summaryrefslogtreecommitdiffstats
path: root/llvm/lib/Target/X86/MCTargetDesc/X86BaseInfo.h
blob: cdb0d87088c378e60b55b24c356cac9f243a32c2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
//===-- X86BaseInfo.h - Top level definitions for X86 -------- --*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains small standalone helper functions and enum definitions for
// the X86 target useful for the compiler back-end and the MC libraries.
// As such, it deliberately does not include references to LLVM core
// code gen types, passes, etc..
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_LIB_TARGET_X86_MCTARGETDESC_X86BASEINFO_H
#define LLVM_LIB_TARGET_X86_MCTARGETDESC_X86BASEINFO_H

#include "X86MCTargetDesc.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/Support/DataTypes.h"
#include "llvm/Support/ErrorHandling.h"

namespace llvm {
namespace X86 {
// Enums for memory operand decoding. Each memory operand is represented with
// a 5 operand sequence in the form: [Base, Scale, Index, Disp, Segment]
enum {
  AddrBaseReg = 0,
  AddrScaleAmt = 1,
  AddrIndexReg = 2,
  AddrDisp = 3,
  // The operand # of the segment in the memory operand.
  AddrSegmentReg = 4,
  // Total number of operands in a memory reference.
  AddrNumOperands = 5
};

/// AVX512 static rounding constants. These need to match the values in
/// avx512fintrin.h.
enum STATIC_ROUNDING {
  TO_NEAREST_INT = 0,
  TO_NEG_INF = 1,
  TO_POS_INF = 2,
  TO_ZERO = 3,
  CUR_DIRECTION = 4,
  NO_EXC = 8
};

/// The constants to describe instr prefixes if there are
enum IPREFIXES {
  IP_NO_PREFIX = 0,
  IP_HAS_OP_SIZE = 1U << 0,
  IP_HAS_AD_SIZE = 1U << 1,
  IP_HAS_REPEAT_NE = 1U << 2,
  IP_HAS_REPEAT = 1U << 3,
  IP_HAS_LOCK = 1U << 4,
  IP_HAS_NOTRACK = 1U << 5,
  IP_USE_VEX = 1U << 6,
  IP_USE_VEX2 = 1U << 7,
  IP_USE_VEX3 = 1U << 8,
  IP_USE_EVEX = 1U << 9,
  IP_USE_DISP8 = 1U << 10,
  IP_USE_DISP32 = 1U << 11,
};

enum OperandType : unsigned {
  // AVX512 embedded rounding control. This should only have values 0-3.
  OPERAND_ROUNDING_CONTROL = MCOI::OPERAND_FIRST_TARGET,
  OPERAND_COND_CODE,
};

// X86 specific condition code. These correspond to X86_*_COND in
// X86InstrInfo.td. They must be kept in synch.
enum CondCode {
  COND_O = 0,
  COND_NO = 1,
  COND_B = 2,
  COND_AE = 3,
  COND_E = 4,
  COND_NE = 5,
  COND_BE = 6,
  COND_A = 7,
  COND_S = 8,
  COND_NS = 9,
  COND_P = 10,
  COND_NP = 11,
  COND_L = 12,
  COND_GE = 13,
  COND_LE = 14,
  COND_G = 15,
  LAST_VALID_COND = COND_G,
  // Artificial condition codes. These are used by analyzeBranch
  // to indicate a block terminated with two conditional branches that together
  // form a compound condition. They occur in code using FCMP_OEQ or FCMP_UNE,
  // which can't be represented on x86 with a single condition. These
  // are never used in MachineInstrs and are inverses of one another.
  COND_NE_OR_P,
  COND_E_AND_NP,
  COND_INVALID
};

// The classification for the first instruction in macro fusion.
// FIXME: Zen 3 support branch fusion for OR/XOR.
enum class FirstMacroFusionInstKind {
  Test,   // TEST
  Cmp,    // CMP
  And,    // AND
  AddSub, // ADD, SUB
  IncDec, // INC, DEC
  Invalid // Not valid as a first macro fusion instruction
};

enum class SecondMacroFusionInstKind {
  AB,      // JA, JB and variants
  ELG,     // JE, JL, JG and variants
  SPO,     // JS, JP, JO and variants
  Invalid, // Not a fusible jump.
};

/// \returns the type of the first instruction in macro-fusion.
// FIXME: Zen 3 support branch fusion for OR/XOR.
inline FirstMacroFusionInstKind
classifyFirstOpcodeInMacroFusion(unsigned Opcode) {
  switch (Opcode) {
  default:
    return FirstMacroFusionInstKind::Invalid;
  // TEST
  case X86::TEST16i16:
  case X86::TEST16mr:
  case X86::TEST16ri:
  case X86::TEST16rr:
  case X86::TEST32i32:
  case X86::TEST32mr:
  case X86::TEST32ri:
  case X86::TEST32rr:
  case X86::TEST64i32:
  case X86::TEST64mr:
  case X86::TEST64ri32:
  case X86::TEST64rr:
  case X86::TEST8i8:
  case X86::TEST8mr:
  case X86::TEST8ri:
  case X86::TEST8rr:
    return FirstMacroFusionInstKind::Test;
  case X86::AND16i16:
  case X86::AND16ri:
  case X86::AND16ri8:
  case X86::AND16rm:
  case X86::AND16rr:
  case X86::AND16rr_REV:
  case X86::AND32i32:
  case X86::AND32ri:
  case X86::AND32ri8:
  case X86::AND32rm:
  case X86::AND32rr:
  case X86::AND32rr_REV:
  case X86::AND64i32:
  case X86::AND64ri32:
  case X86::AND64ri8:
  case X86::AND64rm:
  case X86::AND64rr:
  case X86::AND64rr_REV:
  case X86::AND8i8:
  case X86::AND8ri:
  case X86::AND8ri8:
  case X86::AND8rm:
  case X86::AND8rr:
  case X86::AND8rr_REV:
    return FirstMacroFusionInstKind::And;
  // CMP
  case X86::CMP16i16:
  case X86::CMP16mr:
  case X86::CMP16ri:
  case X86::CMP16ri8:
  case X86::CMP16rm:
  case X86::CMP16rr:
  case X86::CMP16rr_REV:
  case X86::CMP32i32:
  case X86::CMP32mr:
  case X86::CMP32ri:
  case X86::CMP32ri8:
  case X86::CMP32rm:
  case X86::CMP32rr:
  case X86::CMP32rr_REV:
  case X86::CMP64i32:
  case X86::CMP64mr:
  case X86::CMP64ri32:
  case X86::CMP64ri8:
  case X86::CMP64rm:
  case X86::CMP64rr:
  case X86::CMP64rr_REV:
  case X86::CMP8i8:
  case X86::CMP8mr:
  case X86::CMP8ri:
  case X86::CMP8ri8:
  case X86::CMP8rm:
  case X86::CMP8rr:
  case X86::CMP8rr_REV:
    return FirstMacroFusionInstKind::Cmp;
  // ADD
  case X86::ADD16i16:
  case X86::ADD16ri:
  case X86::ADD16ri8:
  case X86::ADD16rm:
  case X86::ADD16rr:
  case X86::ADD16rr_REV:
  case X86::ADD32i32:
  case X86::ADD32ri:
  case X86::ADD32ri8:
  case X86::ADD32rm:
  case X86::ADD32rr:
  case X86::ADD32rr_REV:
  case X86::ADD64i32:
  case X86::ADD64ri32:
  case X86::ADD64ri8:
  case X86::ADD64rm:
  case X86::ADD64rr:
  case X86::ADD64rr_REV:
  case X86::ADD8i8:
  case X86::ADD8ri:
  case X86::ADD8ri8:
  case X86::ADD8rm:
  case X86::ADD8rr:
  case X86::ADD8rr_REV:
  // SUB
  case X86::SUB16i16:
  case X86::SUB16ri:
  case X86::SUB16ri8:
  case X86::SUB16rm:
  case X86::SUB16rr:
  case X86::SUB16rr_REV:
  case X86::SUB32i32:
  case X86::SUB32ri:
  case X86::SUB32ri8:
  case X86::SUB32rm:
  case X86::SUB32rr:
  case X86::SUB32rr_REV:
  case X86::SUB64i32:
  case X86::SUB64ri32:
  case X86::SUB64ri8:
  case X86::SUB64rm:
  case X86::SUB64rr:
  case X86::SUB64rr_REV:
  case X86::SUB8i8:
  case X86::SUB8ri:
  case X86::SUB8ri8:
  case X86::SUB8rm:
  case X86::SUB8rr:
  case X86::SUB8rr_REV:
    return FirstMacroFusionInstKind::AddSub;
  // INC
  case X86::INC16r:
  case X86::INC16r_alt:
  case X86::INC32r:
  case X86::INC32r_alt:
  case X86::INC64r:
  case X86::INC8r:
  // DEC
  case X86::DEC16r:
  case X86::DEC16r_alt:
  case X86::DEC32r:
  case X86::DEC32r_alt:
  case X86::DEC64r:
  case X86::DEC8r:
    return FirstMacroFusionInstKind::IncDec;
  }
}

/// \returns the type of the second instruction in macro-fusion.
inline SecondMacroFusionInstKind
classifySecondCondCodeInMacroFusion(X86::CondCode CC) {
  if (CC == X86::COND_INVALID)
    return SecondMacroFusionInstKind::Invalid;
  switch (CC) {
  default:
    return SecondMacroFusionInstKind::Invalid;
  case X86::COND_E:  // JE,JZ
  case X86::COND_NE: // JNE,JNZ
  case X86::COND_L:  // JL,JNGE
  case X86::COND_LE: // JLE,JNG
  case X86::COND_G:  // JG,JNLE
  case X86::COND_GE: // JGE,JNL
    return SecondMacroFusionInstKind::ELG;
  case X86::COND_B:  // JB,JC
  case X86::COND_BE: // JNA,JBE
  case X86::COND_A:  // JA,JNBE
  case X86::COND_AE: // JAE,JNC,JNB
    return SecondMacroFusionInstKind::AB;
  case X86::COND_S:  // JS
  case X86::COND_NS: // JNS
  case X86::COND_P:  // JP,JPE
  case X86::COND_NP: // JNP,JPO
  case X86::COND_O:  // JO
  case X86::COND_NO: // JNO
    return SecondMacroFusionInstKind::SPO;
  }
}

/// \param FirstKind kind of the first instruction in macro fusion.
/// \param SecondKind kind of the second instruction in macro fusion.
///
/// \returns true if the two instruction can be macro fused.
inline bool isMacroFused(FirstMacroFusionInstKind FirstKind,
                         SecondMacroFusionInstKind SecondKind) {
  switch (FirstKind) {
  case X86::FirstMacroFusionInstKind::Test:
  case X86::FirstMacroFusionInstKind::And:
    return true;
  case X86::FirstMacroFusionInstKind::Cmp:
  case X86::FirstMacroFusionInstKind::AddSub:
    return SecondKind == X86::SecondMacroFusionInstKind::AB ||
           SecondKind == X86::SecondMacroFusionInstKind::ELG;
  case X86::FirstMacroFusionInstKind::IncDec:
    return SecondKind == X86::SecondMacroFusionInstKind::ELG;
  case X86::FirstMacroFusionInstKind::Invalid:
    return false;
  }
  llvm_unreachable("unknown fusion type");
}

/// Defines the possible values of the branch boundary alignment mask.
enum AlignBranchBoundaryKind : uint8_t {
  AlignBranchNone = 0,
  AlignBranchFused = 1U << 0,
  AlignBranchJcc = 1U << 1,
  AlignBranchJmp = 1U << 2,
  AlignBranchCall = 1U << 3,
  AlignBranchRet = 1U << 4,
  AlignBranchIndirect = 1U << 5
};

/// Defines the encoding values for segment override prefix.
enum EncodingOfSegmentOverridePrefix : uint8_t {
  CS_Encoding = 0x2E,
  DS_Encoding = 0x3E,
  ES_Encoding = 0x26,
  FS_Encoding = 0x64,
  GS_Encoding = 0x65,
  SS_Encoding = 0x36
};

/// Given a segment register, return the encoding of the segment override
/// prefix for it.
inline EncodingOfSegmentOverridePrefix
getSegmentOverridePrefixForReg(unsigned Reg) {
  switch (Reg) {
  default:
    llvm_unreachable("Unknown segment register!");
  case X86::CS:
    return CS_Encoding;
  case X86::DS:
    return DS_Encoding;
  case X86::ES:
    return ES_Encoding;
  case X86::FS:
    return FS_Encoding;
  case X86::GS:
    return GS_Encoding;
  case X86::SS:
    return SS_Encoding;
  }
}

} // namespace X86

/// X86II - This namespace holds all of the target specific flags that
/// instruction info tracks.
///
namespace X86II {
/// Target Operand Flag enum.
enum TOF {
  //===------------------------------------------------------------------===//
  // X86 Specific MachineOperand flags.
  //
  /// MO_NO_FLAG - No flag for the operand
  MO_NO_FLAG,
  /// MO_GOT_ABSOLUTE_ADDRESS - On a symbol operand, this represents a
  /// relocation of:
  ///    SYMBOL_LABEL + [. - PICBASELABEL]
  MO_GOT_ABSOLUTE_ADDRESS,
  /// MO_PIC_BASE_OFFSET - On a symbol operand this indicates that the
  /// immediate should get the value of the symbol minus the PIC base label:
  ///    SYMBOL_LABEL - PICBASELABEL
  MO_PIC_BASE_OFFSET,
  /// MO_GOT - On a symbol operand this indicates that the immediate is the
  /// offset to the GOT entry for the symbol name from the base of the GOT.
  /// See the X86-64 ELF ABI supplement for more details.
  ///    SYMBOL_LABEL @GOT
  MO_GOT,
  /// MO_GOTOFF - On a symbol operand this indicates that the immediate is
  /// the offset to the location of the symbol name from the base of the GOT.
  /// See the X86-64 ELF ABI supplement for more details.
  ///    SYMBOL_LABEL @GOTOFF
  MO_GOTOFF,
  /// MO_GOTPCREL - On a symbol operand this indicates that the immediate is
  /// offset to the GOT entry for the symbol name from the current code
  /// location.
  /// See the X86-64 ELF ABI supplement for more details.
  ///    SYMBOL_LABEL @GOTPCREL
  MO_GOTPCREL,
  /// MO_GOTPCREL_NORELAX - Same as MO_GOTPCREL except that R_X86_64_GOTPCREL
  /// relocations are guaranteed to be emitted by the integrated assembler
  /// instead of the relaxable R_X86_64[_REX]_GOTPCRELX relocations.
  MO_GOTPCREL_NORELAX,
  /// MO_PLT - On a symbol operand this indicates that the immediate is
  /// offset to the PLT entry of symbol name from the current code location.
  /// See the X86-64 ELF ABI supplement for more details.
  ///    SYMBOL_LABEL @PLT
  MO_PLT,
  /// MO_TLSGD - On a symbol operand this indicates that the immediate is
  /// the offset of the GOT entry with the TLS index structure that contains
  /// the module number and variable offset for the symbol. Used in the
  /// general dynamic TLS access model.
  /// See 'ELF Handling for Thread-Local Storage' for more details.
  ///    SYMBOL_LABEL @TLSGD
  MO_TLSGD,
  /// MO_TLSLD - On a symbol operand this indicates that the immediate is
  /// the offset of the GOT entry with the TLS index for the module that
  /// contains the symbol. When this index is passed to a call to
  /// __tls_get_addr, the function will return the base address of the TLS
  /// block for the symbol. Used in the x86-64 local dynamic TLS access model.
  /// See 'ELF Handling for Thread-Local Storage' for more details.
  ///    SYMBOL_LABEL @TLSLD
  MO_TLSLD,
  /// MO_TLSLDM - On a symbol operand this indicates that the immediate is
  /// the offset of the GOT entry with the TLS index for the module that
  /// contains the symbol. When this index is passed to a call to
  /// ___tls_get_addr, the function will return the base address of the TLS
  /// block for the symbol. Used in the IA32 local dynamic TLS access model.
  /// See 'ELF Handling for Thread-Local Storage' for more details.
  ///    SYMBOL_LABEL @TLSLDM
  MO_TLSLDM,
  /// MO_TLSDESC - On a symbol operand this indicates that the immediate is
  /// the offset of the GOT entry with the TLS index for the module that
  /// contains the symbol. When this index is passed to a call to
  /// the resolver function, it will return the offset from the thread pointer.
  /// See 'ELF Handling for Thread-Local Storage' for more details.
  ///    SYMBOL_LABEL @TLSDESC
  MO_TLSDESC,
  /// MO_TLSCALL - On a symbol operand this indicates this  call to
  /// the resolver function, it will return the offset from the thread pointer.
  /// See 'ELF Handling for Thread-Local Storage' for more details.
  ///    SYMBOL_LABEL @TLSCALL
  MO_TLSCALL,
  /// MO_GOTTPOFF - On a symbol operand this indicates that the immediate is
  /// the offset of the GOT entry with the thread-pointer offset for the
  /// symbol. Used in the x86-64 initial exec TLS access model.
  /// See 'ELF Handling for Thread-Local Storage' for more details.
  ///    SYMBOL_LABEL @GOTTPOFF
  MO_GOTTPOFF,
  /// MO_INDNTPOFF - On a symbol operand this indicates that the immediate is
  /// the absolute address of the GOT entry with the negative thread-pointer
  /// offset for the symbol. Used in the non-PIC IA32 initial exec TLS access
  /// model.
  /// See 'ELF Handling for Thread-Local Storage' for more details.
  ///    SYMBOL_LABEL @INDNTPOFF
  MO_INDNTPOFF,
  /// MO_TPOFF - On a symbol operand this indicates that the immediate is
  /// the thread-pointer offset for the symbol. Used in the x86-64 local
  /// exec TLS access model.
  /// See 'ELF Handling for Thread-Local Storage' for more details.
  ///    SYMBOL_LABEL @TPOFF
  MO_TPOFF,
  /// MO_DTPOFF - On a symbol operand this indicates that the immediate is
  /// the offset of the GOT entry with the TLS offset of the symbol. Used
  /// in the local dynamic TLS access model.
  /// See 'ELF Handling for Thread-Local Storage' for more details.
  ///    SYMBOL_LABEL @DTPOFF
  MO_DTPOFF,
  /// MO_NTPOFF - On a symbol operand this indicates that the immediate is
  /// the negative thread-pointer offset for the symbol. Used in the IA32
  /// local exec TLS access model.
  /// See 'ELF Handling for Thread-Local Storage' for more details.
  ///    SYMBOL_LABEL @NTPOFF
  MO_NTPOFF,
  /// MO_GOTNTPOFF - On a symbol operand this indicates that the immediate is
  /// the offset of the GOT entry with the negative thread-pointer offset for
  /// the symbol. Used in the PIC IA32 initial exec TLS access model.
  /// See 'ELF Handling for Thread-Local Storage' for more details.
  ///    SYMBOL_LABEL @GOTNTPOFF
  MO_GOTNTPOFF,
  /// MO_DLLIMPORT - On a symbol operand "FOO", this indicates that the
  /// reference is actually to the "__imp_FOO" symbol.  This is used for
  /// dllimport linkage on windows.
  MO_DLLIMPORT,
  /// MO_DARWIN_NONLAZY - On a symbol operand "FOO", this indicates that the
  /// reference is actually to the "FOO$non_lazy_ptr" symbol, which is a
  /// non-PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
  MO_DARWIN_NONLAZY,
  /// MO_DARWIN_NONLAZY_PIC_BASE - On a symbol operand "FOO", this indicates
  /// that the reference is actually to "FOO$non_lazy_ptr - PICBASE", which is
  /// a PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
  MO_DARWIN_NONLAZY_PIC_BASE,
  /// MO_TLVP - On a symbol operand this indicates that the immediate is
  /// some TLS offset.
  /// This is the TLS offset for the Darwin TLS mechanism.
  MO_TLVP,
  /// MO_TLVP_PIC_BASE - On a symbol operand this indicates that the immediate
  /// is some TLS offset from the picbase.
  /// This is the 32-bit TLS offset for Darwin TLS in PIC mode.
  MO_TLVP_PIC_BASE,
  /// MO_SECREL - On a symbol operand this indicates that the immediate is
  /// the offset from beginning of section.
  /// This is the TLS offset for the COFF/Windows TLS mechanism.
  MO_SECREL,
  /// MO_ABS8 - On a symbol operand this indicates that the symbol is known
  /// to be an absolute symbol in range [0,128), so we can use the @ABS8
  /// symbol modifier.
  MO_ABS8,
  /// MO_COFFSTUB - On a symbol operand "FOO", this indicates that the
  /// reference is actually to the ".refptr.FOO" symbol.  This is used for
  /// stub symbols on windows.
  MO_COFFSTUB,
};

enum : uint64_t {
  //===------------------------------------------------------------------===//
  // Instruction encodings.  These are the standard/most common forms for X86
  // instructions.
  //
  /// PseudoFrm - This represents an instruction that is a pseudo instruction
  /// or one that has not been implemented yet.  It is illegal to code generate
  /// it, but tolerated for intermediate implementation stages.
  Pseudo = 0,
  /// Raw - This form is for instructions that don't have any operands, so
  /// they are just a fixed opcode value, like 'leave'.
  RawFrm = 1,
  /// AddRegFrm - This form is used for instructions like 'push r32' that have
  /// their one register operand added to their opcode.
  AddRegFrm = 2,
  /// RawFrmMemOffs - This form is for instructions that store an absolute
  /// memory offset as an immediate with a possible segment override.
  RawFrmMemOffs = 3,
  /// RawFrmSrc - This form is for instructions that use the source index
  /// register SI/ESI/RSI with a possible segment override.
  RawFrmSrc = 4,
  /// RawFrmDst - This form is for instructions that use the destination index
  /// register DI/EDI/RDI.
  RawFrmDst = 5,
  /// RawFrmDstSrc - This form is for instructions that use the source index
  /// register SI/ESI/RSI with a possible segment override, and also the
  /// destination index register DI/EDI/RDI.
  RawFrmDstSrc = 6,
  /// RawFrmImm8 - This is used for the ENTER instruction, which has two
  /// immediates, the first of which is a 16-bit immediate (specified by
  /// the imm encoding) and the second is a 8-bit fixed value.
  RawFrmImm8 = 7,
  /// RawFrmImm16 - This is used for CALL FAR instructions, which have two
  /// immediates, the first of which is a 16 or 32-bit immediate (specified by
  /// the imm encoding) and the second is a 16-bit fixed value.  In the AMD
  /// manual, this operand is described as pntr16:32 and pntr16:16
  RawFrmImm16 = 8,
  /// AddCCFrm - This form is used for Jcc that encode the condition code
  /// in the lower 4 bits of the opcode.
  AddCCFrm = 9,
  /// PrefixByte - This form is used for instructions that represent a prefix
  /// byte like data16 or rep.
  PrefixByte = 10,
  /// MRMDestMem4VOp3CC - This form is used for instructions that use the Mod/RM
  /// byte to specify a destination which in this case is memory and operand 3
  /// with VEX.VVVV, and also encodes a condition code.
  MRMDestMem4VOp3CC = 20,
  /// Instructions operate on a register Reg/Opcode operand not the r/m field.
  MRMr0 = 21,
  /// MRMSrcMem - But force to use the SIB field.
  MRMSrcMemFSIB = 22,
  /// MRMDestMem - But force to use the SIB field.
  MRMDestMemFSIB = 23,
  /// MRMDestMem - This form is used for instructions that use the Mod/RM byte
  /// to specify a destination, which in this case is memory.
  MRMDestMem = 24,
  /// MRMSrcMem - This form is used for instructions that use the Mod/RM byte
  /// to specify a source, which in this case is memory.
  MRMSrcMem = 25,
  /// MRMSrcMem4VOp3 - This form is used for instructions that encode
  /// operand 3 with VEX.VVVV and load from memory.
  MRMSrcMem4VOp3 = 26,
  /// MRMSrcMemOp4 - This form is used for instructions that use the Mod/RM
  /// byte to specify the fourth source, which in this case is memory.
  MRMSrcMemOp4 = 27,
  /// MRMSrcMemCC - This form is used for instructions that use the Mod/RM
  /// byte to specify the operands and also encodes a condition code.
  MRMSrcMemCC = 28,
  /// MRMXm - This form is used for instructions that use the Mod/RM byte
  /// to specify a memory source, but doesn't use the middle field. And has
  /// a condition code.
  MRMXmCC = 30,
  /// MRMXm - This form is used for instructions that use the Mod/RM byte
  /// to specify a memory source, but doesn't use the middle field.
  MRMXm = 31,
  /// MRM0m-MRM7m - Instructions that operate on a memory r/m operand and use
  /// reg field to hold extended opcode, which is represented as /0, /1, ...
  MRM0m = 32, // Format /0
  MRM1m = 33, // Format /1
  MRM2m = 34, // Format /2
  MRM3m = 35, // Format /3
  MRM4m = 36, // Format /4
  MRM5m = 37, // Format /5
  MRM6m = 38, // Format /6
  MRM7m = 39, // Format /7
  /// MRMDestReg - This form is used for instructions that use the Mod/RM byte
  /// to specify a destination, which in this case is a register.
  MRMDestReg = 40,
  /// MRMSrcReg - This form is used for instructions that use the Mod/RM byte
  /// to specify a source, which in this case is a register.
  MRMSrcReg = 41,
  /// MRMSrcReg4VOp3 - This form is used for instructions that encode
  /// operand 3 with VEX.VVVV and do not load from memory.
  MRMSrcReg4VOp3 = 42,
  /// MRMSrcRegOp4 - This form is used for instructions that use the Mod/RM
  /// byte to specify the fourth source, which in this case is a register.
  MRMSrcRegOp4 = 43,
  /// MRMSrcRegCC - This form is used for instructions that use the Mod/RM
  /// byte to specify the operands and also encodes a condition code
  MRMSrcRegCC = 44,
  /// MRMXCCr - This form is used for instructions that use the Mod/RM byte
  /// to specify a register source, but doesn't use the middle field. And has
  /// a condition code.
  MRMXrCC = 46,
  /// MRMXr - This form is used for instructions that use the Mod/RM byte
  /// to specify a register source, but doesn't use the middle field.
  MRMXr = 47,
  /// MRM0r-MRM7r - Instructions that operate on a register r/m operand and use
  /// reg field to hold extended opcode, which is represented as /0, /1, ...
  MRM0r = 48, // Format /0
  MRM1r = 49, // Format /1
  MRM2r = 50, // Format /2
  MRM3r = 51, // Format /3
  MRM4r = 52, // Format /4
  MRM5r = 53, // Format /5
  MRM6r = 54, // Format /6
  MRM7r = 55, // Format /7
  /// MRM0X-MRM7X - Instructions that operate that have mod=11 and an opcode but
  /// ignore r/m.
  MRM0X = 56, // Format /0
  MRM1X = 57, // Format /1
  MRM2X = 58, // Format /2
  MRM3X = 59, // Format /3
  MRM4X = 60, // Format /4
  MRM5X = 61, // Format /5
  MRM6X = 62, // Format /6
  MRM7X = 63, // Format /7
  /// MRM_XX (XX: C0-FF)- A mod/rm byte of exactly 0xXX.
  MRM_C0 = 64,
  MRM_C1 = 65,
  MRM_C2 = 66,
  MRM_C3 = 67,
  MRM_C4 = 68,
  MRM_C5 = 69,
  MRM_C6 = 70,
  MRM_C7 = 71,
  MRM_C8 = 72,
  MRM_C9 = 73,
  MRM_CA = 74,
  MRM_CB = 75,
  MRM_CC = 76,
  MRM_CD = 77,
  MRM_CE = 78,
  MRM_CF = 79,
  MRM_D0 = 80,
  MRM_D1 = 81,
  MRM_D2 = 82,
  MRM_D3 = 83,
  MRM_D4 = 84,
  MRM_D5 = 85,
  MRM_D6 = 86,
  MRM_D7 = 87,
  MRM_D8 = 88,
  MRM_D9 = 89,
  MRM_DA = 90,
  MRM_DB = 91,
  MRM_DC = 92,
  MRM_DD = 93,
  MRM_DE = 94,
  MRM_DF = 95,
  MRM_E0 = 96,
  MRM_E1 = 97,
  MRM_E2 = 98,
  MRM_E3 = 99,
  MRM_E4 = 100,
  MRM_E5 = 101,
  MRM_E6 = 102,
  MRM_E7 = 103,
  MRM_E8 = 104,
  MRM_E9 = 105,
  MRM_EA = 106,
  MRM_EB = 107,
  MRM_EC = 108,
  MRM_ED = 109,
  MRM_EE = 110,
  MRM_EF = 111,
  MRM_F0 = 112,
  MRM_F1 = 113,
  MRM_F2 = 114,
  MRM_F3 = 115,
  MRM_F4 = 116,
  MRM_F5 = 117,
  MRM_F6 = 118,
  MRM_F7 = 119,
  MRM_F8 = 120,
  MRM_F9 = 121,
  MRM_FA = 122,
  MRM_FB = 123,
  MRM_FC = 124,
  MRM_FD = 125,
  MRM_FE = 126,
  MRM_FF = 127,
  FormMask = 127,
  //===------------------------------------------------------------------===//
  // Actual flags...
  /// OpSize - OpSizeFixed implies instruction never needs a 0x66 prefix.
  /// OpSize16 means this is a 16-bit instruction and needs 0x66 prefix in
  /// 32-bit mode. OpSize32 means this is a 32-bit instruction needs a 0x66
  /// prefix in 16-bit mode.
  OpSizeShift = 7,
  OpSizeMask = 0x3 << OpSizeShift,
  OpSizeFixed = 0 << OpSizeShift,
  OpSize16 = 1 << OpSizeShift,
  OpSize32 = 2 << OpSizeShift,
  /// AsSize - AdSizeX implies this instruction determines its need of 0x67
  /// prefix from a normal ModRM memory operand. The other types indicate that
  /// an operand is encoded with a specific width and a prefix is needed if
  /// it differs from the current mode.
  AdSizeShift = OpSizeShift + 2,
  AdSizeMask = 0x3 << AdSizeShift,
  AdSizeX = 0 << AdSizeShift,
  AdSize16 = 1 << AdSizeShift,
  AdSize32 = 2 << AdSizeShift,
  AdSize64 = 3 << AdSizeShift,
  //===------------------------------------------------------------------===//
  /// OpPrefix - There are several prefix bytes that are used as opcode
  /// extensions. These are 0x66, 0xF3, and 0xF2. If this field is 0 there is
  /// no prefix.
  OpPrefixShift = AdSizeShift + 2,
  OpPrefixMask = 0x3 << OpPrefixShift,
  /// PD - Prefix code for packed double precision vector floating point
  /// operations performed in the SSE registers.
  PD = 1 << OpPrefixShift,
  /// XS, XD - These prefix codes are for single and double precision scalar
  /// floating point operations performed in the SSE registers.
  XS = 2 << OpPrefixShift,
  XD = 3 << OpPrefixShift,
  //===------------------------------------------------------------------===//
  /// OpMap - This field determines which opcode map this instruction
  /// belongs to. i.e. one-byte, two-byte, 0x0f 0x38, 0x0f 0x3a, etc.
  OpMapShift = OpPrefixShift + 2,
  OpMapMask = 0xF << OpMapShift,
  /// OB - OneByte - Set if this instruction has a one byte opcode.
  OB = 0 << OpMapShift,
  /// TB - TwoByte - Set if this instruction has a two byte opcode, which
  /// starts with a 0x0F byte before the real opcode.
  TB = 1 << OpMapShift,
  /// T8, TA - Prefix after the 0x0F prefix.
  T8 = 2 << OpMapShift,
  TA = 3 << OpMapShift,
  /// XOP8 - Prefix to include use of imm byte.
  XOP8 = 4 << OpMapShift,
  /// XOP9 - Prefix to exclude use of imm byte.
  XOP9 = 5 << OpMapShift,
  /// XOPA - Prefix to encode 0xA in VEX.MMMM of XOP instructions.
  XOPA = 6 << OpMapShift,
  /// ThreeDNow - This indicates that the instruction uses the
  /// wacky 0x0F 0x0F prefix for 3DNow! instructions.  The manual documents
  /// this as having a 0x0F prefix with a 0x0F opcode, and each instruction
  /// storing a classifier in the imm8 field.  To simplify our implementation,
  /// we handle this by storeing the classifier in the opcode field and using
  /// this flag to indicate that the encoder should do the wacky 3DNow! thing.
  ThreeDNow = 7 << OpMapShift,
  /// MAP4, MAP5, MAP6, MAP7 - Prefix after the 0x0F prefix.
  T_MAP4 = 8 << OpMapShift,
  T_MAP5 = 9 << OpMapShift,
  T_MAP6 = 10 << OpMapShift,
  T_MAP7 = 11 << OpMapShift,
  //===------------------------------------------------------------------===//
  /// REX_W - REX prefixes are instruction prefixes used in 64-bit mode.
  /// They are used to specify GPRs and SSE registers, 64-bit operand size,
  /// etc. We only cares about REX.W and REX.R bits and only the former is
  /// statically determined.
  REXShift = OpMapShift + 4,
  REX_W = 1 << REXShift,
  //===------------------------------------------------------------------===//
  // This 4-bit field describes the size of an immediate operand. Zero is
  // unused so that we can tell if we forgot to set a value.
  ImmShift = REXShift + 1,
  Imm8 = 1 << ImmShift,
  Imm8PCRel = 2 << ImmShift,
  Imm8Reg = 3 << ImmShift,
  Imm16 = 4 << ImmShift,
  Imm16PCRel = 5 << ImmShift,
  Imm32 = 6 << ImmShift,
  Imm32PCRel = 7 << ImmShift,
  Imm32S = 8 << ImmShift,
  Imm64 = 9 << ImmShift,
  ImmMask = 15 << ImmShift,
  //===------------------------------------------------------------------===//
  /// FP Instruction Classification...  Zero is non-fp instruction.
  /// FPTypeMask - Mask for all of the FP types...
  FPTypeShift = ImmShift + 4,
  FPTypeMask = 7 << FPTypeShift,
  /// NotFP - The default, set for instructions that do not use FP registers.
  NotFP = 0 << FPTypeShift,
  /// ZeroArgFP - 0 arg FP instruction which implicitly pushes ST(0), f.e. fld0
  ZeroArgFP = 1 << FPTypeShift,
  /// OneArgFP - 1 arg FP instructions which implicitly read ST(0), such as fst
  OneArgFP = 2 << FPTypeShift,
  /// OneArgFPRW - 1 arg FP instruction which implicitly read ST(0) and write a
  /// result back to ST(0).  For example, fcos, fsqrt, etc.
  OneArgFPRW = 3 << FPTypeShift,
  /// TwoArgFP - 2 arg FP instructions which implicitly read ST(0), and an
  /// explicit argument, storing the result to either ST(0) or the implicit
  /// argument.  For example: fadd, fsub, fmul, etc...
  TwoArgFP = 4 << FPTypeShift,
  /// CompareFP - 2 arg FP instructions which implicitly read ST(0) and an
  /// explicit argument, but have no destination.  Example: fucom, fucomi, ...
  CompareFP = 5 << FPTypeShift,
  /// CondMovFP - "2 operand" floating point conditional move instructions.
  CondMovFP = 6 << FPTypeShift,
  /// SpecialFP - Special instruction forms.  Dispatch by opcode explicitly.
  SpecialFP = 7 << FPTypeShift,
  /// Lock prefix
  LOCKShift = FPTypeShift + 3,
  LOCK = 1 << LOCKShift,
  /// REP prefix
  REPShift = LOCKShift + 1,
  REP = 1 << REPShift,
  /// Execution domain for SSE instructions.
  /// 0 means normal, non-SSE instruction.
  SSEDomainShift = REPShift + 1,
  /// Encoding
  EncodingShift = SSEDomainShift + 2,
  EncodingMask = 0x3 << EncodingShift,
  /// LEGACY - encoding using REX/REX2 or w/o opcode prefix.
  LEGACY = 0 << EncodingShift,
  /// VEX - encoding using 0xC4/0xC5
  VEX = 1 << EncodingShift,
  /// XOP - Opcode prefix used by XOP instructions.
  XOP = 2 << EncodingShift,
  /// EVEX - Specifies that this instruction use EVEX form which provides
  /// syntax support up to 32 512-bit register operands and up to 7 16-bit
  /// mask operands as well as source operand data swizzling/memory operand
  /// conversion, eviction hint, and rounding mode.
  EVEX = 3 << EncodingShift,
  /// Opcode
  OpcodeShift = EncodingShift + 2,
  /// VEX_4V - Used to specify an additional AVX/SSE register. Several 2
  /// address instructions in SSE are represented as 3 address ones in AVX
  /// and the additional register is encoded in VEX_VVVV prefix.
  VEX_4VShift = OpcodeShift + 8,
  VEX_4V = 1ULL << VEX_4VShift,
  /// VEX_L - Stands for a bit in the VEX opcode prefix meaning the current
  /// instruction uses 256-bit wide registers. This is usually auto detected
  /// if a VR256 register is used, but some AVX instructions also have this
  /// field marked when using a f256 memory references.
  VEX_LShift = VEX_4VShift + 1,
  VEX_L = 1ULL << VEX_LShift,
  /// EVEX_K - Set if this instruction requires masking
  EVEX_KShift = VEX_LShift + 1,
  EVEX_K = 1ULL << EVEX_KShift,
  /// EVEX_Z - Set if this instruction has EVEX.Z field set.
  EVEX_ZShift = EVEX_KShift + 1,
  EVEX_Z = 1ULL << EVEX_ZShift,
  /// EVEX_L2 - Set if this instruction has EVEX.L' field set.
  EVEX_L2Shift = EVEX_ZShift + 1,
  EVEX_L2 = 1ULL << EVEX_L2Shift,
  /// EVEX_B - Set if this instruction has EVEX.B field set.
  EVEX_BShift = EVEX_L2Shift + 1,
  EVEX_B = 1ULL << EVEX_BShift,
  /// The scaling factor for the AVX512's 8-bit compressed displacement.
  CD8_Scale_Shift = EVEX_BShift + 1,
  CD8_Scale_Mask = 7ULL << CD8_Scale_Shift,
  /// Explicitly specified rounding control
  EVEX_RCShift = CD8_Scale_Shift + 3,
  EVEX_RC = 1ULL << EVEX_RCShift,
  /// NOTRACK prefix
  NoTrackShift = EVEX_RCShift + 1,
  NOTRACK = 1ULL << NoTrackShift,
  /// Force REX2/VEX/EVEX encoding
  ExplicitOpPrefixShift = NoTrackShift + 1,
  /// For instructions that require REX2 prefix even if EGPR is not used.
  ExplicitREX2Prefix = 1ULL << ExplicitOpPrefixShift,
  /// For instructions that use VEX encoding only when {vex}, {vex2} or {vex3}
  /// is present.
  ExplicitVEXPrefix = 2ULL << ExplicitOpPrefixShift,
  /// For instructions that are promoted to EVEX space for EGPR.
  ExplicitEVEXPrefix = 3ULL << ExplicitOpPrefixShift,
  ExplicitOpPrefixMask = 3ULL << ExplicitOpPrefixShift,
  /// EVEX_NF - Set if this instruction has EVEX.NF field set.
  EVEX_NFShift = ExplicitOpPrefixShift + 2,
  EVEX_NF = 1ULL << EVEX_NFShift
};

/// \returns true if the instruction with given opcode is a prefix.
inline bool isPrefix(uint64_t TSFlags) {
  return (TSFlags & X86II::FormMask) == PrefixByte;
}

/// \returns true if the instruction with given opcode is a pseudo.
inline bool isPseudo(uint64_t TSFlags) {
  return (TSFlags & X86II::FormMask) == Pseudo;
}

/// \returns the "base" X86 opcode for the specified machine
/// instruction.
inline uint8_t getBaseOpcodeFor(uint64_t TSFlags) {
  return TSFlags >> X86II::OpcodeShift;
}

inline bool hasImm(uint64_t TSFlags) { return (TSFlags & X86II::ImmMask) != 0; }

/// Decode the "size of immediate" field from the TSFlags field of the
/// specified instruction.
inline unsigned getSizeOfImm(uint64_t TSFlags) {
  switch (TSFlags & X86II::ImmMask) {
  default:
    llvm_unreachable("Unknown immediate size");
  case X86II::Imm8:
  case X86II::Imm8PCRel:
  case X86II::Imm8Reg:
    return 1;
  case X86II::Imm16:
  case X86II::Imm16PCRel:
    return 2;
  case X86II::Imm32:
  case X86II::Imm32S:
  case X86II::Imm32PCRel:
    return 4;
  case X86II::Imm64:
    return 8;
  }
}

/// \returns true if the immediate of the specified instruction's TSFlags
/// indicates that it is pc relative.
inline bool isImmPCRel(uint64_t TSFlags) {
  switch (TSFlags & X86II::ImmMask) {
  default:
    llvm_unreachable("Unknown immediate size");
  case X86II::Imm8PCRel:
  case X86II::Imm16PCRel:
  case X86II::Imm32PCRel:
    return true;
  case X86II::Imm8:
  case X86II::Imm8Reg:
  case X86II::Imm16:
  case X86II::Imm32:
  case X86II::Imm32S:
  case X86II::Imm64:
    return false;
  }
}

/// \returns true if the immediate of the specified instruction's
/// TSFlags indicates that it is signed.
inline bool isImmSigned(uint64_t TSFlags) {
  switch (TSFlags & X86II::ImmMask) {
  default:
    llvm_unreachable("Unknown immediate signedness");
  case X86II::Imm32S:
    return true;
  case X86II::Imm8:
  case X86II::Imm8PCRel:
  case X86II::Imm8Reg:
  case X86II::Imm16:
  case X86II::Imm16PCRel:
  case X86II::Imm32:
  case X86II::Imm32PCRel:
  case X86II::Imm64:
    return false;
  }
}

/// Compute whether all of the def operands are repeated in the uses and
/// therefore should be skipped.
/// This determines the start of the unique operand list. We need to determine
/// if all of the defs have a corresponding tied operand in the uses.
/// Unfortunately, the tied operand information is encoded in the uses not
/// the defs so we have to use some heuristics to find which operands to
/// query.
inline unsigned getOperandBias(const MCInstrDesc &Desc) {
  unsigned NumDefs = Desc.getNumDefs();
  unsigned NumOps = Desc.getNumOperands();
  switch (NumDefs) {
  default:
    llvm_unreachable("Unexpected number of defs");
  case 0:
    return 0;
  case 1:
    // Common two addr case.
    if (NumOps > 1 && Desc.getOperandConstraint(1, MCOI::TIED_TO) == 0)
      return 1;
    // Check for AVX-512 scatter which has a TIED_TO in the second to last
    // operand.
    if (NumOps == 8 && Desc.getOperandConstraint(6, MCOI::TIED_TO) == 0)
      return 1;
    return 0;
  case 2:
    // XCHG/XADD have two destinations and two sources.
    if (NumOps >= 4 && Desc.getOperandConstraint(2, MCOI::TIED_TO) == 0 &&
        Desc.getOperandConstraint(3, MCOI::TIED_TO) == 1)
      return 2;
    // Check for gather. AVX-512 has the second tied operand early. AVX2
    // has it as the last op.
    if (NumOps == 9 && Desc.getOperandConstraint(2, MCOI::TIED_TO) == 0 &&
        (Desc.getOperandConstraint(3, MCOI::TIED_TO) == 1 ||
         Desc.getOperandConstraint(8, MCOI::TIED_TO) == 1))
      return 2;
    return 0;
  }
}

/// \returns true if the instruction has a NDD (new data destination).
inline bool hasNewDataDest(uint64_t TSFlags) {
  return (TSFlags & X86II::OpMapMask) == X86II::T_MAP4 &&
         (TSFlags & X86II::EVEX_B) && (TSFlags & X86II::VEX_4V);
}

/// \returns operand # for the first field of the memory operand or -1 if no
/// memory operands.
/// NOTE: This ignores tied operands.  If there is a tied register which is
/// duplicated in the MCInst (e.g. "EAX = addl EAX, [mem]") it is only counted
/// as one operand.
inline int getMemoryOperandNo(uint64_t TSFlags) {
  bool HasVEX_4V = TSFlags & X86II::VEX_4V;
  bool HasEVEX_K = TSFlags & X86II::EVEX_K;

  switch (TSFlags & X86II::FormMask) {
  default:
    llvm_unreachable("Unknown FormMask value in getMemoryOperandNo!");
  case X86II::Pseudo:
  case X86II::RawFrm:
  case X86II::AddRegFrm:
  case X86II::RawFrmImm8:
  case X86II::RawFrmImm16:
  case X86II::RawFrmMemOffs:
  case X86II::RawFrmSrc:
  case X86II::RawFrmDst:
  case X86II::RawFrmDstSrc:
  case X86II::AddCCFrm:
  case X86II::PrefixByte:
    return -1;
  case X86II::MRMDestMem:
  case X86II::MRMDestMemFSIB:
    return hasNewDataDest(TSFlags);
  case X86II::MRMSrcMem:
  case X86II::MRMSrcMemFSIB:
    // Start from 1, skip any registers encoded in VEX_VVVV or I8IMM, or a
    // mask register.
    return 1 + HasVEX_4V + HasEVEX_K;
  case X86II::MRMSrcMem4VOp3:
    // Skip registers encoded in reg.
    return 1 + HasEVEX_K;
  case X86II::MRMSrcMemOp4:
    // Skip registers encoded in reg, VEX_VVVV, and I8IMM.
    return 3;
  case X86II::MRMSrcMemCC:
  case X86II::MRMDestMem4VOp3CC:
    // Start from 1, skip any registers encoded in VEX_VVVV or I8IMM, or a
    // mask register.
    return 1;
  case X86II::MRMDestReg:
  case X86II::MRMSrcReg:
  case X86II::MRMSrcReg4VOp3:
  case X86II::MRMSrcRegOp4:
  case X86II::MRMSrcRegCC:
  case X86II::MRMXrCC:
  case X86II::MRMr0:
  case X86II::MRMXr:
  case X86II::MRM0r:
  case X86II::MRM1r:
  case X86II::MRM2r:
  case X86II::MRM3r:
  case X86II::MRM4r:
  case X86II::MRM5r:
  case X86II::MRM6r:
  case X86II::MRM7r:
    return -1;
  case X86II::MRM0X:
  case X86II::MRM1X:
  case X86II::MRM2X:
  case X86II::MRM3X:
  case X86II::MRM4X:
  case X86II::MRM5X:
  case X86II::MRM6X:
  case X86II::MRM7X:
    return -1;
  case X86II::MRMXmCC:
  case X86II::MRMXm:
  case X86II::MRM0m:
  case X86II::MRM1m:
  case X86II::MRM2m:
  case X86II::MRM3m:
  case X86II::MRM4m:
  case X86II::MRM5m:
  case X86II::MRM6m:
  case X86II::MRM7m:
    // Start from 0, skip registers encoded in VEX_VVVV or a mask register.
    return 0 + HasVEX_4V + HasEVEX_K;
  case X86II::MRM_C0:
  case X86II::MRM_C1:
  case X86II::MRM_C2:
  case X86II::MRM_C3:
  case X86II::MRM_C4:
  case X86II::MRM_C5:
  case X86II::MRM_C6:
  case X86II::MRM_C7:
  case X86II::MRM_C8:
  case X86II::MRM_C9:
  case X86II::MRM_CA:
  case X86II::MRM_CB:
  case X86II::MRM_CC:
  case X86II::MRM_CD:
  case X86II::MRM_CE:
  case X86II::MRM_CF:
  case X86II::MRM_D0:
  case X86II::MRM_D1:
  case X86II::MRM_D2:
  case X86II::MRM_D3:
  case X86II::MRM_D4:
  case X86II::MRM_D5:
  case X86II::MRM_D6:
  case X86II::MRM_D7:
  case X86II::MRM_D8:
  case X86II::MRM_D9:
  case X86II::MRM_DA:
  case X86II::MRM_DB:
  case X86II::MRM_DC:
  case X86II::MRM_DD:
  case X86II::MRM_DE:
  case X86II::MRM_DF:
  case X86II::MRM_E0:
  case X86II::MRM_E1:
  case X86II::MRM_E2:
  case X86II::MRM_E3:
  case X86II::MRM_E4:
  case X86II::MRM_E5:
  case X86II::MRM_E6:
  case X86II::MRM_E7:
  case X86II::MRM_E8:
  case X86II::MRM_E9:
  case X86II::MRM_EA:
  case X86II::MRM_EB:
  case X86II::MRM_EC:
  case X86II::MRM_ED:
  case X86II::MRM_EE:
  case X86II::MRM_EF:
  case X86II::MRM_F0:
  case X86II::MRM_F1:
  case X86II::MRM_F2:
  case X86II::MRM_F3:
  case X86II::MRM_F4:
  case X86II::MRM_F5:
  case X86II::MRM_F6:
  case X86II::MRM_F7:
  case X86II::MRM_F8:
  case X86II::MRM_F9:
  case X86II::MRM_FA:
  case X86II::MRM_FB:
  case X86II::MRM_FC:
  case X86II::MRM_FD:
  case X86II::MRM_FE:
  case X86II::MRM_FF:
    return -1;
  }
}

/// \returns true if the register is a XMM.
inline bool isXMMReg(unsigned RegNo) {
  assert(X86::XMM15 - X86::XMM0 == 15 &&
         "XMM0-15 registers are not continuous");
  assert(X86::XMM31 - X86::XMM16 == 15 &&
         "XMM16-31 registers are not continuous");
  return (RegNo >= X86::XMM0 && RegNo <= X86::XMM15) ||
         (RegNo >= X86::XMM16 && RegNo <= X86::XMM31);
}

/// \returns true if the register is a YMM.
inline bool isYMMReg(unsigned RegNo) {
  assert(X86::YMM15 - X86::YMM0 == 15 &&
         "YMM0-15 registers are not continuous");
  assert(X86::YMM31 - X86::YMM16 == 15 &&
         "YMM16-31 registers are not continuous");
  return (RegNo >= X86::YMM0 && RegNo <= X86::YMM15) ||
         (RegNo >= X86::YMM16 && RegNo <= X86::YMM31);
}

/// \returns true if the register is a ZMM.
inline bool isZMMReg(unsigned RegNo) {
  assert(X86::ZMM31 - X86::ZMM0 == 31 && "ZMM registers are not continuous");
  return RegNo >= X86::ZMM0 && RegNo <= X86::ZMM31;
}

/// \returns true if \p RegNo is an apx extended register.
inline bool isApxExtendedReg(unsigned RegNo) {
  assert(X86::R31WH - X86::R16 == 95 && "EGPRs are not continuous");
  return RegNo >= X86::R16 && RegNo <= X86::R31WH;
}

/// \returns true if the MachineOperand is a x86-64 extended (r8 or
/// higher) register,  e.g. r8, xmm8, xmm13, etc.
inline bool isX86_64ExtendedReg(unsigned RegNo) {
  if ((RegNo >= X86::XMM8 && RegNo <= X86::XMM15) ||
      (RegNo >= X86::XMM16 && RegNo <= X86::XMM31) ||
      (RegNo >= X86::YMM8 && RegNo <= X86::YMM15) ||
      (RegNo >= X86::YMM16 && RegNo <= X86::YMM31) ||
      (RegNo >= X86::ZMM8 && RegNo <= X86::ZMM31))
    return true;

  if (isApxExtendedReg(RegNo))
    return true;

  switch (RegNo) {
  default:
    break;
  case X86::R8:
  case X86::R9:
  case X86::R10:
  case X86::R11:
  case X86::R12:
  case X86::R13:
  case X86::R14:
  case X86::R15:
  case X86::R8D:
  case X86::R9D:
  case X86::R10D:
  case X86::R11D:
  case X86::R12D:
  case X86::R13D:
  case X86::R14D:
  case X86::R15D:
  case X86::R8W:
  case X86::R9W:
  case X86::R10W:
  case X86::R11W:
  case X86::R12W:
  case X86::R13W:
  case X86::R14W:
  case X86::R15W:
  case X86::R8B:
  case X86::R9B:
  case X86::R10B:
  case X86::R11B:
  case X86::R12B:
  case X86::R13B:
  case X86::R14B:
  case X86::R15B:
  case X86::CR8:
  case X86::CR9:
  case X86::CR10:
  case X86::CR11:
  case X86::CR12:
  case X86::CR13:
  case X86::CR14:
  case X86::CR15:
  case X86::DR8:
  case X86::DR9:
  case X86::DR10:
  case X86::DR11:
  case X86::DR12:
  case X86::DR13:
  case X86::DR14:
  case X86::DR15:
    return true;
  }
  return false;
}

inline bool canUseApxExtendedReg(const MCInstrDesc &Desc) {
  uint64_t TSFlags = Desc.TSFlags;
  uint64_t Encoding = TSFlags & EncodingMask;
  // EVEX can always use egpr.
  if (Encoding == X86II::EVEX)
    return true;

  unsigned Opcode = Desc.Opcode;
  // MOV32r0 is always expanded to XOR32rr
  if (Opcode == X86::MOV32r0)
    return true;
  // To be conservative, egpr is not used for all pseudo instructions
  // because we are not sure what instruction it will become.
  // FIXME: Could we improve it in X86ExpandPseudo?
  if (isPseudo(TSFlags))
    return false;

  // MAP OB/TB in legacy encoding space can always use egpr except
  // XSAVE*/XRSTOR*.
  switch (Opcode) {
  default:
    break;
  case X86::XSAVE:
  case X86::XSAVE64:
  case X86::XSAVEOPT:
  case X86::XSAVEOPT64:
  case X86::XSAVEC:
  case X86::XSAVEC64:
  case X86::XSAVES:
  case X86::XSAVES64:
  case X86::XRSTOR:
  case X86::XRSTOR64:
  case X86::XRSTORS:
  case X86::XRSTORS64:
    return false;
  }
  uint64_t OpMap = TSFlags & X86II::OpMapMask;
  return !Encoding && (OpMap == X86II::OB || OpMap == X86II::TB);
}

/// \returns true if the MemoryOperand is a 32 extended (zmm16 or higher)
/// registers, e.g. zmm21, etc.
static inline bool is32ExtendedReg(unsigned RegNo) {
  return ((RegNo >= X86::XMM16 && RegNo <= X86::XMM31) ||
          (RegNo >= X86::YMM16 && RegNo <= X86::YMM31) ||
          (RegNo >= X86::ZMM16 && RegNo <= X86::ZMM31));
}

inline bool isX86_64NonExtLowByteReg(unsigned reg) {
  return (reg == X86::SPL || reg == X86::BPL || reg == X86::SIL ||
          reg == X86::DIL);
}

/// \returns true if this is a masked instruction.
inline bool isKMasked(uint64_t TSFlags) {
  return (TSFlags & X86II::EVEX_K) != 0;
}

/// \returns true if this is a merge masked instruction.
inline bool isKMergeMasked(uint64_t TSFlags) {
  return isKMasked(TSFlags) && (TSFlags & X86II::EVEX_Z) == 0;
}

/// \returns true if the intruction needs a SIB.
inline bool needSIB(unsigned BaseReg, unsigned IndexReg, bool In64BitMode) {
  // The SIB byte must be used if there is an index register.
  if (IndexReg)
    return true;

  // The SIB byte must be used if the base is ESP/RSP/R12/R20/R28, all of
  // which encode to an R/M value of 4, which indicates that a SIB byte is
  // present.
  switch (BaseReg) {
  default:
    // If there is no base register and we're in 64-bit mode, we need a SIB
    // byte to emit an addr that is just 'disp32' (the non-RIP relative form).
    return In64BitMode && !BaseReg;
  case X86::ESP:
  case X86::RSP:
  case X86::R12:
  case X86::R12D:
  case X86::R20:
  case X86::R20D:
  case X86::R28:
  case X86::R28D:
    return true;
  }
}

} // namespace X86II
} // namespace llvm
#endif