summaryrefslogtreecommitdiffstats
path: root/llvm/lib/Support/APInt.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'llvm/lib/Support/APInt.cpp')
-rw-r--r--llvm/lib/Support/APInt.cpp58
1 files changed, 11 insertions, 47 deletions
diff --git a/llvm/lib/Support/APInt.cpp b/llvm/lib/Support/APInt.cpp
index c20609748dc9..224ea0924f0a 100644
--- a/llvm/lib/Support/APInt.cpp
+++ b/llvm/lib/Support/APInt.cpp
@@ -1240,53 +1240,17 @@ APInt APInt::sqrt() const {
return x_old + 1;
}
-/// Computes the multiplicative inverse of this APInt for a given modulo. The
-/// iterative extended Euclidean algorithm is used to solve for this value,
-/// however we simplify it to speed up calculating only the inverse, and take
-/// advantage of div+rem calculations. We also use some tricks to avoid copying
-/// (potentially large) APInts around.
-/// WARNING: a value of '0' may be returned,
-/// signifying that no multiplicative inverse exists!
-APInt APInt::multiplicativeInverse(const APInt& modulo) const {
- assert(ult(modulo) && "This APInt must be smaller than the modulo");
-
- // Using the properties listed at the following web page (accessed 06/21/08):
- // http://www.numbertheory.org/php/euclid.html
- // (especially the properties numbered 3, 4 and 9) it can be proved that
- // BitWidth bits suffice for all the computations in the algorithm implemented
- // below. More precisely, this number of bits suffice if the multiplicative
- // inverse exists, but may not suffice for the general extended Euclidean
- // algorithm.
-
- APInt r[2] = { modulo, *this };
- APInt t[2] = { APInt(BitWidth, 0), APInt(BitWidth, 1) };
- APInt q(BitWidth, 0);
-
- unsigned i;
- for (i = 0; r[i^1] != 0; i ^= 1) {
- // An overview of the math without the confusing bit-flipping:
- // q = r[i-2] / r[i-1]
- // r[i] = r[i-2] % r[i-1]
- // t[i] = t[i-2] - t[i-1] * q
- udivrem(r[i], r[i^1], q, r[i]);
- t[i] -= t[i^1] * q;
- }
-
- // If this APInt and the modulo are not coprime, there is no multiplicative
- // inverse, so return 0. We check this by looking at the next-to-last
- // remainder, which is the gcd(*this,modulo) as calculated by the Euclidean
- // algorithm.
- if (r[i] != 1)
- return APInt(BitWidth, 0);
-
- // The next-to-last t is the multiplicative inverse. However, we are
- // interested in a positive inverse. Calculate a positive one from a negative
- // one if necessary. A simple addition of the modulo suffices because
- // abs(t[i]) is known to be less than *this/2 (see the link above).
- if (t[i].isNegative())
- t[i] += modulo;
-
- return std::move(t[i]);
+/// \returns the multiplicative inverse of an odd APInt modulo 2^BitWidth.
+APInt APInt::multiplicativeInverse() const {
+ assert((*this)[0] &&
+ "multiplicative inverse is only defined for odd numbers!");
+
+ // Use Newton's method.
+ APInt Factor = *this;
+ APInt T;
+ while (!(T = *this * Factor).isOne())
+ Factor *= 2 - T;
+ return Factor;
}
/// Implementation of Knuth's Algorithm D (Division of nonnegative integers)