&
         "Vectors have different number of elements!");

  SDLoc dl(Node);
  SmallVector<SDValue, 4> Operands(Node->getNumOperands());

  unsigned Opc = (Node->getOpcode() == ISD::UINT_TO_FP ||
                  Node->getOpcode() == ISD::STRICT_UINT_TO_FP)
                     ? ISD::ZERO_EXTEND
                     : ISD::SIGN_EXTEND;
  for (unsigned j = 0; j != Node->getNumOperands(); ++j) {
    if (Node->getOperand(j).getValueType().isVector())
      Operands[j] = DAG.getNode(Opc, dl, NVT, Node->getOperand(j));
    else
      Operands[j] = Node->getOperand(j);
  }

  if (IsStrict) {
    SDValue Res = DAG.getNode(Node->getOpcode(), dl,
                              {Node->getValueType(0), MVT::Other}, Operands);
    Results.push_back(Res);
    Results.push_back(Res.getValue(1));
    return;
  }

  SDValue Res =
      DAG.getNode(Node->getOpcode(), dl, Node->getValueType(0), Operands);
  Results.push_back(Res);
}

// For FP_TO_INT we promote the result type to a vector type with wider
// elements and then truncate the result.  This is different from the default
// PromoteVector which uses bitcast to promote thus assumning that the
// promoted vector type has the same overall size.
void VectorLegalizer::PromoteFP_TO_INT(SDNode *Node,
                                       SmallVectorImpl<SDValue> &Results) {
  MVT VT = Node->getSimpleValueType(0);
  MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);
  bool IsStrict = Node->isStrictFPOpcode();
  assert(NVT.getVectorNumElements() == VT.getVectorNumElements() &&
         "Vectors have different number of elements!");

  unsigned NewOpc = Node->getOpcode();
  // Change FP_TO_UINT to FP_TO_SINT if possible.
  // TODO: Should we only do this if FP_TO_UINT itself isn't legal?
  if (NewOpc == ISD::FP_TO_UINT &&
      TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NVT))
    NewOpc = ISD::FP_TO_SINT;

  if (NewOpc == ISD::STRICT_FP_TO_UINT &&
      TLI.isOperationLegalOrCustom(ISD::STRICT_FP_TO_SINT, NVT))
    NewOpc = ISD::STRICT_FP_TO_SINT;

  SDLoc dl(Node);
  SDValue Promoted, Chain;
  if (IsStrict) {
    Promoted = DAG.getNode(NewOpc, dl, {NVT, MVT::Other},
                           {Node->getOperand(0), Node->getOperand(1)});
    Chain = Promoted.getValue(1);
  } else
    Promoted = DAG.getNode(NewOpc, dl, NVT, Node->getOperand(0));

  // Assert that the converted value fits in the original type.  If it doesn't
  // (eg: because the value being converted is too big), then the result of the
  // original operation was undefined anyway, so the assert is still correct.
  if (Node->getOpcode() == ISD::FP_TO_UINT ||
      Node->getOpcode() == ISD::STRICT_FP_TO_UINT)
    NewOpc = ISD::AssertZext;
  else
    NewOpc = ISD::AssertSext;

  Promoted = DAG.getNode(NewOpc, dl, NVT, Promoted,
                         DAG.getValueType(VT.getScalarType()));
  Promoted = DAG.getNode(ISD::TRUNCATE, dl, VT, Promoted);
  Results.push_back(Promoted);
  if (IsStrict)
    Results.push_back(Chain);
}

std::pair<SDValue, SDValue> VectorLegalizer::ExpandLoad(SDNode *N) {
  LoadSDNode *LD = cast<LoadSDNode>(N);
  return TLI.scalarizeVectorLoad(LD, DAG);
}

SDValue VectorLegalizer::ExpandStore(SDNode *N) {
  StoreSDNode *ST = cast<StoreSDNode>(N);
  SDValue TF = TLI.scalarizeVectorStore(ST, DAG);
  return TF;
}

void VectorLegalizer::Expand(SDNode *Node, SmallVectorImpl<SDValue> &Results) {
  switch (Node->getOpcode()) {
  case ISD::LOAD: {
    std::pair<SDValue, SDValue> Tmp = ExpandLoad(Node);
    Results.push_back(Tmp.first);
    Results.push_back(Tmp.second);
    return;
  }
  case ISD::STORE:
    Results.push_back(ExpandStore(Node));
    return;
  case ISD::MERGE_VALUES:
    for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
      Results.push_back(Node->getOperand(i));
    return;
  case ISD::SIGN_EXTEND_INREG:
    Results.push_back(ExpandSEXTINREG(Node));
    return;
  case ISD::ANY_EXTEND_VECTOR_INREG:
    Results.push_back(ExpandANY_EXTEND_VECTOR_INREG(Node));
    return;
  case ISD::SIGN_EXTEND_VECTOR_INREG:
    Results.push_back(ExpandSIGN_EXTEND_VECTOR_INREG(Node));
    return;
  case ISD::ZERO_EXTEND_VECTOR_INREG:
    Results.push_back(ExpandZERO_EXTEND_VECTOR_INREG(Node));
    return;
  case ISD::BSWAP:
    Results.push_back(ExpandBSWAP(Node));
    return;
  case ISD::VP_BSWAP:
    Results.push_back(TLI.expandVPBSWAP(Node, DAG));
    return;
  case ISD::VSELECT:
    Results.push_back(ExpandVSELECT(Node));
    return;
  case ISD::VP_SELECT:
    Results.push_back(ExpandVP_SELECT(Node));
    return;
  case ISD::VP_SREM:
  case ISD::VP_UREM:
    if (SDValue Expanded = ExpandVP_REM(Node)) {
      Results.push_back(Expanded);
      return;
    }
    break;
  case ISD::SELECT:
    Results.push_back(ExpandSELECT(Node));
    return;
  case ISD::SELECT_CC: {
    if (Node->getValueType(0).isScalableVector()) {
      EVT CondVT = TLI.getSetCCResultType(
          DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
      SDValue SetCC =
          DAG.getNode(ISD::SETCC, SDLoc(Node), CondVT, Node->getOperand(0),
                      Node->getOperand(1), Node->getOperand(4));
      Results.push_back(DAG.getSelect(SDLoc(Node), Node->getValueType(0), SetCC,
                                      Node->getOperand(2),
                                      Node->getOperand(3)));
      return;
    }
    break;
  }
  case ISD::FP_TO_UINT:
    ExpandFP_TO_UINT(Node, Results);
    return;
  case ISD::UINT_TO_FP:
    ExpandUINT_TO_FLOAT(Node, Results);
    return;
  case ISD::FNEG:
    Results.push_back(ExpandFNEG(Node));
    return;
  case ISD::FSUB:
    ExpandFSUB(Node, Results);
    return;
  case ISD::SETCC:
  case ISD::VP_SETCC:
    ExpandSETCC(Node, Results);
    return;
  case ISD::ABS:
    if (SDValue Expanded = TLI.expandABS(Node, DAG)) {
      Results.push_back(Expanded);
      return;
    }
    break;
  case ISD::ABDS:
  case ISD::ABDU:
    if (SDValue Expanded = TLI.expandABD(Node, DAG)) {
      Results.push_back(Expanded);
      return;
    }
    break;
  case ISD::BITREVERSE:
    ExpandBITREVERSE(Node, Results);
    return;
  case ISD::VP_BITREVERSE:
    if (SDValue Expanded = TLI.expandVPBITREVERSE(Node, DAG)) {
      Results.push_back(Expanded);
      return;
    }
    break;
  case ISD::CTPOP:
    if (SDValue Expanded = TLI.expandCTPOP(Node, DAG)) {
      Results.push_back(Expanded);
      return;
    }
    break;
  case ISD::VP_CTPOP:
    if (SDValue Expanded = TLI.expandVPCTPOP(Node, DAG)) {
      Results.push_back(Expanded);
      return;
    }
    break;
  case ISD::CTLZ:
  case ISD::CTLZ_ZERO_UNDEF:
    if (SDValue Expanded = TLI.expandCTLZ(Node, DAG)) {
      Results.push_back(Expanded);
      return;
    }
    break;
  case ISD::VP_CTLZ:
  case ISD::VP_CTLZ_ZERO_UNDEF:
    if (SDValue Expanded = TLI.expandVPCTLZ(Node, DAG)) {
      Results.push_back(Expanded);
      return;
    }
    break;
  case ISD::CTTZ:
  case ISD::CTTZ_ZERO_UNDEF:
    if (SDValue Expanded = TLI.expandCTTZ(Node, DAG)) {
      Results.push_back(Expanded);
      return;
    }
    break;
  case ISD::VP_CTTZ:
  case ISD::VP_CTTZ_ZERO_UNDEF:
    if (SDValue Expanded = TLI.expandVPCTTZ(Node, DAG)) {
      Results.push_back(Expanded);
      return;
    }
    break;
  case ISD::FSHL:
  case ISD::VP_FSHL:
  case ISD::FSHR:
  case ISD::VP_FSHR:
    if (SDValue Expanded = TLI.expandFunnelShift(Node, DAG)) {
      Results.push_back(Expanded);
      return;
    }
    break;
  case ISD::ROTL:
  case ISD::ROTR:
    if (SDValue Expanded = TLI.expandROT(Node, false /*AllowVectorOps*/, DAG)) {
      Results.push_back(Expanded);
      return;
    }
    break;
  case ISD::FMINNUM:
  case ISD::FMAXNUM:
    if (SDValue Expanded = TLI.expandFMINNUM_FMAXNUM(Node, DAG)) {
      Results.push_back(Expanded);
      return;
    }
    break;
  case ISD::SMIN:
  case ISD::SMAX:
  case ISD::UMIN:
  case ISD::UMAX:
    if (SDValue Expanded = TLI.expandIntMINMAX(Node, DAG)) {
      Results.push_back(Expanded);
      return;
    }
    break;
  case ISD::UADDO:
  case ISD::USUBO:
    ExpandUADDSUBO(Node, Results);
    return;
  case ISD::SADDO:
  case ISD::SSUBO:
    ExpandSADDSUBO(Node, Results);
    return;
  case ISD::UMULO:
  case ISD::SMULO:
    ExpandMULO(Node, Results);
    return;
  case ISD::USUBSAT:
  case ISD::SSUBSAT:
  case ISD::UADDSAT:
  case ISD::SADDSAT:
    if (SDValue Expanded = TLI.expandAddSubSat(Node, DAG)) {
      Results.push_back(Expanded);
      return;
    }
    break;
  case ISD::USHLSAT:
  case ISD::SSHLSAT:
    if (SDValue Expanded = TLI.expandShlSat(Node, DAG)) {
      Results.push_back(Expanded);
      return;
    }
    break;
  case ISD::FP_TO_SINT_SAT:
  case ISD::FP_TO_UINT_SAT:
    // Expand the fpsosisat if it is scalable to prevent it from unrolling below.
    if (Node->getValueType(0).isScalableVector()) {
      if (SDValue Expanded = TLI.expandFP_TO_INT_SAT(Node, DAG)) {
        Results.push_back(Expanded);
        return;
      }
    }
    break;
  case ISD::SMULFIX:
  case ISD::UMULFIX:
    if (SDValue Expanded = TLI.expandFixedPointMul(Node, DAG)) {
      Results.push_back(Expanded);
      return;
    }
    break;
  case ISD::SMULFIXSAT:
  case ISD::UMULFIXSAT:
    // FIXME: We do not expand SMULFIXSAT/UMULFIXSAT here yet, not sure exactly
    // why. Maybe it results in worse codegen compared to the unroll for some
    // targets? This should probably be investigated. And if we still prefer to
    // unroll an explanation could be helpful.
    break;
  case ISD::SDIVFIX:
  case ISD::UDIVFIX:
    ExpandFixedPointDiv(Node, Results);
    return;
  case ISD::SDIVFIXSAT:
  case ISD::UDIVFIXSAT:
    break;
#define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
  case ISD::STRICT_##DAGN:
#include "llvm/IR/ConstrainedOps.def"
    ExpandStrictFPOp(Node, Results);
    return;
  case ISD::VECREDUCE_ADD:
  case ISD::VECREDUCE_MUL:
  case ISD::VECREDUCE_AND:
  case ISD::VECREDUCE_OR:
  case ISD::VECREDUCE_XOR:
  case ISD::VECREDUCE_SMAX:
  case ISD::VECREDUCE_SMIN:
  case ISD::VECREDUCE_UMAX:
  case ISD::VECREDUCE_UMIN:
  case ISD::VECREDUCE_FADD:
  case ISD::VECREDUCE_FMUL:
  case ISD::VECREDUCE_FMAX:
  case ISD::VECREDUCE_FMIN:
  case ISD::VECREDUCE_FMAXIMUM:
  case ISD::VECREDUCE_FMINIMUM:
    Results.push_back(TLI.expandVecReduce(Node, DAG));
    return;
  case ISD::VECREDUCE_SEQ_FADD:
  case ISD::VECREDUCE_SEQ_FMUL:
    Results.push_back(TLI.expandVecReduceSeq(Node, DAG));
    return;
  case ISD::SREM:
  case ISD::UREM:
    ExpandREM(Node, Results);
    return;
  case ISD::VP_MERGE:
    Results.push_back(ExpandVP_MERGE(Node));
    return;
  case ISD::FREM:
    if (tryExpandVecMathCall(Node, RTLIB::REM_F32, RTLIB::REM_F64,
                             RTLIB::REM_F80, RTLIB::REM_F128,
                             RTLIB::REM_PPCF128, Results))
      return;

    break;
  }

  SDValue Unrolled = DAG.UnrollVectorOp(Node);
  if (Node->getNumValues() == 1) {
    Results.push_back(Unrolled);
  } else {
    assert(Node->getNumValues() == Unrolled->getNumValues() &&
      "VectorLegalizer Expand returned wrong number of results!");
    for (unsigned I = 0, E = Unrolled->getNumValues(); I != E; ++I)
      Results.push_back(Unrolled.getValue(I));
  }
}

SDValue VectorLegalizer::ExpandSELECT(SDNode *Node) {
  // Lower a select instruction where the condition is a scalar and the
  // operands are vectors. Lower this select to VSELECT and implement it
  // using XOR AND OR. The selector bit is broadcasted.
  EVT VT = Node->getValueType(0);
  SDLoc DL(Node);

  SDValue Mask = Node->getOperand(0);
  SDValue Op1 = Node->getOperand(1);
  SDValue Op2 = Node->getOperand(2);

  assert(VT.isVector() && !Mask.getValueType().isVector()
         && Op1.getValueType() == Op2.getValueType() && "Invalid type");

  // If we can't even use the basic vector operations of
  // AND,OR,XOR, we will have to scalarize the op.
  // Notice that the operation may be 'promoted' which means that it is
  // 'bitcasted' to another type which is handled.
  // Also, we need to be able to construct a splat vector using either
  // BUILD_VECTOR or SPLAT_VECTOR.
  // FIXME: Should we also permit fixed-length SPLAT_VECTOR as a fallback to
  // BUILD_VECTOR?
  if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand ||
      TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand ||
      TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand ||
      TLI.getOperationAction(VT.isFixedLengthVector() ? ISD::BUILD_VECTOR
                                                      : ISD::SPLAT_VECTOR,
                             VT) == TargetLowering::Expand)
    return DAG.UnrollVectorOp(Node);

  // Generate a mask operand.
  EVT MaskTy = VT.changeVectorElementTypeToInteger();

  // What is the size of each element in the vector mask.
  EVT BitTy = MaskTy.getScalarType();

  Mask = DAG.getSelect(DL, BitTy, Mask, DAG.getAllOnesConstant(DL, BitTy),
                       DAG.getConstant(0, DL, BitTy));

  // Broadcast the mask so that the entire vector is all one or all zero.
  Mask = DAG.getSplat(MaskTy, DL, Mask);

  // Bitcast the operands to be the same type as the mask.
  // This is needed when we select between FP types because
  // the mask is a vector of integers.
  Op1 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op1);
  Op2 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op2);

  SDValue NotMask = DAG.getNOT(DL, Mask, MaskTy);

  Op1 = DAG.getNode(ISD::AND, DL, MaskTy, Op1, Mask);
  Op2 = DAG.getNode(ISD::AND, DL, MaskTy, Op2, NotMask);
  SDValue Val = DAG.getNode(ISD::OR, DL, MaskTy, Op1, Op2);
  return DAG.getNode(ISD::BITCAST, DL, Node->getValueType(0), Val);
}

SDValue VectorLegalizer::ExpandSEXTINREG(SDNode *Node) {
  EVT VT = Node->getValueType(0);

  // Make sure that the SRA and SHL instructions are available.
  if (TLI.getOperationAction(ISD::SRA, VT) == TargetLowering::Expand ||
      TLI.getOperationAction(ISD::SHL, VT) == TargetLowering::Expand)
    return DAG.UnrollVectorOp(Node);

  SDLoc DL(Node);
  EVT OrigTy = cast<VTSDNode>(Node->getOperand(1))->getVT();

  unsigned BW = VT.getScalarSizeInBits();
  unsigned OrigBW = OrigTy.getScalarSizeInBits();
  SDValue ShiftSz = DAG.getConstant(BW - OrigBW, DL, VT);

  SDValue Op = DAG.getNode(ISD::SHL, DL, VT, Node->getOperand(0), ShiftSz);
  return DAG.getNode(ISD::SRA, DL, VT, Op, ShiftSz);
}

// Generically expand a vector anyext in register to a shuffle of the relevant
// lanes into the appropriate locations, with other lanes left undef.
SDValue VectorLegalizer::ExpandANY_EXTEND_VECTOR_INREG(SDNode *Node) {
  SDLoc DL(Node);
  EVT VT = Node->getValueType(0);
  int NumElements = VT.getVectorNumElements();
  SDValue Src = Node->getOperand(0);
  EVT SrcVT = Src.getValueType();
  int NumSrcElements = SrcVT.getVectorNumElements();

  // *_EXTEND_VECTOR_INREG SrcVT can be smaller than VT - so insert the vector
  // into a larger vector type.
  if (SrcVT.bitsLE(VT)) {
    assert((VT.getSizeInBits() % SrcVT.getScalarSizeInBits()) == 0 &&
           "ANY_EXTEND_VECTOR_INREG vector size mismatch");
    NumSrcElements = VT.getSizeInBits() / SrcVT.getScalarSizeInBits();
    SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getScalarType(),
                             NumSrcElements);
    Src = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, SrcVT, DAG.getUNDEF(SrcVT),
                      Src, DAG.getVectorIdxConstant(0, DL));
  }

  // Build a base mask of undef shuffles.
  SmallVector<int, 16> ShuffleMask;
  ShuffleMask.resize(NumSrcElements, -1);

  // Place the extended lanes into the correct locations.
  int ExtLaneScale = NumSrcElements / NumElements;
  int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0;
  for (int i = 0; i < NumElements; ++i)
    ShuffleMask[i * ExtLaneScale + EndianOffset] = i;

  return DAG.getNode(
      ISD::BITCAST, DL, VT,
      DAG.getVectorShuffle(SrcVT, DL, Src, DAG.getUNDEF(SrcVT), ShuffleMask));
}

SDValue VectorLegalizer::ExpandSIGN_EXTEND_VECTOR_INREG(SDNode *Node) {
  SDLoc DL(Node);
  EVT VT = Node->getValueType(0);
  SDValue Src = Node->getOperand(0);
  EVT SrcVT = Src.getValueType();

  // First build an any-extend node which can be legalized above when we
  // recurse through it.
  SDValue Op = DAG.getNode(ISD::ANY_EXTEND_VECTOR_INREG, DL, VT, Src);

  // Now we need sign extend. Do this by shifting the elements. Even if these
  // aren't legal operations, they have a better chance of being legalized
  // without full scalarization than the sign extension does.
  unsigned EltWidth = VT.getScalarSizeInBits();
  unsigned SrcEltWidth = SrcVT.getScalarSizeInBits();
  SDValue ShiftAmount = DAG.getConstant(EltWidth - SrcEltWidth, DL, VT);
  return DAG.getNode(ISD::SRA, DL, VT,
                     DAG.getNode(ISD::SHL, DL, VT, Op, ShiftAmount),
                     ShiftAmount);
}

// Generically expand a vector zext in register to a shuffle of the relevant
// lanes into the appropriate locations, a blend of zero into the high bits,
// and a bitcast to the wider element type.
SDValue VectorLegalizer::ExpandZERO_EXTEND_VECTOR_INREG(SDNode *Node) {
  SDLoc DL(Node);
  EVT VT = Node->getValueType(0);
  int NumElements = VT.getVectorNumElements();
  SDValue Src = Node->getOperand(0);
  EVT SrcVT = Src.getValueType();
  int NumSrcElements = SrcVT.getVectorNumElements();

  // *_EXTEND_VECTOR_INREG SrcVT can be smaller than VT - so insert the vector
  // into a larger vector type.
  if (SrcVT.bitsLE(VT)) {
    assert((VT.getSizeInBits() % SrcVT.getScalarSizeInBits()) == 0 &&
           "ZERO_EXTEND_VECTOR_INREG vector size mismatch");
    NumSrcElements = VT.getSizeInBits() / SrcVT.getScalarSizeInBits();
    SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getScalarType(),
                             NumSrcElements);
    Src = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, SrcVT, DAG.getUNDEF(SrcVT),
                      Src, DAG.getVectorIdxConstant(0, DL));
  }

  // Build up a zero vector to blend into this one.
  SDValue Zero = DAG.getConstant(0, DL, SrcVT);

  // Shuffle the incoming lanes into the correct position, and pull all other
  // lanes from the zero vector.
  auto ShuffleMask = llvm::to_vector<16>(llvm::seq<int>(0, NumSrcElements));

  int ExtLaneScale = NumSrcElements / NumElements;
  int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0;
  for (int i = 0; i < NumElements; ++i)
    ShuffleMask[i * ExtLaneScale + EndianOffset] = NumSrcElements + i;

  return DAG.getNode(ISD::BITCAST, DL, VT,
                     DAG.getVectorShuffle(SrcVT, DL, Zero, Src, ShuffleMask));
}

static void createBSWAPShuffleMask(EVT VT, SmallVectorImpl<int> &ShuffleMask) {
  int ScalarSizeInBytes = VT.getScalarSizeInBits() / 8;
  for (int I = 0, E = VT.getVectorNumElements(); I != E; ++I)
    for (int J = ScalarSizeInBytes - 1; J >= 0; --J)
      ShuffleMask.push_back((I * ScalarSizeInBytes) + J);
}

SDValue VectorLegalizer::ExpandBSWAP(SDNode *Node) {
  EVT VT = Node->getValueType(0);

  // Scalable vectors can't use shuffle expansion.
  if (VT.isScalableVector())
    return TLI.expandBSWAP(Node, DAG);

  // Generate a byte wise shuffle mask for the BSWAP.
  SmallVector<int, 16> ShuffleMask;
  createBSWAPShuffleMask(VT, ShuffleMask);
  EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, ShuffleMask.size());

  // Only emit a shuffle if the mask is legal.
  if (TLI.isShuffleMaskLegal(ShuffleMask, ByteVT)) {
    SDLoc DL(Node);
    SDValue Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Node->getOperand(0));
    Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT), ShuffleMask);
    return DAG.getNode(ISD::BITCAST, DL, VT, Op);
  }

  // If we have the appropriate vector bit operations, it is better to use them
  // than unrolling and expanding each component.
  if (TLI.isOperationLegalOrCustom(ISD::SHL, VT) &&
      TLI.isOperationLegalOrCustom(ISD::SRL, VT) &&
      TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT) &&
      TLI.isOperationLegalOrCustomOrPromote(ISD::OR, VT))
    return TLI.expandBSWAP(Node, DAG);

  // Otherwise unroll.
  return DAG.UnrollVectorOp(Node);
}

void VectorLegalizer::ExpandBITREVERSE(SDNode *Node,
                                       SmallVectorImpl<SDValue> &Results) {
  EVT VT = Node->getValueType(0);

  // We can't unroll or use shuffles for scalable vectors.
  if (VT.isScalableVector()) {
    Results.push_back(TLI.expandBITREVERSE(Node, DAG));
    return;
  }

  // If we have the scalar operation, it's probably cheaper to unroll it.
  if (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, VT.getScalarType())) {
    SDValue Tmp = DAG.UnrollVectorOp(Node);
    Results.push_back(Tmp);
    return;
  }

  // If the vector element width is a whole number of bytes, test if its legal
  // to BSWAP shuffle the bytes and then perform the BITREVERSE on the byte
  // vector. This greatly reduces the number of bit shifts necessary.
  unsigned ScalarSizeInBits = VT.getScalarSizeInBits();
  if (ScalarSizeInBits > 8 && (ScalarSizeInBits % 8) == 0) {
    SmallVector<int, 16> BSWAPMask;
    createBSWAPShuffleMask(VT, BSWAPMask);

    EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, BSWAPMask.size());
    if (TLI.isShuffleMaskLegal(BSWAPMask, ByteVT) &&
        (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, ByteVT) ||
         (TLI.isOperationLegalOrCustom(ISD::SHL, ByteVT) &&
          TLI.isOperationLegalOrCustom(ISD::SRL, ByteVT) &&
          TLI.isOperationLegalOrCustomOrPromote(ISD::AND, ByteVT) &&
          TLI.isOperationLegalOrCustomOrPromote(ISD::OR, ByteVT)))) {
      SDLoc DL(Node);
      SDValue Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Node->getOperand(0));
      Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT),
                                BSWAPMask);
      Op = DAG.getNode(ISD::BITREVERSE, DL, ByteVT, Op);
      Op = DAG.getNode(ISD::BITCAST, DL, VT, Op);
      Results.push_back(Op);
      return;
    }
  }

  // If we have the appropriate vector bit operations, it is better to use them
  // than unrolling and expanding each component.
  if (TLI.isOperationLegalOrCustom(ISD::SHL, VT) &&
      TLI.isOperationLegalOrCustom(ISD::SRL, VT) &&
      TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT) &&
      TLI.isOperationLegalOrCustomOrPromote(ISD::OR, VT)) {
    Results.push_back(TLI.expandBITREVERSE(Node, DAG));
    return;
  }

  // Otherwise unroll.
  SDValue Tmp = DAG.UnrollVectorOp(Node);
  Results.push_back(Tmp);
}

SDValue VectorLegalizer::ExpandVSELECT(SDNode *Node) {
  // Implement VSELECT in terms of XOR, AND, OR
  // on platforms which do not support blend natively.
  SDLoc DL(Node);

  SDValue Mask = Node->getOperand(0);
  SDValue Op1 = Node->getOperand(1);
  SDValue Op2 = Node->getOperand(2);

  EVT VT = Mask.getValueType();

  // If we can't even use the basic vector operations of
  // AND,OR,XOR, we will have to scalarize the op.
  // Notice that the operation may be 'promoted' which means that it is
  // 'bitcasted' to another type which is handled.
  if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand ||
      TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand ||
      TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand)
    return DAG.UnrollVectorOp(Node);

  // This operation also isn't safe with AND, OR, XOR when the boolean type is
  // 0/1 and the select operands aren't also booleans, as we need an all-ones
  // vector constant to mask with.
  // FIXME: Sign extend 1 to all ones if that's legal on the target.
  auto BoolContents = TLI.getBooleanContents(Op1.getValueType());
  if (BoolContents != TargetLowering::ZeroOrNegativeOneBooleanContent &&
      !(BoolContents == TargetLowering::ZeroOrOneBooleanContent &&
        Op1.getValueType().getVectorElementType() == MVT::i1))
    return DAG.UnrollVectorOp(Node);

  // If the mask and the type are different sizes, unroll the vector op. This
  // can occur when getSetCCResultType returns something that is different in
  // size from the operand types. For example, v4i8 = select v4i32, v4i8, v4i8.
  if (VT.getSizeInBits() != Op1.getValueSizeInBits())
    return DAG.UnrollVectorOp(Node);

  // Bitcast the operands to be the same type as the mask.
  // This is needed when we select between FP types because
  // the mask is a vector of integers.
  Op1 = DAG.getNode(ISD::BITCAST, DL, VT, Op1);
  Op2 = DAG.getNode(ISD::BITCAST, DL, VT, Op2);

  SDValue NotMask = DAG.getNOT(DL, Mask, VT);

  Op1 = DAG.getNode(ISD::AND, DL, VT, Op1, Mask);
  Op2 = DAG.getNode(ISD::AND, DL, VT, Op2, NotMask);
  SDValue Val = DAG.getNode(ISD::OR, DL, VT, Op1, Op2);
  return DAG.getNode(ISD::BITCAST, DL, Node->getValueType(0), Val);
}

SDValue VectorLegalizer::ExpandVP_SELECT(SDNode *Node) {
  // Implement VP_SELECT in terms of VP_XOR, VP_AND and VP_OR on platforms which
  // do not support it natively.
  SDLoc DL(Node);

  SDValue Mask = Node->getOperand(0);
  SDValue Op1 = Node->getOperand(1);
  SDValue Op2 = Node->getOperand(2);
  SDValue EVL = Node->getOperand(3);

  EVT VT = Mask.getValueType();

  // If we can't even use the basic vector operations of
  // VP_AND,VP_OR,VP_XOR, we will have to scalarize the op.
  if (TLI.getOperationAction(ISD::VP_AND, VT) == TargetLowering::Expand ||
      TLI.getOperationAction(ISD::VP_XOR, VT) == TargetLowering::Expand ||
      TLI.getOperationAction(ISD::VP_OR, VT) == TargetLowering::Expand)
    return DAG.UnrollVectorOp(Node);

  // This operation also isn't safe when the operands aren't also booleans.
  if (Op1.getValueType().getVectorElementType() != MVT::i1)
    return DAG.UnrollVectorOp(Node);

  SDValue Ones = DAG.getAllOnesConstant(DL, VT);
  SDValue NotMask = DAG.getNode(ISD::VP_XOR, DL, VT, Mask, Ones, Ones, EVL);

  Op1 = DAG.getNode(ISD::VP_AND, DL, VT, Op1, Mask, Ones, EVL);
  Op2 = DAG.getNode(ISD::VP_AND, DL, VT, Op2, NotMask, Ones, EVL);
  return DAG.getNode(ISD::VP_OR, DL, VT, Op1, Op2, Ones, EVL);
}

SDValue VectorLegalizer::ExpandVP_MERGE(SDNode *Node) {
  // Implement VP_MERGE in terms of VSELECT. Construct a mask where vector
  // indices less than the EVL/pivot are true. Combine that with the original
  // mask for a full-length mask. Use a full-length VSELECT to select between
  // the true and false values.
  SDLoc DL(Node);

  SDValue Mask = Node->getOperand(0);
  SDValue Op1 = Node->getOperand(1);
  SDValue Op2 = Node->getOperand(2);
  SDValue EVL = Node->getOperand(3);

  EVT MaskVT = Mask.getValueType();
  bool IsFixedLen = MaskVT.isFixedLengthVector();

  EVT EVLVecVT = EVT::getVectorVT(*DAG.getContext(), EVL.getValueType(),
                                  MaskVT.getVectorElementCount());

  // If we can't construct the EVL mask efficiently, it's better to unroll.
  if ((IsFixedLen &&
       !TLI.isOperationLegalOrCustom(ISD::BUILD_VECTOR, EVLVecVT)) ||
      (!IsFixedLen &&
       (!TLI.isOperationLegalOrCustom(ISD::STEP_VECTOR, EVLVecVT) ||
        !TLI.isOperationLegalOrCustom(ISD::SPLAT_VECTOR, EVLVecVT))))
    return DAG.UnrollVectorOp(Node);

  // If using a SETCC would result in a different type than the mask type,
  // unroll.
  if (TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
                             EVLVecVT) != MaskVT)
    return DAG.UnrollVectorOp(Node);

  SDValue StepVec = DAG.getStepVector(DL, EVLVecVT);
  SDValue SplatEVL = DAG.getSplat(EVLVecVT, DL, EVL);
  SDValue EVLMask =
      DAG.getSetCC(DL, MaskVT, StepVec, SplatEVL, ISD::CondCode::SETULT);

  SDValue FullMask = DAG.getNode(ISD::AND, DL, MaskVT, Mask, EVLMask);
  return DAG.getSelect(DL, Node->getValueType(0), FullMask, Op1, Op2);
}

SDValue VectorLegalizer::ExpandVP_REM(SDNode *Node) {
  // Implement VP_SREM/UREM in terms of VP_SDIV/VP_UDIV, VP_MUL, VP_SUB.
  EVT VT = Node->getValueType(0);

  unsigned DivOpc = Node->getOpcode() == ISD::VP_SREM ? ISD::VP_SDIV : ISD::VP_UDIV;

  if (!TLI.isOperationLegalOrCustom(DivOpc, VT) ||
      !TLI.isOperationLegalOrCustom(ISD::VP_MUL, VT) ||
      !TLI.isOperationLegalOrCustom(ISD::VP_SUB, VT))
    return SDValue();

  SDLoc DL(Node);

  SDValue Dividend = Node->getOperand(0);
  SDValue Divisor = Node->getOperand(1);
  SDValue Mask = Node->getOperand(2);
  SDValue EVL = Node->getOperand(3);

  // X % Y -> X-X/Y*Y
  SDValue Div = DAG.getNode(DivOpc, DL, VT, Dividend, Divisor, Mask, EVL);
  SDValue Mul = DAG.getNode(ISD::VP_MUL, DL, VT, Divisor, Div, Mask, EVL);
  return DAG.getNode(ISD::VP_SUB, DL, VT, Dividend, Mul, Mask, EVL);
}

void VectorLegalizer::ExpandFP_TO_UINT(SDNode *Node,
                                       SmallVectorImpl<SDValue> &Results) {
  // Attempt to expand using TargetLowering.
  SDValue Result, Chain;
  if (TLI.expandFP_TO_UINT(Node, Result, Chain, DAG)) {
    Results.push_back(Result);
    if (Node->isStrictFPOpcode())
      Results.push_back(Chain);
    return;
  }

  // Otherwise go ahead and unroll.
  if (Node->isStrictFPOpcode()) {
    UnrollStrictFPOp(Node, Results);
    return;
  }

  Results.push_back(DAG.UnrollVectorOp(Node));
}

void VectorLegalizer::ExpandUINT_TO_FLOAT(SDNode *Node,
                                          SmallVectorImpl<SDValue> &Results) {
  bool IsStrict = Node->isStrictFPOpcode();
  unsigned OpNo = IsStrict ? 1 : 0;
  SDValue Src = Node->getOperand(OpNo);
  EVT VT = Src.getValueType();
  SDLoc DL(Node);

  // Attempt to expand using TargetLowering.
  SDValue Result;
  SDValue Chain;
  if (TLI.expandUINT_TO_FP(Node, Result, Chain, DAG)) {
    Results.push_back(Result);
    if (IsStrict)
      Results.push_back(Chain);
    return;
  }

  // Make sure that the SINT_TO_FP and SRL instructions are available.
  if (((!IsStrict && TLI.getOperationAction(ISD::SINT_TO_FP, VT) ==
                         TargetLowering::Expand) ||
       (IsStrict && TLI.getOperationAction(ISD::STRICT_SINT_TO_FP, VT) ==
                        TargetLowering::Expand)) ||
      TLI.getOperationAction(ISD::SRL, VT) == TargetLowering::Expand) {
    if (IsStrict) {
      UnrollStrictFPOp(Node, Results);
      return;
    }

    Results.push_back(DAG.UnrollVectorOp(Node));
    return;
  }

  unsigned BW = VT.getScalarSizeInBits();
  assert((BW == 64 || BW == 32) &&
         "Elements in vector-UINT_TO_FP must be 32 or 64 bits wide");

  SDValue HalfWord = DAG.getConstant(BW / 2, DL, VT);

  // Constants to clear the upper part of the word.
  // Notice that we can also use SHL+SHR, but using a constant is slightly
  // faster on x86.
  uint64_t HWMask = (BW == 64) ? 0x00000000FFFFFFFF : 0x0000FFFF;
  SDValue HalfWordMask = DAG.getConstant(HWMask, DL, VT);

  // Two to the power of half-word-size.
  SDValue TWOHW =
      DAG.getConstantFP(1ULL << (BW / 2), DL, Node->getValueType(0));

  // Clear upper part of LO, lower HI
  SDValue HI = DAG.getNode(ISD::SRL, DL, VT, Src, HalfWord);
  SDValue LO = DAG.getNode(ISD::AND, DL, VT, Src, HalfWordMask);

  if (IsStrict) {
    // Convert hi and lo to floats
    // Convert the hi part back to the upper values
    // TODO: Can any fast-math-flags be set on these nodes?
    SDValue fHI = DAG.getNode(ISD::STRICT_SINT_TO_FP, DL,
                              {Node->getValueType(0), MVT::Other},
                              {Node->getOperand(0), HI});
    fHI = DAG.getNode(ISD::STRICT_FMUL, DL, {Node->getValueType(0), MVT::Other},
                      {fHI.getValue(1), fHI, TWOHW});
    SDValue fLO = DAG.getNode(ISD::STRICT_SINT_TO_FP, DL,
                              {Node->getValueType(0), MVT::Other},
                              {Node->getOperand(0), LO});

    SDValue TF = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, fHI.getValue(1),
                             fLO.getValue(1));

    // Add the two halves
    SDValue Result =
        DAG.getNode(ISD::STRICT_FADD, DL, {Node->getValueType(0), MVT::Other},
                    {TF, fHI, fLO});

    Results.push_back(Result);
    Results.push_back(Result.getValue(1));
    return;
  }

  // Convert hi and lo to floats
  // Convert the hi part back to the upper values
  // TODO: Can any fast-math-flags be set on these nodes?
  SDValue fHI = DAG.getNode(ISD::SINT_TO_FP, DL, Node->getValueType(0), HI);
  fHI = DAG.getNode(ISD::FMUL, DL, Node->getValueType(0), fHI, TWOHW);
  SDValue fLO = DAG.getNode(ISD::SINT_TO_FP, DL, Node->getValueType(0), LO);

  // Add the two halves
  Results.push_back(
      DAG.getNode(ISD::FADD, DL, Node->getValueType(0), fHI, fLO));
}

SDValue VectorLegalizer::ExpandFNEG(SDNode *Node) {
  if (TLI.isOperationLegalOrCustom(ISD::FSUB, Node->getValueType(0))) {
    SDLoc DL(Node);
    SDValue Zero = DAG.getConstantFP(-0.0, DL, Node->getValueType(0));
    // TODO: If FNEG had fast-math-flags, they'd get propagated to this FSUB.
    return DAG.getNode(ISD::FSUB, DL, Node->getValueType(0), Zero,
                       Node->getOperand(0));
  }
  return DAG.UnrollVectorOp(Node);
}

void VectorLegalizer::ExpandFSUB(SDNode *Node,
                                 SmallVectorImpl<SDValue> &Results) {
  // For floating-point values, (a-b) is the same as a+(-b). If FNEG is legal,
  // we can defer this to operation legalization where it will be lowered as
  // a+(-b).
  EVT VT = Node->getValueType(0);
  if (TLI.isOperationLegalOrCustom(ISD::FNEG, VT) &&
      TLI.isOperationLegalOrCustom(ISD::FADD, VT))
    return; // Defer to LegalizeDAG

  SDValue Tmp = DAG.UnrollVectorOp(Node);
  Results.push_back(Tmp);
}

void VectorLegalizer::ExpandSETCC(SDNode *Node,
                                  SmallVectorImpl<SDValue> &Results) {
  bool NeedInvert = false;
  bool IsVP = Node->getOpcode() == ISD::VP_SETCC;
  bool IsStrict = Node->getOpcode() == ISD::STRICT_FSETCC ||
                  Node->getOpcode() == ISD::STRICT_FSETCCS;
  bool IsSignaling = Node->getOpcode() == ISD::STRICT_FSETCCS;
  unsigned Offset = IsStrict ? 1 : 0;

  SDValue Chain = IsStrict ? Node->getOperand(0) : SDValue();
  SDValue LHS = Node->getOperand(0 + Offset);
  SDValue RHS = Node->getOperand(1 + Offset);
  SDValue CC = Node->getOperand(2 + Offset);

  MVT OpVT = LHS.getSimpleValueType();
  ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get();

  if (TLI.getCondCodeAction(CCCode, OpVT) != TargetLowering::Expand) {
    if (IsStrict) {
      UnrollStrictFPOp(Node, Results);
      return;
    }
    Results.push_back(UnrollVSETCC(Node));
    return;
  }

  SDValue Mask, EVL;
  if (IsVP) {
    Mask = Node->getOperand(3 + Offset);
    EVL = Node->getOperand(4 + Offset);
  }

  SDLoc dl(Node);
  bool Legalized =
      TLI.LegalizeSetCCCondCode(DAG, Node->getValueType(0), LHS, RHS, CC, Mask,
                                EVL, NeedInvert, dl, Chain, IsSignaling);

  if (Legalized) {
    // If we expanded the SETCC by swapping LHS and RHS, or by inverting the
    // condition code, create a new SETCC node.
    if (CC.getNode()) {
      if (IsStrict) {
        LHS = DAG.getNode(Node->getOpcode(), dl, Node->getVTList(),
                          {Chain, LHS, RHS, CC}, Node->getFlags());
        Chain = LHS.getValue(1);
      } else if (IsVP) {
        LHS = DAG.getNode(ISD::VP_SETCC, dl, Node->getValueType(0),
                          {LHS, RHS, CC, Mask, EVL}, Node->getFlags());
      } else {
        LHS = DAG.getNode(ISD::SETCC, dl, Node->getValueType(0), LHS, RHS, CC,
                          Node->getFlags());
      }
    }

    // If we expanded the SETCC by inverting the condition code, then wrap
    // the existing SETCC in a NOT to restore the intended condition.
    if (NeedInvert) {
      if (!IsVP)
        LHS = DAG.getLogicalNOT(dl, LHS, LHS->getValueType(0));
      else
        LHS = DAG.getVPLogicalNOT(dl, LHS, Mask, EVL, LHS->getValueType(0));
    }
  } else {
    assert(!IsStrict && "Don't know how to expand for strict nodes.");

    // Otherwise, SETCC for the given comparison type must be completely
    // illegal; expand it into a SELECT_CC.
    EVT VT = Node->getValueType(0);
    LHS =
        DAG.getNode(ISD::SELECT_CC, dl, VT, LHS, RHS,
                    DAG.getBoolConstant(true, dl, VT, LHS.getValueType()),
                    DAG.getBoolConstant(false, dl, VT, LHS.getValueType()), CC);
    LHS->setFlags(Node->getFlags());
  }

  Results.push_back(LHS);
  if (IsStrict)
    Results.push_back(Chain);
}

void VectorLegalizer::ExpandUADDSUBO(SDNode *Node,
                                     SmallVectorImpl<SDValue> &Results) {
  SDValue Result, Overflow;
  TLI.expandUADDSUBO(Node, Result, Overflow, DAG);
  Results.push_back(Result);
  Results.push_back(Overflow);
}

void VectorLegalizer::ExpandSADDSUBO(SDNode *Node,
                                     SmallVectorImpl<SDValue> &Results) {
  SDValue Result, Overflow;
  TLI.expandSADDSUBO(Node, Result, Overflow, DAG);
  Results.push_back(Result);
  Results.push_back(Overflow);
}

void VectorLegalizer::ExpandMULO(SDNode *Node,
                                 SmallVectorImpl<SDValue> &Results) {
  SDValue Result, Overflow;
  if (!TLI.expandMULO(Node, Result, Overflow, DAG))
    std::tie(Result, Overflow) = DAG.UnrollVectorOverflowOp(Node);

  Results.push_back(Result);
  Results.push_back(Overflow);
}

void VectorLegalizer::ExpandFixedPointDiv(SDNode *Node,
                                          SmallVectorImpl<SDValue> &Results) {
  SDNode *N = Node;
  if (SDValue Expanded = TLI.expandFixedPointDiv(N->getOpcode(), SDLoc(N),
          N->getOperand(0), N->getOperand(1), N->getConstantOperandVal(2), DAG))
    Results.push_back(Expanded);
}

void VectorLegalizer::ExpandStrictFPOp(SDNode *Node,
                                       SmallVectorImpl<SDValue> &Results) {
  if (Node->getOpcode() == ISD::STRICT_UINT_TO_FP) {
    ExpandUINT_TO_FLOAT(Node, Results);
    return;
  }
  if (Node->getOpcode() == ISD::STRICT_FP_TO_UINT) {
    ExpandFP_TO_UINT(Node, Results);
    return;
  }

  if (Node->getOpcode() == ISD::STRICT_FSETCC ||
      Node->getOpcode() == ISD::STRICT_FSETCCS) {
    ExpandSETCC(Node, Results);
    return;
  }

  UnrollStrictFPOp(Node, Results);
}

void VectorLegalizer::ExpandREM(SDNode *Node,
                                SmallVectorImpl<SDValue> &Results) {
  assert((Node->getOpcode() == ISD::SREM || Node->getOpcode() == ISD::UREM) &&
         "Expected REM node");

  SDValue Result;
  if (!TLI.expandREM(Node, Result, DAG))
    Result = DAG.UnrollVectorOp(Node);
  Results.push_back(Result);
}

// Try to expand libm nodes into vector math routine calls. Callers provide the
// LibFunc equivalent of the passed in Node, which is used to lookup mappings
// within TargetLibraryInfo. The only mappings considered are those where the
// result and all operands are the same vector type. While predicated nodes are
// not supported, we will emit calls to masked routines by passing in an all
// true mask.
bool VectorLegalizer::tryExpandVecMathCall(SDNode *Node, RTLIB::Libcall LC,
                                           SmallVectorImpl<SDValue> &Results) {
  // Chain must be propagated but currently strict fp operations are down
  // converted to their none strict counterpart.
  assert(!Node->isStrictFPOpcode() && "Unexpected strict fp operation!");

  const char *LCName = TLI.getLibcallName(LC);
  if (!LCName)
    return false;
  LLVM_DEBUG(dbgs() << "Looking for vector variant of " << LCName << "\n");

  EVT VT = Node->getValueType(0);
  ElementCount VL = VT.getVectorElementCount();

  // Lookup a vector function equivalent to the specified libcall. Prefer
  // unmasked variants but we will generate a mask if need be.
  const TargetLibraryInfo &TLibInfo = DAG.getLibInfo();
  const VecDesc *VD = TLibInfo.getVectorMappingInfo(LCName, VL, false);
  if (!VD)
    VD = TLibInfo.getVectorMappingInfo(LCName, VL, /*Masked=*/true);
  if (!VD)
    return false;

  LLVMContext *Ctx = DAG.getContext();
  Type *Ty = VT.getTypeForEVT(*Ctx);
  Type *ScalarTy = Ty->getScalarType();

  // Construct a scalar function type based on Node's operands.
  SmallVector<Type *, 8> ArgTys;
  for (unsigned i = 0; i < Node->getNumOperands(); ++i) {
    assert(Node->getOperand(i).getValueType() == VT &&
           "Expected matching vector types!");
    ArgTys.push_back(ScalarTy);
  }
  FunctionType *ScalarFTy = FunctionType::get(ScalarTy, ArgTys, false);

  // Generate call information for the vector function.
  const std::string MangledName = VD->getVectorFunctionABIVariantString();
  auto OptVFInfo = VFABI::tryDemangleForVFABI(MangledName, ScalarFTy);
  if (!OptVFInfo)
    return false;

  LLVM_DEBUG(dbgs() << "Found vector variant " << VD->getVectorFnName()
                    << "\n");

  // Sanity check just in case OptVFInfo has unexpected parameters.
  if (OptVFInfo->Shape.Parameters.size() !=
      Node->getNumOperands() + VD->isMasked())
    return false;

  // Collect vector call operands.

  SDLoc DL(Node);
  TargetLowering::ArgListTy Args;
  TargetLowering::ArgListEntry Entry;
  Entry.IsSExt = false;
  Entry.IsZExt = false;

  unsigned OpNum = 0;
  for (auto &VFParam : OptVFInfo->Shape.Parameters) {
    if (VFParam.ParamKind == VFParamKind::GlobalPredicate) {
      EVT MaskVT = TLI.getSetCCResultType(DAG.getDataLayout(), *Ctx, VT);
      Entry.Node = DAG.getBoolConstant(true, DL, MaskVT, VT);
      Entry.Ty = MaskVT.getTypeForEVT(*Ctx);
      Args.push_back(Entry);
      continue;
    }

    // Only vector operands are supported.
    if (VFParam.ParamKind != VFParamKind::Vector)
      return false;

    Entry.Node = Node->getOperand(OpNum++);
    Entry.Ty = Ty;
    Args.push_back(Entry);
  }

  // Emit a call to the vector function.
  SDValue Callee = DAG.getExternalSymbol(VD->getVectorFnName().data(),
                                         TLI.getPointerTy(DAG.getDataLayout()));
  TargetLowering::CallLoweringInfo CLI(DAG);
  CLI.setDebugLoc(DL)
      .setChain(DAG.getEntryNode())
      .setLibCallee(CallingConv::C, Ty, Callee, std::move(Args));

  std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI);
  Results.push_back(CallResult.first);
  return true;
}

/// Try to expand the node to a vector libcall based on the result type.
bool VectorLegalizer::tryExpandVecMathCall(
    SDNode *Node, RTLIB::Libcall Call_F32, RTLIB::Libcall Call_F64,
    RTLIB::Libcall Call_F80, RTLIB::Libcall Call_F128,
    RTLIB::Libcall Call_PPCF128, SmallVectorImpl<SDValue> &Results) {
  RTLIB::Libcall LC = RTLIB::getFPLibCall(
      Node->getValueType(0).getVectorElementType(), Call_F32, Call_F64,
      Call_F80, Call_F128, Call_PPCF128);

  if (LC == RTLIB::UNKNOWN_LIBCALL)
    return false;

  return tryExpandVecMathCall(Node, LC, Results);
}

void VectorLegalizer::UnrollStrictFPOp(SDNode *Node,
                                       SmallVectorImpl<SDValue> &Results) {
  EVT VT = Node->getValueType(0);
  EVT EltVT = VT.getVectorElementType();
  unsigned NumElems = VT.getVectorNumElements();
  unsigned NumOpers = Node->getNumOperands();
  const TargetLowering &TLI = DAG.getTargetLoweringInfo();

  EVT TmpEltVT = EltVT;
  if (Node->getOpcode() == ISD::STRICT_FSETCC ||
      Node->getOpcode() == ISD::STRICT_FSETCCS)
    TmpEltVT = TLI.getSetCCResultType(DAG.getDataLayout(),
                                      *DAG.getContext(), TmpEltVT);

  EVT ValueVTs[] = {TmpEltVT, MVT::Other};
  SDValue Chain = Node->getOperand(0);
  SDLoc dl(Node);

  SmallVector<SDValue, 32> OpValues;
  SmallVector<SDValue, 32> OpChains;
  for (unsigned i = 0; i < NumElems; ++i) {
    SmallVector<SDValue, 4> Opers;
    SDValue Idx = DAG.getVectorIdxConstant(i, dl);

    // The Chain is the first operand.
    Opers.push_back(Chain);

    // Now process the remaining operands.
    for (unsigned j = 1; j < NumOpers; ++j) {
      SDValue Oper = Node->getOperand(j);
      EVT OperVT = Oper.getValueType();

      if (OperVT.isVector())
        Oper = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
                           OperVT.getVectorElementType(), Oper, Idx);

      Opers.push_back(Oper);
    }

    SDValue ScalarOp = DAG.getNode(Node->getOpcode(), dl, ValueVTs, Opers);
    SDValue ScalarResult = ScalarOp.getValue(0);
    SDValue ScalarChain = ScalarOp.getValue(1);

    if (Node->getOpcode() == ISD::STRICT_FSETCC ||
        Node->getOpcode() == ISD::STRICT_FSETCCS)
      ScalarResult = DAG.getSelect(dl, EltVT, ScalarResult,
                                   DAG.getAllOnesConstant(dl, EltVT),
                                   DAG.getConstant(0, dl, EltVT));

    OpValues.push_back(ScalarResult);
    OpChains.push_back(ScalarChain);
  }

  SDValue Result = DAG.getBuildVector(VT, dl, OpValues);
  SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OpChains);

  Results.push_back(Result);
  Results.push_back(NewChain);
}

SDValue VectorLegalizer::UnrollVSETCC(SDNode *Node) {
  EVT VT = Node->getValueType(0);
  unsigned NumElems = VT.getVectorNumElements();
  EVT EltVT = VT.getVectorElementType();
  SDValue LHS = Node->getOperand(0);
  SDValue RHS = Node->getOperand(1);
  SDValue CC = Node->getOperand(2);
  EVT TmpEltVT = LHS.getValueType().getVectorElementType();
  SDLoc dl(Node);
  SmallVector<SDValue, 8> Ops(NumElems);
  for (unsigned i = 0; i < NumElems; ++i) {
    SDValue LHSElem = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, LHS,
                                  DAG.getVectorIdxConstant(i, dl));
    SDValue RHSElem = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, RHS,
                                  DAG.getVectorIdxConstant(i, dl));
    Ops[i] = DAG.getNode(ISD::SETCC, dl,
                         TLI.getSetCCResultType(DAG.getDataLayout(),
                                                *DAG.getContext(), TmpEltVT),
                         LHSElem, RHSElem, CC);
    Ops[i] = DAG.getSelect(dl, EltVT, Ops[i], DAG.getAllOnesConstant(dl, EltVT),
                           DAG.getConstant(0, dl, EltVT));
  }
  return DAG.getBuildVector(VT, dl, Ops);
}

bool SelectionDAG::LegalizeVectors() {
  return VectorLegalizer(*this).Run();
}