summaryrefslogtreecommitdiffstats
path: root/libc/src/__support/float_to_string.h
blob: 1287c3e9a84fac93f9f75471a3e7b1a9c1c9a7c7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
//===-- Utilities to convert floating point values to string ----*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_LIBC_SRC___SUPPORT_FLOAT_TO_STRING_H
#define LLVM_LIBC_SRC___SUPPORT_FLOAT_TO_STRING_H

#include <stdint.h>

#include "src/__support/CPP/limits.h"
#include "src/__support/CPP/type_traits.h"
#include "src/__support/FPUtil/FPBits.h"
#include "src/__support/FPUtil/dyadic_float.h"
#include "src/__support/UInt.h"
#include "src/__support/common.h"
#include "src/__support/libc_assert.h"
#include "src/__support/macros/attributes.h"

// This file has 5 compile-time flags to allow the user to configure the float
// to string behavior. These were used to explore tradeoffs during the design
// phase, and can still be used to gain specific properties. Unless you
// specifically know what you're doing, you should leave all these flags off.

// LIBC_COPT_FLOAT_TO_STR_NO_SPECIALIZE_LD
//  This flag disables the separate long double conversion implementation. It is
//  not based on the Ryu algorithm, instead generating the digits by
//  multiplying/dividing the written-out number by 10^9 to get blocks. It's
//  significantly faster than INT_CALC, only about 10x slower than MEGA_TABLE,
//  and is small in binary size. Its downside is that it always calculates all
//  of the digits above the decimal point, making it inefficient for %e calls
//  with large exponents. This specialization overrides other flags, so this
//  flag must be set for other flags to effect the long double behavior.

// LIBC_COPT_FLOAT_TO_STR_USE_MEGA_LONG_DOUBLE_TABLE
//  The Mega Table is ~5 megabytes when compiled. It lists the constants needed
//  to perform the Ryu Printf algorithm (described below) for all long double
//  values. This makes it extremely fast for both doubles and long doubles, in
//  exchange for large binary size.

// LIBC_COPT_FLOAT_TO_STR_USE_DYADIC_FLOAT
//  Dyadic floats are software floating point numbers, and their accuracy can be
//  as high as necessary. This option uses 256 bit dyadic floats to calculate
//  the table values that Ryu Printf needs. This is reasonably fast and very
//  small compared to the Mega Table, but the 256 bit floats only give accurate
//  results for the first ~50 digits of the output. In practice this shouldn't
//  be a problem since long doubles are only accurate for ~35 digits, but the
//  trailing values all being 0s may cause brittle tests to fail.

// LIBC_COPT_FLOAT_TO_STR_USE_INT_CALC
//  Integer Calculation uses wide integers to do the calculations for the Ryu
//  Printf table, which is just as accurate as the Mega Table without requiring
//  as much code size. These integers can be very large (~32KB at max, though
//  always on the stack) to handle the edges of the long double range. They are
//  also very slow, taking multiple seconds on a powerful CPU to calculate the
//  values at the end of the range. If no flag is set, this is used for long
//  doubles, the flag only changes the double behavior.

// LIBC_COPT_FLOAT_TO_STR_NO_TABLE
//  This flag doesn't change the actual calculation method, instead it is used
//  to disable the normal Ryu Printf table for configurations that don't use any
//  table at all.

// Default Config:
//  If no flags are set, doubles use the normal (and much more reasonably sized)
//  Ryu Printf table and long doubles use their specialized implementation. This
//  provides good performance and binary size.

#ifdef LIBC_COPT_FLOAT_TO_STR_USE_MEGA_LONG_DOUBLE_TABLE
#include "src/__support/ryu_long_double_constants.h"
#elif !defined(LIBC_COPT_FLOAT_TO_STR_NO_TABLE)
#include "src/__support/ryu_constants.h"
#else
constexpr size_t IDX_SIZE = 1;
constexpr size_t MID_INT_SIZE = 192;
#endif

// This implementation is based on the Ryu Printf algorithm by Ulf Adams:
// Ulf Adams. 2019. Ryū revisited: printf floating point conversion.
// Proc. ACM Program. Lang. 3, OOPSLA, Article 169 (October 2019), 23 pages.
// https://doi.org/10.1145/3360595

// This version is modified to require significantly less memory (it doesn't use
// a large buffer to store the result).

// The general concept of this algorithm is as follows:
// We want to calculate a 9 digit segment of a floating point number using this
// formula: floor((mantissa * 2^exponent)/10^i) % 10^9.
// To do so normally would involve large integers (~1000 bits for doubles), so
// we use a shortcut. We can avoid calculating 2^exponent / 10^i by using a
// lookup table. The resulting intermediate value needs to be about 192 bits to
// store the result with enough precision. Since this is all being done with
// integers for appropriate precision, we would run into a problem if
// i > exponent since then 2^exponent / 10^i would be less than 1. To correct
// for this, the actual calculation done is 2^(exponent + c) / 10^i, and then
// when multiplying by the mantissa we reverse this by dividing by 2^c, like so:
// floor((mantissa * table[exponent][i])/(2^c)) % 10^9.
// This gives a 9 digit value, which is small enough to fit in a 32 bit integer,
// and that integer is converted into a string as normal, and called a block. In
// this implementation, the most recent block is buffered, so that if rounding
// is necessary the block can be adjusted before being written to the output.
// Any block that is all 9s adds one to the max block counter and doesn't clear
// the buffer because they can cause the block above them to be rounded up.

namespace LIBC_NAMESPACE {

using BlockInt = uint32_t;
constexpr uint32_t BLOCK_SIZE = 9;
constexpr uint64_t EXP5_9 = 1953125;
constexpr uint64_t EXP10_9 = 1000000000;

using FPBits = fputil::FPBits<long double>;

// Larger numbers prefer a slightly larger constant than is used for the smaller
// numbers.
constexpr size_t CALC_SHIFT_CONST = 128;

namespace internal {

// Returns floor(log_10(2^e)); requires 0 <= e <= 42039.
LIBC_INLINE constexpr uint32_t log10_pow2(uint64_t e) {
  LIBC_ASSERT(e <= 42039 &&
              "Incorrect exponent to perform log10_pow2 approximation.");
  // This approximation is based on the float value for log_10(2). It first
  // gives an incorrect result for our purposes at 42039 (well beyond the 16383
  // maximum for long doubles).

  // To get these constants I first evaluated log_10(2) to get an approximation
  // of 0.301029996. Next I passed that value through a string to double
  // conversion to get an explicit mantissa of 0x13441350fbd738 and an exponent
  // of -2 (which becomes -54 when we shift the mantissa to be a non-fractional
  // number). Next I shifted the mantissa right 12 bits to create more space for
  // the multiplication result, adding 12 to the exponent to compensate. To
  // check that this approximation works for our purposes I used the following
  // python code:
  // for i in range(16384):
  //   if(len(str(2**i)) != (((i*0x13441350fbd)>>42)+1)):
  //     print(i)
  // The reason we add 1 is because this evaluation truncates the result, giving
  // us the floor, whereas counting the digits of the power of 2 gives us the
  // ceiling. With a similar loop I checked the maximum valid value and found
  // 42039.
  return static_cast<uint32_t>((e * 0x13441350fbdll) >> 42);
}

// Same as above, but with different constants.
LIBC_INLINE constexpr uint32_t log2_pow5(uint64_t e) {
  return static_cast<uint32_t>((e * 0x12934f0979bll) >> 39);
}

// Returns 1 + floor(log_10(2^e). This could technically be off by 1 if any
// power of 2 was also a power of 10, but since that doesn't exist this is
// always accurate. This is used to calculate the maximum number of base-10
// digits a given e-bit number could have.
LIBC_INLINE constexpr uint32_t ceil_log10_pow2(uint32_t e) {
  return log10_pow2(e) + 1;
}

LIBC_INLINE constexpr uint32_t div_ceil(uint32_t num, uint32_t denom) {
  return (num + (denom - 1)) / denom;
}

// Returns the maximum number of 9 digit blocks a number described by the given
// index (which is ceil(exponent/16)) and mantissa width could need.
LIBC_INLINE constexpr uint32_t length_for_num(uint32_t idx,
                                              uint32_t mantissa_width) {
  return div_ceil(ceil_log10_pow2(idx) + ceil_log10_pow2(mantissa_width + 1),
                  BLOCK_SIZE);
}

// The formula for the table when i is positive (or zero) is as follows:
// floor(10^(-9i) * 2^(e + c_1) + 1) % (10^9 * 2^c_1)
// Rewritten slightly we get:
// floor(5^(-9i) * 2^(e + c_1 - 9i) + 1) % (10^9 * 2^c_1)

// TODO: Fix long doubles (needs bigger table or alternate algorithm.)
// Currently the table values are generated, which is very slow.
template <size_t INT_SIZE>
LIBC_INLINE constexpr UInt<MID_INT_SIZE> get_table_positive(int exponent,
                                                            size_t i) {
  // INT_SIZE is the size of int that is used for the internal calculations of
  // this function. It should be large enough to hold 2^(exponent+constant), so
  // ~1000 for double and ~16000 for long double. Be warned that the time
  // complexity of exponentiation is O(n^2 * log_2(m)) where n is the number of
  // bits in the number being exponentiated and m is the exponent.
  const int shift_amount =
      static_cast<int>(exponent + CALC_SHIFT_CONST - (BLOCK_SIZE * i));
  if (shift_amount < 0) {
    return 1;
  }
  UInt<INT_SIZE> num(0);
  // MOD_SIZE is one of the limiting factors for how big the constant argument
  // can get, since it needs to be small enough to fit in the result UInt,
  // otherwise we'll get truncation on return.
  constexpr UInt<INT_SIZE> MOD_SIZE =
      (UInt<INT_SIZE>(EXP10_9)
       << (CALC_SHIFT_CONST + (IDX_SIZE > 1 ? IDX_SIZE : 0)));

  num = UInt<INT_SIZE>(1) << (shift_amount);
  if (i > 0) {
    UInt<INT_SIZE> fives(EXP5_9);
    fives.pow_n(i);
    num = num / fives;
  }

  num = num + 1;
  if (num > MOD_SIZE) {
    auto rem = num.div_uint_half_times_pow_2(
                      EXP10_9, CALC_SHIFT_CONST + (IDX_SIZE > 1 ? IDX_SIZE : 0))
                   .value();
    num = rem;
  }
  return num;
}

template <size_t INT_SIZE>
LIBC_INLINE UInt<MID_INT_SIZE> get_table_positive_df(int exponent, size_t i) {
  static_assert(INT_SIZE == 256,
                "Only 256 is supported as an int size right now.");
  // This version uses dyadic floats with 256 bit mantissas to perform the same
  // calculation as above. Due to floating point imprecision it is only accurate
  // for the first 50 digits, but it's much faster. Since even 128 bit long
  // doubles are only accurate to ~35 digits, the 50 digits of accuracy are
  // enough for these floats to be converted back and forth safely. This is
  // ideal for avoiding the size of the long double table.
  const int shift_amount =
      static_cast<int>(exponent + CALC_SHIFT_CONST - (9 * i));
  if (shift_amount < 0) {
    return 1;
  }
  fputil::DyadicFloat<INT_SIZE> num(false, 0, 1);
  constexpr UInt<INT_SIZE> MOD_SIZE =
      (UInt<INT_SIZE>(EXP10_9)
       << (CALC_SHIFT_CONST + (IDX_SIZE > 1 ? IDX_SIZE : 0)));

  constexpr UInt<INT_SIZE> FIVE_EXP_MINUS_NINE_MANT{
      {0xf387295d242602a7, 0xfdd7645e011abac9, 0x31680a88f8953030,
       0x89705f4136b4a597}};

  static const fputil::DyadicFloat<INT_SIZE> FIVE_EXP_MINUS_NINE(
      false, -276, FIVE_EXP_MINUS_NINE_MANT);

  if (i > 0) {
    fputil::DyadicFloat<INT_SIZE> fives = fputil::pow_n(FIVE_EXP_MINUS_NINE, i);
    num = fives;
  }
  num = mul_pow_2(num, shift_amount);

  // Adding one is part of the formula.
  UInt<INT_SIZE> int_num = static_cast<UInt<INT_SIZE>>(num) + 1;
  if (int_num > MOD_SIZE) {
    auto rem =
        int_num
            .div_uint_half_times_pow_2(
                EXP10_9, CALC_SHIFT_CONST + (IDX_SIZE > 1 ? IDX_SIZE : 0))
            .value();
    int_num = rem;
  }

  UInt<MID_INT_SIZE> result = int_num;

  return result;
}

// The formula for the table when i is negative (or zero) is as follows:
// floor(10^(-9i) * 2^(c_0 - e)) % (10^9 * 2^c_0)
// Since we know i is always negative, we just take it as unsigned and treat it
// as negative. We do the same with exponent, while they're both always negative
// in theory, in practice they're converted to positive for simpler
// calculations.
// The formula being used looks more like this:
// floor(10^(9*(-i)) * 2^(c_0 + (-e))) % (10^9 * 2^c_0)
template <size_t INT_SIZE>
LIBC_INLINE UInt<MID_INT_SIZE> get_table_negative(int exponent, size_t i) {
  int shift_amount = CALC_SHIFT_CONST - exponent;
  UInt<INT_SIZE> num(1);
  constexpr UInt<INT_SIZE> MOD_SIZE =
      (UInt<INT_SIZE>(EXP10_9)
       << (CALC_SHIFT_CONST + (IDX_SIZE > 1 ? IDX_SIZE : 0)));

  size_t ten_blocks = i;
  size_t five_blocks = 0;
  if (shift_amount < 0) {
    int block_shifts = (-shift_amount) / BLOCK_SIZE;
    if (block_shifts < static_cast<int>(ten_blocks)) {
      ten_blocks = ten_blocks - block_shifts;
      five_blocks = block_shifts;
      shift_amount = shift_amount + (block_shifts * BLOCK_SIZE);
    } else {
      ten_blocks = 0;
      five_blocks = i;
      shift_amount = shift_amount + (static_cast<int>(i) * BLOCK_SIZE);
    }
  }

  if (five_blocks > 0) {
    UInt<INT_SIZE> fives(EXP5_9);
    fives.pow_n(five_blocks);
    num = fives;
  }
  if (ten_blocks > 0) {
    UInt<INT_SIZE> tens(EXP10_9);
    tens.pow_n(ten_blocks);
    if (five_blocks <= 0) {
      num = tens;
    } else {
      num *= tens;
    }
  }

  if (shift_amount > 0) {
    num = num << shift_amount;
  } else {
    num = num >> (-shift_amount);
  }
  if (num > MOD_SIZE) {
    auto rem = num.div_uint_half_times_pow_2(
                      EXP10_9, CALC_SHIFT_CONST + (IDX_SIZE > 1 ? IDX_SIZE : 0))
                   .value();
    num = rem;
  }
  return num;
}

template <size_t INT_SIZE>
LIBC_INLINE UInt<MID_INT_SIZE> get_table_negative_df(int exponent, size_t i) {
  static_assert(INT_SIZE == 256,
                "Only 256 is supported as an int size right now.");
  // This version uses dyadic floats with 256 bit mantissas to perform the same
  // calculation as above. Due to floating point imprecision it is only accurate
  // for the first 50 digits, but it's much faster. Since even 128 bit long
  // doubles are only accurate to ~35 digits, the 50 digits of accuracy are
  // enough for these floats to be converted back and forth safely. This is
  // ideal for avoiding the size of the long double table.

  int shift_amount = CALC_SHIFT_CONST - exponent;

  fputil::DyadicFloat<INT_SIZE> num(false, 0, 1);
  constexpr UInt<INT_SIZE> MOD_SIZE =
      (UInt<INT_SIZE>(EXP10_9)
       << (CALC_SHIFT_CONST + (IDX_SIZE > 1 ? IDX_SIZE : 0)));

  constexpr UInt<INT_SIZE> TEN_EXP_NINE_MANT(EXP10_9);

  static const fputil::DyadicFloat<INT_SIZE> TEN_EXP_NINE(false, 0,
                                                          TEN_EXP_NINE_MANT);

  if (i > 0) {
    fputil::DyadicFloat<INT_SIZE> tens = fputil::pow_n(TEN_EXP_NINE, i);
    num = tens;
  }
  num = mul_pow_2(num, shift_amount);

  UInt<INT_SIZE> int_num = static_cast<UInt<INT_SIZE>>(num);
  if (int_num > MOD_SIZE) {
    auto rem =
        int_num
            .div_uint_half_times_pow_2(
                EXP10_9, CALC_SHIFT_CONST + (IDX_SIZE > 1 ? IDX_SIZE : 0))
            .value();
    int_num = rem;
  }

  UInt<MID_INT_SIZE> result = int_num;

  return result;
}

LIBC_INLINE uint32_t fast_uint_mod_1e9(const UInt<MID_INT_SIZE> &val) {
  // The formula for mult_const is:
  //  1 + floor((2^(bits in target integer size + log_2(divider))) / divider)
  // Where divider is 10^9 and target integer size is 128.
  const UInt<MID_INT_SIZE> mult_const(
      {0x31680A88F8953031u, 0x89705F4136B4A597u, 0});
  const auto middle = (mult_const * val);
  const uint64_t result = static_cast<uint64_t>(middle[2]);
  const uint64_t shifted = result >> 29;
  return static_cast<uint32_t>(static_cast<uint32_t>(val) -
                               (EXP10_9 * shifted));
}

LIBC_INLINE uint32_t mul_shift_mod_1e9(const FPBits::StorageType mantissa,
                                       const UInt<MID_INT_SIZE> &large,
                                       const int32_t shift_amount) {
  UInt<MID_INT_SIZE + FPBits::STORAGE_LEN> val(large);
  val = (val * mantissa) >> shift_amount;
  return static_cast<uint32_t>(
      val.div_uint_half_times_pow_2(static_cast<uint32_t>(EXP10_9), 0).value());
}

} // namespace internal

// Convert floating point values to their string representation.
// Because the result may not fit in a reasonably sized array, the caller must
// request blocks of digits and convert them from integers to strings themself.
// Blocks contain the most digits that can be stored in an BlockInt. This is 9
// digits for a 32 bit int and 18 digits for a 64 bit int.
// The intended use pattern is to create a FloatToString object of the
// appropriate type, then call get_positive_blocks to get an approximate number
// of blocks there are before the decimal point. Now the client code can start
// calling get_positive_block in a loop from the number of positive blocks to
// zero. This will give all digits before the decimal point. Then the user can
// start calling get_negative_block in a loop from 0 until the number of digits
// they need is reached. As an optimization, the client can use
// zero_blocks_after_point to find the number of blocks that are guaranteed to
// be zero after the decimal point and before the non-zero digits. Additionally,
// is_lowest_block will return if the current block is the lowest non-zero
// block.
template <typename T, cpp::enable_if_t<cpp::is_floating_point_v<T>, int> = 0>
class FloatToString {
  fputil::FPBits<T> float_bits;
  int exponent;
  FPBits::StorageType mantissa;

  static constexpr int FRACTION_LEN = fputil::FPBits<T>::FRACTION_LEN;
  static constexpr int EXP_BIAS = fputil::FPBits<T>::EXP_BIAS;

public:
  LIBC_INLINE constexpr FloatToString(T init_float) : float_bits(init_float) {
    exponent = float_bits.get_explicit_exponent();
    mantissa = float_bits.get_explicit_mantissa();

    // Adjust for the width of the mantissa.
    exponent -= FRACTION_LEN;
  }

  LIBC_INLINE constexpr bool is_nan() { return float_bits.is_nan(); }
  LIBC_INLINE constexpr bool is_inf() { return float_bits.is_inf(); }
  LIBC_INLINE constexpr bool is_inf_or_nan() {
    return float_bits.is_inf_or_nan();
  }

  // get_block returns an integer that represents the digits in the requested
  // block.
  LIBC_INLINE constexpr BlockInt get_positive_block(int block_index) {
    if (exponent >= -FRACTION_LEN) {
      // idx is ceil(exponent/16) or 0 if exponent is negative. This is used to
      // find the coarse section of the POW10_SPLIT table that will be used to
      // calculate the 9 digit window, as well as some other related values.
      const uint32_t idx =
          exponent < 0
              ? 0
              : static_cast<uint32_t>(exponent + (IDX_SIZE - 1)) / IDX_SIZE;

      // shift_amount = -(c0 - exponent) = c_0 + 16 * ceil(exponent/16) -
      // exponent

      const uint32_t pos_exp = idx * IDX_SIZE;

      UInt<MID_INT_SIZE> val;

#if defined(LIBC_COPT_FLOAT_TO_STR_USE_DYADIC_FLOAT)
      // ----------------------- DYADIC FLOAT CALC MODE ------------------------
      const int32_t SHIFT_CONST = CALC_SHIFT_CONST;
      val = internal::get_table_positive_df<256>(IDX_SIZE * idx, block_index);
#elif defined(LIBC_COPT_FLOAT_TO_STR_USE_INT_CALC)

      // ---------------------------- INT CALC MODE ----------------------------
      const int32_t SHIFT_CONST = CALC_SHIFT_CONST;
      const uint64_t MAX_POW_2_SIZE =
          pos_exp + CALC_SHIFT_CONST - (BLOCK_SIZE * block_index);
      const uint64_t MAX_POW_5_SIZE =
          internal::log2_pow5(BLOCK_SIZE * block_index);
      const uint64_t MAX_INT_SIZE =
          (MAX_POW_2_SIZE > MAX_POW_5_SIZE) ? MAX_POW_2_SIZE : MAX_POW_5_SIZE;

      if (MAX_INT_SIZE < 1024) {
        val = internal::get_table_positive<1024>(pos_exp, block_index);
      } else if (MAX_INT_SIZE < 2048) {
        val = internal::get_table_positive<2048>(pos_exp, block_index);
      } else if (MAX_INT_SIZE < 4096) {
        val = internal::get_table_positive<4096>(pos_exp, block_index);
      } else if (MAX_INT_SIZE < 8192) {
        val = internal::get_table_positive<8192>(pos_exp, block_index);
      } else if (MAX_INT_SIZE < 16384) {
        val = internal::get_table_positive<16384>(pos_exp, block_index);
      } else {
        val = internal::get_table_positive<16384 + 128>(pos_exp, block_index);
      }
#else
      // ----------------------------- TABLE MODE ------------------------------
      const int32_t SHIFT_CONST = TABLE_SHIFT_CONST;

      val = POW10_SPLIT[POW10_OFFSET[idx] + block_index];
#endif
      const uint32_t shift_amount = SHIFT_CONST + pos_exp - exponent;

      const BlockInt digits =
          internal::mul_shift_mod_1e9(mantissa, val, (int32_t)(shift_amount));
      return digits;
    } else {
      return 0;
    }
  }

  LIBC_INLINE constexpr BlockInt get_negative_block(int block_index) {
    if (exponent < 0) {
      const int32_t idx = -exponent / IDX_SIZE;

      UInt<MID_INT_SIZE> val;

      const uint32_t pos_exp = static_cast<uint32_t>(idx * IDX_SIZE);

#if defined(LIBC_COPT_FLOAT_TO_STR_USE_DYADIC_FLOAT)
      // ----------------------- DYADIC FLOAT CALC MODE ------------------------
      const int32_t SHIFT_CONST = CALC_SHIFT_CONST;
      val = internal::get_table_negative_df<256>(pos_exp, block_index + 1);
#elif defined(LIBC_COPT_FLOAT_TO_STR_USE_INT_CALC)
      // ---------------------------- INT CALC MODE ----------------------------
      const int32_t SHIFT_CONST = CALC_SHIFT_CONST;

      const uint64_t NUM_FIVES = (block_index + 1) * BLOCK_SIZE;
      // Round MAX_INT_SIZE up to the nearest 64 (adding 1 because log2_pow5
      // implicitly rounds down).
      const uint64_t MAX_INT_SIZE =
          ((internal::log2_pow5(NUM_FIVES) / 64) + 1) * 64;

      if (MAX_INT_SIZE < 1024) {
        val = internal::get_table_negative<1024>(pos_exp, block_index + 1);
      } else if (MAX_INT_SIZE < 2048) {
        val = internal::get_table_negative<2048>(pos_exp, block_index + 1);
      } else if (MAX_INT_SIZE < 4096) {
        val = internal::get_table_negative<4096>(pos_exp, block_index + 1);
      } else if (MAX_INT_SIZE < 8192) {
        val = internal::get_table_negative<8192>(pos_exp, block_index + 1);
      } else if (MAX_INT_SIZE < 16384) {
        val = internal::get_table_negative<16384>(pos_exp, block_index + 1);
      } else {
        val = internal::get_table_negative<16384 + 8192>(pos_exp,
                                                         block_index + 1);
      }
#else
      // ----------------------------- TABLE MODE ------------------------------
      // if the requested block is zero
      const int32_t SHIFT_CONST = TABLE_SHIFT_CONST;
      if (block_index < MIN_BLOCK_2[idx]) {
        return 0;
      }
      const uint32_t p = POW10_OFFSET_2[idx] + block_index - MIN_BLOCK_2[idx];
      // If every digit after the requested block is zero.
      if (p >= POW10_OFFSET_2[idx + 1]) {
        return 0;
      }

      val = POW10_SPLIT_2[p];
#endif
      const int32_t shift_amount =
          SHIFT_CONST + (-exponent - static_cast<int32_t>(pos_exp));
      BlockInt digits =
          internal::mul_shift_mod_1e9(mantissa, val, shift_amount);
      return digits;
    } else {
      return 0;
    }
  }

  LIBC_INLINE constexpr BlockInt get_block(int block_index) {
    if (block_index >= 0) {
      return get_positive_block(block_index);
    } else {
      return get_negative_block(-1 - block_index);
    }
  }

  LIBC_INLINE constexpr size_t get_positive_blocks() {
    if (exponent < -FRACTION_LEN)
      return 0;
    const uint32_t idx =
        exponent < 0
            ? 0
            : static_cast<uint32_t>(exponent + (IDX_SIZE - 1)) / IDX_SIZE;
    return internal::length_for_num(idx * IDX_SIZE, FRACTION_LEN);
  }

  // This takes the index of a block after the decimal point (a negative block)
  // and return if it's sure that all of the digits after it are zero.
  LIBC_INLINE constexpr bool is_lowest_block(size_t negative_block_index) {
#ifdef LIBC_COPT_FLOAT_TO_STR_NO_TABLE
    // The decimal representation of 2**(-i) will have exactly i digits after
    // the decimal point.
    int num_requested_digits =
        static_cast<int>((negative_block_index + 1) * BLOCK_SIZE);

    return num_requested_digits > -exponent;
#else
    const int32_t idx = -exponent / IDX_SIZE;
    const size_t p =
        POW10_OFFSET_2[idx] + negative_block_index - MIN_BLOCK_2[idx];
    // If the remaining digits are all 0, then this is the lowest block.
    return p >= POW10_OFFSET_2[idx + 1];
#endif
  }

  LIBC_INLINE constexpr size_t zero_blocks_after_point() {
#ifdef LIBC_COPT_FLOAT_TO_STR_NO_TABLE
    if (exponent < -FRACTION_LEN) {
      const int pos_exp = -exponent - 1;
      const uint32_t pos_idx =
          static_cast<uint32_t>(pos_exp + (IDX_SIZE - 1)) / IDX_SIZE;
      const int32_t pos_len = ((internal::ceil_log10_pow2(pos_idx * IDX_SIZE) -
                                internal::ceil_log10_pow2(FRACTION_LEN + 1)) /
                               BLOCK_SIZE) -
                              1;
      return static_cast<uint32_t>(pos_len > 0 ? pos_len : 0);
    }
    return 0;
#else
    return MIN_BLOCK_2[-exponent / IDX_SIZE];
#endif
  }
};

#if !defined(LIBC_TYPES_LONG_DOUBLE_IS_FLOAT64) &&                             \
    !defined(LIBC_COPT_FLOAT_TO_STR_NO_SPECIALIZE_LD)
// --------------------------- LONG DOUBLE FUNCTIONS ---------------------------

// this algorithm will work exactly the same for 80 bit and 128 bit long
// doubles. They have the same max exponent, but even if they didn't the
// constants should be calculated to be correct for any provided floating point
// type.

template <> class FloatToString<long double> {
  fputil::FPBits<long double> float_bits;
  bool is_negative = 0;
  int exponent = 0;
  FPBits::StorageType mantissa = 0;

  static constexpr int FRACTION_LEN = fputil::FPBits<long double>::FRACTION_LEN;
  static constexpr int EXP_BIAS = fputil::FPBits<long double>::EXP_BIAS;
  static constexpr size_t UINT_WORD_SIZE = 64;

  static constexpr size_t FLOAT_AS_INT_WIDTH =
      internal::div_ceil(fputil::FPBits<long double>::MAX_BIASED_EXPONENT -
                             FPBits::EXP_BIAS,
                         UINT_WORD_SIZE) *
      UINT_WORD_SIZE;
  static constexpr size_t EXTRA_INT_WIDTH =
      internal::div_ceil(sizeof(long double) * CHAR_BIT, UINT_WORD_SIZE) *
      UINT_WORD_SIZE;

  using wide_int = UInt<FLOAT_AS_INT_WIDTH + EXTRA_INT_WIDTH>;

  // float_as_fixed represents the floating point number as a fixed point number
  // with the point EXTRA_INT_WIDTH bits from the left of the number. This can
  // store any number with a negative exponent.
  wide_int float_as_fixed = 0;
  int int_block_index = 0;

  static constexpr size_t BLOCK_BUFFER_LEN =
      internal::div_ceil(internal::log10_pow2(FLOAT_AS_INT_WIDTH), BLOCK_SIZE) +
      1;
  BlockInt block_buffer[BLOCK_BUFFER_LEN] = {0};
  size_t block_buffer_valid = 0;

  template <size_t Bits>
  LIBC_INLINE static constexpr BlockInt grab_digits(UInt<Bits> &int_num) {
    auto wide_result = int_num.div_uint_half_times_pow_2(EXP5_9, 9);
    // the optional only comes into effect when dividing by 0, which will
    // never happen here. Thus, we just assert that it has value.
    LIBC_ASSERT(wide_result.has_value());
    return static_cast<BlockInt>(wide_result.value());
  }

  LIBC_INLINE static constexpr void zero_leading_digits(wide_int &int_num) {
    // WORD_SIZE is the width of the numbers used to internally represent the
    // UInt
    for (size_t i = 0; i < EXTRA_INT_WIDTH / wide_int::WORD_SIZE; ++i)
      int_num[i + (FLOAT_AS_INT_WIDTH / wide_int::WORD_SIZE)] = 0;
  }

  // init_convert initializes float_as_int, cur_block, and block_buffer based on
  // the mantissa and exponent of the initial number. Calling it will always
  // return the class to the starting state.
  LIBC_INLINE constexpr void init_convert() {
    // No calculation necessary for the 0 case.
    if (mantissa == 0 && exponent == 0)
      return;

    if (exponent > 0) {
      // if the exponent is positive, then the number is fully above the decimal
      // point. In this case we represent the float as an integer, then divide
      // by 10^BLOCK_SIZE and take the remainder as our next block. This
      // generates the digits from right to left, but the digits will be written
      // from left to right, so it caches the results so they can be read in
      // reverse order.

      wide_int float_as_int = mantissa;

      float_as_int.shift_left(exponent);
      int_block_index = 0;

      while (float_as_int > 0) {
        LIBC_ASSERT(int_block_index < static_cast<int>(BLOCK_BUFFER_LEN));
        block_buffer[int_block_index] =
            grab_digits<FLOAT_AS_INT_WIDTH + EXTRA_INT_WIDTH>(float_as_int);
        ++int_block_index;
      }
      block_buffer_valid = int_block_index;

    } else {
      // if the exponent is not positive, then the number is at least partially
      // below the decimal point. In this case we represent the float as a fixed
      // point number with the decimal point after the top EXTRA_INT_WIDTH bits.
      float_as_fixed = mantissa;

      const int SHIFT_AMOUNT = FLOAT_AS_INT_WIDTH + exponent;
      static_assert(EXTRA_INT_WIDTH >= sizeof(long double) * 8);
      float_as_fixed.shift_left(SHIFT_AMOUNT);

      // If there are still digits above the decimal point, handle those.
      if (float_as_fixed.clz() < static_cast<int>(EXTRA_INT_WIDTH)) {
        UInt<EXTRA_INT_WIDTH> above_decimal_point =
            float_as_fixed >> FLOAT_AS_INT_WIDTH;

        size_t positive_int_block_index = 0;
        while (above_decimal_point > 0) {
          block_buffer[positive_int_block_index] =
              grab_digits<EXTRA_INT_WIDTH>(above_decimal_point);
          ++positive_int_block_index;
        }
        block_buffer_valid = positive_int_block_index;

        // Zero all digits above the decimal point.
        zero_leading_digits(float_as_fixed);
        int_block_index = 0;
      }
    }
  }

public:
  LIBC_INLINE constexpr FloatToString(long double init_float)
      : float_bits(init_float) {
    is_negative = float_bits.is_neg();
    exponent = float_bits.get_explicit_exponent();
    mantissa = float_bits.get_explicit_mantissa();

    // Adjust for the width of the mantissa.
    exponent -= FRACTION_LEN;

    this->init_convert();
  }

  LIBC_INLINE constexpr size_t get_positive_blocks() {
    if (exponent < -FRACTION_LEN)
      return 0;

    const uint32_t idx =
        exponent < 0
            ? 0
            : static_cast<uint32_t>(exponent + (IDX_SIZE - 1)) / IDX_SIZE;
    return internal::length_for_num(idx * IDX_SIZE, FRACTION_LEN);
  }

  LIBC_INLINE constexpr size_t zero_blocks_after_point() {
#ifdef LIBC_COPT_FLOAT_TO_STR_USE_MEGA_LONG_DOUBLE_TABLE
    return MIN_BLOCK_2[-exponent / IDX_SIZE];
#else
    if (exponent >= -FRACTION_LEN)
      return 0;

    const int pos_exp = -exponent - 1;
    const uint32_t pos_idx =
        static_cast<uint32_t>(pos_exp + (IDX_SIZE - 1)) / IDX_SIZE;
    const int32_t pos_len = ((internal::ceil_log10_pow2(pos_idx * IDX_SIZE) -
                              internal::ceil_log10_pow2(FRACTION_LEN + 1)) /
                             BLOCK_SIZE) -
                            1;
    return static_cast<uint32_t>(pos_len > 0 ? pos_len : 0);
#endif
  }

  LIBC_INLINE constexpr bool is_lowest_block(size_t negative_block_index) {
    // The decimal representation of 2**(-i) will have exactly i digits after
    // the decimal point.
    const int num_requested_digits =
        static_cast<int>((negative_block_index + 1) * BLOCK_SIZE);

    return num_requested_digits > -exponent;
  }

  LIBC_INLINE constexpr BlockInt get_positive_block(int block_index) {
    if (exponent < -FRACTION_LEN)
      return 0;
    if (block_index > static_cast<int>(block_buffer_valid) || block_index < 0)
      return 0;

    LIBC_ASSERT(block_index < static_cast<int>(BLOCK_BUFFER_LEN));

    return block_buffer[block_index];
  }

  LIBC_INLINE constexpr BlockInt get_negative_block(int negative_block_index) {
    if (exponent >= 0)
      return 0;

    // negative_block_index starts at 0 with the first block after the decimal
    // point, and 1 with the second and so on. This converts to the same
    // block_index used everywhere else.

    const int block_index = -1 - negative_block_index;

    // If we're currently after the requested block (remember these are
    // negative indices) we reset the number to the start. This is only
    // likely to happen in %g calls. This will also reset int_block_index.
    // if (block_index > int_block_index) {
    //   init_convert();
    // }

    // Printf is the only existing user of this code and it will only ever move
    // downwards, except for %g but that currently creates a second
    // float_to_string object so this assertion still holds. If a new user needs
    // the ability to step backwards, uncomment the code above.
    LIBC_ASSERT(block_index <= int_block_index);

    // If we are currently before the requested block. Step until we reach the
    // requested block. This is likely to only be one step.
    while (block_index < int_block_index) {
      zero_leading_digits(float_as_fixed);
      float_as_fixed.mul(EXP10_9);
      --int_block_index;
    }

    // We're now on the requested block, return the current block.
    return static_cast<BlockInt>(float_as_fixed >> FLOAT_AS_INT_WIDTH);
  }

  LIBC_INLINE constexpr BlockInt get_block(int block_index) {
    if (block_index >= 0)
      return get_positive_block(block_index);

    return get_negative_block(-1 - block_index);
  }
};

#endif // !LIBC_TYPES_LONG_DOUBLE_IS_FLOAT64 &&
       // !LIBC_COPT_FLOAT_TO_STR_NO_SPECIALIZE_LD

} // namespace LIBC_NAMESPACE

#endif // LLVM_LIBC_SRC___SUPPORT_FLOAT_TO_STRING_H