summaryrefslogtreecommitdiffstats
path: root/flang/lib/Lower/ConvertCall.cpp
blob: 315a3f6736aa1feca323653339f294a6f7aa65ed (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
//===-- ConvertCall.cpp ---------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Coding style: https://mlir.llvm.org/getting_started/DeveloperGuide/
//
//===----------------------------------------------------------------------===//

#include "flang/Lower/ConvertCall.h"
#include "flang/Lower/Allocatable.h"
#include "flang/Lower/ConvertExprToHLFIR.h"
#include "flang/Lower/ConvertProcedureDesignator.h"
#include "flang/Lower/ConvertVariable.h"
#include "flang/Lower/CustomIntrinsicCall.h"
#include "flang/Lower/HlfirIntrinsics.h"
#include "flang/Lower/StatementContext.h"
#include "flang/Lower/SymbolMap.h"
#include "flang/Optimizer/Builder/BoxValue.h"
#include "flang/Optimizer/Builder/Character.h"
#include "flang/Optimizer/Builder/FIRBuilder.h"
#include "flang/Optimizer/Builder/HLFIRTools.h"
#include "flang/Optimizer/Builder/IntrinsicCall.h"
#include "flang/Optimizer/Builder/LowLevelIntrinsics.h"
#include "flang/Optimizer/Builder/MutableBox.h"
#include "flang/Optimizer/Builder/Runtime/Derived.h"
#include "flang/Optimizer/Builder/Todo.h"
#include "flang/Optimizer/Dialect/FIROpsSupport.h"
#include "flang/Optimizer/HLFIR/HLFIROps.h"
#include "mlir/IR/IRMapping.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include <optional>

#define DEBUG_TYPE "flang-lower-expr"

static llvm::cl::opt<bool> useHlfirIntrinsicOps(
    "use-hlfir-intrinsic-ops", llvm::cl::init(true),
    llvm::cl::desc("Lower via HLFIR transformational intrinsic operations such "
                   "as hlfir.sum"));

static constexpr char tempResultName[] = ".tmp.func_result";

/// Helper to package a Value and its properties into an ExtendedValue.
static fir::ExtendedValue toExtendedValue(mlir::Location loc, mlir::Value base,
                                          llvm::ArrayRef<mlir::Value> extents,
                                          llvm::ArrayRef<mlir::Value> lengths) {
  mlir::Type type = base.getType();
  if (type.isa<fir::BaseBoxType>())
    return fir::BoxValue(base, /*lbounds=*/{}, lengths, extents);
  type = fir::unwrapRefType(type);
  if (type.isa<fir::BaseBoxType>())
    return fir::MutableBoxValue(base, lengths, /*mutableProperties*/ {});
  if (auto seqTy = type.dyn_cast<fir::SequenceType>()) {
    if (seqTy.getDimension() != extents.size())
      fir::emitFatalError(loc, "incorrect number of extents for array");
    if (seqTy.getEleTy().isa<fir::CharacterType>()) {
      if (lengths.empty())
        fir::emitFatalError(loc, "missing length for character");
      assert(lengths.size() == 1);
      return fir::CharArrayBoxValue(base, lengths[0], extents);
    }
    return fir::ArrayBoxValue(base, extents);
  }
  if (type.isa<fir::CharacterType>()) {
    if (lengths.empty())
      fir::emitFatalError(loc, "missing length for character");
    assert(lengths.size() == 1);
    return fir::CharBoxValue(base, lengths[0]);
  }
  return base;
}

/// Lower a type(C_PTR/C_FUNPTR) argument with VALUE attribute into a
/// reference. A C pointer can correspond to a Fortran dummy argument of type
/// C_PTR with the VALUE attribute. (see 18.3.6 note 3).
static mlir::Value genRecordCPtrValueArg(fir::FirOpBuilder &builder,
                                         mlir::Location loc, mlir::Value rec,
                                         mlir::Type ty) {
  mlir::Value cAddr = fir::factory::genCPtrOrCFunptrAddr(builder, loc, rec, ty);
  mlir::Value cVal = builder.create<fir::LoadOp>(loc, cAddr);
  return builder.createConvert(loc, cAddr.getType(), cVal);
}

// Find the argument that corresponds to the host associations.
// Verify some assumptions about how the signature was built here.
[[maybe_unused]] static unsigned findHostAssocTuplePos(mlir::func::FuncOp fn) {
  // Scan the argument list from last to first as the host associations are
  // appended for now.
  for (unsigned i = fn.getNumArguments(); i > 0; --i)
    if (fn.getArgAttr(i - 1, fir::getHostAssocAttrName())) {
      // Host assoc tuple must be last argument (for now).
      assert(i == fn.getNumArguments() && "tuple must be last");
      return i - 1;
    }
  llvm_unreachable("anyFuncArgsHaveAttr failed");
}

mlir::Value
Fortran::lower::argumentHostAssocs(Fortran::lower::AbstractConverter &converter,
                                   mlir::Value arg) {
  if (auto addr = mlir::dyn_cast_or_null<fir::AddrOfOp>(arg.getDefiningOp())) {
    auto &builder = converter.getFirOpBuilder();
    if (auto funcOp = builder.getNamedFunction(addr.getSymbol()))
      if (fir::anyFuncArgsHaveAttr(funcOp, fir::getHostAssocAttrName()))
        return converter.hostAssocTupleValue();
  }
  return {};
}

static bool mustCastFuncOpToCopeWithImplicitInterfaceMismatch(
    mlir::Location loc, Fortran::lower::AbstractConverter &converter,
    mlir::FunctionType callSiteType, mlir::FunctionType funcOpType) {
  // Deal with argument number mismatch by making a function pointer so
  // that function type cast can be inserted. Do not emit a warning here
  // because this can happen in legal program if the function is not
  // defined here and it was first passed as an argument without any more
  // information.
  if (callSiteType.getNumResults() != funcOpType.getNumResults() ||
      callSiteType.getNumInputs() != funcOpType.getNumInputs())
    return true;

  // Implicit interface result type mismatch are not standard Fortran, but
  // some compilers are not complaining about it.  The front end is not
  // protecting lowering from this currently. Support this with a
  // discouraging warning.
  // Cast the actual function to the current caller implicit type because
  // that is the behavior we would get if we could not see the definition.
  if (callSiteType.getResults() != funcOpType.getResults()) {
    LLVM_DEBUG(mlir::emitWarning(
        loc, "a return type mismatch is not standard compliant and may "
             "lead to undefined behavior."));
    return true;
  }

  // In HLFIR, there is little attempt to cope with implicit interface
  // mismatch on the arguments. The argument are always prepared according
  // to the implicit interface. Cast the actual function if any of the
  // argument mismatch cannot be dealt with a simple fir.convert.
  if (converter.getLoweringOptions().getLowerToHighLevelFIR())
    for (auto [actualType, dummyType] :
         llvm::zip(callSiteType.getInputs(), funcOpType.getInputs()))
      if (actualType != dummyType &&
          !fir::ConvertOp::canBeConverted(actualType, dummyType))
        return true;
  return false;
}

static mlir::Value readDim3Value(fir::FirOpBuilder &builder, mlir::Location loc,
                                 mlir::Value dim3Addr, llvm::StringRef comp) {
  mlir::Type i32Ty = builder.getI32Type();
  mlir::Type refI32Ty = fir::ReferenceType::get(i32Ty);
  llvm::SmallVector<mlir::Value> lenParams;

  mlir::Value designate = builder.create<hlfir::DesignateOp>(
      loc, refI32Ty, dim3Addr, /*component=*/comp,
      /*componentShape=*/mlir::Value{}, hlfir::DesignateOp::Subscripts{},
      /*substring=*/mlir::ValueRange{}, /*complexPartAttr=*/std::nullopt,
      mlir::Value{}, lenParams);

  return hlfir::loadTrivialScalar(loc, builder, hlfir::Entity{designate});
}

static mlir::Value remapActualToDummyDescriptor(
    mlir::Location loc, Fortran::lower::AbstractConverter &converter,
    Fortran::lower::SymMap &symMap,
    const Fortran::lower::CallerInterface::PassedEntity &arg,
    Fortran::lower::CallerInterface &caller, bool isBindcCall) {
  fir::FirOpBuilder &builder = converter.getFirOpBuilder();
  mlir::IndexType idxTy = builder.getIndexType();
  mlir::Value zero = builder.createIntegerConstant(loc, idxTy, 0);
  Fortran::lower::StatementContext localStmtCtx;
  auto lowerSpecExpr = [&](const auto &expr,
                           bool isAssumedSizeExtent) -> mlir::Value {
    mlir::Value convertExpr = builder.createConvert(
        loc, idxTy, fir::getBase(converter.genExprValue(expr, localStmtCtx)));
    if (isAssumedSizeExtent)
      return convertExpr;
    return fir::factory::genMaxWithZero(builder, loc, convertExpr);
  };
  bool mapSymbols = caller.mustMapInterfaceSymbolsForDummyArgument(arg);
  if (mapSymbols) {
    symMap.pushScope();
    const Fortran::semantics::Symbol *sym = caller.getDummySymbol(arg);
    assert(sym && "call must have explicit interface to map interface symbols");
    Fortran::lower::mapCallInterfaceSymbolsForDummyArgument(converter, caller,
                                                            symMap, *sym);
  }
  llvm::SmallVector<mlir::Value> extents;
  llvm::SmallVector<mlir::Value> lengths;
  mlir::Type dummyBoxType = caller.getDummyArgumentType(arg);
  mlir::Type dummyBaseType = fir::unwrapPassByRefType(dummyBoxType);
  if (dummyBaseType.isa<fir::SequenceType>())
    caller.walkDummyArgumentExtents(
        arg, [&](const Fortran::lower::SomeExpr &e, bool isAssumedSizeExtent) {
          extents.emplace_back(lowerSpecExpr(e, isAssumedSizeExtent));
        });
  mlir::Value shape;
  if (!extents.empty()) {
    if (isBindcCall) {
      // Preserve zero lower bounds (see F'2023 18.5.3).
      llvm::SmallVector<mlir::Value> lowerBounds(extents.size(), zero);
      shape = builder.genShape(loc, lowerBounds, extents);
    } else {
      shape = builder.genShape(loc, extents);
    }
  }

  hlfir::Entity explicitArgument = hlfir::Entity{caller.getInput(arg)};
  mlir::Type dummyElementType = fir::unwrapSequenceType(dummyBaseType);
  if (auto recType = llvm::dyn_cast<fir::RecordType>(dummyElementType))
    if (recType.getNumLenParams() > 0)
      TODO(loc, "sequence association of length parameterized derived type "
                "dummy arguments");
  if (fir::isa_char(dummyElementType))
    lengths.emplace_back(hlfir::genCharLength(loc, builder, explicitArgument));
  mlir::Value baseAddr =
      hlfir::genVariableRawAddress(loc, builder, explicitArgument);
  baseAddr = builder.createConvert(loc, fir::ReferenceType::get(dummyBaseType),
                                   baseAddr);
  mlir::Value mold;
  if (fir::isPolymorphicType(dummyBoxType))
    mold = explicitArgument;
  mlir::Value remapped =
      builder.create<fir::EmboxOp>(loc, dummyBoxType, baseAddr, shape,
                                   /*slice=*/mlir::Value{}, lengths, mold);
  if (mapSymbols)
    symMap.popScope();
  return remapped;
}

/// Create a descriptor for sequenced associated descriptor that are passed
/// by descriptor. Sequence association (F'2023 15.5.2.12) implies that the
/// dummy shape and rank need to not be the same as the actual argument. This
/// helper creates a descriptor based on the dummy shape and rank (sequence
/// association can only happen with explicit and assumed-size array) so that it
/// is safe to assume the rank of the incoming descriptor inside the callee.
/// This helper must be called once all the actual arguments have been lowered
/// and placed inside "caller". Copy-in/copy-out must already have been
/// generated if needed using the actual argument shape (the dummy shape may be
/// assumed-size).
static void remapActualToDummyDescriptors(
    mlir::Location loc, Fortran::lower::AbstractConverter &converter,
    Fortran::lower::SymMap &symMap,
    const Fortran::lower::PreparedActualArguments &loweredActuals,
    Fortran::lower::CallerInterface &caller, bool isBindcCall) {
  fir::FirOpBuilder &builder = converter.getFirOpBuilder();
  for (auto [preparedActual, arg] :
       llvm::zip(loweredActuals, caller.getPassedArguments())) {
    if (arg.isSequenceAssociatedDescriptor()) {
      if (!preparedActual.value().handleDynamicOptional()) {
        mlir::Value remapped = remapActualToDummyDescriptor(
            loc, converter, symMap, arg, caller, isBindcCall);
        caller.placeInput(arg, remapped);
      } else {
        // Absent optional actual argument descriptor cannot be read and
        // remapped unconditionally.
        mlir::Type dummyType = caller.getDummyArgumentType(arg);
        mlir::Value isPresent = preparedActual.value().getIsPresent();
        auto &argLambdaCapture = arg;
        mlir::Value remapped =
            builder
                .genIfOp(loc, {dummyType}, isPresent,
                         /*withElseRegion=*/true)
                .genThen([&]() {
                  mlir::Value newBox = remapActualToDummyDescriptor(
                      loc, converter, symMap, argLambdaCapture, caller,
                      isBindcCall);
                  builder.create<fir::ResultOp>(loc, newBox);
                })
                .genElse([&]() {
                  mlir::Value absent =
                      builder.create<fir::AbsentOp>(loc, dummyType);
                  builder.create<fir::ResultOp>(loc, absent);
                })
                .getResults()[0];
        caller.placeInput(arg, remapped);
      }
    }
  }
}

std::pair<fir::ExtendedValue, bool> Fortran::lower::genCallOpAndResult(
    mlir::Location loc, Fortran::lower::AbstractConverter &converter,
    Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx,
    Fortran::lower::CallerInterface &caller, mlir::FunctionType callSiteType,
    std::optional<mlir::Type> resultType, bool isElemental) {
  fir::FirOpBuilder &builder = converter.getFirOpBuilder();
  using PassBy = Fortran::lower::CallerInterface::PassEntityBy;
  bool mustPopSymMap = false;
  if (caller.mustMapInterfaceSymbolsForResult()) {
    symMap.pushScope();
    mustPopSymMap = true;
    Fortran::lower::mapCallInterfaceSymbolsForResult(converter, caller, symMap);
  }
  // If this is an indirect call, retrieve the function address. Also retrieve
  // the result length if this is a character function (note that this length
  // will be used only if there is no explicit length in the local interface).
  mlir::Value funcPointer;
  mlir::Value charFuncPointerLength;
  if (const Fortran::evaluate::ProcedureDesignator *procDesignator =
          caller.getIfIndirectCall()) {
    if (mlir::Value passedArg = caller.getIfPassedArg()) {
      // Procedure pointer component call with PASS argument. To avoid
      // "double" lowering of the ComponentRef, semantics only place the
      // ComponentRef in the ActualArguments, not in the ProcedureDesignator (
      // that is only the component symbol).
      // Fetch the passed argument and addresses of its procedure pointer
      // component.
      funcPointer = Fortran::lower::derefPassProcPointerComponent(
          loc, converter, *procDesignator, passedArg, symMap, stmtCtx);
    } else {
      Fortran::lower::SomeExpr expr{*procDesignator};
      fir::ExtendedValue loweredProc =
          converter.genExprAddr(loc, expr, stmtCtx);
      funcPointer = fir::getBase(loweredProc);
      // Dummy procedure may have assumed length, in which case the result
      // length was passed along the dummy procedure.
      // This is not possible with procedure pointer components.
      if (const fir::CharBoxValue *charBox = loweredProc.getCharBox())
        charFuncPointerLength = charBox->getLen();
    }
  }

  mlir::IndexType idxTy = builder.getIndexType();
  auto lowerSpecExpr = [&](const auto &expr) -> mlir::Value {
    mlir::Value convertExpr = builder.createConvert(
        loc, idxTy, fir::getBase(converter.genExprValue(expr, stmtCtx)));
    return fir::factory::genMaxWithZero(builder, loc, convertExpr);
  };
  llvm::SmallVector<mlir::Value> resultLengths;
  auto allocatedResult = [&]() -> std::optional<fir::ExtendedValue> {
    llvm::SmallVector<mlir::Value> extents;
    llvm::SmallVector<mlir::Value> lengths;
    if (!caller.callerAllocateResult())
      return {};
    mlir::Type type = caller.getResultStorageType();
    if (type.isa<fir::SequenceType>())
      caller.walkResultExtents(
          [&](const Fortran::lower::SomeExpr &e, bool isAssumedSizeExtent) {
            assert(!isAssumedSizeExtent && "result cannot be assumed-size");
            extents.emplace_back(lowerSpecExpr(e));
          });
    caller.walkResultLengths(
        [&](const Fortran::lower::SomeExpr &e, bool isAssumedSizeExtent) {
          assert(!isAssumedSizeExtent && "result cannot be assumed-size");
          lengths.emplace_back(lowerSpecExpr(e));
        });

    // Result length parameters should not be provided to box storage
    // allocation and save_results, but they are still useful information to
    // keep in the ExtendedValue if non-deferred.
    if (!type.isa<fir::BoxType>()) {
      if (fir::isa_char(fir::unwrapSequenceType(type)) && lengths.empty()) {
        // Calling an assumed length function. This is only possible if this
        // is a call to a character dummy procedure.
        if (!charFuncPointerLength)
          fir::emitFatalError(loc, "failed to retrieve character function "
                                   "length while calling it");
        lengths.push_back(charFuncPointerLength);
      }
      resultLengths = lengths;
    }

    if (!extents.empty() || !lengths.empty()) {
      auto *bldr = &converter.getFirOpBuilder();
      auto stackSaveFn = fir::factory::getLlvmStackSave(builder);
      auto stackSaveSymbol = bldr->getSymbolRefAttr(stackSaveFn.getName());
      mlir::Value sp;
      fir::CallOp call = bldr->create<fir::CallOp>(
          loc, stackSaveFn.getFunctionType().getResults(), stackSaveSymbol,
          mlir::ValueRange{});
      if (call.getNumResults() != 0)
        sp = call.getResult(0);
      stmtCtx.attachCleanup([bldr, loc, sp]() {
        auto stackRestoreFn = fir::factory::getLlvmStackRestore(*bldr);
        auto stackRestoreSymbol =
            bldr->getSymbolRefAttr(stackRestoreFn.getName());
        bldr->create<fir::CallOp>(loc,
                                  stackRestoreFn.getFunctionType().getResults(),
                                  stackRestoreSymbol, mlir::ValueRange{sp});
      });
    }
    mlir::Value temp =
        builder.createTemporary(loc, type, ".result", extents, resultLengths);
    return toExtendedValue(loc, temp, extents, lengths);
  }();

  if (mustPopSymMap)
    symMap.popScope();

  // Place allocated result or prepare the fir.save_result arguments.
  mlir::Value arrayResultShape;
  if (allocatedResult) {
    if (std::optional<Fortran::lower::CallInterface<
            Fortran::lower::CallerInterface>::PassedEntity>
            resultArg = caller.getPassedResult()) {
      if (resultArg->passBy == PassBy::AddressAndLength)
        caller.placeAddressAndLengthInput(*resultArg,
                                          fir::getBase(*allocatedResult),
                                          fir::getLen(*allocatedResult));
      else if (resultArg->passBy == PassBy::BaseAddress)
        caller.placeInput(*resultArg, fir::getBase(*allocatedResult));
      else
        fir::emitFatalError(
            loc, "only expect character scalar result to be passed by ref");
    } else {
      assert(caller.mustSaveResult());
      arrayResultShape = allocatedResult->match(
          [&](const fir::CharArrayBoxValue &) {
            return builder.createShape(loc, *allocatedResult);
          },
          [&](const fir::ArrayBoxValue &) {
            return builder.createShape(loc, *allocatedResult);
          },
          [&](const auto &) { return mlir::Value{}; });
    }
  }

  // In older Fortran, procedure argument types are inferred. This may lead
  // different view of what the function signature is in different locations.
  // Casts are inserted as needed below to accommodate this.

  // The mlir::func::FuncOp type prevails, unless it has a different number of
  // arguments which can happen in legal program if it was passed as a dummy
  // procedure argument earlier with no further type information.
  mlir::SymbolRefAttr funcSymbolAttr;
  bool addHostAssociations = false;
  if (!funcPointer) {
    mlir::FunctionType funcOpType = caller.getFuncOp().getFunctionType();
    mlir::SymbolRefAttr symbolAttr =
        builder.getSymbolRefAttr(caller.getMangledName());
    if (callSiteType.getNumResults() == funcOpType.getNumResults() &&
        callSiteType.getNumInputs() + 1 == funcOpType.getNumInputs() &&
        fir::anyFuncArgsHaveAttr(caller.getFuncOp(),
                                 fir::getHostAssocAttrName())) {
      // The number of arguments is off by one, and we're lowering a function
      // with host associations. Modify call to include host associations
      // argument by appending the value at the end of the operands.
      assert(funcOpType.getInput(findHostAssocTuplePos(caller.getFuncOp())) ==
             converter.hostAssocTupleValue().getType());
      addHostAssociations = true;
    }
    // When this is not a call to an internal procedure (where there is a
    // mismatch due to the extra argument, but the interface is otherwise
    // explicit and safe), handle interface mismatch due to F77 implicit
    // interface "abuse" with a function address cast if needed.
    if (!addHostAssociations &&
        mustCastFuncOpToCopeWithImplicitInterfaceMismatch(
            loc, converter, callSiteType, funcOpType))
      funcPointer = builder.create<fir::AddrOfOp>(loc, funcOpType, symbolAttr);
    else
      funcSymbolAttr = symbolAttr;

    // Issue a warning if the procedure name conflicts with
    // a runtime function name a call to which has been already
    // lowered (implying that the FuncOp has been created).
    // The behavior is undefined in this case.
    if (caller.getFuncOp()->hasAttrOfType<mlir::UnitAttr>(
            fir::FIROpsDialect::getFirRuntimeAttrName()))
      LLVM_DEBUG(mlir::emitWarning(
          loc,
          llvm::Twine("function name '") +
              llvm::Twine(symbolAttr.getLeafReference()) +
              llvm::Twine("' conflicts with a runtime function name used by "
                          "Flang - this may lead to undefined behavior")));
  }

  mlir::FunctionType funcType =
      funcPointer ? callSiteType : caller.getFuncOp().getFunctionType();
  llvm::SmallVector<mlir::Value> operands;
  // First operand of indirect call is the function pointer. Cast it to
  // required function type for the call to handle procedures that have a
  // compatible interface in Fortran, but that have different signatures in
  // FIR.
  if (funcPointer) {
    operands.push_back(
        funcPointer.getType().isa<fir::BoxProcType>()
            ? builder.create<fir::BoxAddrOp>(loc, funcType, funcPointer)
            : builder.createConvert(loc, funcType, funcPointer));
  }

  // Deal with potential mismatches in arguments types. Passing an array to a
  // scalar argument should for instance be tolerated here.
  bool callingImplicitInterface = caller.canBeCalledViaImplicitInterface();
  for (auto [fst, snd] : llvm::zip(caller.getInputs(), funcType.getInputs())) {
    // When passing arguments to a procedure that can be called by implicit
    // interface, allow any character actual arguments to be passed to dummy
    // arguments of any type and vice versa.
    mlir::Value cast;
    auto *context = builder.getContext();
    if (snd.isa<fir::BoxProcType>() &&
        fst.getType().isa<mlir::FunctionType>()) {
      auto funcTy =
          mlir::FunctionType::get(context, std::nullopt, std::nullopt);
      auto boxProcTy = builder.getBoxProcType(funcTy);
      if (mlir::Value host = argumentHostAssocs(converter, fst)) {
        cast = builder.create<fir::EmboxProcOp>(
            loc, boxProcTy, llvm::ArrayRef<mlir::Value>{fst, host});
      } else {
        cast = builder.create<fir::EmboxProcOp>(loc, boxProcTy, fst);
      }
    } else {
      mlir::Type fromTy = fir::unwrapRefType(fst.getType());
      if (fir::isa_builtin_cptr_type(fromTy) &&
          Fortran::lower::isCPtrArgByValueType(snd)) {
        cast = genRecordCPtrValueArg(builder, loc, fst, fromTy);
      } else if (fir::isa_derived(snd) && !fir::isa_derived(fst.getType())) {
        // TODO: remove this TODO once the old lowering is gone.
        TODO(loc, "derived type argument passed by value");
      } else {
        // With the lowering to HLFIR, box arguments have already been built
        // according to the attributes, rank, bounds, and type they should have.
        // Do not attempt any reboxing here that could break this.
        bool legacyLowering =
            !converter.getLoweringOptions().getLowerToHighLevelFIR();
        cast = builder.convertWithSemantics(loc, snd, fst,
                                            callingImplicitInterface,
                                            /*allowRebox=*/legacyLowering);
      }
    }
    operands.push_back(cast);
  }

  // Add host associations as necessary.
  if (addHostAssociations)
    operands.push_back(converter.hostAssocTupleValue());

  mlir::Value callResult;
  unsigned callNumResults;

  if (!caller.getCallDescription().chevrons().empty()) {
    // A call to a CUDA kernel with the chevron syntax.

    mlir::Type i32Ty = builder.getI32Type();
    mlir::Value one = builder.createIntegerConstant(loc, i32Ty, 1);

    mlir::Value grid_x, grid_y, grid_z;
    if (caller.getCallDescription().chevrons()[0].GetType()->category() ==
        Fortran::common::TypeCategory::Integer) {
      // If grid is an integer, it is converted to dim3(grid,1,1). Since z is
      // not used for the number of thread blocks, it is omitted in the op.
      grid_x = builder.createConvert(
          loc, i32Ty,
          fir::getBase(converter.genExprValue(
              caller.getCallDescription().chevrons()[0], stmtCtx)));
      grid_y = one;
      grid_z = one;
    } else {
      auto dim3Addr = converter.genExprAddr(
          caller.getCallDescription().chevrons()[0], stmtCtx);
      grid_x = readDim3Value(builder, loc, fir::getBase(dim3Addr), "x");
      grid_y = readDim3Value(builder, loc, fir::getBase(dim3Addr), "y");
      grid_z = readDim3Value(builder, loc, fir::getBase(dim3Addr), "z");
    }

    mlir::Value block_x, block_y, block_z;
    if (caller.getCallDescription().chevrons()[1].GetType()->category() ==
        Fortran::common::TypeCategory::Integer) {
      // If block is an integer, it is converted to dim3(block,1,1).
      block_x = builder.createConvert(
          loc, i32Ty,
          fir::getBase(converter.genExprValue(
              caller.getCallDescription().chevrons()[1], stmtCtx)));
      block_y = one;
      block_z = one;
    } else {
      auto dim3Addr = converter.genExprAddr(
          caller.getCallDescription().chevrons()[1], stmtCtx);
      block_x = readDim3Value(builder, loc, fir::getBase(dim3Addr), "x");
      block_y = readDim3Value(builder, loc, fir::getBase(dim3Addr), "y");
      block_z = readDim3Value(builder, loc, fir::getBase(dim3Addr), "z");
    }

    mlir::Value bytes; // bytes is optional.
    if (caller.getCallDescription().chevrons().size() > 2)
      bytes = builder.createConvert(
          loc, i32Ty,
          fir::getBase(converter.genExprValue(
              caller.getCallDescription().chevrons()[2], stmtCtx)));

    mlir::Value stream; // stream is optional.
    if (caller.getCallDescription().chevrons().size() > 3)
      stream = builder.createConvert(
          loc, i32Ty,
          fir::getBase(converter.genExprValue(
              caller.getCallDescription().chevrons()[3], stmtCtx)));

    builder.create<fir::CUDAKernelLaunch>(
        loc, funcType.getResults(), funcSymbolAttr, grid_x, grid_y, grid_z,
        block_x, block_y, block_z, bytes, stream, operands);
    callNumResults = 0;
  } else if (caller.requireDispatchCall()) {
    // Procedure call requiring a dynamic dispatch. Call is created with
    // fir.dispatch.

    // Get the raw procedure name. The procedure name is not mangled in the
    // binding table, but there can be a suffix to distinguish bindings of
    // the same name (which happens only when PRIVATE bindings exist in
    // ancestor types in other modules).
    const auto &ultimateSymbol =
        caller.getCallDescription().proc().GetSymbol()->GetUltimate();
    std::string procName = ultimateSymbol.name().ToString();
    if (const auto &binding{
            ultimateSymbol.get<Fortran::semantics::ProcBindingDetails>()};
        binding.numPrivatesNotOverridden() > 0)
      procName += "."s + std::to_string(binding.numPrivatesNotOverridden());
    fir::DispatchOp dispatch;
    if (std::optional<unsigned> passArg = caller.getPassArgIndex()) {
      // PASS, PASS(arg-name)
      // Note that caller.getInputs is used instead of operands to get the
      // passed object because interface mismatch issues may have inserted a
      // cast to the operand with a different declared type, which would break
      // later type bound call resolution in the FIR to FIR pass.
      dispatch = builder.create<fir::DispatchOp>(
          loc, funcType.getResults(), builder.getStringAttr(procName),
          caller.getInputs()[*passArg], operands,
          builder.getI32IntegerAttr(*passArg));
    } else {
      // NOPASS
      const Fortran::evaluate::Component *component =
          caller.getCallDescription().proc().GetComponent();
      assert(component && "expect component for type-bound procedure call.");

      fir::ExtendedValue dataRefValue = Fortran::lower::convertDataRefToValue(
          loc, converter, component->base(), symMap, stmtCtx);
      mlir::Value passObject = fir::getBase(dataRefValue);

      if (fir::isa_ref_type(passObject.getType()))
        passObject = builder.create<fir::LoadOp>(loc, passObject);
      dispatch = builder.create<fir::DispatchOp>(
          loc, funcType.getResults(), builder.getStringAttr(procName),
          passObject, operands, nullptr);
    }
    callNumResults = dispatch.getNumResults();
    if (callNumResults != 0)
      callResult = dispatch.getResult(0);
  } else {
    // Standard procedure call with fir.call.
    auto call = builder.create<fir::CallOp>(loc, funcType.getResults(),
                                            funcSymbolAttr, operands);
    callNumResults = call.getNumResults();
    if (callNumResults != 0)
      callResult = call.getResult(0);
  }

  if (caller.mustSaveResult()) {
    assert(allocatedResult.has_value());
    builder.create<fir::SaveResultOp>(loc, callResult,
                                      fir::getBase(*allocatedResult),
                                      arrayResultShape, resultLengths);
  }

  if (allocatedResult) {
    // The result must be optionally destroyed (if it is of a derived type
    // that may need finalization or deallocation of the components).
    // For an allocatable result we have to free the memory allocated
    // for the top-level entity. Note that the Destroy calls below
    // do not deallocate the top-level entity. The two clean-ups
    // must be pushed in reverse order, so that the final order is:
    //   Destroy(desc)
    //   free(desc->base_addr)
    allocatedResult->match(
        [&](const fir::MutableBoxValue &box) {
          if (box.isAllocatable()) {
            // 9.7.3.2 point 4. Deallocate allocatable results. Note that
            // finalization was done independently by calling
            // genDerivedTypeDestroy above and is not triggered by this inline
            // deallocation.
            fir::FirOpBuilder *bldr = &converter.getFirOpBuilder();
            stmtCtx.attachCleanup([bldr, loc, box]() {
              fir::factory::genFreememIfAllocated(*bldr, loc, box);
            });
          }
        },
        [](const auto &) {});

    // 7.5.6.3 point 5. Derived-type finalization for nonpointer function.
    bool resultIsFinalized = false;
    // Check if the derived-type is finalizable if it is a monomorphic
    // derived-type.
    // For polymorphic and unlimited polymorphic enities call the runtime
    // in any cases.
    std::optional<Fortran::evaluate::DynamicType> retTy =
        caller.getCallDescription().proc().GetType();
    // With HLFIR lowering, isElemental must be set to true
    // if we are producing an elemental call. In this case,
    // the elemental results must not be destroyed, instead,
    // the resulting array result will be finalized/destroyed
    // as needed by hlfir.destroy.
    if (!isElemental && !fir::isPointerType(funcType.getResults()[0]) &&
        retTy &&
        (retTy->category() == Fortran::common::TypeCategory::Derived ||
         retTy->IsPolymorphic() || retTy->IsUnlimitedPolymorphic())) {
      if (retTy->IsPolymorphic() || retTy->IsUnlimitedPolymorphic()) {
        auto *bldr = &converter.getFirOpBuilder();
        stmtCtx.attachCleanup([bldr, loc, allocatedResult]() {
          fir::runtime::genDerivedTypeDestroy(*bldr, loc,
                                              fir::getBase(*allocatedResult));
        });
        resultIsFinalized = true;
      } else {
        const Fortran::semantics::DerivedTypeSpec &typeSpec =
            retTy->GetDerivedTypeSpec();
        // If the result type may require finalization
        // or have allocatable components, we need to make sure
        // everything is properly finalized/deallocated.
        if (Fortran::semantics::MayRequireFinalization(typeSpec) ||
            // We can use DerivedTypeDestroy even if finalization is not needed.
            hlfir::mayHaveAllocatableComponent(funcType.getResults()[0])) {
          auto *bldr = &converter.getFirOpBuilder();
          stmtCtx.attachCleanup([bldr, loc, allocatedResult]() {
            mlir::Value box = bldr->createBox(loc, *allocatedResult);
            fir::runtime::genDerivedTypeDestroy(*bldr, loc, box);
          });
          resultIsFinalized = true;
        }
      }
    }
    return {*allocatedResult, resultIsFinalized};
  }

  // subroutine call
  if (!resultType)
    return {fir::ExtendedValue{mlir::Value{}}, /*resultIsFinalized=*/false};

  // For now, Fortran return values are implemented with a single MLIR
  // function return value.
  assert(callNumResults == 1 && "Expected exactly one result in FUNCTION call");
  (void)callNumResults;

  // Call a BIND(C) function that return a char.
  if (caller.characterize().IsBindC() &&
      funcType.getResults()[0].isa<fir::CharacterType>()) {
    fir::CharacterType charTy =
        funcType.getResults()[0].dyn_cast<fir::CharacterType>();
    mlir::Value len = builder.createIntegerConstant(
        loc, builder.getCharacterLengthType(), charTy.getLen());
    return {fir::CharBoxValue{callResult, len}, /*resultIsFinalized=*/false};
  }

  return {callResult, /*resultIsFinalized=*/false};
}

static hlfir::EntityWithAttributes genStmtFunctionRef(
    mlir::Location loc, Fortran::lower::AbstractConverter &converter,
    Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx,
    const Fortran::evaluate::ProcedureRef &procRef) {
  const Fortran::semantics::Symbol *symbol = procRef.proc().GetSymbol();
  assert(symbol && "expected symbol in ProcedureRef of statement functions");
  const auto &details = symbol->get<Fortran::semantics::SubprogramDetails>();
  fir::FirOpBuilder &builder = converter.getFirOpBuilder();

  // Statement functions have their own scope, we just need to associate
  // the dummy symbols to argument expressions. There are no
  // optional/alternate return arguments. Statement functions cannot be
  // recursive (directly or indirectly) so it is safe to add dummy symbols to
  // the local map here.
  symMap.pushScope();
  llvm::SmallVector<hlfir::AssociateOp> exprAssociations;
  for (auto [arg, bind] : llvm::zip(details.dummyArgs(), procRef.arguments())) {
    assert(arg && "alternate return in statement function");
    assert(bind && "optional argument in statement function");
    const auto *expr = bind->UnwrapExpr();
    // TODO: assumed type in statement function, that surprisingly seems
    // allowed, probably because nobody thought of restricting this usage.
    // gfortran/ifort compiles this.
    assert(expr && "assumed type used as statement function argument");
    // As per Fortran 2018 C1580, statement function arguments can only be
    // scalars.
    // The only care is to use the dummy character explicit length if any
    // instead of the actual argument length (that can be bigger).
    hlfir::EntityWithAttributes loweredArg = Fortran::lower::convertExprToHLFIR(
        loc, converter, *expr, symMap, stmtCtx);
    fir::FortranVariableOpInterface variableIface = loweredArg.getIfVariable();
    if (!variableIface) {
      // So far only FortranVariableOpInterface can be mapped to symbols.
      // Create an hlfir.associate to create a variable from a potential
      // value argument.
      mlir::Type argType = converter.genType(*arg);
      auto associate = hlfir::genAssociateExpr(
          loc, builder, loweredArg, argType, toStringRef(arg->name()));
      exprAssociations.push_back(associate);
      variableIface = associate;
    }
    const Fortran::semantics::DeclTypeSpec *type = arg->GetType();
    if (type &&
        type->category() == Fortran::semantics::DeclTypeSpec::Character) {
      // Instantiate character as if it was a normal dummy argument so that the
      // statement function dummy character length is applied and dealt with
      // correctly.
      symMap.addSymbol(*arg, variableIface.getBase());
      Fortran::lower::mapSymbolAttributes(converter, *arg, symMap, stmtCtx);
    } else {
      // No need to create an extra hlfir.declare otherwise for
      // numerical and logical scalar dummies.
      symMap.addVariableDefinition(*arg, variableIface);
    }
  }

  // Explicitly map statement function host associated symbols to their
  // parent scope lowered symbol box.
  for (const Fortran::semantics::SymbolRef &sym :
       Fortran::evaluate::CollectSymbols(*details.stmtFunction()))
    if (const auto *details =
            sym->detailsIf<Fortran::semantics::HostAssocDetails>())
      converter.copySymbolBinding(details->symbol(), sym);

  hlfir::Entity result = Fortran::lower::convertExprToHLFIR(
      loc, converter, details.stmtFunction().value(), symMap, stmtCtx);
  symMap.popScope();
  // The result must not be a variable.
  result = hlfir::loadTrivialScalar(loc, builder, result);
  if (result.isVariable())
    result = hlfir::Entity{builder.create<hlfir::AsExprOp>(loc, result)};
  for (auto associate : exprAssociations)
    builder.create<hlfir::EndAssociateOp>(loc, associate);
  return hlfir::EntityWithAttributes{result};
}

namespace {
// Structure to hold the information about the call and the lowering context.
// This structure is intended to help threading the information
// through the various lowering calls without having to pass every
// required structure one by one.
struct CallContext {
  CallContext(const Fortran::evaluate::ProcedureRef &procRef,
              std::optional<mlir::Type> resultType, mlir::Location loc,
              Fortran::lower::AbstractConverter &converter,
              Fortran::lower::SymMap &symMap,
              Fortran::lower::StatementContext &stmtCtx)
      : procRef{procRef}, converter{converter}, symMap{symMap},
        stmtCtx{stmtCtx}, resultType{resultType}, loc{loc} {}

  fir::FirOpBuilder &getBuilder() { return converter.getFirOpBuilder(); }

  std::string getProcedureName() const {
    if (const Fortran::semantics::Symbol *sym = procRef.proc().GetSymbol())
      return sym->GetUltimate().name().ToString();
    return procRef.proc().GetName();
  }

  /// Is this a call to an elemental procedure with at least one array argument?
  bool isElementalProcWithArrayArgs() const {
    if (procRef.IsElemental())
      for (const std::optional<Fortran::evaluate::ActualArgument> &arg :
           procRef.arguments())
        if (arg && arg->Rank() != 0)
          return true;
    return false;
  }

  /// Is this a statement function reference?
  bool isStatementFunctionCall() const {
    if (const Fortran::semantics::Symbol *symbol = procRef.proc().GetSymbol())
      if (const auto *details =
              symbol->detailsIf<Fortran::semantics::SubprogramDetails>())
        return details->stmtFunction().has_value();
    return false;
  }

  /// Is this a call to a BIND(C) procedure?
  bool isBindcCall() const {
    if (const Fortran::semantics::Symbol *symbol = procRef.proc().GetSymbol())
      return Fortran::semantics::IsBindCProcedure(*symbol);
    return false;
  }

  const Fortran::evaluate::ProcedureRef &procRef;
  Fortran::lower::AbstractConverter &converter;
  Fortran::lower::SymMap &symMap;
  Fortran::lower::StatementContext &stmtCtx;
  std::optional<mlir::Type> resultType;
  mlir::Location loc;
};

using ExvAndCleanup =
    std::pair<fir::ExtendedValue, std::optional<hlfir::CleanupFunction>>;
} // namespace

// Helper to transform a fir::ExtendedValue to an hlfir::EntityWithAttributes.
static hlfir::EntityWithAttributes
extendedValueToHlfirEntity(mlir::Location loc, fir::FirOpBuilder &builder,
                           const fir::ExtendedValue &exv,
                           llvm::StringRef name) {
  mlir::Value firBase = fir::getBase(exv);
  mlir::Type firBaseTy = firBase.getType();
  if (fir::isa_trivial(firBaseTy))
    return hlfir::EntityWithAttributes{firBase};
  if (auto charTy = firBase.getType().dyn_cast<fir::CharacterType>()) {
    // CHAR() intrinsic and BIND(C) procedures returning CHARACTER(1)
    // are lowered to a fir.char<kind,1> that is not in memory.
    // This tends to cause a lot of bugs because the rest of the
    // infrastructure is mostly tested with characters that are
    // in memory.
    // To avoid having to deal with this special case here and there,
    // place it in memory here. If this turns out to be suboptimal,
    // this could be fixed, but for now llvm opt -O1 is able to get
    // rid of the memory indirection in a = char(b), so there is
    // little incentive to increase the compiler complexity.
    hlfir::Entity storage{builder.createTemporary(loc, charTy)};
    builder.create<fir::StoreOp>(loc, firBase, storage);
    auto asExpr = builder.create<hlfir::AsExprOp>(
        loc, storage, /*mustFree=*/builder.createBool(loc, false));
    return hlfir::EntityWithAttributes{asExpr.getResult()};
  }
  return hlfir::genDeclare(loc, builder, exv, name,
                           fir::FortranVariableFlagsAttr{});
}
namespace {
/// Structure to hold the clean-up related to a dummy argument preparation
/// that may have to be done after a call (copy-out or temporary deallocation).
struct CallCleanUp {
  struct CopyIn {
    void genCleanUp(mlir::Location loc, fir::FirOpBuilder &builder) {
      builder.create<hlfir::CopyOutOp>(loc, copiedIn, wasCopied, copyBackVar);
    }
    mlir::Value copiedIn;
    mlir::Value wasCopied;
    // copyBackVar may be null if copy back is not needed.
    mlir::Value copyBackVar;
  };
  struct ExprAssociate {
    void genCleanUp(mlir::Location loc, fir::FirOpBuilder &builder) {
      builder.create<hlfir::EndAssociateOp>(loc, tempVar, mustFree);
    }
    mlir::Value tempVar;
    mlir::Value mustFree;
  };
  void genCleanUp(mlir::Location loc, fir::FirOpBuilder &builder) {
    std::visit([&](auto &c) { c.genCleanUp(loc, builder); }, cleanUp);
  }
  std::variant<CopyIn, ExprAssociate> cleanUp;
};

/// Structure representing a prepared dummy argument.
/// It holds the value to be passed in the call and any related
/// clean-ups to be done after the call.
struct PreparedDummyArgument {
  void pushCopyInCleanUp(mlir::Value copiedIn, mlir::Value wasCopied,
                         mlir::Value copyBackVar) {
    cleanups.emplace_back(
        CallCleanUp{CallCleanUp::CopyIn{copiedIn, wasCopied, copyBackVar}});
  }
  void pushExprAssociateCleanUp(mlir::Value tempVar, mlir::Value wasCopied) {
    cleanups.emplace_back(
        CallCleanUp{CallCleanUp::ExprAssociate{tempVar, wasCopied}});
  }
  void pushExprAssociateCleanUp(hlfir::AssociateOp associate) {
    mlir::Value hlfirBase = associate.getBase();
    mlir::Value firBase = associate.getFirBase();
    cleanups.emplace_back(CallCleanUp{CallCleanUp::ExprAssociate{
        hlfir::mayHaveAllocatableComponent(hlfirBase.getType()) ? hlfirBase
                                                                : firBase,
        associate.getMustFreeStrorageFlag()}});
  }

  mlir::Value dummy;
  // NOTE: the clean-ups are executed in reverse order.
  llvm::SmallVector<CallCleanUp, 2> cleanups;
};

/// Structure to help conditionally preparing a dummy argument based
/// on the actual argument presence.
/// It helps "wrapping" the dummy and the clean-up information in
/// an if (present) {...}:
///
///  %conditionallyPrepared = fir.if (%present) {
///    fir.result %preparedDummy
///  } else {
///    fir.result %absent
///  }
///
struct ConditionallyPreparedDummy {
  /// Create ConditionallyPreparedDummy from a preparedDummy that must
  /// be wrapped in a fir.if.
  ConditionallyPreparedDummy(PreparedDummyArgument &preparedDummy) {
    thenResultValues.push_back(preparedDummy.dummy);
    for (const CallCleanUp &c : preparedDummy.cleanups) {
      if (const auto *copyInCleanUp =
              std::get_if<CallCleanUp::CopyIn>(&c.cleanUp)) {
        thenResultValues.push_back(copyInCleanUp->copiedIn);
        thenResultValues.push_back(copyInCleanUp->wasCopied);
        if (copyInCleanUp->copyBackVar)
          thenResultValues.push_back(copyInCleanUp->copyBackVar);
      } else {
        const auto &exprAssociate =
            std::get<CallCleanUp::ExprAssociate>(c.cleanUp);
        thenResultValues.push_back(exprAssociate.tempVar);
        thenResultValues.push_back(exprAssociate.mustFree);
      }
    }
  }

  /// Get the result types of the wrapping fir.if that must be created.
  llvm::SmallVector<mlir::Type> getIfResulTypes() const {
    llvm::SmallVector<mlir::Type> types;
    for (mlir::Value res : thenResultValues)
      types.push_back(res.getType());
    return types;
  }

  /// Generate the "fir.result %preparedDummy" in the then branch of the
  /// wrapping fir.if.
  void genThenResult(mlir::Location loc, fir::FirOpBuilder &builder) const {
    builder.create<fir::ResultOp>(loc, thenResultValues);
  }

  /// Generate the "fir.result %absent" in the else branch of the
  /// wrapping fir.if.
  void genElseResult(mlir::Location loc, fir::FirOpBuilder &builder) const {
    llvm::SmallVector<mlir::Value> elseResultValues;
    mlir::Type i1Type = builder.getI1Type();
    for (mlir::Value res : thenResultValues) {
      mlir::Type type = res.getType();
      if (type == i1Type)
        elseResultValues.push_back(builder.createBool(loc, false));
      else
        elseResultValues.push_back(builder.genAbsentOp(loc, type));
    }
    builder.create<fir::ResultOp>(loc, elseResultValues);
  }

  /// Once the fir.if has been created, get the resulting %conditionallyPrepared
  /// dummy argument.
  PreparedDummyArgument
  getPreparedDummy(fir::IfOp ifOp,
                   const PreparedDummyArgument &unconditionalDummy) {
    PreparedDummyArgument preparedDummy;
    preparedDummy.dummy = ifOp.getResults()[0];
    for (const CallCleanUp &c : unconditionalDummy.cleanups) {
      if (const auto *copyInCleanUp =
              std::get_if<CallCleanUp::CopyIn>(&c.cleanUp)) {
        mlir::Value copyBackVar;
        if (copyInCleanUp->copyBackVar)
          copyBackVar = ifOp.getResults().back();
        preparedDummy.pushCopyInCleanUp(ifOp.getResults()[1],
                                        ifOp.getResults()[2], copyBackVar);
      } else {
        preparedDummy.pushExprAssociateCleanUp(ifOp.getResults()[1],
                                               ifOp.getResults()[2]);
      }
    }
    return preparedDummy;
  }

  llvm::SmallVector<mlir::Value> thenResultValues;
};
} // namespace

/// Fix-up the fact that it is supported to pass a character procedure
/// designator to a non character procedure dummy procedure and vice-versa, even
/// in case of explicit interface. Uglier cases where an object is passed as
/// procedure designator or vice versa are handled only for implicit interfaces
/// (refused by semantics with explicit interface), and handled with a funcOp
/// cast like other implicit interface mismatches.
static hlfir::Entity fixProcedureDummyMismatch(mlir::Location loc,
                                               fir::FirOpBuilder &builder,
                                               hlfir::Entity actual,
                                               mlir::Type dummyType) {
  if (actual.getType().isa<fir::BoxProcType>() &&
      fir::isCharacterProcedureTuple(dummyType)) {
    mlir::Value length =
        builder.create<fir::UndefOp>(loc, builder.getCharacterLengthType());
    mlir::Value tuple = fir::factory::createCharacterProcedureTuple(
        builder, loc, dummyType, actual, length);
    return hlfir::Entity{tuple};
  }
  assert(fir::isCharacterProcedureTuple(actual.getType()) &&
         dummyType.isa<fir::BoxProcType>() &&
         "unsupported dummy procedure mismatch with the actual argument");
  mlir::Value boxProc = fir::factory::extractCharacterProcedureTuple(
                            builder, loc, actual, /*openBoxProc=*/false)
                            .first;
  return hlfir::Entity{boxProc};
}

mlir::Value static getZeroLowerBounds(mlir::Location loc,
                                      fir::FirOpBuilder &builder,
                                      hlfir::Entity entity) {
  // Assumed rank should not fall here, but better safe than sorry until
  // implemented.
  if (entity.isAssumedRank())
    TODO(loc, "setting lower bounds of assumed rank to zero before passing it "
              "to BIND(C) procedure");
  if (entity.getRank() < 1)
    return {};
  mlir::Value zero =
      builder.createIntegerConstant(loc, builder.getIndexType(), 0);
  llvm::SmallVector<mlir::Value> lowerBounds(entity.getRank(), zero);
  return builder.genShift(loc, lowerBounds);
}

static bool
isSimplyContiguous(const Fortran::evaluate::ActualArgument &arg,
                   Fortran::evaluate::FoldingContext &foldingContext) {
  if (const auto *expr = arg.UnwrapExpr())
    return Fortran::evaluate::IsSimplyContiguous(*expr, foldingContext);
  const Fortran::semantics::Symbol *sym = arg.GetAssumedTypeDummy();
  assert(sym &&
         "expect ActualArguments to be expression or assumed-type symbols");
  return sym->Rank() == 0 ||
         Fortran::evaluate::IsSimplyContiguous(*sym, foldingContext);
}

/// When dummy is not ALLOCATABLE, POINTER and is not passed in register,
/// prepare the actual argument according to the interface. Do as needed:
/// - address element if this is an array argument in an elemental call.
/// - set dynamic type to the dummy type if the dummy is not polymorphic.
/// - copy-in into contiguous variable if the dummy must be contiguous
/// - copy into a temporary if the dummy has the VALUE attribute.
/// - package the prepared dummy as required (fir.box, fir.class,
///   fir.box_char...).
/// This function should only be called with an actual that is present.
/// The optional aspects must be handled by this function user.
static PreparedDummyArgument preparePresentUserCallActualArgument(
    mlir::Location loc, fir::FirOpBuilder &builder,
    const Fortran::lower::PreparedActualArgument &preparedActual,
    mlir::Type dummyType,
    const Fortran::lower::CallerInterface::PassedEntity &arg,
    CallContext &callContext) {

  Fortran::evaluate::FoldingContext &foldingContext =
      callContext.converter.getFoldingContext();

  // Step 1: get the actual argument, which includes addressing the
  // element if this is an array in an elemental call.
  hlfir::Entity actual = preparedActual.getActual(loc, builder);

  // Handle procedure arguments (procedure pointers should go through
  // prepareProcedurePointerActualArgument).
  if (hlfir::isFortranProcedureValue(dummyType)) {
    // Procedure pointer or function returns procedure pointer actual to
    // procedure dummy.
    if (actual.isProcedurePointer()) {
      actual = hlfir::derefPointersAndAllocatables(loc, builder, actual);
      return PreparedDummyArgument{actual, /*cleanups=*/{}};
    }
    // Procedure actual to procedure dummy.
    assert(actual.isProcedure());
    // Do nothing if this is a procedure argument. It is already a
    // fir.boxproc/fir.tuple<fir.boxproc, len> as it should.
    if (!actual.getType().isa<fir::BoxProcType>() &&
        actual.getType() != dummyType)
      // The actual argument may be a procedure that returns character (a
      // fir.tuple<fir.boxproc, len>) while the dummy is not. Extract the tuple
      // in that case.
      actual = fixProcedureDummyMismatch(loc, builder, actual, dummyType);
    return PreparedDummyArgument{actual, /*cleanups=*/{}};
  }

  const bool ignoreTKRtype = arg.testTKR(Fortran::common::IgnoreTKR::Type);
  const bool passingPolymorphicToNonPolymorphic =
      actual.isPolymorphic() && !fir::isPolymorphicType(dummyType) &&
      !ignoreTKRtype;

  // When passing a CLASS(T) to TYPE(T), only the "T" part must be
  // passed. Unless the entity is a scalar passed by raw address, a
  // new descriptor must be made using the dummy argument type as
  // dynamic type. This must be done before any copy/copy-in because the
  // dynamic type matters to determine the contiguity.
  const bool mustSetDynamicTypeToDummyType =
      passingPolymorphicToNonPolymorphic &&
      (actual.isArray() || dummyType.isa<fir::BaseBoxType>());

  // The simple contiguity of the actual is "lost" when passing a polymorphic
  // to a non polymorphic entity because the dummy dynamic type matters for
  // the contiguity.
  const bool mustDoCopyInOut =
      actual.isArray() && arg.mustBeMadeContiguous() &&
      (passingPolymorphicToNonPolymorphic ||
       !isSimplyContiguous(*arg.entity, foldingContext));

  const bool actualIsAssumedRank = actual.isAssumedRank();
  // Create dummy type with actual argument rank when the dummy is an assumed
  // rank. That way, all the operation to create dummy descriptors are ranked if
  // the actual argument is ranked, which allows simple code generation.
  // Also do the same when the dummy is a sequence associated descriptor
  // because the actual shape/rank may mismatch with the dummy, and the dummy
  // may be an assumed-size array, so any descriptor manipulation should use the
  // actual argument shape information. A descriptor with the dummy shape
  // information will be created later when all actual arguments are ready.
  mlir::Type dummyTypeWithActualRank = dummyType;
  if (auto baseBoxDummy = mlir::dyn_cast<fir::BaseBoxType>(dummyType))
    if (baseBoxDummy.isAssumedRank() ||
        arg.testTKR(Fortran::common::IgnoreTKR::Rank) ||
        arg.isSequenceAssociatedDescriptor())
      dummyTypeWithActualRank =
          baseBoxDummy.getBoxTypeWithNewShape(actual.getType());
  // Preserve the actual type in the argument preparation in case IgnoreTKR(t)
  // is set (descriptors must be created with the actual type in this case, and
  // copy-in/copy-out should be driven by the contiguity with regard to the
  // actual type).
  if (ignoreTKRtype)
    dummyTypeWithActualRank = fir::changeElementType(
        dummyTypeWithActualRank, actual.getFortranElementType(),
        actual.isPolymorphic());

  // Step 2: prepare the storage for the dummy arguments, ensuring that it
  // matches the dummy requirements (e.g., must be contiguous or must be
  // a temporary).
  PreparedDummyArgument preparedDummy;
  hlfir::Entity entity =
      hlfir::derefPointersAndAllocatables(loc, builder, actual);
  if (entity.isVariable()) {
    if (mustSetDynamicTypeToDummyType) {
      // Note: this is important to do this before any copy-in or copy so
      // that the dummy is contiguous according to the dummy type.
      if (actualIsAssumedRank)
        TODO(loc, "passing polymorphic assumed-rank to non polymorphic dummy "
                  "argument");
      mlir::Type boxType = fir::BoxType::get(
          hlfir::getFortranElementOrSequenceType(dummyTypeWithActualRank));
      entity = hlfir::Entity{builder.create<fir::ReboxOp>(
          loc, boxType, entity, /*shape=*/mlir::Value{},
          /*slice=*/mlir::Value{})};
    }
    if (arg.hasValueAttribute() ||
        // Constant expressions might be lowered as variables with
        // 'parameter' attribute. Even though the constant expressions
        // are not definable and explicit assignments to them are not
        // possible, we have to create a temporary copies when we pass
        // them down the call stack.
        entity.isParameter()) {
      // Make a copy in a temporary.
      auto copy = builder.create<hlfir::AsExprOp>(loc, entity);
      mlir::Type storageType = entity.getType();
      mlir::NamedAttribute byRefAttr = fir::getAdaptToByRefAttr(builder);
      hlfir::AssociateOp associate = hlfir::genAssociateExpr(
          loc, builder, hlfir::Entity{copy}, storageType, "", byRefAttr);
      entity = hlfir::Entity{associate.getBase()};
      // Register the temporary destruction after the call.
      preparedDummy.pushExprAssociateCleanUp(associate);
    } else if (mustDoCopyInOut) {
      // Copy-in non contiguous variables.
      assert(entity.getType().isa<fir::BaseBoxType>() &&
             "expect non simply contiguous variables to be boxes");
      if (actualIsAssumedRank)
        TODO(loc, "copy-in and copy-out of assumed-rank arguments");
      // TODO: for non-finalizable monomorphic derived type actual
      // arguments associated with INTENT(OUT) dummy arguments
      // we may avoid doing the copy and only allocate the temporary.
      // The codegen would do a "mold" allocation instead of "sourced"
      // allocation for the temp in this case. We can communicate
      // this to the codegen via some CopyInOp flag.
      // This is a performance concern.
      auto copyIn = builder.create<hlfir::CopyInOp>(
          loc, entity, /*var_is_present=*/mlir::Value{});
      entity = hlfir::Entity{copyIn.getCopiedIn()};
      // Register the copy-out after the call.
      preparedDummy.pushCopyInCleanUp(
          copyIn.getCopiedIn(), copyIn.getWasCopied(),
          arg.mayBeModifiedByCall() ? copyIn.getVar() : mlir::Value{});
    }
  } else {
    const Fortran::lower::SomeExpr *expr = arg.entity->UnwrapExpr();
    assert(expr && "expression actual argument cannot be an assumed type");
    // The actual is an expression value, place it into a temporary
    // and register the temporary destruction after the call.
    mlir::Type storageType = callContext.converter.genType(*expr);
    mlir::NamedAttribute byRefAttr = fir::getAdaptToByRefAttr(builder);
    hlfir::AssociateOp associate = hlfir::genAssociateExpr(
        loc, builder, entity, storageType, "", byRefAttr);
    entity = hlfir::Entity{associate.getBase()};
    preparedDummy.pushExprAssociateCleanUp(associate);
    if (mustSetDynamicTypeToDummyType) {
      // Rebox the actual argument to the dummy argument's type, and make
      // sure that we pass a contiguous entity (i.e. make copy-in,
      // if needed).
      //
      // TODO: this can probably be optimized by associating the expression
      // with properly typed temporary, but this needs either a new operation
      // or making the hlfir.associate more complex.
      assert(!actualIsAssumedRank && "only variables are assumed-rank");
      mlir::Type boxType = fir::BoxType::get(
          hlfir::getFortranElementOrSequenceType(dummyTypeWithActualRank));
      entity = hlfir::Entity{builder.create<fir::ReboxOp>(
          loc, boxType, entity, /*shape=*/mlir::Value{},
          /*slice=*/mlir::Value{})};
      auto copyIn = builder.create<hlfir::CopyInOp>(
          loc, entity, /*var_is_present=*/mlir::Value{});
      entity = hlfir::Entity{copyIn.getCopiedIn()};
      // Note that the copy-out is not required, but the copy-in
      // temporary must be deallocated if created.
      preparedDummy.pushCopyInCleanUp(copyIn.getCopiedIn(),
                                      copyIn.getWasCopied(),
                                      /*copyBackVar=*/mlir::Value{});
    }
  }

  // Step 3: now that the dummy argument storage has been prepared, package
  // it according to the interface.
  mlir::Value addr;
  if (dummyTypeWithActualRank.isa<fir::BoxCharType>()) {
    addr = hlfir::genVariableBoxChar(loc, builder, entity);
  } else if (dummyTypeWithActualRank.isa<fir::BaseBoxType>()) {
    entity = hlfir::genVariableBox(loc, builder, entity);
    // Ensures the box has the right attributes and that it holds an
    // addendum if needed.
    fir::BaseBoxType actualBoxType = entity.getType().cast<fir::BaseBoxType>();
    mlir::Type boxEleType = actualBoxType.getEleTy();
    // For now, assume it is not OK to pass the allocatable/pointer
    // descriptor to a non pointer/allocatable dummy. That is a strict
    // interpretation of 18.3.6 point 4 that stipulates the descriptor
    // has the dummy attributes in BIND(C) contexts.
    const bool actualBoxHasAllocatableOrPointerFlag =
        fir::isa_ref_type(boxEleType);
    // Fortran 2018 18.5.3, pp3: BIND(C) non pointer allocatable descriptors
    // must have zero lower bounds.
    bool needsZeroLowerBounds = callContext.isBindcCall() && entity.isArray();
    // On the callee side, the current code generated for unlimited
    // polymorphic might unconditionally read the addendum. Intrinsic type
    // descriptors may not have an addendum, the rebox below will create a
    // descriptor with an addendum in such case.
    const bool actualBoxHasAddendum = fir::boxHasAddendum(actualBoxType);
    const bool needToAddAddendum =
        fir::isUnlimitedPolymorphicType(dummyTypeWithActualRank) &&
        !actualBoxHasAddendum;
    if (needToAddAddendum || actualBoxHasAllocatableOrPointerFlag ||
        needsZeroLowerBounds) {
      if (actualIsAssumedRank) {
        if (needToAddAddendum)
          TODO(loc, "passing intrinsic assumed-rank to unlimited polymorphic "
                    "assumed-rank");
        else
          TODO(loc, "passing pointer or allocatable assumed-rank to non "
                    "pointer non allocatable assumed-rank");
      }
      mlir::Value shift{};
      if (needsZeroLowerBounds)
        shift = getZeroLowerBounds(loc, builder, entity);
      entity = hlfir::Entity{builder.create<fir::ReboxOp>(
          loc, dummyTypeWithActualRank, entity, /*shape=*/shift,
          /*slice=*/mlir::Value{})};
    }
    addr = entity;
  } else {
    addr = hlfir::genVariableRawAddress(loc, builder, entity);
  }

  // For ranked actual passed to assumed-rank dummy, the cast to assumed-rank
  // box is inserted when building the fir.call op. Inserting it here would
  // cause the fir.if results to be assumed-rank in case of OPTIONAL dummy,
  // causing extra runtime costs due to the unknown runtime size of assumed-rank
  // descriptors.
  preparedDummy.dummy =
      builder.createConvert(loc, dummyTypeWithActualRank, addr);
  return preparedDummy;
}

/// When dummy is not ALLOCATABLE, POINTER and is not passed in register,
/// prepare the actual argument according to the interface, taking care
/// of any optional aspect.
static PreparedDummyArgument prepareUserCallActualArgument(
    mlir::Location loc, fir::FirOpBuilder &builder,
    const Fortran::lower::PreparedActualArgument &preparedActual,
    mlir::Type dummyType,
    const Fortran::lower::CallerInterface::PassedEntity &arg,
    CallContext &callContext) {
  if (!preparedActual.handleDynamicOptional())
    return preparePresentUserCallActualArgument(loc, builder, preparedActual,
                                                dummyType, arg, callContext);

  // Conditional dummy argument preparation. The actual may be absent
  // at runtime, causing any addressing, copy, and packaging to have
  // undefined behavior.
  // To simplify the handling of this case, the "normal" dummy preparation
  // helper is used, except its generated code is wrapped inside a
  // fir.if(present).
  mlir::Value isPresent = preparedActual.getIsPresent();
  mlir::OpBuilder::InsertPoint insertPt = builder.saveInsertionPoint();

  // Code generated in a preparation block that will become the
  // "then" block in "if (present) then {} else {}". The reason
  // for this unusual if/then/else generation is that the number
  // and types of the if results will depend on how the argument
  // is prepared, and forecasting that here would be brittle.
  auto badIfOp = builder.create<fir::IfOp>(loc, dummyType, isPresent,
                                           /*withElseRegion=*/false);
  mlir::Block *preparationBlock = &badIfOp.getThenRegion().front();
  builder.setInsertionPointToStart(preparationBlock);
  PreparedDummyArgument unconditionalDummy =
      preparePresentUserCallActualArgument(loc, builder, preparedActual,
                                           dummyType, arg, callContext);
  builder.restoreInsertionPoint(insertPt);

  // TODO: when forwarding an optional to an optional of the same kind
  // (i.e, unconditionalDummy.dummy was not created in preparationBlock),
  // the if/then/else generation could be skipped to improve the generated
  // code.

  // Now that the result types of the ifOp can be deduced, generate
  // the "real" ifOp (operation result types cannot be changed, so
  // badIfOp cannot be modified and used here).
  llvm::SmallVector<mlir::Type> ifOpResultTypes;
  ConditionallyPreparedDummy conditionalDummy(unconditionalDummy);
  auto ifOp = builder.create<fir::IfOp>(loc, conditionalDummy.getIfResulTypes(),
                                        isPresent,
                                        /*withElseRegion=*/true);
  // Move "preparationBlock" into the "then" of the new
  // fir.if operation and create fir.result propagating
  // unconditionalDummy.
  preparationBlock->moveBefore(&ifOp.getThenRegion().back());
  ifOp.getThenRegion().back().erase();
  builder.setInsertionPointToEnd(&ifOp.getThenRegion().front());
  conditionalDummy.genThenResult(loc, builder);

  // Generate "else" branch with returning absent values.
  builder.setInsertionPointToStart(&ifOp.getElseRegion().front());
  conditionalDummy.genElseResult(loc, builder);

  // Build dummy from IfOpResults.
  builder.setInsertionPointAfter(ifOp);
  PreparedDummyArgument result =
      conditionalDummy.getPreparedDummy(ifOp, unconditionalDummy);
  badIfOp->erase();
  return result;
}

/// Prepare actual argument for a procedure pointer dummy.
static PreparedDummyArgument prepareProcedurePointerActualArgument(
    mlir::Location loc, fir::FirOpBuilder &builder,
    const Fortran::lower::PreparedActualArgument &preparedActual,
    mlir::Type dummyType,
    const Fortran::lower::CallerInterface::PassedEntity &arg,
    CallContext &callContext) {

  // NULL() actual to procedure pointer dummy
  if (Fortran::evaluate::UnwrapExpr<Fortran::evaluate::NullPointer>(
          *arg.entity) &&
      fir::isBoxProcAddressType(dummyType)) {
    auto boxTy{Fortran::lower::getUntypedBoxProcType(builder.getContext())};
    auto tempBoxProc{builder.createTemporary(loc, boxTy)};
    hlfir::Entity nullBoxProc(
        fir::factory::createNullBoxProc(builder, loc, boxTy));
    builder.create<fir::StoreOp>(loc, nullBoxProc, tempBoxProc);
    return PreparedDummyArgument{tempBoxProc, /*cleanups=*/{}};
  }
  hlfir::Entity actual = preparedActual.getActual(loc, builder);
  if (actual.isProcedurePointer())
    return PreparedDummyArgument{actual, /*cleanups=*/{}};
  assert(actual.isProcedure());
  // Procedure actual to procedure pointer dummy.
  auto tempBoxProc{builder.createTemporary(loc, actual.getType())};
  builder.create<fir::StoreOp>(loc, actual, tempBoxProc);
  return PreparedDummyArgument{tempBoxProc, /*cleanups=*/{}};
}

/// Lower calls to user procedures with actual arguments that have been
/// pre-lowered but not yet prepared according to the interface.
/// This can be called for elemental procedures, but only with scalar
/// arguments: if there are array arguments, it must be provided with
/// the array argument elements value and will return the corresponding
/// scalar result value.
static std::optional<hlfir::EntityWithAttributes>
genUserCall(Fortran::lower::PreparedActualArguments &loweredActuals,
            Fortran::lower::CallerInterface &caller,
            mlir::FunctionType callSiteType, CallContext &callContext) {
  using PassBy = Fortran::lower::CallerInterface::PassEntityBy;
  mlir::Location loc = callContext.loc;
  bool mustRemapActualToDummyDescriptors = false;
  fir::FirOpBuilder &builder = callContext.getBuilder();
  llvm::SmallVector<CallCleanUp> callCleanUps;
  for (auto [preparedActual, arg] :
       llvm::zip(loweredActuals, caller.getPassedArguments())) {
    mlir::Type argTy = callSiteType.getInput(arg.firArgument);
    if (!preparedActual) {
      // Optional dummy argument for which there is no actual argument.
      caller.placeInput(arg, builder.genAbsentOp(loc, argTy));
      continue;
    }

    switch (arg.passBy) {
    case PassBy::Value: {
      // True pass-by-value semantics.
      assert(!preparedActual->handleDynamicOptional() && "cannot be optional");
      hlfir::Entity actual = preparedActual->getActual(loc, builder);
      hlfir::Entity value = hlfir::loadTrivialScalar(loc, builder, actual);

      mlir::Type eleTy = value.getFortranElementType();
      if (fir::isa_builtin_cptr_type(eleTy)) {
        // Pass-by-value argument of type(C_PTR/C_FUNPTR).
        // Load the __address component and pass it by value.
        if (value.isValue()) {
          auto associate = hlfir::genAssociateExpr(loc, builder, value, eleTy,
                                                   "adapt.cptrbyval");
          value = hlfir::Entity{genRecordCPtrValueArg(
              builder, loc, associate.getFirBase(), eleTy)};
          builder.create<hlfir::EndAssociateOp>(loc, associate);
        } else {
          value =
              hlfir::Entity{genRecordCPtrValueArg(builder, loc, value, eleTy)};
        }
      } else if (fir::isa_derived(value.getFortranElementType())) {
        // BIND(C), VALUE derived type. The derived type value must really
        // be loaded here.
        auto [derived, cleanup] = hlfir::convertToValue(loc, builder, value);
        mlir::Value loadedValue = fir::getBase(derived);
        if (fir::isa_ref_type(loadedValue.getType()))
          loadedValue = builder.create<fir::LoadOp>(loc, loadedValue);
        caller.placeInput(arg, loadedValue);
        if (cleanup)
          (*cleanup)();
        break;
      }
      caller.placeInput(arg, builder.createConvert(loc, argTy, value));
    } break;
    case PassBy::BaseAddressValueAttribute:
    case PassBy::CharBoxValueAttribute:
    case PassBy::Box:
    case PassBy::BaseAddress:
    case PassBy::BoxChar: {
      PreparedDummyArgument preparedDummy = prepareUserCallActualArgument(
          loc, builder, *preparedActual, argTy, arg, callContext);
      callCleanUps.append(preparedDummy.cleanups.rbegin(),
                          preparedDummy.cleanups.rend());
      caller.placeInput(arg, preparedDummy.dummy);
      if (arg.passBy == PassBy::Box)
        mustRemapActualToDummyDescriptors |=
            arg.isSequenceAssociatedDescriptor();
    } break;
    case PassBy::BoxProcRef: {
      PreparedDummyArgument preparedDummy =
          prepareProcedurePointerActualArgument(loc, builder, *preparedActual,
                                                argTy, arg, callContext);
      callCleanUps.append(preparedDummy.cleanups.rbegin(),
                          preparedDummy.cleanups.rend());
      caller.placeInput(arg, preparedDummy.dummy);
    } break;
    case PassBy::AddressAndLength:
      // PassBy::AddressAndLength is only used for character results. Results
      // are not handled here.
      fir::emitFatalError(
          loc, "unexpected PassBy::AddressAndLength for actual arguments");
      break;
    case PassBy::CharProcTuple: {
      hlfir::Entity actual = preparedActual->getActual(loc, builder);
      if (actual.isProcedurePointer())
        actual = hlfir::derefPointersAndAllocatables(loc, builder, actual);
      if (!fir::isCharacterProcedureTuple(actual.getType()))
        actual = fixProcedureDummyMismatch(loc, builder, actual, argTy);
      caller.placeInput(arg, actual);
    } break;
    case PassBy::MutableBox: {
      const Fortran::lower::SomeExpr *expr = arg.entity->UnwrapExpr();
      // C709 and C710.
      assert(expr && "cannot pass TYPE(*) to POINTER or ALLOCATABLE");
      hlfir::Entity actual = preparedActual->getActual(loc, builder);
      if (Fortran::evaluate::UnwrapExpr<Fortran::evaluate::NullPointer>(
              *expr)) {
        // If expr is NULL(), the mutableBox created must be a deallocated
        // pointer with the dummy argument characteristics (see table 16.5
        // in Fortran 2018 standard).
        // No length parameters are set for the created box because any non
        // deferred type parameters of the dummy will be evaluated on the
        // callee side, and it is illegal to use NULL without a MOLD if any
        // dummy length parameters are assumed.
        mlir::Type boxTy = fir::dyn_cast_ptrEleTy(argTy);
        assert(boxTy && boxTy.isa<fir::BaseBoxType>() &&
               "must be a fir.box type");
        mlir::Value boxStorage =
            fir::factory::genNullBoxStorage(builder, loc, boxTy);
        caller.placeInput(arg, boxStorage);
        continue;
      }
      if (fir::isPointerType(argTy) &&
          !Fortran::evaluate::IsObjectPointer(*expr)) {
        // Passing a non POINTER actual argument to a POINTER dummy argument.
        // Create a pointer of the dummy argument type and assign the actual
        // argument to it.
        auto dataTy = llvm::cast<fir::BaseBoxType>(fir::unwrapRefType(argTy));
        fir::ExtendedValue actualExv = Fortran::lower::convertToAddress(
            loc, callContext.converter, actual, callContext.stmtCtx,
            hlfir::getFortranElementType(dataTy));
        // If the dummy is an assumed-rank pointer, allocate a pointer
        // descriptor with the actual argument rank (if it is not assumed-rank
        // itself).
        if (dataTy.isAssumedRank()) {
          dataTy =
              dataTy.getBoxTypeWithNewShape(fir::getBase(actualExv).getType());
          if (dataTy.isAssumedRank())
            TODO(loc, "associating assumed-rank target to pointer assumed-rank "
                      "argument");
        }
        mlir::Value irBox = builder.createTemporary(loc, dataTy);
        fir::MutableBoxValue ptrBox(irBox,
                                    /*nonDeferredParams=*/mlir::ValueRange{},
                                    /*mutableProperties=*/{});
        fir::factory::associateMutableBox(builder, loc, ptrBox, actualExv,
                                          /*lbounds=*/std::nullopt);
        caller.placeInput(arg, irBox);
        continue;
      }
      // Passing a POINTER to a POINTER, or an ALLOCATABLE to an ALLOCATABLE.
      assert(actual.isMutableBox() && "actual must be a mutable box");
      if (fir::isAllocatableType(argTy) && arg.isIntentOut() &&
          callContext.isBindcCall()) {
        // INTENT(OUT) allocatables are deallocated on the callee side,
        // but BIND(C) procedures may be implemented in C, so deallocation is
        // also done on the caller side (if the procedure is implemented in
        // Fortran, the deallocation attempt in the callee will be a no-op).
        auto [exv, cleanup] =
            hlfir::translateToExtendedValue(loc, builder, actual);
        const auto *mutableBox = exv.getBoxOf<fir::MutableBoxValue>();
        assert(mutableBox && !cleanup && "expect allocatable");
        Fortran::lower::genDeallocateIfAllocated(callContext.converter,
                                                 *mutableBox, loc);
      }
      caller.placeInput(arg, actual);
    } break;
    }
  }
  // Handle cases where caller must allocate the result or a fir.box for it.
  if (mustRemapActualToDummyDescriptors)
    remapActualToDummyDescriptors(loc, callContext.converter,
                                  callContext.symMap, loweredActuals, caller,
                                  callContext.isBindcCall());

  // Prepare lowered arguments according to the interface
  // and map the lowered values to the dummy
  // arguments.
  auto [result, resultIsFinalized] = Fortran::lower::genCallOpAndResult(
      loc, callContext.converter, callContext.symMap, callContext.stmtCtx,
      caller, callSiteType, callContext.resultType,
      callContext.isElementalProcWithArrayArgs());
  // For procedure pointer function result, just return the call.
  if (callContext.resultType && callContext.resultType->isa<fir::BoxProcType>())
    return hlfir::EntityWithAttributes(fir::getBase(result));

  /// Clean-up associations and copy-in.
  for (auto cleanUp : callCleanUps)
    cleanUp.genCleanUp(loc, builder);

  if (!fir::getBase(result))
    return std::nullopt; // subroutine call.

  if (fir::isPointerType(fir::getBase(result).getType()))
    return extendedValueToHlfirEntity(loc, builder, result, tempResultName);

  if (!resultIsFinalized) {
    hlfir::Entity resultEntity =
        extendedValueToHlfirEntity(loc, builder, result, tempResultName);
    resultEntity = loadTrivialScalar(loc, builder, resultEntity);
    if (resultEntity.isVariable()) {
      // If the result has no finalization, it can be moved into an expression.
      // In such case, the expression should not be freed after its use since
      // the result is stack allocated or deallocation (for allocatable results)
      // was already inserted in genCallOpAndResult.
      auto asExpr = builder.create<hlfir::AsExprOp>(
          loc, resultEntity, /*mustFree=*/builder.createBool(loc, false));
      return hlfir::EntityWithAttributes{asExpr.getResult()};
    }
    return hlfir::EntityWithAttributes{resultEntity};
  }
  // If the result has finalization, it cannot be moved because use of its
  // value have been created in the statement context and may be emitted
  // after the hlfir.expr destroy, so the result is kept as a variable in
  // HLFIR. This may lead to copies when passing the result to an argument
  // with VALUE, and this do not convey the fact that the result will not
  // change, but is correct, and using hlfir.expr without the move would
  // trigger a copy that may be avoided.

  // Load allocatable results before emitting the hlfir.declare and drop its
  // lower bounds: this is not a variable From the Fortran point of view, so
  // the lower bounds are ones when inquired on the caller side.
  const auto *allocatable = result.getBoxOf<fir::MutableBoxValue>();
  fir::ExtendedValue loadedResult =
      allocatable
          ? fir::factory::genMutableBoxRead(builder, loc, *allocatable,
                                            /*mayBePolymorphic=*/true,
                                            /*preserveLowerBounds=*/false)
          : result;
  return extendedValueToHlfirEntity(loc, builder, loadedResult, tempResultName);
}

/// Create an optional dummy argument value from an entity that may be
/// absent. \p actualGetter callback returns hlfir::Entity denoting
/// the lowered actual argument. \p actualGetter can only return numerical
/// or logical scalar entity.
/// If the entity is considered absent according to 15.5.2.12 point 1., the
/// returned value is zero (or false), otherwise it is the value of the entity.
/// \p eleType specifies the entity's Fortran element type.
template <typename T>
static ExvAndCleanup genOptionalValue(fir::FirOpBuilder &builder,
                                      mlir::Location loc, mlir::Type eleType,
                                      T actualGetter, mlir::Value isPresent) {
  return {builder
              .genIfOp(loc, {eleType}, isPresent,
                       /*withElseRegion=*/true)
              .genThen([&]() {
                hlfir::Entity entity = actualGetter(loc, builder);
                assert(eleType == entity.getFortranElementType() &&
                       "result type mismatch in genOptionalValue");
                assert(entity.isScalar() && fir::isa_trivial(eleType) &&
                       "must be a numerical or logical scalar");
                mlir::Value val =
                    hlfir::loadTrivialScalar(loc, builder, entity);
                builder.create<fir::ResultOp>(loc, val);
              })
              .genElse([&]() {
                mlir::Value zero =
                    fir::factory::createZeroValue(builder, loc, eleType);
                builder.create<fir::ResultOp>(loc, zero);
              })
              .getResults()[0],
          std::nullopt};
}

/// Create an optional dummy argument address from \p entity that may be
/// absent. If \p entity is considered absent according to 15.5.2.12 point 1.,
/// the returned value is a null pointer, otherwise it is the address of \p
/// entity.
static ExvAndCleanup genOptionalAddr(fir::FirOpBuilder &builder,
                                     mlir::Location loc, hlfir::Entity entity,
                                     mlir::Value isPresent) {
  auto [exv, cleanup] = hlfir::translateToExtendedValue(loc, builder, entity);
  // If it is an exv pointer/allocatable, then it cannot be absent
  // because it is passed to a non-pointer/non-allocatable.
  if (const auto *box = exv.getBoxOf<fir::MutableBoxValue>())
    return {fir::factory::genMutableBoxRead(builder, loc, *box), cleanup};
  // If this is not a POINTER or ALLOCATABLE, then it is already an OPTIONAL
  // address and can be passed directly.
  return {exv, cleanup};
}

/// Create an optional dummy argument address from \p entity that may be
/// absent. If \p entity is considered absent according to 15.5.2.12 point 1.,
/// the returned value is an absent fir.box, otherwise it is a fir.box
/// describing \p entity.
static ExvAndCleanup genOptionalBox(fir::FirOpBuilder &builder,
                                    mlir::Location loc, hlfir::Entity entity,
                                    mlir::Value isPresent) {
  auto [exv, cleanup] = hlfir::translateToExtendedValue(loc, builder, entity);

  // Non allocatable/pointer optional box -> simply forward
  if (exv.getBoxOf<fir::BoxValue>())
    return {exv, cleanup};

  fir::ExtendedValue newExv = exv;
  // Optional allocatable/pointer -> Cannot be absent, but need to translate
  // unallocated/diassociated into absent fir.box.
  if (const auto *box = exv.getBoxOf<fir::MutableBoxValue>())
    newExv = fir::factory::genMutableBoxRead(builder, loc, *box);

  // createBox will not do create any invalid memory dereferences if exv is
  // absent. The created fir.box will not be usable, but the SelectOp below
  // ensures it won't be.
  mlir::Value box = builder.createBox(loc, newExv);
  mlir::Type boxType = box.getType();
  auto absent = builder.create<fir::AbsentOp>(loc, boxType);
  auto boxOrAbsent = builder.create<mlir::arith::SelectOp>(
      loc, boxType, isPresent, box, absent);
  return {fir::BoxValue(boxOrAbsent), cleanup};
}

/// Lower calls to intrinsic procedures with custom optional handling where the
/// actual arguments have been pre-lowered
static std::optional<hlfir::EntityWithAttributes> genCustomIntrinsicRefCore(
    Fortran::lower::PreparedActualArguments &loweredActuals,
    const Fortran::evaluate::SpecificIntrinsic *intrinsic,
    CallContext &callContext) {
  auto &builder = callContext.getBuilder();
  const auto &loc = callContext.loc;
  assert(intrinsic &&
         Fortran::lower::intrinsicRequiresCustomOptionalHandling(
             callContext.procRef, *intrinsic, callContext.converter));

  // helper to get a particular prepared argument
  auto getArgument = [&](std::size_t i, bool loadArg) -> fir::ExtendedValue {
    if (!loweredActuals[i])
      return fir::getAbsentIntrinsicArgument();
    hlfir::Entity actual = loweredActuals[i]->getActual(loc, builder);
    if (loadArg && fir::conformsWithPassByRef(actual.getType())) {
      return hlfir::loadTrivialScalar(loc, builder, actual);
    }
    return actual;
  };
  // helper to get the isPresent flag for a particular prepared argument
  auto isPresent = [&](std::size_t i) -> std::optional<mlir::Value> {
    if (!loweredActuals[i])
      return {builder.createBool(loc, false)};
    if (loweredActuals[i]->handleDynamicOptional())
      return {loweredActuals[i]->getIsPresent()};
    return std::nullopt;
  };

  assert(callContext.resultType &&
         "the elemental intrinsics with custom handling are all functions");
  // if callContext.resultType is an array then this was originally an elemental
  // call. What we are lowering here is inside the kernel of the hlfir.elemental
  // so we should return the scalar type. If the return type is already a scalar
  // then it should be unchanged here.
  mlir::Type resTy = hlfir::getFortranElementType(*callContext.resultType);
  fir::ExtendedValue result = Fortran::lower::lowerCustomIntrinsic(
      builder, loc, callContext.getProcedureName(), resTy, isPresent,
      getArgument, loweredActuals.size(), callContext.stmtCtx);

  return {hlfir::EntityWithAttributes{extendedValueToHlfirEntity(
      loc, builder, result, ".tmp.custom_intrinsic_result")}};
}

/// Lower calls to intrinsic procedures with actual arguments that have been
/// pre-lowered but have not yet been prepared according to the interface.
static std::optional<hlfir::EntityWithAttributes>
genIntrinsicRefCore(Fortran::lower::PreparedActualArguments &loweredActuals,
                    const Fortran::evaluate::SpecificIntrinsic *intrinsic,
                    const fir::IntrinsicArgumentLoweringRules *argLowering,
                    CallContext &callContext) {
  auto &converter = callContext.converter;
  if (intrinsic && Fortran::lower::intrinsicRequiresCustomOptionalHandling(
                       callContext.procRef, *intrinsic, converter))
    return genCustomIntrinsicRefCore(loweredActuals, intrinsic, callContext);
  llvm::SmallVector<fir::ExtendedValue> operands;
  llvm::SmallVector<hlfir::CleanupFunction> cleanupFns;
  auto addToCleanups = [&cleanupFns](std::optional<hlfir::CleanupFunction> fn) {
    if (fn)
      cleanupFns.emplace_back(std::move(*fn));
  };
  auto &stmtCtx = callContext.stmtCtx;
  fir::FirOpBuilder &builder = callContext.getBuilder();
  mlir::Location loc = callContext.loc;
  for (auto arg : llvm::enumerate(loweredActuals)) {
    if (!arg.value()) {
      operands.emplace_back(fir::getAbsentIntrinsicArgument());
      continue;
    }
    if (!argLowering) {
      // No argument lowering instruction, lower by value.
      assert(!arg.value()->handleDynamicOptional() &&
             "should use genOptionalValue");
      hlfir::Entity actual = arg.value()->getActual(loc, builder);
      operands.emplace_back(
          Fortran::lower::convertToValue(loc, converter, actual, stmtCtx));
      continue;
    }
    // Helper to get the type of the Fortran expression in case it is a
    // computed value that must be placed in memory (logicals are computed as
    // i1, but must be placed in memory as fir.logical).
    auto getActualFortranElementType = [&]() -> mlir::Type {
      if (const Fortran::lower::SomeExpr *expr =
              callContext.procRef.UnwrapArgExpr(arg.index())) {

        mlir::Type type = converter.genType(*expr);
        return hlfir::getFortranElementType(type);
      }
      // TYPE(*): is already in memory anyway. Can return none
      // here.
      return builder.getNoneType();
    };
    // Ad-hoc argument lowering handling.
    fir::ArgLoweringRule argRules =
        fir::lowerIntrinsicArgumentAs(*argLowering, arg.index());
    if (arg.value()->handleDynamicOptional()) {
      mlir::Value isPresent = arg.value()->getIsPresent();
      switch (argRules.lowerAs) {
      case fir::LowerIntrinsicArgAs::Value: {
        // In case of elemental call, getActual() may produce
        // a designator denoting the array element to be passed
        // to the subprogram. If the actual array is dynamically
        // optional the designator must be generated under
        // isPresent check, because the box bounds reads will be
        // generated in the codegen. These reads are illegal,
        // if the dynamically optional argument is absent.
        auto getActualCb = [&](mlir::Location loc,
                               fir::FirOpBuilder &builder) -> hlfir::Entity {
          return arg.value()->getActual(loc, builder);
        };
        auto [exv, cleanup] =
            genOptionalValue(builder, loc, getActualFortranElementType(),
                             getActualCb, isPresent);
        addToCleanups(std::move(cleanup));
        operands.emplace_back(exv);
        continue;
      }
      case fir::LowerIntrinsicArgAs::Addr: {
        hlfir::Entity actual = arg.value()->getActual(loc, builder);
        auto [exv, cleanup] = genOptionalAddr(builder, loc, actual, isPresent);
        addToCleanups(std::move(cleanup));
        operands.emplace_back(exv);
        continue;
      }
      case fir::LowerIntrinsicArgAs::Box: {
        hlfir::Entity actual = arg.value()->getActual(loc, builder);
        auto [exv, cleanup] = genOptionalBox(builder, loc, actual, isPresent);
        addToCleanups(std::move(cleanup));
        operands.emplace_back(exv);
        continue;
      }
      case fir::LowerIntrinsicArgAs::Inquired: {
        hlfir::Entity actual = arg.value()->getActual(loc, builder);
        auto [exv, cleanup] =
            hlfir::translateToExtendedValue(loc, builder, actual);
        addToCleanups(std::move(cleanup));
        operands.emplace_back(exv);
        continue;
      }
      }
      llvm_unreachable("bad switch");
    }

    hlfir::Entity actual = arg.value()->getActual(loc, builder);
    switch (argRules.lowerAs) {
    case fir::LowerIntrinsicArgAs::Value:
      operands.emplace_back(
          Fortran::lower::convertToValue(loc, converter, actual, stmtCtx));
      continue;
    case fir::LowerIntrinsicArgAs::Addr:
      operands.emplace_back(Fortran::lower::convertToAddress(
          loc, converter, actual, stmtCtx, getActualFortranElementType()));
      continue;
    case fir::LowerIntrinsicArgAs::Box:
      operands.emplace_back(Fortran::lower::convertToBox(
          loc, converter, actual, stmtCtx, getActualFortranElementType()));
      continue;
    case fir::LowerIntrinsicArgAs::Inquired:
      if (const Fortran::lower::SomeExpr *expr =
              callContext.procRef.UnwrapArgExpr(arg.index())) {
        if (Fortran::evaluate::UnwrapExpr<Fortran::evaluate::NullPointer>(
                *expr)) {
          // NULL() pointer without a MOLD must be passed as a deallocated
          // pointer (see table 16.5 in Fortran 2018 standard).
          // !fir.box<!fir.ptr<none>> should always be valid in this context.
          mlir::Type noneTy = mlir::NoneType::get(builder.getContext());
          mlir::Type nullPtrTy = fir::PointerType::get(noneTy);
          mlir::Type boxTy = fir::BoxType::get(nullPtrTy);
          mlir::Value boxStorage =
              fir::factory::genNullBoxStorage(builder, loc, boxTy);
          hlfir::EntityWithAttributes nullBoxEntity =
              extendedValueToHlfirEntity(loc, builder, boxStorage,
                                         ".tmp.null_box");
          operands.emplace_back(Fortran::lower::translateToExtendedValue(
              loc, builder, nullBoxEntity, stmtCtx));
          continue;
        }
      }
      // Place hlfir.expr in memory, and unbox fir.boxchar. Other entities
      // are translated to fir::ExtendedValue without transformation (notably,
      // pointers/allocatable are not dereferenced).
      // TODO: once lowering to FIR retires, UBOUND and LBOUND can be simplified
      // since the fir.box lowered here are now guaranteed to contain the local
      // lower bounds thanks to the hlfir.declare (the extra rebox can be
      // removed).
      operands.emplace_back(Fortran::lower::translateToExtendedValue(
          loc, builder, actual, stmtCtx));
      continue;
    }
    llvm_unreachable("bad switch");
  }
  // genIntrinsicCall needs the scalar type, even if this is a transformational
  // procedure returning an array.
  std::optional<mlir::Type> scalarResultType;
  if (callContext.resultType)
    scalarResultType = hlfir::getFortranElementType(*callContext.resultType);
  const std::string intrinsicName = callContext.getProcedureName();
  // Let the intrinsic library lower the intrinsic procedure call.
  auto [resultExv, mustBeFreed] = genIntrinsicCall(
      builder, loc, intrinsicName, scalarResultType, operands, &converter);
  for (const hlfir::CleanupFunction &fn : cleanupFns)
    fn();
  if (!fir::getBase(resultExv))
    return std::nullopt;
  hlfir::EntityWithAttributes resultEntity = extendedValueToHlfirEntity(
      loc, builder, resultExv, ".tmp.intrinsic_result");
  // Move result into memory into an hlfir.expr since they are immutable from
  // that point, and the result storage is some temp. "Null" is special: it
  // returns a null pointer variable that should not be transformed into a value
  // (what matters is the memory address).
  if (resultEntity.isVariable() && intrinsicName != "null") {
    hlfir::AsExprOp asExpr;
    // Character/Derived MERGE lowering returns one of its argument address
    // (this is the only intrinsic implemented in that way so far). The
    // ownership of this address cannot be taken here since it may not be a
    // temp.
    if (intrinsicName == "merge")
      asExpr = builder.create<hlfir::AsExprOp>(loc, resultEntity);
    else
      asExpr = builder.create<hlfir::AsExprOp>(
          loc, resultEntity, builder.createBool(loc, mustBeFreed));
    resultEntity = hlfir::EntityWithAttributes{asExpr.getResult()};
  }
  return resultEntity;
}

/// Lower calls to intrinsic procedures with actual arguments that have been
/// pre-lowered but have not yet been prepared according to the interface.
static std::optional<hlfir::EntityWithAttributes> genHLFIRIntrinsicRefCore(
    Fortran::lower::PreparedActualArguments &loweredActuals,
    const Fortran::evaluate::SpecificIntrinsic *intrinsic,
    const fir::IntrinsicArgumentLoweringRules *argLowering,
    CallContext &callContext) {
  if (!useHlfirIntrinsicOps)
    return genIntrinsicRefCore(loweredActuals, intrinsic, argLowering,
                               callContext);

  fir::FirOpBuilder &builder = callContext.getBuilder();
  mlir::Location loc = callContext.loc;
  const std::string intrinsicName = callContext.getProcedureName();

  // transformational intrinsic ops always have a result type
  if (callContext.resultType) {
    std::optional<hlfir::EntityWithAttributes> res =
        Fortran::lower::lowerHlfirIntrinsic(builder, loc, intrinsicName,
                                            loweredActuals, argLowering,
                                            *callContext.resultType);
    if (res)
      return res;
  }

  // fallback to calling the intrinsic via fir.call
  return genIntrinsicRefCore(loweredActuals, intrinsic, argLowering,
                             callContext);
}

namespace {
template <typename ElementalCallBuilderImpl>
class ElementalCallBuilder {
public:
  std::optional<hlfir::EntityWithAttributes>
  genElementalCall(Fortran::lower::PreparedActualArguments &loweredActuals,
                   bool isImpure, CallContext &callContext) {
    mlir::Location loc = callContext.loc;
    fir::FirOpBuilder &builder = callContext.getBuilder();
    unsigned numArgs = loweredActuals.size();
    // Step 1: dereference pointers/allocatables and compute elemental shape.
    mlir::Value shape;
    Fortran::lower::PreparedActualArgument *optionalWithShape;
    // 10.1.4 p5. Impure elemental procedures must be called in element order.
    bool mustBeOrdered = isImpure;
    for (unsigned i = 0; i < numArgs; ++i) {
      auto &preparedActual = loweredActuals[i];
      if (preparedActual) {
        // Elemental procedure dummy arguments cannot be pointer/allocatables
        // (C15100), so it is safe to dereference any pointer or allocatable
        // actual argument now instead of doing this inside the elemental
        // region.
        preparedActual->derefPointersAndAllocatables(loc, builder);
        // Better to load scalars outside of the loop when possible.
        if (!preparedActual->handleDynamicOptional() &&
            impl().canLoadActualArgumentBeforeLoop(i))
          preparedActual->loadTrivialScalar(loc, builder);
        // TODO: merge shape instead of using the first one.
        if (!shape && preparedActual->isArray()) {
          if (preparedActual->handleDynamicOptional())
            optionalWithShape = &*preparedActual;
          else
            shape = preparedActual->genShape(loc, builder);
        }
        // 15.8.3 p1. Elemental procedure with intent(out)/intent(inout)
        // arguments must be called in element order.
        if (impl().argMayBeModifiedByCall(i))
          mustBeOrdered = true;
      }
    }
    if (!shape && optionalWithShape) {
      // If all array operands appear in optional positions, then none of them
      // is allowed to be absent as per 15.5.2.12 point 3. (6). Just pick the
      // first operand.
      shape = optionalWithShape->genShape(loc, builder);
      // TODO: There is an opportunity to add a runtime check here that
      // this array is present as required. Also, the optionality of all actual
      // could be checked and reset given the Fortran requirement.
      optionalWithShape->resetOptionalAspect();
    }
    assert(shape &&
           "elemental array calls must have at least one array arguments");

    // Evaluate the actual argument array expressions before the elemental
    // call of an impure subprogram or a subprogram with intent(out) or
    // intent(inout) arguments. Note that the scalar arguments are handled
    // above.
    if (mustBeOrdered) {
      for (auto &preparedActual : loweredActuals) {
        if (preparedActual) {
          if (hlfir::AssociateOp associate =
                  preparedActual->associateIfArrayExpr(loc, builder)) {
            fir::FirOpBuilder *bldr = &builder;
            callContext.stmtCtx.attachCleanup(
                [=]() { bldr->create<hlfir::EndAssociateOp>(loc, associate); });
          }
        }
      }
    }

    // Push a new local scope so that any temps made inside the elemental
    // iterations are cleaned up inside the iterations.
    if (!callContext.resultType) {
      // Subroutine case. Generate call inside loop nest.
      hlfir::LoopNest loopNest =
          hlfir::genLoopNest(loc, builder, shape, !mustBeOrdered);
      mlir::ValueRange oneBasedIndices = loopNest.oneBasedIndices;
      auto insPt = builder.saveInsertionPoint();
      builder.setInsertionPointToStart(loopNest.innerLoop.getBody());
      callContext.stmtCtx.pushScope();
      for (auto &preparedActual : loweredActuals)
        if (preparedActual)
          preparedActual->setElementalIndices(oneBasedIndices);
      impl().genElementalKernel(loweredActuals, callContext);
      callContext.stmtCtx.finalizeAndPop();
      builder.restoreInsertionPoint(insPt);
      return std::nullopt;
    }
    // Function case: generate call inside hlfir.elemental
    mlir::Type elementType =
        hlfir::getFortranElementType(*callContext.resultType);
    // Get result length parameters.
    llvm::SmallVector<mlir::Value> typeParams;
    if (elementType.isa<fir::CharacterType>() ||
        fir::isRecordWithTypeParameters(elementType)) {
      auto charType = elementType.dyn_cast<fir::CharacterType>();
      if (charType && charType.hasConstantLen())
        typeParams.push_back(builder.createIntegerConstant(
            loc, builder.getIndexType(), charType.getLen()));
      else if (charType)
        typeParams.push_back(impl().computeDynamicCharacterResultLength(
            loweredActuals, callContext));
      else
        TODO(
            loc,
            "compute elemental PDT function result length parameters in HLFIR");
    }
    auto genKernel = [&](mlir::Location l, fir::FirOpBuilder &b,
                         mlir::ValueRange oneBasedIndices) -> hlfir::Entity {
      callContext.stmtCtx.pushScope();
      for (auto &preparedActual : loweredActuals)
        if (preparedActual)
          preparedActual->setElementalIndices(oneBasedIndices);
      auto res = *impl().genElementalKernel(loweredActuals, callContext);
      callContext.stmtCtx.finalizeAndPop();
      // Note that an hlfir.destroy is not emitted for the result since it
      // is still used by the hlfir.yield_element that also marks its last
      // use.
      return res;
    };
    mlir::Value polymorphicMold;
    if (fir::isPolymorphicType(*callContext.resultType))
      polymorphicMold =
          impl().getPolymorphicResultMold(loweredActuals, callContext);
    mlir::Value elemental =
        hlfir::genElementalOp(loc, builder, elementType, shape, typeParams,
                              genKernel, !mustBeOrdered, polymorphicMold);
    // If the function result requires finalization, then it has to be done
    // for the array result of the elemental call. We have to communicate
    // this via the DestroyOp's attribute.
    bool mustFinalizeExpr = impl().resultMayRequireFinalization(callContext);
    fir::FirOpBuilder *bldr = &builder;
    callContext.stmtCtx.attachCleanup([=]() {
      bldr->create<hlfir::DestroyOp>(loc, elemental, mustFinalizeExpr);
    });
    return hlfir::EntityWithAttributes{elemental};
  }

private:
  ElementalCallBuilderImpl &impl() {
    return *static_cast<ElementalCallBuilderImpl *>(this);
  }
};

class ElementalUserCallBuilder
    : public ElementalCallBuilder<ElementalUserCallBuilder> {
public:
  ElementalUserCallBuilder(Fortran::lower::CallerInterface &caller,
                           mlir::FunctionType callSiteType)
      : caller{caller}, callSiteType{callSiteType} {}
  std::optional<hlfir::Entity>
  genElementalKernel(Fortran::lower::PreparedActualArguments &loweredActuals,
                     CallContext &callContext) {
    return genUserCall(loweredActuals, caller, callSiteType, callContext);
  }

  bool argMayBeModifiedByCall(unsigned argIdx) const {
    assert(argIdx < caller.getPassedArguments().size() && "bad argument index");
    return caller.getPassedArguments()[argIdx].mayBeModifiedByCall();
  }

  bool canLoadActualArgumentBeforeLoop(unsigned argIdx) const {
    using PassBy = Fortran::lower::CallerInterface::PassEntityBy;
    const auto &passedArgs{caller.getPassedArguments()};
    assert(argIdx < passedArgs.size() && "bad argument index");
    // If the actual argument does not need to be passed via an address,
    // or will be passed in the address of a temporary copy, it can be loaded
    // before the elemental loop nest.
    const auto &arg{passedArgs[argIdx]};
    return arg.passBy == PassBy::Value ||
           arg.passBy == PassBy::BaseAddressValueAttribute;
  }

  mlir::Value computeDynamicCharacterResultLength(
      Fortran::lower::PreparedActualArguments &loweredActuals,
      CallContext &callContext) {
    TODO(callContext.loc,
         "compute elemental function result length parameters in HLFIR");
  }

  mlir::Value getPolymorphicResultMold(
      Fortran::lower::PreparedActualArguments &loweredActuals,
      CallContext &callContext) {
    fir::emitFatalError(callContext.loc,
                        "elemental function call with polymorphic result");
    return {};
  }

  bool resultMayRequireFinalization(CallContext &callContext) const {
    std::optional<Fortran::evaluate::DynamicType> retTy =
        caller.getCallDescription().proc().GetType();
    if (!retTy)
      return false;

    if (retTy->IsPolymorphic() || retTy->IsUnlimitedPolymorphic())
      fir::emitFatalError(
          callContext.loc,
          "elemental function call with [unlimited-]polymorphic result");

    if (retTy->category() == Fortran::common::TypeCategory::Derived) {
      const Fortran::semantics::DerivedTypeSpec &typeSpec =
          retTy->GetDerivedTypeSpec();
      return Fortran::semantics::IsFinalizable(typeSpec);
    }

    return false;
  }

private:
  Fortran::lower::CallerInterface &caller;
  mlir::FunctionType callSiteType;
};

class ElementalIntrinsicCallBuilder
    : public ElementalCallBuilder<ElementalIntrinsicCallBuilder> {
public:
  ElementalIntrinsicCallBuilder(
      const Fortran::evaluate::SpecificIntrinsic *intrinsic,
      const fir::IntrinsicArgumentLoweringRules *argLowering, bool isFunction)
      : intrinsic{intrinsic}, argLowering{argLowering}, isFunction{isFunction} {
  }
  std::optional<hlfir::Entity>
  genElementalKernel(Fortran::lower::PreparedActualArguments &loweredActuals,
                     CallContext &callContext) {
    return genHLFIRIntrinsicRefCore(loweredActuals, intrinsic, argLowering,
                                    callContext);
  }
  // Elemental intrinsic functions cannot modify their arguments.
  bool argMayBeModifiedByCall(int) const { return !isFunction; }
  bool canLoadActualArgumentBeforeLoop(int) const {
    // Elemental intrinsic functions never need the actual addresses
    // of their arguments.
    return isFunction;
  }

  mlir::Value computeDynamicCharacterResultLength(
      Fortran::lower::PreparedActualArguments &loweredActuals,
      CallContext &callContext) {
    if (intrinsic)
      if (intrinsic->name == "adjustr" || intrinsic->name == "adjustl" ||
          intrinsic->name == "merge")
        return loweredActuals[0].value().genCharLength(
            callContext.loc, callContext.getBuilder());
    // Character MIN/MAX is the min/max of the arguments length that are
    // present.
    TODO(callContext.loc,
         "compute elemental character min/max function result length in HLFIR");
  }

  mlir::Value getPolymorphicResultMold(
      Fortran::lower::PreparedActualArguments &loweredActuals,
      CallContext &callContext) {
    if (!intrinsic)
      return {};

    if (intrinsic->name == "merge") {
      // MERGE seems to be the only elemental function that can produce
      // polymorphic result. The MERGE's result is polymorphic iff
      // both TSOURCE and FSOURCE are polymorphic, and they also must have
      // the same declared and dynamic types. So any of them can be used
      // for the mold.
      assert(!loweredActuals.empty());
      return loweredActuals.front()->getPolymorphicMold(callContext.loc);
    }

    return {};
  }

  bool resultMayRequireFinalization(
      [[maybe_unused]] CallContext &callContext) const {
    // FIXME: need access to the CallerInterface's return type
    // to check if the result may need finalization (e.g. the result
    // of MERGE).
    return false;
  }

private:
  const Fortran::evaluate::SpecificIntrinsic *intrinsic;
  const fir::IntrinsicArgumentLoweringRules *argLowering;
  const bool isFunction;
};
} // namespace

static std::optional<mlir::Value>
genIsPresentIfArgMaybeAbsent(mlir::Location loc, hlfir::Entity actual,
                             const Fortran::lower::SomeExpr &expr,
                             CallContext &callContext,
                             bool passAsAllocatableOrPointer) {
  if (!Fortran::evaluate::MayBePassedAsAbsentOptional(expr))
    return std::nullopt;
  fir::FirOpBuilder &builder = callContext.getBuilder();
  if (!passAsAllocatableOrPointer &&
      Fortran::evaluate::IsAllocatableOrPointerObject(expr)) {
    // Passing Allocatable/Pointer to non-pointer/non-allocatable OPTIONAL.
    // Fortran 2018 15.5.2.12 point 1: If unallocated/disassociated, it is
    // as if the argument was absent. The main care here is to not do a
    // copy-in/copy-out because the temp address, even though pointing to a
    // null size storage, would not be a nullptr and therefore the argument
    // would not be considered absent on the callee side. Note: if the
    // allocatable/pointer is also optional, it cannot be absent as per
    // 15.5.2.12 point 7. and 8. We rely on this to un-conditionally read
    // the allocatable/pointer descriptor here.
    mlir::Value addr = genVariableRawAddress(loc, builder, actual);
    return builder.genIsNotNullAddr(loc, addr);
  }
  // TODO: what if passing allocatable target to optional intent(in) pointer?
  // May fall into the category above if the allocatable is not optional.

  // Passing an optional to an optional.
  return builder.create<fir::IsPresentOp>(loc, builder.getI1Type(), actual)
      .getResult();
}

// Lower a reference to an elemental intrinsic procedure with array arguments
// and custom optional handling
static std::optional<hlfir::EntityWithAttributes>
genCustomElementalIntrinsicRef(
    const Fortran::evaluate::SpecificIntrinsic *intrinsic,
    CallContext &callContext) {
  assert(callContext.isElementalProcWithArrayArgs() &&
         "Use genCustomIntrinsicRef for scalar calls");
  mlir::Location loc = callContext.loc;
  auto &converter = callContext.converter;
  Fortran::lower::PreparedActualArguments operands;
  assert(intrinsic && Fortran::lower::intrinsicRequiresCustomOptionalHandling(
                          callContext.procRef, *intrinsic, converter));

  // callback for optional arguments
  auto prepareOptionalArg = [&](const Fortran::lower::SomeExpr &expr) {
    hlfir::EntityWithAttributes actual = Fortran::lower::convertExprToHLFIR(
        loc, converter, expr, callContext.symMap, callContext.stmtCtx);
    std::optional<mlir::Value> isPresent =
        genIsPresentIfArgMaybeAbsent(loc, actual, expr, callContext,
                                     /*passAsAllocatableOrPointer=*/false);
    operands.emplace_back(
        Fortran::lower::PreparedActualArgument{actual, isPresent});
  };

  // callback for non-optional arguments
  auto prepareOtherArg = [&](const Fortran::lower::SomeExpr &expr,
                             fir::LowerIntrinsicArgAs lowerAs) {
    hlfir::EntityWithAttributes actual = Fortran::lower::convertExprToHLFIR(
        loc, converter, expr, callContext.symMap, callContext.stmtCtx);
    operands.emplace_back(Fortran::lower::PreparedActualArgument{
        actual, /*isPresent=*/std::nullopt});
  };

  Fortran::lower::prepareCustomIntrinsicArgument(
      callContext.procRef, *intrinsic, callContext.resultType,
      prepareOptionalArg, prepareOtherArg, converter);

  const fir::IntrinsicArgumentLoweringRules *argLowering =
      fir::getIntrinsicArgumentLowering(callContext.getProcedureName());
  // All of the custom intrinsic elementals with custom handling are pure
  // functions
  return ElementalIntrinsicCallBuilder{intrinsic, argLowering,
                                       /*isFunction=*/true}
      .genElementalCall(operands, /*isImpure=*/false, callContext);
}

// Lower a reference to an intrinsic procedure with custom optional handling
static std::optional<hlfir::EntityWithAttributes>
genCustomIntrinsicRef(const Fortran::evaluate::SpecificIntrinsic *intrinsic,
                      CallContext &callContext) {
  assert(!callContext.isElementalProcWithArrayArgs() &&
         "Needs to be run through ElementalIntrinsicCallBuilder first");
  mlir::Location loc = callContext.loc;
  fir::FirOpBuilder &builder = callContext.getBuilder();
  auto &converter = callContext.converter;
  auto &stmtCtx = callContext.stmtCtx;
  assert(intrinsic && Fortran::lower::intrinsicRequiresCustomOptionalHandling(
                          callContext.procRef, *intrinsic, converter));
  Fortran::lower::PreparedActualArguments loweredActuals;

  // callback for optional arguments
  auto prepareOptionalArg = [&](const Fortran::lower::SomeExpr &expr) {
    hlfir::EntityWithAttributes actual = Fortran::lower::convertExprToHLFIR(
        loc, converter, expr, callContext.symMap, callContext.stmtCtx);
    mlir::Value isPresent =
        genIsPresentIfArgMaybeAbsent(loc, actual, expr, callContext,
                                     /*passAsAllocatableOrPointer*/ false)
            .value();
    loweredActuals.emplace_back(
        Fortran::lower::PreparedActualArgument{actual, {isPresent}});
  };

  // callback for non-optional arguments
  auto prepareOtherArg = [&](const Fortran::lower::SomeExpr &expr,
                             fir::LowerIntrinsicArgAs lowerAs) {
    auto getActualFortranElementType = [&]() -> mlir::Type {
      return hlfir::getFortranElementType(converter.genType(expr));
    };
    hlfir::EntityWithAttributes actual = Fortran::lower::convertExprToHLFIR(
        loc, converter, expr, callContext.symMap, callContext.stmtCtx);
    std::optional<fir::ExtendedValue> exv;
    switch (lowerAs) {
    case fir::LowerIntrinsicArgAs::Value:
      exv = Fortran::lower::convertToValue(loc, converter, actual, stmtCtx);
      break;
    case fir::LowerIntrinsicArgAs::Addr:
      exv = Fortran::lower::convertToAddress(loc, converter, actual, stmtCtx,
                                             getActualFortranElementType());
      break;
    case fir::LowerIntrinsicArgAs::Box:
      exv = Fortran::lower::convertToBox(loc, converter, actual, stmtCtx,
                                         getActualFortranElementType());
      break;
    case fir::LowerIntrinsicArgAs::Inquired:
      TODO(loc, "Inquired non-optional arg to intrinsic with custom handling");
      return;
    }
    if (!exv)
      llvm_unreachable("bad switch");
    actual = extendedValueToHlfirEntity(loc, builder, exv.value(),
                                        "tmp.custom_intrinsic_arg");
    loweredActuals.emplace_back(Fortran::lower::PreparedActualArgument{
        actual, /*isPresent=*/std::nullopt});
  };

  Fortran::lower::prepareCustomIntrinsicArgument(
      callContext.procRef, *intrinsic, callContext.resultType,
      prepareOptionalArg, prepareOtherArg, converter);

  return genCustomIntrinsicRefCore(loweredActuals, intrinsic, callContext);
}

/// Lower an intrinsic procedure reference.
/// \p intrinsic is null if this is an intrinsic module procedure that must be
/// lowered as if it were an intrinsic module procedure (like C_LOC which is a
/// procedure from intrinsic module iso_c_binding). Otherwise, \p intrinsic
/// must not be null.
static std::optional<hlfir::EntityWithAttributes>
genIntrinsicRef(const Fortran::evaluate::SpecificIntrinsic *intrinsic,
                CallContext &callContext) {
  mlir::Location loc = callContext.loc;
  auto &converter = callContext.converter;
  if (intrinsic && Fortran::lower::intrinsicRequiresCustomOptionalHandling(
                       callContext.procRef, *intrinsic, converter)) {
    if (callContext.isElementalProcWithArrayArgs())
      return genCustomElementalIntrinsicRef(intrinsic, callContext);
    return genCustomIntrinsicRef(intrinsic, callContext);
  }

  Fortran::lower::PreparedActualArguments loweredActuals;
  const fir::IntrinsicArgumentLoweringRules *argLowering =
      fir::getIntrinsicArgumentLowering(callContext.getProcedureName());
  for (const auto &arg : llvm::enumerate(callContext.procRef.arguments())) {

    if (!arg.value()) {
      // Absent optional.
      loweredActuals.push_back(std::nullopt);
      continue;
    }
    auto *expr =
        Fortran::evaluate::UnwrapExpr<Fortran::lower::SomeExpr>(arg.value());
    if (!expr) {
      // TYPE(*) dummy. They are only allowed as argument of a few intrinsics
      // that do not take optional arguments: see Fortran 2018 standard C710.
      const Fortran::evaluate::Symbol *assumedTypeSym =
          arg.value()->GetAssumedTypeDummy();
      if (!assumedTypeSym)
        fir::emitFatalError(loc,
                            "expected assumed-type symbol as actual argument");
      std::optional<fir::FortranVariableOpInterface> var =
          callContext.symMap.lookupVariableDefinition(*assumedTypeSym);
      if (!var)
        fir::emitFatalError(loc, "assumed-type symbol was not lowered");
      assert(
          (!argLowering ||
           !fir::lowerIntrinsicArgumentAs(*argLowering, arg.index())
                .handleDynamicOptional) &&
          "TYPE(*) are not expected to appear as optional intrinsic arguments");
      loweredActuals.push_back(Fortran::lower::PreparedActualArgument{
          hlfir::Entity{*var}, /*isPresent=*/std::nullopt});
      continue;
    }
    auto loweredActual = Fortran::lower::convertExprToHLFIR(
        loc, callContext.converter, *expr, callContext.symMap,
        callContext.stmtCtx);
    std::optional<mlir::Value> isPresent;
    if (argLowering) {
      fir::ArgLoweringRule argRules =
          fir::lowerIntrinsicArgumentAs(*argLowering, arg.index());
      if (argRules.handleDynamicOptional)
        isPresent =
            genIsPresentIfArgMaybeAbsent(loc, loweredActual, *expr, callContext,
                                         /*passAsAllocatableOrPointer=*/false);
    }
    loweredActuals.push_back(
        Fortran::lower::PreparedActualArgument{loweredActual, isPresent});
  }

  if (callContext.isElementalProcWithArrayArgs()) {
    // All intrinsic elemental functions are pure.
    const bool isFunction = callContext.resultType.has_value();
    return ElementalIntrinsicCallBuilder{intrinsic, argLowering, isFunction}
        .genElementalCall(loweredActuals, /*isImpure=*/!isFunction,
                          callContext);
  }
  std::optional<hlfir::EntityWithAttributes> result = genHLFIRIntrinsicRefCore(
      loweredActuals, intrinsic, argLowering, callContext);
  if (result && result->getType().isa<hlfir::ExprType>()) {
    fir::FirOpBuilder *bldr = &callContext.getBuilder();
    callContext.stmtCtx.attachCleanup(
        [=]() { bldr->create<hlfir::DestroyOp>(loc, *result); });
  }
  return result;
}

/// Main entry point to lower procedure references, regardless of what they are.
static std::optional<hlfir::EntityWithAttributes>
genProcedureRef(CallContext &callContext) {
  mlir::Location loc = callContext.loc;
  if (auto *intrinsic = callContext.procRef.proc().GetSpecificIntrinsic())
    return genIntrinsicRef(intrinsic, callContext);
  // If it is an intrinsic module procedure reference - then treat as
  // intrinsic unless it is bind(c) (since implementation is external from
  // module).
  if (Fortran::lower::isIntrinsicModuleProcRef(callContext.procRef) &&
      !callContext.isBindcCall())
    return genIntrinsicRef(nullptr, callContext);

  if (callContext.isStatementFunctionCall())
    return genStmtFunctionRef(loc, callContext.converter, callContext.symMap,
                              callContext.stmtCtx, callContext.procRef);

  Fortran::lower::CallerInterface caller(callContext.procRef,
                                         callContext.converter);
  mlir::FunctionType callSiteType = caller.genFunctionType();
  const bool isElemental = callContext.isElementalProcWithArrayArgs();
  Fortran::lower::PreparedActualArguments loweredActuals;
  // Lower the actual arguments
  for (const Fortran::lower::CallInterface<
           Fortran::lower::CallerInterface>::PassedEntity &arg :
       caller.getPassedArguments())
    if (const auto *actual = arg.entity) {
      const auto *expr = actual->UnwrapExpr();
      if (!expr) {
        // TYPE(*) actual argument.
        const Fortran::evaluate::Symbol *assumedTypeSym =
            actual->GetAssumedTypeDummy();
        if (!assumedTypeSym)
          fir::emitFatalError(
              loc, "expected assumed-type symbol as actual argument");
        std::optional<fir::FortranVariableOpInterface> var =
            callContext.symMap.lookupVariableDefinition(*assumedTypeSym);
        if (!var)
          fir::emitFatalError(loc, "assumed-type symbol was not lowered");
        hlfir::Entity actual{*var};
        std::optional<mlir::Value> isPresent;
        if (arg.isOptional()) {
          // Passing an optional TYPE(*) to an optional TYPE(*). Note that
          // TYPE(*) cannot be ALLOCATABLE/POINTER (C709) so there is no
          // need to cover the case of passing an ALLOCATABLE/POINTER to an
          // OPTIONAL.
          fir::FirOpBuilder &builder = callContext.getBuilder();
          isPresent =
              builder.create<fir::IsPresentOp>(loc, builder.getI1Type(), actual)
                  .getResult();
        }
        loweredActuals.push_back(Fortran::lower::PreparedActualArgument{
            hlfir::Entity{*var}, isPresent});
        continue;
      }

      if (Fortran::evaluate::UnwrapExpr<Fortran::evaluate::NullPointer>(
              *expr)) {
        if ((arg.passBy !=
             Fortran::lower::CallerInterface::PassEntityBy::MutableBox) &&
            (arg.passBy !=
             Fortran::lower::CallerInterface::PassEntityBy::BoxProcRef)) {
          assert(
              arg.isOptional() &&
              "NULL must be passed only to pointer, allocatable, or OPTIONAL");
          // Trying to lower NULL() outside of any context would lead to
          // trouble. NULL() here is equivalent to not providing the
          // actual argument.
          loweredActuals.emplace_back(std::nullopt);
          continue;
        }
      }

      if (isElemental && !arg.hasValueAttribute() &&
          Fortran::evaluate::IsVariable(*expr) &&
          Fortran::evaluate::HasVectorSubscript(*expr)) {
        // Vector subscripted arguments are copied in calls, except in elemental
        // calls without VALUE attribute where Fortran 2018 15.5.2.4 point 21
        // does not apply and the address of each element must be passed.
        hlfir::ElementalAddrOp elementalAddr =
            Fortran::lower::convertVectorSubscriptedExprToElementalAddr(
                loc, callContext.converter, *expr, callContext.symMap,
                callContext.stmtCtx);
        loweredActuals.emplace_back(
            Fortran::lower::PreparedActualArgument{elementalAddr});
        continue;
      }

      auto loweredActual = Fortran::lower::convertExprToHLFIR(
          loc, callContext.converter, *expr, callContext.symMap,
          callContext.stmtCtx);
      std::optional<mlir::Value> isPresent;
      if (arg.isOptional())
        isPresent = genIsPresentIfArgMaybeAbsent(
            loc, loweredActual, *expr, callContext,
            arg.passBy ==
                Fortran::lower::CallerInterface::PassEntityBy::MutableBox);

      loweredActuals.emplace_back(
          Fortran::lower::PreparedActualArgument{loweredActual, isPresent});
    } else {
      // Optional dummy argument for which there is no actual argument.
      loweredActuals.emplace_back(std::nullopt);
    }
  if (isElemental) {
    bool isImpure = false;
    if (const Fortran::semantics::Symbol *procSym =
            callContext.procRef.proc().GetSymbol())
      isImpure = !Fortran::semantics::IsPureProcedure(*procSym);
    return ElementalUserCallBuilder{caller, callSiteType}.genElementalCall(
        loweredActuals, isImpure, callContext);
  }
  return genUserCall(loweredActuals, caller, callSiteType, callContext);
}

hlfir::Entity Fortran::lower::PreparedActualArgument::getActual(
    mlir::Location loc, fir::FirOpBuilder &builder) const {
  if (auto *actualEntity = std::get_if<hlfir::Entity>(&actual)) {
    if (oneBasedElementalIndices)
      return hlfir::getElementAt(loc, builder, *actualEntity,
                                 *oneBasedElementalIndices);
    return *actualEntity;
  }
  assert(oneBasedElementalIndices && "expect elemental context");
  hlfir::ElementalAddrOp elementalAddr =
      std::get<hlfir::ElementalAddrOp>(actual);
  mlir::IRMapping mapper;
  auto alwaysFalse = [](hlfir::ElementalOp) -> bool { return false; };
  mlir::Value addr = hlfir::inlineElementalOp(
      loc, builder, elementalAddr, *oneBasedElementalIndices, mapper,
      /*mustRecursivelyInline=*/alwaysFalse);
  assert(elementalAddr.getCleanup().empty() && "no clean-up expected");
  elementalAddr.erase();
  return hlfir::Entity{addr};
}

bool Fortran::lower::isIntrinsicModuleProcRef(
    const Fortran::evaluate::ProcedureRef &procRef) {
  const Fortran::semantics::Symbol *symbol = procRef.proc().GetSymbol();
  if (!symbol)
    return false;
  const Fortran::semantics::Symbol *module =
      symbol->GetUltimate().owner().GetSymbol();
  return module && module->attrs().test(Fortran::semantics::Attr::INTRINSIC);
}

std::optional<hlfir::EntityWithAttributes> Fortran::lower::convertCallToHLFIR(
    mlir::Location loc, Fortran::lower::AbstractConverter &converter,
    const evaluate::ProcedureRef &procRef, std::optional<mlir::Type> resultType,
    Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx) {
  CallContext callContext(procRef, resultType, loc, converter, symMap, stmtCtx);
  return genProcedureRef(callContext);
}

void Fortran::lower::convertUserDefinedAssignmentToHLFIR(
    mlir::Location loc, Fortran::lower::AbstractConverter &converter,
    const evaluate::ProcedureRef &procRef, hlfir::Entity lhs, hlfir::Entity rhs,
    Fortran::lower::SymMap &symMap) {
  Fortran::lower::StatementContext definedAssignmentContext;
  CallContext callContext(procRef, /*resultType=*/std::nullopt, loc, converter,
                          symMap, definedAssignmentContext);
  Fortran::lower::CallerInterface caller(procRef, converter);
  mlir::FunctionType callSiteType = caller.genFunctionType();
  PreparedActualArgument preparedLhs{lhs, /*isPresent=*/std::nullopt};
  PreparedActualArgument preparedRhs{rhs, /*isPresent=*/std::nullopt};
  PreparedActualArguments loweredActuals{preparedLhs, preparedRhs};
  genUserCall(loweredActuals, caller, callSiteType, callContext);
  return;
}