summaryrefslogtreecommitdiffstats
path: root/mlir/test/Dialect/Affine/value-bounds-op-interface-impl.mlir
blob: 935c08aceff54838856aaa465b13a77804722383 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
// RUN: mlir-opt %s -test-affine-reify-value-bounds -verify-diagnostics \
// RUN:     -split-input-file | FileCheck %s

// CHECK: #[[$map:.*]] = affine_map<()[s0, s1] -> (s0 + s1)>
// CHECK-LABEL: func @affine_apply(
//  CHECK-SAME:     %[[a:.*]]: index, %[[b:.*]]: index
//       CHECK:   %[[apply:.*]] = affine.apply #[[$map]]()[%[[a]], %[[b]]]
//       CHECK:   %[[apply:.*]] = affine.apply #[[$map]]()[%[[a]], %[[b]]]
//       CHECK:   return %[[apply]]
func.func @affine_apply(%a: index, %b: index) -> index {
  %0 = affine.apply affine_map<()[s0, s1] -> (s0 + s1)>()[%a, %b]
  %1 = "test.reify_bound"(%0) : (index) -> (index)
  return %1 : index
}

// -----

// CHECK-LABEL: func @affine_max_lb(
//  CHECK-SAME:     %[[a:.*]]: index
//       CHECK:   %[[c2:.*]] = arith.constant 2 : index
//       CHECK:   return %[[c2]]
func.func @affine_max_lb(%a: index) -> (index) {
  // Note: There are two LBs: s0 and 2. FlatAffineValueConstraints always
  // returns the constant one at the moment.
  %1 = affine.max affine_map<()[s0] -> (s0, 2)>()[%a]
  %2 = "test.reify_bound"(%1) {type = "LB"}: (index) -> (index)
  return %2 : index
}

// -----

func.func @affine_max_ub(%a: index) -> (index) {
  %1 = affine.max affine_map<()[s0] -> (s0, 2)>()[%a]
  // expected-error @below{{could not reify bound}}
  %2 = "test.reify_bound"(%1) {type = "UB"}: (index) -> (index)
  return %2 : index
}

// -----

// CHECK-LABEL: func @affine_min_ub(
//  CHECK-SAME:     %[[a:.*]]: index
//       CHECK:   %[[c3:.*]] = arith.constant 3 : index
//       CHECK:   return %[[c3]]
func.func @affine_min_ub(%a: index) -> (index) {
  // Note: There are two UBs: s0 + 1 and 3. FlatAffineValueConstraints always
  // returns the constant one at the moment.
  %1 = affine.min affine_map<()[s0] -> (s0, 2)>()[%a]
  %2 = "test.reify_bound"(%1) {type = "UB"}: (index) -> (index)
  return %2 : index
}

// -----

func.func @affine_min_lb(%a: index) -> (index) {
  %1 = affine.min affine_map<()[s0] -> (s0, 2)>()[%a]
  // expected-error @below{{could not reify bound}}
  %2 = "test.reify_bound"(%1) {type = "LB"}: (index) -> (index)
  return %2 : index
}

// -----

// CHECK-LABEL: func @composed_affine_apply(
//       CHECK:   %[[cst:.*]] = arith.constant -8 : index
//       CHECK:   return %[[cst]]
func.func @composed_affine_apply(%i1 : index) -> (index) {
  // The ValueBoundsOpInterface implementation of affine.apply fully composes
  // the affine map (and its operands) with other affine.apply ops drawn from
  // its operands before adding it to the constraint set. This is to work
  // around a limitation in `FlatLinearConstraints`, which can currently not
  // compute a constant bound for %s. (The affine map simplification logic can
  // simplify %s to -8.)
  %i2 = affine.apply affine_map<(d0) -> ((d0 floordiv 32) * 16)>(%i1)
  %i3 = affine.apply affine_map<(d0) -> ((d0 floordiv 32) * 16 + 8)>(%i1)
  %s = affine.apply affine_map<()[s0, s1] -> (s0 - s1)>()[%i2, %i3]
  %reified = "test.reify_bound"(%s) {type = "EQ", constant} : (index) -> (index)
  return %reified : index
}


// -----

func.func @are_equal(%i1 : index) {
  %i2 = affine.apply affine_map<(d0) -> ((d0 floordiv 32) * 16)>(%i1)
  %i3 = affine.apply affine_map<(d0) -> ((d0 floordiv 32) * 16 + 8)>(%i1)
  %s = affine.apply affine_map<()[s0, s1] -> (s0 - s1)>()[%i2, %i3]
  // expected-remark @below{{false}}
   "test.compare"(%i2, %i3) : (index, index) -> ()
  return
}

// -----

// Test for affine::fullyComposeAndCheckIfEqual
func.func @composed_are_equal(%i1 : index) {
  %i2 = affine.apply affine_map<(d0) -> ((d0 floordiv 32) * 16)>(%i1)
  %i3 = affine.apply affine_map<(d0) -> ((d0 floordiv 32) * 16 + 8)>(%i1)
  %s = affine.apply affine_map<()[s0, s1] -> (s0 - s1)>()[%i2, %i3]
  // expected-remark @below{{different}}
   "test.compare"(%i2, %i3) {compose} : (index, index) -> ()
  return
}

// -----

func.func @compare_affine_max(%a: index, %b: index) {
  %0 = affine.max affine_map<()[s0, s1] -> (s0, s1)>()[%a, %b]
  // expected-remark @below{{true}}
  "test.compare"(%0, %a) {cmp = "GE"} : (index, index) -> ()
  // expected-error @below{{unknown}}
  "test.compare"(%0, %a) {cmp = "GT"} : (index, index) -> ()
  // expected-remark @below{{false}}
  "test.compare"(%0, %a) {cmp = "LT"} : (index, index) -> ()
  // expected-error @below{{unknown}}
  "test.compare"(%0, %a) {cmp = "LE"} : (index, index) -> ()
  return
}

// -----

func.func @compare_affine_min(%a: index, %b: index) {
  %0 = affine.min affine_map<()[s0, s1] -> (s0, s1)>()[%a, %b]
  // expected-error @below{{unknown}}
  "test.compare"(%0, %a) {cmp = "GE"} : (index, index) -> ()
  // expected-remark @below{{false}}
  "test.compare"(%0, %a) {cmp = "GT"} : (index, index) -> ()
  // expected-error @below{{unknown}}
  "test.compare"(%0, %a) {cmp = "LT"} : (index, index) -> ()
  // expected-remark @below{{true}}
  "test.compare"(%0, %a) {cmp = "LE"} : (index, index) -> ()
  return
}

// -----

func.func @compare_const_map() {
  %c5 = arith.constant 5 : index
  // expected-remark @below{{true}}
  "test.compare"(%c5) {cmp = "GT", rhs_map = affine_map<() -> (4)>}
      : (index) -> ()
  // expected-remark @below{{true}}
  "test.compare"(%c5) {cmp = "LT", lhs_map = affine_map<() -> (4)>}
      : (index) -> ()
  return
}

// -----

func.func @compare_maps(%a: index, %b: index) {
  // expected-remark @below{{true}}
  "test.compare"(%a, %b, %b, %a)
      {cmp = "GT", lhs_map = affine_map<(d0, d1) -> (1 + d0 + d1)>,
       rhs_map = affine_map<(d0, d1) -> (d0 + d1)>}
      : (index, index, index, index) -> ()
  return
}