summaryrefslogtreecommitdiffstats
path: root/clang/lib/Analysis/FlowSensitive/DataflowEnvironment.cpp
blob: 70ac0764476f6034309bd6408681faf5701ba8c1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
//===-- DataflowEnvironment.cpp ---------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
//  This file defines an Environment class that is used by dataflow analyses
//  that run over Control-Flow Graphs (CFGs) to keep track of the state of the
//  program at given program points.
//
//===----------------------------------------------------------------------===//

#include "clang/Analysis/FlowSensitive/DataflowEnvironment.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/Type.h"
#include "clang/Analysis/FlowSensitive/DataflowLattice.h"
#include "clang/Analysis/FlowSensitive/Value.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/ErrorHandling.h"
#include <cassert>
#include <utility>

namespace clang {
namespace dataflow {

// FIXME: convert these to parameters of the analysis or environment. Current
// settings have been experimentaly validated, but only for a particular
// analysis.
static constexpr int MaxCompositeValueDepth = 3;
static constexpr int MaxCompositeValueSize = 1000;

/// Returns a map consisting of key-value entries that are present in both maps.
static llvm::DenseMap<const ValueDecl *, StorageLocation *> intersectDeclToLoc(
    const llvm::DenseMap<const ValueDecl *, StorageLocation *> &DeclToLoc1,
    const llvm::DenseMap<const ValueDecl *, StorageLocation *> &DeclToLoc2) {
  llvm::DenseMap<const ValueDecl *, StorageLocation *> Result;
  for (auto &Entry : DeclToLoc1) {
    auto It = DeclToLoc2.find(Entry.first);
    if (It != DeclToLoc2.end() && Entry.second == It->second)
      Result.insert({Entry.first, Entry.second});
  }
  return Result;
}

// Performs a join on either `ExprToLoc` or `ExprToVal`.
// The maps must be consistent in the sense that any entries for the same
// expression must map to the same location / value. This is the case if we are
// performing a join for control flow within a full-expression (which is the
// only case when this function should be used).
template <typename MapT> MapT joinExprMaps(const MapT &Map1, const MapT &Map2) {
  MapT Result = Map1;

  for (const auto &Entry : Map2) {
    [[maybe_unused]] auto [It, Inserted] = Result.insert(Entry);
    // If there was an existing entry, its value should be the same as for the
    // entry we were trying to insert.
    assert(It->second == Entry.second);
  }

  return Result;
}

// Whether to consider equivalent two values with an unknown relation.
//
// FIXME: this function is a hack enabling unsoundness to support
// convergence. Once we have widening support for the reference/pointer and
// struct built-in models, this should be unconditionally `false` (and inlined
// as such at its call sites).
static bool equateUnknownValues(Value::Kind K) {
  switch (K) {
  case Value::Kind::Integer:
  case Value::Kind::Pointer:
  case Value::Kind::Record:
    return true;
  default:
    return false;
  }
}

static bool compareDistinctValues(QualType Type, Value &Val1,
                                  const Environment &Env1, Value &Val2,
                                  const Environment &Env2,
                                  Environment::ValueModel &Model) {
  // Note: Potentially costly, but, for booleans, we could check whether both
  // can be proven equivalent in their respective environments.

  // FIXME: move the reference/pointers logic from `areEquivalentValues` to here
  // and implement separate, join/widen specific handling for
  // reference/pointers.
  switch (Model.compare(Type, Val1, Env1, Val2, Env2)) {
  case ComparisonResult::Same:
    return true;
  case ComparisonResult::Different:
    return false;
  case ComparisonResult::Unknown:
    return equateUnknownValues(Val1.getKind());
  }
  llvm_unreachable("All cases covered in switch");
}

/// Attempts to join distinct values `Val1` and `Val2` in `Env1` and `Env2`,
/// respectively, of the same type `Type`. Joining generally produces a single
/// value that (soundly) approximates the two inputs, although the actual
/// meaning depends on `Model`.
static Value *joinDistinctValues(QualType Type, Value &Val1,
                                 const Environment &Env1, Value &Val2,
                                 const Environment &Env2,
                                 Environment &JoinedEnv,
                                 Environment::ValueModel &Model) {
  // Join distinct boolean values preserving information about the constraints
  // in the respective path conditions.
  if (isa<BoolValue>(&Val1) && isa<BoolValue>(&Val2)) {
    // FIXME: Checking both values should be unnecessary, since they should have
    // a consistent shape.  However, right now we can end up with BoolValue's in
    // integer-typed variables due to our incorrect handling of
    // boolean-to-integer casts (we just propagate the BoolValue to the result
    // of the cast). So, a join can encounter an integer in one branch but a
    // bool in the other.
    // For example:
    // ```
    // std::optional<bool> o;
    // int x;
    // if (o.has_value())
    //   x = o.value();
    // ```
    auto &Expr1 = cast<BoolValue>(Val1).formula();
    auto &Expr2 = cast<BoolValue>(Val2).formula();
    auto &A = JoinedEnv.arena();
    auto &JoinedVal = A.makeAtomRef(A.makeAtom());
    JoinedEnv.assume(
        A.makeOr(A.makeAnd(A.makeAtomRef(Env1.getFlowConditionToken()),
                           A.makeEquals(JoinedVal, Expr1)),
                 A.makeAnd(A.makeAtomRef(Env2.getFlowConditionToken()),
                           A.makeEquals(JoinedVal, Expr2))));
    return &A.makeBoolValue(JoinedVal);
  }

  Value *JoinedVal = nullptr;
  if (auto *RecordVal1 = dyn_cast<RecordValue>(&Val1)) {
    auto *RecordVal2 = cast<RecordValue>(&Val2);

    if (&RecordVal1->getLoc() == &RecordVal2->getLoc())
      // `RecordVal1` and `RecordVal2` may have different properties associated
      // with them. Create a new `RecordValue` with the same location but
      // without any properties so that we soundly approximate both values. If a
      // particular analysis needs to join properties, it should do so in
      // `DataflowAnalysis::join()`.
      JoinedVal = &JoinedEnv.create<RecordValue>(RecordVal1->getLoc());
    else
      // If the locations for the two records are different, need to create a
      // completely new value.
      JoinedVal = JoinedEnv.createValue(Type);
  } else {
    JoinedVal = JoinedEnv.createValue(Type);
  }

  if (JoinedVal)
    Model.join(Type, Val1, Env1, Val2, Env2, *JoinedVal, JoinedEnv);

  return JoinedVal;
}

static WidenResult widenDistinctValues(QualType Type, Value &Prev,
                                       const Environment &PrevEnv,
                                       Value &Current, Environment &CurrentEnv,
                                       Environment::ValueModel &Model) {
  // Boolean-model widening.
  if (auto *PrevBool = dyn_cast<BoolValue>(&Prev)) {
    if (isa<TopBoolValue>(Prev))
      // Safe to return `Prev` here, because Top is never dependent on the
      // environment.
      return {&Prev, LatticeEffect::Unchanged};

    // We may need to widen to Top, but before we do so, check whether both
    // values are implied to be either true or false in the current environment.
    // In that case, we can simply return a literal instead.
    auto &CurBool = cast<BoolValue>(Current);
    bool TruePrev = PrevEnv.proves(PrevBool->formula());
    bool TrueCur = CurrentEnv.proves(CurBool.formula());
    if (TruePrev && TrueCur)
      return {&CurrentEnv.getBoolLiteralValue(true), LatticeEffect::Unchanged};
    if (!TruePrev && !TrueCur &&
        PrevEnv.proves(PrevEnv.arena().makeNot(PrevBool->formula())) &&
        CurrentEnv.proves(CurrentEnv.arena().makeNot(CurBool.formula())))
      return {&CurrentEnv.getBoolLiteralValue(false), LatticeEffect::Unchanged};

    return {&CurrentEnv.makeTopBoolValue(), LatticeEffect::Changed};
  }

  // FIXME: Add other built-in model widening.

  // Custom-model widening.
  if (auto Result = Model.widen(Type, Prev, PrevEnv, Current, CurrentEnv))
    return *Result;

  return {&Current, equateUnknownValues(Prev.getKind())
                        ? LatticeEffect::Unchanged
                        : LatticeEffect::Changed};
}

// Returns whether the values in `Map1` and `Map2` compare equal for those
// keys that `Map1` and `Map2` have in common.
template <typename Key>
bool compareKeyToValueMaps(const llvm::MapVector<Key, Value *> &Map1,
                           const llvm::MapVector<Key, Value *> &Map2,
                           const Environment &Env1, const Environment &Env2,
                           Environment::ValueModel &Model) {
  for (auto &Entry : Map1) {
    Key K = Entry.first;
    assert(K != nullptr);

    Value *Val = Entry.second;
    assert(Val != nullptr);

    auto It = Map2.find(K);
    if (It == Map2.end())
      continue;
    assert(It->second != nullptr);

    if (!areEquivalentValues(*Val, *It->second) &&
        !compareDistinctValues(K->getType(), *Val, Env1, *It->second, Env2,
                               Model))
      return false;
  }

  return true;
}

// Perform a join on two `LocToVal` maps.
static llvm::MapVector<const StorageLocation *, Value *>
joinLocToVal(const llvm::MapVector<const StorageLocation *, Value *> &LocToVal,
             const llvm::MapVector<const StorageLocation *, Value *> &LocToVal2,
             const Environment &Env1, const Environment &Env2,
             Environment &JoinedEnv, Environment::ValueModel &Model) {
  llvm::MapVector<const StorageLocation *, Value *> Result;
  for (auto &Entry : LocToVal) {
    const StorageLocation *Loc = Entry.first;
    assert(Loc != nullptr);

    Value *Val = Entry.second;
    assert(Val != nullptr);

    auto It = LocToVal2.find(Loc);
    if (It == LocToVal2.end())
      continue;
    assert(It->second != nullptr);

    if (areEquivalentValues(*Val, *It->second)) {
      Result.insert({Loc, Val});
      continue;
    }

    if (Value *JoinedVal = joinDistinctValues(
            Loc->getType(), *Val, Env1, *It->second, Env2, JoinedEnv, Model)) {
      Result.insert({Loc, JoinedVal});
    }
  }

  return Result;
}

// Perform widening on either `LocToVal` or `ExprToVal`. `Key` must be either
// `const StorageLocation *` or `const Expr *`.
template <typename Key>
llvm::MapVector<Key, Value *>
widenKeyToValueMap(const llvm::MapVector<Key, Value *> &CurMap,
                   const llvm::MapVector<Key, Value *> &PrevMap,
                   Environment &CurEnv, const Environment &PrevEnv,
                   Environment::ValueModel &Model, LatticeEffect &Effect) {
  llvm::MapVector<Key, Value *> WidenedMap;
  for (auto &Entry : CurMap) {
    Key K = Entry.first;
    assert(K != nullptr);

    Value *Val = Entry.second;
    assert(Val != nullptr);

    auto PrevIt = PrevMap.find(K);
    if (PrevIt == PrevMap.end())
      continue;
    assert(PrevIt->second != nullptr);

    if (areEquivalentValues(*Val, *PrevIt->second)) {
      WidenedMap.insert({K, Val});
      continue;
    }

    auto [WidenedVal, ValEffect] = widenDistinctValues(
        K->getType(), *PrevIt->second, PrevEnv, *Val, CurEnv, Model);
    WidenedMap.insert({K, WidenedVal});
    if (ValEffect == LatticeEffect::Changed)
      Effect = LatticeEffect::Changed;
  }

  return WidenedMap;
}

/// Initializes a global storage value.
static void insertIfGlobal(const Decl &D,
                           llvm::DenseSet<const VarDecl *> &Vars) {
  if (auto *V = dyn_cast<VarDecl>(&D))
    if (V->hasGlobalStorage())
      Vars.insert(V);
}

static void insertIfFunction(const Decl &D,
                             llvm::DenseSet<const FunctionDecl *> &Funcs) {
  if (auto *FD = dyn_cast<FunctionDecl>(&D))
    Funcs.insert(FD);
}

static MemberExpr *getMemberForAccessor(const CXXMemberCallExpr &C) {
  // Use getCalleeDecl instead of getMethodDecl in order to handle
  // pointer-to-member calls.
  const auto *MethodDecl = dyn_cast_or_null<CXXMethodDecl>(C.getCalleeDecl());
  if (!MethodDecl)
    return nullptr;
  auto *Body = dyn_cast_or_null<CompoundStmt>(MethodDecl->getBody());
  if (!Body || Body->size() != 1)
    return nullptr;
  if (auto *RS = dyn_cast<ReturnStmt>(*Body->body_begin()))
    if (auto *Return = RS->getRetValue())
      return dyn_cast<MemberExpr>(Return->IgnoreParenImpCasts());
  return nullptr;
}

static void
getFieldsGlobalsAndFuncs(const Decl &D, FieldSet &Fields,
                         llvm::DenseSet<const VarDecl *> &Vars,
                         llvm::DenseSet<const FunctionDecl *> &Funcs) {
  insertIfGlobal(D, Vars);
  insertIfFunction(D, Funcs);
  if (const auto *Decomp = dyn_cast<DecompositionDecl>(&D))
    for (const auto *B : Decomp->bindings())
      if (auto *ME = dyn_cast_or_null<MemberExpr>(B->getBinding()))
        // FIXME: should we be using `E->getFoundDecl()`?
        if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
          Fields.insert(FD);
}

/// Traverses `S` and inserts into `Fields`, `Vars` and `Funcs` any fields,
/// global variables and functions that are declared in or referenced from
/// sub-statements.
static void
getFieldsGlobalsAndFuncs(const Stmt &S, FieldSet &Fields,
                         llvm::DenseSet<const VarDecl *> &Vars,
                         llvm::DenseSet<const FunctionDecl *> &Funcs) {
  for (auto *Child : S.children())
    if (Child != nullptr)
      getFieldsGlobalsAndFuncs(*Child, Fields, Vars, Funcs);
  if (const auto *DefaultInit = dyn_cast<CXXDefaultInitExpr>(&S))
    getFieldsGlobalsAndFuncs(*DefaultInit->getExpr(), Fields, Vars, Funcs);

  if (auto *DS = dyn_cast<DeclStmt>(&S)) {
    if (DS->isSingleDecl())
      getFieldsGlobalsAndFuncs(*DS->getSingleDecl(), Fields, Vars, Funcs);
    else
      for (auto *D : DS->getDeclGroup())
        getFieldsGlobalsAndFuncs(*D, Fields, Vars, Funcs);
  } else if (auto *E = dyn_cast<DeclRefExpr>(&S)) {
    insertIfGlobal(*E->getDecl(), Vars);
    insertIfFunction(*E->getDecl(), Funcs);
  } else if (const auto *C = dyn_cast<CXXMemberCallExpr>(&S)) {
    // If this is a method that returns a member variable but does nothing else,
    // model the field of the return value.
    if (MemberExpr *E = getMemberForAccessor(*C))
      if (const auto *FD = dyn_cast<FieldDecl>(E->getMemberDecl()))
        Fields.insert(FD);
  } else if (auto *E = dyn_cast<MemberExpr>(&S)) {
    // FIXME: should we be using `E->getFoundDecl()`?
    const ValueDecl *VD = E->getMemberDecl();
    insertIfGlobal(*VD, Vars);
    insertIfFunction(*VD, Funcs);
    if (const auto *FD = dyn_cast<FieldDecl>(VD))
      Fields.insert(FD);
  } else if (auto *InitList = dyn_cast<InitListExpr>(&S)) {
    if (InitList->getType()->isRecordType())
      for (const auto *FD : getFieldsForInitListExpr(InitList))
        Fields.insert(FD);
  }
}

Environment::Environment(DataflowAnalysisContext &DACtx)
    : DACtx(&DACtx),
      FlowConditionToken(DACtx.arena().makeFlowConditionToken()) {}

Environment::Environment(DataflowAnalysisContext &DACtx,
                         const DeclContext &DeclCtx)
    : Environment(DACtx) {
  CallStack.push_back(&DeclCtx);
}

void Environment::initialize() {
  const DeclContext *DeclCtx = getDeclCtx();
  if (DeclCtx == nullptr)
    return;

  if (const auto *FuncDecl = dyn_cast<FunctionDecl>(DeclCtx)) {
    assert(FuncDecl->doesThisDeclarationHaveABody());

    initFieldsGlobalsAndFuncs(FuncDecl);

    for (const auto *ParamDecl : FuncDecl->parameters()) {
      assert(ParamDecl != nullptr);
      setStorageLocation(*ParamDecl, createObject(*ParamDecl, nullptr));
    }
  }

  if (const auto *MethodDecl = dyn_cast<CXXMethodDecl>(DeclCtx)) {
    auto *Parent = MethodDecl->getParent();
    assert(Parent != nullptr);

    if (Parent->isLambda()) {
      for (const auto &Capture : Parent->captures()) {
        if (Capture.capturesVariable()) {
          const auto *VarDecl = Capture.getCapturedVar();
          assert(VarDecl != nullptr);
          setStorageLocation(*VarDecl, createObject(*VarDecl, nullptr));
        } else if (Capture.capturesThis()) {
          const auto *SurroundingMethodDecl =
              cast<CXXMethodDecl>(DeclCtx->getNonClosureAncestor());
          QualType ThisPointeeType =
              SurroundingMethodDecl->getFunctionObjectParameterType();
          setThisPointeeStorageLocation(
              cast<RecordStorageLocation>(createObject(ThisPointeeType)));
        }
      }
    } else if (MethodDecl->isImplicitObjectMemberFunction()) {
      QualType ThisPointeeType = MethodDecl->getFunctionObjectParameterType();
      auto &ThisLoc =
          cast<RecordStorageLocation>(createStorageLocation(ThisPointeeType));
      setThisPointeeStorageLocation(ThisLoc);
      refreshRecordValue(ThisLoc, *this);
      // Initialize fields of `*this` with values, but only if we're not
      // analyzing a constructor; after all, it's the constructor's job to do
      // this (and we want to be able to test that).
      if (!isa<CXXConstructorDecl>(MethodDecl))
        initializeFieldsWithValues(ThisLoc);
    }
  }
}

// FIXME: Add support for resetting globals after function calls to enable
// the implementation of sound analyses.
void Environment::initFieldsGlobalsAndFuncs(const FunctionDecl *FuncDecl) {
  assert(FuncDecl->doesThisDeclarationHaveABody());

  FieldSet Fields;
  llvm::DenseSet<const VarDecl *> Vars;
  llvm::DenseSet<const FunctionDecl *> Funcs;

  // Look for global variable and field references in the
  // constructor-initializers.
  if (const auto *CtorDecl = dyn_cast<CXXConstructorDecl>(FuncDecl)) {
    for (const auto *Init : CtorDecl->inits()) {
      if (Init->isMemberInitializer()) {
        Fields.insert(Init->getMember());
      } else if (Init->isIndirectMemberInitializer()) {
        for (const auto *I : Init->getIndirectMember()->chain())
          Fields.insert(cast<FieldDecl>(I));
      }
      const Expr *E = Init->getInit();
      assert(E != nullptr);
      getFieldsGlobalsAndFuncs(*E, Fields, Vars, Funcs);
    }
    // Add all fields mentioned in default member initializers.
    for (const FieldDecl *F : CtorDecl->getParent()->fields())
      if (const auto *I = F->getInClassInitializer())
          getFieldsGlobalsAndFuncs(*I, Fields, Vars, Funcs);
  }
  getFieldsGlobalsAndFuncs(*FuncDecl->getBody(), Fields, Vars, Funcs);

  // These have to be added before the lines that follow to ensure that
  // `create*` work correctly for structs.
  DACtx->addModeledFields(Fields);

  for (const VarDecl *D : Vars) {
    if (getStorageLocation(*D) != nullptr)
      continue;

    setStorageLocation(*D, createObject(*D));
  }

  for (const FunctionDecl *FD : Funcs) {
    if (getStorageLocation(*FD) != nullptr)
      continue;
    auto &Loc = createStorageLocation(FD->getType());
    setStorageLocation(*FD, Loc);
  }
}

Environment Environment::fork() const {
  Environment Copy(*this);
  Copy.FlowConditionToken = DACtx->forkFlowCondition(FlowConditionToken);
  return Copy;
}

bool Environment::canDescend(unsigned MaxDepth,
                             const DeclContext *Callee) const {
  return CallStack.size() <= MaxDepth && !llvm::is_contained(CallStack, Callee);
}

Environment Environment::pushCall(const CallExpr *Call) const {
  Environment Env(*this);

  if (const auto *MethodCall = dyn_cast<CXXMemberCallExpr>(Call)) {
    if (const Expr *Arg = MethodCall->getImplicitObjectArgument()) {
      if (!isa<CXXThisExpr>(Arg))
          Env.ThisPointeeLoc =
              cast<RecordStorageLocation>(getStorageLocation(*Arg));
      // Otherwise (when the argument is `this`), retain the current
      // environment's `ThisPointeeLoc`.
    }
  }

  Env.pushCallInternal(Call->getDirectCallee(),
                       llvm::ArrayRef(Call->getArgs(), Call->getNumArgs()));

  return Env;
}

Environment Environment::pushCall(const CXXConstructExpr *Call) const {
  Environment Env(*this);

  Env.ThisPointeeLoc = &Env.getResultObjectLocation(*Call);

  Env.pushCallInternal(Call->getConstructor(),
                       llvm::ArrayRef(Call->getArgs(), Call->getNumArgs()));

  return Env;
}

void Environment::pushCallInternal(const FunctionDecl *FuncDecl,
                                   ArrayRef<const Expr *> Args) {
  // Canonicalize to the definition of the function. This ensures that we're
  // putting arguments into the same `ParamVarDecl`s` that the callee will later
  // be retrieving them from.
  assert(FuncDecl->getDefinition() != nullptr);
  FuncDecl = FuncDecl->getDefinition();

  CallStack.push_back(FuncDecl);

  initFieldsGlobalsAndFuncs(FuncDecl);

  const auto *ParamIt = FuncDecl->param_begin();

  // FIXME: Parameters don't always map to arguments 1:1; examples include
  // overloaded operators implemented as member functions, and parameter packs.
  for (unsigned ArgIndex = 0; ArgIndex < Args.size(); ++ParamIt, ++ArgIndex) {
    assert(ParamIt != FuncDecl->param_end());
    const VarDecl *Param = *ParamIt;
    setStorageLocation(*Param, createObject(*Param, Args[ArgIndex]));
  }
}

void Environment::popCall(const CallExpr *Call, const Environment &CalleeEnv) {
  // We ignore some entries of `CalleeEnv`:
  // - `DACtx` because is already the same in both
  // - We don't want the callee's `DeclCtx`, `ReturnVal`, `ReturnLoc` or
  //   `ThisPointeeLoc` because they don't apply to us.
  // - `DeclToLoc`, `ExprToLoc`, and `ExprToVal` capture information from the
  //   callee's local scope, so when popping that scope, we do not propagate
  //   the maps.
  this->LocToVal = std::move(CalleeEnv.LocToVal);
  this->FlowConditionToken = std::move(CalleeEnv.FlowConditionToken);

  if (Call->isGLValue()) {
    if (CalleeEnv.ReturnLoc != nullptr)
      setStorageLocation(*Call, *CalleeEnv.ReturnLoc);
  } else if (!Call->getType()->isVoidType()) {
    if (CalleeEnv.ReturnVal != nullptr)
      setValue(*Call, *CalleeEnv.ReturnVal);
  }
}

void Environment::popCall(const CXXConstructExpr *Call,
                          const Environment &CalleeEnv) {
  // See also comment in `popCall(const CallExpr *, const Environment &)` above.
  this->LocToVal = std::move(CalleeEnv.LocToVal);
  this->FlowConditionToken = std::move(CalleeEnv.FlowConditionToken);

  if (Value *Val = CalleeEnv.getValue(*CalleeEnv.ThisPointeeLoc)) {
    setValue(*Call, *Val);
  }
}

bool Environment::equivalentTo(const Environment &Other,
                               Environment::ValueModel &Model) const {
  assert(DACtx == Other.DACtx);

  if (ReturnVal != Other.ReturnVal)
    return false;

  if (ReturnLoc != Other.ReturnLoc)
    return false;

  if (ThisPointeeLoc != Other.ThisPointeeLoc)
    return false;

  if (DeclToLoc != Other.DeclToLoc)
    return false;

  if (ExprToLoc != Other.ExprToLoc)
    return false;

  if (!compareKeyToValueMaps(ExprToVal, Other.ExprToVal, *this, Other, Model))
    return false;

  if (!compareKeyToValueMaps(LocToVal, Other.LocToVal, *this, Other, Model))
    return false;

  return true;
}

LatticeEffect Environment::widen(const Environment &PrevEnv,
                                 Environment::ValueModel &Model) {
  assert(DACtx == PrevEnv.DACtx);
  assert(ReturnVal == PrevEnv.ReturnVal);
  assert(ReturnLoc == PrevEnv.ReturnLoc);
  assert(ThisPointeeLoc == PrevEnv.ThisPointeeLoc);
  assert(CallStack == PrevEnv.CallStack);

  auto Effect = LatticeEffect::Unchanged;

  // By the API, `PrevEnv` is a previous version of the environment for the same
  // block, so we have some guarantees about its shape. In particular, it will
  // be the result of a join or widen operation on previous values for this
  // block. For `DeclToLoc`, `ExprToVal`, and `ExprToLoc`, join guarantees that
  // these maps are subsets of the maps in `PrevEnv`. So, as long as we maintain
  // this property here, we don't need change their current values to widen.
  assert(DeclToLoc.size() <= PrevEnv.DeclToLoc.size());
  assert(ExprToVal.size() <= PrevEnv.ExprToVal.size());
  assert(ExprToLoc.size() <= PrevEnv.ExprToLoc.size());

  ExprToVal = widenKeyToValueMap(ExprToVal, PrevEnv.ExprToVal, *this, PrevEnv,
                                 Model, Effect);

  LocToVal = widenKeyToValueMap(LocToVal, PrevEnv.LocToVal, *this, PrevEnv,
                                Model, Effect);
  if (DeclToLoc.size() != PrevEnv.DeclToLoc.size() ||
      ExprToLoc.size() != PrevEnv.ExprToLoc.size() ||
      ExprToVal.size() != PrevEnv.ExprToVal.size() ||
      LocToVal.size() != PrevEnv.LocToVal.size())
    Effect = LatticeEffect::Changed;

  return Effect;
}

Environment Environment::join(const Environment &EnvA, const Environment &EnvB,
                              Environment::ValueModel &Model,
                              ExprJoinBehavior ExprBehavior) {
  assert(EnvA.DACtx == EnvB.DACtx);
  assert(EnvA.ThisPointeeLoc == EnvB.ThisPointeeLoc);
  assert(EnvA.CallStack == EnvB.CallStack);

  Environment JoinedEnv(*EnvA.DACtx);

  JoinedEnv.CallStack = EnvA.CallStack;
  JoinedEnv.ThisPointeeLoc = EnvA.ThisPointeeLoc;

  if (EnvA.ReturnVal == nullptr || EnvB.ReturnVal == nullptr) {
    // `ReturnVal` might not always get set -- for example if we have a return
    // statement of the form `return some_other_func()` and we decide not to
    // analyze `some_other_func()`.
    // In this case, we can't say anything about the joined return value -- we
    // don't simply want to propagate the return value that we do have, because
    // it might not be the correct one.
    // This occurs for example in the test `ContextSensitiveMutualRecursion`.
    JoinedEnv.ReturnVal = nullptr;
  } else if (areEquivalentValues(*EnvA.ReturnVal, *EnvB.ReturnVal)) {
    JoinedEnv.ReturnVal = EnvA.ReturnVal;
  } else {
    assert(!EnvA.CallStack.empty());
    // FIXME: Make `CallStack` a vector of `FunctionDecl` so we don't need this
    // cast.
    auto *Func = dyn_cast<FunctionDecl>(EnvA.CallStack.back());
    assert(Func != nullptr);
    if (Value *JoinedVal =
            joinDistinctValues(Func->getReturnType(), *EnvA.ReturnVal, EnvA,
                               *EnvB.ReturnVal, EnvB, JoinedEnv, Model))
      JoinedEnv.ReturnVal = JoinedVal;
  }

  if (EnvA.ReturnLoc == EnvB.ReturnLoc)
    JoinedEnv.ReturnLoc = EnvA.ReturnLoc;
  else
    JoinedEnv.ReturnLoc = nullptr;

  JoinedEnv.DeclToLoc = intersectDeclToLoc(EnvA.DeclToLoc, EnvB.DeclToLoc);

  // FIXME: update join to detect backedges and simplify the flow condition
  // accordingly.
  JoinedEnv.FlowConditionToken = EnvA.DACtx->joinFlowConditions(
      EnvA.FlowConditionToken, EnvB.FlowConditionToken);

  JoinedEnv.LocToVal =
      joinLocToVal(EnvA.LocToVal, EnvB.LocToVal, EnvA, EnvB, JoinedEnv, Model);

  if (ExprBehavior == KeepExprState) {
    JoinedEnv.ExprToVal = joinExprMaps(EnvA.ExprToVal, EnvB.ExprToVal);
    JoinedEnv.ExprToLoc = joinExprMaps(EnvA.ExprToLoc, EnvB.ExprToLoc);
  }

  return JoinedEnv;
}

StorageLocation &Environment::createStorageLocation(QualType Type) {
  return DACtx->createStorageLocation(Type);
}

StorageLocation &Environment::createStorageLocation(const ValueDecl &D) {
  // Evaluated declarations are always assigned the same storage locations to
  // ensure that the environment stabilizes across loop iterations. Storage
  // locations for evaluated declarations are stored in the analysis context.
  return DACtx->getStableStorageLocation(D);
}

StorageLocation &Environment::createStorageLocation(const Expr &E) {
  // Evaluated expressions are always assigned the same storage locations to
  // ensure that the environment stabilizes across loop iterations. Storage
  // locations for evaluated expressions are stored in the analysis context.
  return DACtx->getStableStorageLocation(E);
}

void Environment::setStorageLocation(const ValueDecl &D, StorageLocation &Loc) {
  assert(!DeclToLoc.contains(&D));
  DeclToLoc[&D] = &Loc;
}

StorageLocation *Environment::getStorageLocation(const ValueDecl &D) const {
  auto It = DeclToLoc.find(&D);
  if (It == DeclToLoc.end())
    return nullptr;

  StorageLocation *Loc = It->second;

  return Loc;
}

void Environment::removeDecl(const ValueDecl &D) { DeclToLoc.erase(&D); }

void Environment::setStorageLocation(const Expr &E, StorageLocation &Loc) {
  // `DeclRefExpr`s to builtin function types aren't glvalues, for some reason,
  // but we still want to be able to associate a `StorageLocation` with them,
  // so allow these as an exception.
  assert(E.isGLValue() ||
         E.getType()->isSpecificBuiltinType(BuiltinType::BuiltinFn));
  const Expr &CanonE = ignoreCFGOmittedNodes(E);
  assert(!ExprToLoc.contains(&CanonE));
  ExprToLoc[&CanonE] = &Loc;
}

StorageLocation *Environment::getStorageLocation(const Expr &E) const {
  // See comment in `setStorageLocation()`.
  assert(E.isGLValue() ||
         E.getType()->isSpecificBuiltinType(BuiltinType::BuiltinFn));
  auto It = ExprToLoc.find(&ignoreCFGOmittedNodes(E));
  return It == ExprToLoc.end() ? nullptr : &*It->second;
}

// Returns whether a prvalue of record type is the one that originally
// constructs the object (i.e. it doesn't propagate it from one of its
// children).
static bool isOriginalRecordConstructor(const Expr &RecordPRValue) {
  if (auto *Init = dyn_cast<InitListExpr>(&RecordPRValue))
    return !Init->isSemanticForm() || !Init->isTransparent();
  return isa<CXXConstructExpr>(RecordPRValue) || isa<CallExpr>(RecordPRValue) ||
         isa<LambdaExpr>(RecordPRValue) ||
         isa<CXXDefaultArgExpr>(RecordPRValue) ||
         isa<CXXDefaultInitExpr>(RecordPRValue) ||
         // The framework currently does not propagate the objects created in
         // the two branches of a `ConditionalOperator` because there is no way
         // to reconcile their storage locations, which are different. We
         // therefore claim that the `ConditionalOperator` is the expression
         // that originally constructs the object.
         // Ultimately, this will be fixed by propagating locations down from
         // the result object, rather than up from the original constructor as
         // we do now (see also the FIXME in the documentation for
         // `getResultObjectLocation()`).
         isa<ConditionalOperator>(RecordPRValue);
}

RecordStorageLocation &
Environment::getResultObjectLocation(const Expr &RecordPRValue) const {
  assert(RecordPRValue.getType()->isRecordType());
  assert(RecordPRValue.isPRValue());

  // Returns a storage location that we can use if assertions fail.
  auto FallbackForAssertFailure =
      [this, &RecordPRValue]() -> RecordStorageLocation & {
    return cast<RecordStorageLocation>(
        DACtx->getStableStorageLocation(RecordPRValue));
  };

  if (isOriginalRecordConstructor(RecordPRValue)) {
    auto *Val = cast_or_null<RecordValue>(getValue(RecordPRValue));
    // The builtin transfer function should have created a `RecordValue` for all
    // original record constructors.
    assert(Val);
    if (!Val)
      return FallbackForAssertFailure();
    return Val->getLoc();
  }

  if (auto *Op = dyn_cast<BinaryOperator>(&RecordPRValue);
      Op && Op->isCommaOp()) {
    return getResultObjectLocation(*Op->getRHS());
  }

  // All other expression nodes that propagate a record prvalue should have
  // exactly one child.
  llvm::SmallVector<const Stmt *> children(RecordPRValue.child_begin(),
                                           RecordPRValue.child_end());
  assert(children.size() == 1);
  if (children.empty())
    return FallbackForAssertFailure();

  return getResultObjectLocation(*cast<Expr>(children[0]));
}

PointerValue &Environment::getOrCreateNullPointerValue(QualType PointeeType) {
  return DACtx->getOrCreateNullPointerValue(PointeeType);
}

void Environment::initializeFieldsWithValues(RecordStorageLocation &Loc) {
  llvm::DenseSet<QualType> Visited;
  int CreatedValuesCount = 0;
  initializeFieldsWithValues(Loc, Visited, 0, CreatedValuesCount);
  if (CreatedValuesCount > MaxCompositeValueSize) {
    llvm::errs() << "Attempting to initialize a huge value of type: "
                 << Loc.getType() << '\n';
  }
}

void Environment::setValue(const StorageLocation &Loc, Value &Val) {
  assert(!isa<RecordValue>(&Val) || &cast<RecordValue>(&Val)->getLoc() == &Loc);

  LocToVal[&Loc] = &Val;
}

void Environment::setValue(const Expr &E, Value &Val) {
  const Expr &CanonE = ignoreCFGOmittedNodes(E);

  if (auto *RecordVal = dyn_cast<RecordValue>(&Val)) {
    assert(isOriginalRecordConstructor(CanonE) ||
           &RecordVal->getLoc() == &getResultObjectLocation(CanonE));
  }

  assert(CanonE.isPRValue());
  ExprToVal[&CanonE] = &Val;
}

Value *Environment::getValue(const StorageLocation &Loc) const {
  return LocToVal.lookup(&Loc);
}

Value *Environment::getValue(const ValueDecl &D) const {
  auto *Loc = getStorageLocation(D);
  if (Loc == nullptr)
    return nullptr;
  return getValue(*Loc);
}

Value *Environment::getValue(const Expr &E) const {
  if (E.isPRValue()) {
    auto It = ExprToVal.find(&ignoreCFGOmittedNodes(E));
    return It == ExprToVal.end() ? nullptr : It->second;
  }

  auto It = ExprToLoc.find(&ignoreCFGOmittedNodes(E));
  if (It == ExprToLoc.end())
    return nullptr;
  return getValue(*It->second);
}

Value *Environment::createValue(QualType Type) {
  llvm::DenseSet<QualType> Visited;
  int CreatedValuesCount = 0;
  Value *Val = createValueUnlessSelfReferential(Type, Visited, /*Depth=*/0,
                                                CreatedValuesCount);
  if (CreatedValuesCount > MaxCompositeValueSize) {
    llvm::errs() << "Attempting to initialize a huge value of type: " << Type
                 << '\n';
  }
  return Val;
}

Value *Environment::createValueUnlessSelfReferential(
    QualType Type, llvm::DenseSet<QualType> &Visited, int Depth,
    int &CreatedValuesCount) {
  assert(!Type.isNull());
  assert(!Type->isReferenceType());

  // Allow unlimited fields at depth 1; only cap at deeper nesting levels.
  if ((Depth > 1 && CreatedValuesCount > MaxCompositeValueSize) ||
      Depth > MaxCompositeValueDepth)
    return nullptr;

  if (Type->isBooleanType()) {
    CreatedValuesCount++;
    return &makeAtomicBoolValue();
  }

  if (Type->isIntegerType()) {
    // FIXME: consider instead `return nullptr`, given that we do nothing useful
    // with integers, and so distinguishing them serves no purpose, but could
    // prevent convergence.
    CreatedValuesCount++;
    return &arena().create<IntegerValue>();
  }

  if (Type->isPointerType()) {
    CreatedValuesCount++;
    QualType PointeeType = Type->getPointeeType();
    StorageLocation &PointeeLoc =
        createLocAndMaybeValue(PointeeType, Visited, Depth, CreatedValuesCount);

    return &arena().create<PointerValue>(PointeeLoc);
  }

  if (Type->isRecordType()) {
    CreatedValuesCount++;
    auto &Loc = cast<RecordStorageLocation>(createStorageLocation(Type));
    initializeFieldsWithValues(Loc, Visited, Depth, CreatedValuesCount);

    return &refreshRecordValue(Loc, *this);
  }

  return nullptr;
}

StorageLocation &
Environment::createLocAndMaybeValue(QualType Ty,
                                    llvm::DenseSet<QualType> &Visited,
                                    int Depth, int &CreatedValuesCount) {
  if (!Visited.insert(Ty.getCanonicalType()).second)
    return createStorageLocation(Ty.getNonReferenceType());
  Value *Val = createValueUnlessSelfReferential(
      Ty.getNonReferenceType(), Visited, Depth, CreatedValuesCount);
  Visited.erase(Ty.getCanonicalType());

  Ty = Ty.getNonReferenceType();

  if (Val == nullptr)
    return createStorageLocation(Ty);

  if (Ty->isRecordType())
    return cast<RecordValue>(Val)->getLoc();

  StorageLocation &Loc = createStorageLocation(Ty);
  setValue(Loc, *Val);
  return Loc;
}

void Environment::initializeFieldsWithValues(RecordStorageLocation &Loc,
                                             llvm::DenseSet<QualType> &Visited,
                                             int Depth,
                                             int &CreatedValuesCount) {
  auto initField = [&](QualType FieldType, StorageLocation &FieldLoc) {
    if (FieldType->isRecordType()) {
      auto &FieldRecordLoc = cast<RecordStorageLocation>(FieldLoc);
      setValue(FieldRecordLoc, create<RecordValue>(FieldRecordLoc));
      initializeFieldsWithValues(FieldRecordLoc, Visited, Depth + 1,
                                 CreatedValuesCount);
    } else {
      if (!Visited.insert(FieldType.getCanonicalType()).second)
        return;
      if (Value *Val = createValueUnlessSelfReferential(
              FieldType, Visited, Depth + 1, CreatedValuesCount))
        setValue(FieldLoc, *Val);
      Visited.erase(FieldType.getCanonicalType());
    }
  };

  for (const auto &[Field, FieldLoc] : Loc.children()) {
    assert(Field != nullptr);
    QualType FieldType = Field->getType();

    if (FieldType->isReferenceType()) {
      Loc.setChild(*Field,
                   &createLocAndMaybeValue(FieldType, Visited, Depth + 1,
                                           CreatedValuesCount));
    } else {
      assert(FieldLoc != nullptr);
      initField(FieldType, *FieldLoc);
    }
  }
  for (const auto &[FieldName, FieldLoc] : Loc.synthetic_fields()) {
    assert(FieldLoc != nullptr);
    QualType FieldType = FieldLoc->getType();

    // Synthetic fields cannot have reference type, so we don't need to deal
    // with this case.
    assert(!FieldType->isReferenceType());
    initField(FieldType, Loc.getSyntheticField(FieldName));
  }
}

StorageLocation &Environment::createObjectInternal(const ValueDecl *D,
                                                   QualType Ty,
                                                   const Expr *InitExpr) {
  if (Ty->isReferenceType()) {
    // Although variables of reference type always need to be initialized, it
    // can happen that we can't see the initializer, so `InitExpr` may still
    // be null.
    if (InitExpr) {
      if (auto *InitExprLoc = getStorageLocation(*InitExpr))
          return *InitExprLoc;
    }

    // Even though we have an initializer, we might not get an
    // InitExprLoc, for example if the InitExpr is a CallExpr for which we
    // don't have a function body. In this case, we just invent a storage
    // location and value -- it's the best we can do.
    return createObjectInternal(D, Ty.getNonReferenceType(), nullptr);
  }

  Value *Val = nullptr;
  if (InitExpr) {
    // In the (few) cases where an expression is intentionally
    // "uninterpreted", `InitExpr` is not associated with a value.  There are
    // two ways to handle this situation: propagate the status, so that
    // uninterpreted initializers result in uninterpreted variables, or
    // provide a default value. We choose the latter so that later refinements
    // of the variable can be used for reasoning about the surrounding code.
    // For this reason, we let this case be handled by the `createValue()`
    // call below.
    //
    // FIXME. If and when we interpret all language cases, change this to
    // assert that `InitExpr` is interpreted, rather than supplying a
    // default value (assuming we don't update the environment API to return
    // references).
    Val = getValue(*InitExpr);

    if (!Val && isa<ImplicitValueInitExpr>(InitExpr) &&
        InitExpr->getType()->isPointerType())
      Val = &getOrCreateNullPointerValue(InitExpr->getType()->getPointeeType());
  }
  if (!Val)
    Val = createValue(Ty);

  if (Ty->isRecordType())
    return cast<RecordValue>(Val)->getLoc();

  StorageLocation &Loc =
      D ? createStorageLocation(*D) : createStorageLocation(Ty);

  if (Val)
    setValue(Loc, *Val);

  return Loc;
}

void Environment::assume(const Formula &F) {
  DACtx->addFlowConditionConstraint(FlowConditionToken, F);
}

bool Environment::proves(const Formula &F) const {
  return DACtx->flowConditionImplies(FlowConditionToken, F);
}

bool Environment::allows(const Formula &F) const {
  return DACtx->flowConditionAllows(FlowConditionToken, F);
}

void Environment::dump(raw_ostream &OS) const {
  llvm::DenseMap<const StorageLocation *, std::string> LocToName;
  if (ThisPointeeLoc != nullptr)
    LocToName[ThisPointeeLoc] = "this";

  OS << "DeclToLoc:\n";
  for (auto [D, L] : DeclToLoc) {
    auto Iter = LocToName.insert({L, D->getNameAsString()}).first;
    OS << "  [" << Iter->second << ", " << L << "]\n";
  }
  OS << "ExprToLoc:\n";
  for (auto [E, L] : ExprToLoc)
    OS << "  [" << E << ", " << L << "]\n";

  OS << "ExprToVal:\n";
  for (auto [E, V] : ExprToVal)
    OS << "  [" << E << ", " << V << ": " << *V << "]\n";

  OS << "LocToVal:\n";
  for (auto [L, V] : LocToVal) {
    OS << "  [" << L;
    if (auto Iter = LocToName.find(L); Iter != LocToName.end())
      OS << " (" << Iter->second << ")";
    OS << ", " << V << ": " << *V << "]\n";
  }

  if (const FunctionDecl *Func = getCurrentFunc()) {
    if (Func->getReturnType()->isReferenceType()) {
      OS << "ReturnLoc: " << ReturnLoc;
      if (auto Iter = LocToName.find(ReturnLoc); Iter != LocToName.end())
        OS << " (" << Iter->second << ")";
      OS << "\n";
    } else if (!Func->getReturnType()->isVoidType()) {
      if (ReturnVal == nullptr)
        OS << "ReturnVal: nullptr\n";
      else
        OS << "ReturnVal: " << *ReturnVal << "\n";
    }

    if (isa<CXXMethodDecl>(Func)) {
      OS << "ThisPointeeLoc: " << ThisPointeeLoc << "\n";
    }
  }

  OS << "\n";
  DACtx->dumpFlowCondition(FlowConditionToken, OS);
}

void Environment::dump() const {
  dump(llvm::dbgs());
}

RecordStorageLocation *getImplicitObjectLocation(const CXXMemberCallExpr &MCE,
                                                 const Environment &Env) {
  Expr *ImplicitObject = MCE.getImplicitObjectArgument();
  if (ImplicitObject == nullptr)
    return nullptr;
  if (ImplicitObject->getType()->isPointerType()) {
    if (auto *Val = Env.get<PointerValue>(*ImplicitObject))
      return &cast<RecordStorageLocation>(Val->getPointeeLoc());
    return nullptr;
  }
  return cast_or_null<RecordStorageLocation>(
      Env.getStorageLocation(*ImplicitObject));
}

RecordStorageLocation *getBaseObjectLocation(const MemberExpr &ME,
                                             const Environment &Env) {
  Expr *Base = ME.getBase();
  if (Base == nullptr)
    return nullptr;
  if (ME.isArrow()) {
    if (auto *Val = Env.get<PointerValue>(*Base))
      return &cast<RecordStorageLocation>(Val->getPointeeLoc());
    return nullptr;
  }
  return Env.get<RecordStorageLocation>(*Base);
}

std::vector<const FieldDecl *>
getFieldsForInitListExpr(const InitListExpr *InitList) {
  const RecordDecl *RD = InitList->getType()->getAsRecordDecl();
  assert(RD != nullptr);

  std::vector<const FieldDecl *> Fields;

  if (InitList->getType()->isUnionType()) {
    Fields.push_back(InitList->getInitializedFieldInUnion());
    return Fields;
  }

  // Unnamed bitfields are only used for padding and do not appear in
  // `InitListExpr`'s inits. However, those fields do appear in `RecordDecl`'s
  // field list, and we thus need to remove them before mapping inits to
  // fields to avoid mapping inits to the wrongs fields.
  llvm::copy_if(
      RD->fields(), std::back_inserter(Fields),
      [](const FieldDecl *Field) { return !Field->isUnnamedBitfield(); });
  return Fields;
}

RecordInitListHelper::RecordInitListHelper(const InitListExpr *InitList) {
  auto *RD = InitList->getType()->getAsCXXRecordDecl();
  assert(RD != nullptr);

  std::vector<const FieldDecl *> Fields = getFieldsForInitListExpr(InitList);
  ArrayRef<Expr *> Inits = InitList->inits();

  // Unions initialized with an empty initializer list need special treatment.
  // For structs/classes initialized with an empty initializer list, Clang
  // puts `ImplicitValueInitExpr`s in `InitListExpr::inits()`, but for unions,
  // it doesn't do this -- so we create an `ImplicitValueInitExpr` ourselves.
  SmallVector<Expr *> InitsForUnion;
  if (InitList->getType()->isUnionType() && Inits.empty()) {
    assert(Fields.size() == 1);
    ImplicitValueInitForUnion.emplace(Fields.front()->getType());
    InitsForUnion.push_back(&*ImplicitValueInitForUnion);
    Inits = InitsForUnion;
  }

  size_t InitIdx = 0;

  assert(Fields.size() + RD->getNumBases() == Inits.size());
  for (const CXXBaseSpecifier &Base : RD->bases()) {
    assert(InitIdx < Inits.size());
    Expr *Init = Inits[InitIdx++];
    BaseInits.emplace_back(&Base, Init);
  }

  assert(Fields.size() == Inits.size() - InitIdx);
  for (const FieldDecl *Field : Fields) {
    assert(InitIdx < Inits.size());
    Expr *Init = Inits[InitIdx++];
    FieldInits.emplace_back(Field, Init);
  }
}

RecordValue &refreshRecordValue(RecordStorageLocation &Loc, Environment &Env) {
  auto &NewVal = Env.create<RecordValue>(Loc);
  Env.setValue(Loc, NewVal);
  return NewVal;
}

RecordValue &refreshRecordValue(const Expr &Expr, Environment &Env) {
  assert(Expr.getType()->isRecordType());

  if (Expr.isPRValue()) {
    if (auto *ExistingVal = Env.get<RecordValue>(Expr)) {
      auto &NewVal = Env.create<RecordValue>(ExistingVal->getLoc());
      Env.setValue(Expr, NewVal);
      Env.setValue(NewVal.getLoc(), NewVal);
      return NewVal;
    }

    auto &NewVal = *cast<RecordValue>(Env.createValue(Expr.getType()));
    Env.setValue(Expr, NewVal);
    return NewVal;
  }

  if (auto *Loc = Env.get<RecordStorageLocation>(Expr)) {
    auto &NewVal = Env.create<RecordValue>(*Loc);
    Env.setValue(*Loc, NewVal);
    return NewVal;
  }

  auto &NewVal = *cast<RecordValue>(Env.createValue(Expr.getType()));
  Env.setStorageLocation(Expr, NewVal.getLoc());
  return NewVal;
}

} // namespace dataflow
} // namespace clang