summaryrefslogtreecommitdiffstats
path: root/libc/test/src/__support/uint_test.cpp
blob: 5696e54c73f363a7b6fa00ca8e1553aac4fd16fd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
//===-- Unittests for the UInt integer class ------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "src/__support/CPP/optional.h"
#include "src/__support/UInt.h"
#include "src/__support/integer_literals.h"        // parse_unsigned_bigint
#include "src/__support/macros/properties/types.h" // LIBC_TYPES_HAS_INT128

#include "include/llvm-libc-macros/math-macros.h" // HUGE_VALF, HUGE_VALF
#include "test/UnitTest/Test.h"

namespace LIBC_NAMESPACE {

enum Value { ZERO, ONE, TWO, MIN, MAX };

template <typename T> auto create(Value value) {
  switch (value) {
  case ZERO:
    return T(0);
  case ONE:
    return T(1);
  case TWO:
    return T(2);
  case MIN:
    return T::min();
  case MAX:
    return T::max();
  }
}

using Types = testing::TypeList< //
#ifdef LIBC_TYPES_HAS_INT64
    BigInt<64, false, uint64_t>, // 64-bits unsigned (1 x uint64_t)
    BigInt<64, true, uint64_t>,  // 64-bits   signed (1 x uint64_t)
#endif
#ifdef LIBC_TYPES_HAS_INT128
    BigInt<128, false, __uint128_t>, // 128-bits unsigned (1 x __uint128_t)
    BigInt<128, true, __uint128_t>,  // 128-bits   signed (1 x __uint128_t)
#endif
    BigInt<16, false, uint16_t>, // 16-bits unsigned (1 x uint16_t)
    BigInt<16, true, uint16_t>,  // 16-bits   signed (1 x uint16_t)
    BigInt<64, false, uint16_t>, // 64-bits unsigned (4 x uint16_t)
    BigInt<64, true, uint16_t>   // 64-bits   signed (4 x uint16_t)
    >;

#define ASSERT_SAME(A, B) ASSERT_TRUE((A) == (B))

TYPED_TEST(LlvmLibcUIntClassTest, Additions, Types) {
  ASSERT_SAME(create<T>(ZERO) + create<T>(ZERO), create<T>(ZERO));
  ASSERT_SAME(create<T>(ONE) + create<T>(ZERO), create<T>(ONE));
  ASSERT_SAME(create<T>(ZERO) + create<T>(ONE), create<T>(ONE));
  ASSERT_SAME(create<T>(ONE) + create<T>(ONE), create<T>(TWO));
  // 2's complement addition works for signed and unsigned types.
  // - unsigned : 0xff + 0x01 = 0x00 (255 + 1 = 0)
  // -   signed : 0xef + 0x01 = 0xf0 (127 + 1 = -128)
  ASSERT_SAME(create<T>(MAX) + create<T>(ONE), create<T>(MIN));
}

TYPED_TEST(LlvmLibcUIntClassTest, Subtraction, Types) {
  ASSERT_SAME(create<T>(ZERO) - create<T>(ZERO), create<T>(ZERO));
  ASSERT_SAME(create<T>(ONE) - create<T>(ONE), create<T>(ZERO));
  ASSERT_SAME(create<T>(ONE) - create<T>(ZERO), create<T>(ONE));
  // 2's complement subtraction works for signed and unsigned types.
  // - unsigned : 0x00 - 0x01 = 0xff (   0 - 1 = 255)
  // -   signed : 0xf0 - 0x01 = 0xef (-128 - 1 = 127)
  ASSERT_SAME(create<T>(MIN) - create<T>(ONE), create<T>(MAX));
}

TYPED_TEST(LlvmLibcUIntClassTest, Multiplication, Types) {
  ASSERT_SAME(create<T>(ZERO) * create<T>(ZERO), create<T>(ZERO));
  ASSERT_SAME(create<T>(ZERO) * create<T>(ONE), create<T>(ZERO));
  ASSERT_SAME(create<T>(ONE) * create<T>(ZERO), create<T>(ZERO));
  ASSERT_SAME(create<T>(ONE) * create<T>(ONE), create<T>(ONE));
  ASSERT_SAME(create<T>(ONE) * create<T>(TWO), create<T>(TWO));
  ASSERT_SAME(create<T>(TWO) * create<T>(ONE), create<T>(TWO));
  // - unsigned : 0xff x 0xff = 0x01 (mod 0xff)
  // -   signed : 0xef x 0xef = 0x01 (mod 0xff)
  ASSERT_SAME(create<T>(MAX) * create<T>(MAX), create<T>(ONE));
}

template <typename T> void print(const char *msg, T value) {
  testing::tlog << msg;
  IntegerToString<T, radix::Hex> buffer(value);
  testing::tlog << buffer.view() << "\n";
}

TEST(LlvmLibcUIntClassTest, SignedAddSub) {
  // Computations performed by https://www.wolframalpha.com/
  using T = BigInt<128, true, uint32_t>;
  const T a = parse_bigint<T>("1927508279017230597");
  const T b = parse_bigint<T>("278789278723478925");
  const T s = parse_bigint<T>("2206297557740709522");
  // Addition
  ASSERT_SAME(a + b, s);
  ASSERT_SAME(b + a, s); // commutative
  // Subtraction
  ASSERT_SAME(a - s, -b);
  ASSERT_SAME(s - a, b);
}

TEST(LlvmLibcUIntClassTest, SignedMulDiv) {
  // Computations performed by https://www.wolframalpha.com/
  using T = BigInt<128, true, uint16_t>;
  struct {
    const char *a;
    const char *b;
    const char *mul;
  } const test_cases[] = {{"-4", "3", "-12"},
                          {"-3", "-3", "9"},
                          {"1927508279017230597", "278789278723478925",
                           "537368642840747885329125014794668225"}};
  for (auto tc : test_cases) {
    const T a = parse_bigint<T>(tc.a);
    const T b = parse_bigint<T>(tc.b);
    const T mul = parse_bigint<T>(tc.mul);
    // Multiplication
    ASSERT_SAME(a * b, mul);
    ASSERT_SAME(b * a, mul);   // commutative
    ASSERT_SAME(a * -b, -mul); // sign
    ASSERT_SAME(-a * b, -mul); // sign
    ASSERT_SAME(-a * -b, mul); // sign
    // Division
    ASSERT_SAME(mul / a, b);
    ASSERT_SAME(mul / b, a);
    ASSERT_SAME(-mul / a, -b); // sign
    ASSERT_SAME(mul / -a, -b); // sign
    ASSERT_SAME(-mul / -a, b); // sign
  }
}

TYPED_TEST(LlvmLibcUIntClassTest, Division, Types) {
  ASSERT_SAME(create<T>(ZERO) / create<T>(ONE), create<T>(ZERO));
  ASSERT_SAME(create<T>(MAX) / create<T>(ONE), create<T>(MAX));
  ASSERT_SAME(create<T>(MAX) / create<T>(MAX), create<T>(ONE));
  ASSERT_SAME(create<T>(ONE) / create<T>(ONE), create<T>(ONE));
  if constexpr (T::SIGNED) {
    // Special case found by fuzzing.
    ASSERT_SAME(create<T>(MIN) / create<T>(MIN), create<T>(ONE));
  }
  // - unsigned : 0xff / 0x02 = 0x7f
  // -   signed : 0xef / 0x02 = 0x77
  ASSERT_SAME(create<T>(MAX) / create<T>(TWO), (create<T>(MAX) >> 1));

  using word_type = typename T::word_type;
  const T zero_one_repeated = T::all_ones() / T(0xff);
  const word_type pattern = word_type(~0) / word_type(0xff);
  for (const word_type part : zero_one_repeated.val) {
    if constexpr (T::SIGNED == false) {
      EXPECT_EQ(part, pattern);
    }
  }
}

TYPED_TEST(LlvmLibcUIntClassTest, is_neg, Types) {
  EXPECT_FALSE(create<T>(ZERO).is_neg());
  EXPECT_FALSE(create<T>(ONE).is_neg());
  EXPECT_FALSE(create<T>(TWO).is_neg());
  EXPECT_EQ(create<T>(MIN).is_neg(), T::SIGNED);
  EXPECT_FALSE(create<T>(MAX).is_neg());
}

TYPED_TEST(LlvmLibcUIntClassTest, Masks, Types) {
  if constexpr (!T::SIGNED) {
    constexpr size_t BITS = T::BITS;
    // mask_trailing_ones
    ASSERT_SAME((mask_trailing_ones<T, 0>()), T::zero());
    ASSERT_SAME((mask_trailing_ones<T, 1>()), T::one());
    ASSERT_SAME((mask_trailing_ones<T, BITS - 1>()), T::all_ones() >> 1);
    ASSERT_SAME((mask_trailing_ones<T, BITS>()), T::all_ones());
    // mask_leading_ones
    ASSERT_SAME((mask_leading_ones<T, 0>()), T::zero());
    ASSERT_SAME((mask_leading_ones<T, 1>()), T::one() << (BITS - 1));
    ASSERT_SAME((mask_leading_ones<T, BITS - 1>()), T::all_ones() - T::one());
    ASSERT_SAME((mask_leading_ones<T, BITS>()), T::all_ones());
    // mask_trailing_zeros
    ASSERT_SAME((mask_trailing_zeros<T, 0>()), T::all_ones());
    ASSERT_SAME((mask_trailing_zeros<T, 1>()), T::all_ones() - T::one());
    ASSERT_SAME((mask_trailing_zeros<T, BITS - 1>()), T::one() << (BITS - 1));
    ASSERT_SAME((mask_trailing_zeros<T, BITS>()), T::zero());
    // mask_trailing_zeros
    ASSERT_SAME((mask_leading_zeros<T, 0>()), T::all_ones());
    ASSERT_SAME((mask_leading_zeros<T, 1>()), T::all_ones() >> 1);
    ASSERT_SAME((mask_leading_zeros<T, BITS - 1>()), T::one());
    ASSERT_SAME((mask_leading_zeros<T, BITS>()), T::zero());
  }
}

TYPED_TEST(LlvmLibcUIntClassTest, CountBits, Types) {
  if constexpr (!T::SIGNED) {
    for (size_t i = 0; i <= T::BITS; ++i) {
      const auto l_one = T::all_ones() << i; // 0b111...000
      const auto r_one = T::all_ones() >> i; // 0b000...111
      const int zeros = i;
      const int ones = T::BITS - zeros;
      ASSERT_EQ(cpp::countr_one(r_one), ones);
      ASSERT_EQ(cpp::countl_one(l_one), ones);
      ASSERT_EQ(cpp::countr_zero(l_one), zeros);
      ASSERT_EQ(cpp::countl_zero(r_one), zeros);
    }
  }
}

using LL_UInt64 = UInt<64>;
// We want to test UInt<128> explicitly. So, for
// convenience, we use a sugar which does not conflict with the UInt128 type
// which can resolve to __uint128_t if the platform has it.
using LL_UInt128 = UInt<128>;
using LL_UInt192 = UInt<192>;
using LL_UInt256 = UInt<256>;
using LL_UInt320 = UInt<320>;
using LL_UInt512 = UInt<512>;
using LL_UInt1024 = UInt<1024>;

using LL_Int128 = Int<128>;
using LL_Int192 = Int<192>;

TEST(LlvmLibcUIntClassTest, BitCastToFromDouble) {
  static_assert(cpp::is_trivially_copyable<LL_UInt64>::value);
  static_assert(sizeof(LL_UInt64) == sizeof(double));
  const double inf = HUGE_VAL;
  const double max = DBL_MAX;
  const double array[] = {0.0, 0.1, 1.0, max, inf};
  for (double value : array) {
    LL_UInt64 back = cpp::bit_cast<LL_UInt64>(value);
    double forth = cpp::bit_cast<double>(back);
    EXPECT_TRUE(value == forth);
  }
}

#ifdef LIBC_TYPES_HAS_INT128
TEST(LlvmLibcUIntClassTest, BitCastToFromNativeUint128) {
  static_assert(cpp::is_trivially_copyable<LL_UInt128>::value);
  static_assert(sizeof(LL_UInt128) == sizeof(__uint128_t));
  const __uint128_t array[] = {0, 1, ~__uint128_t(0)};
  for (__uint128_t value : array) {
    LL_UInt128 back = cpp::bit_cast<LL_UInt128>(value);
    __uint128_t forth = cpp::bit_cast<__uint128_t>(back);
    EXPECT_TRUE(value == forth);
  }
}
#endif // LIBC_TYPES_HAS_INT128

#ifdef LIBC_TYPES_HAS_FLOAT128
TEST(LlvmLibcUIntClassTest, BitCastToFromNativeFloat128) {
  static_assert(cpp::is_trivially_copyable<LL_UInt128>::value);
  static_assert(sizeof(LL_UInt128) == sizeof(float128));
  const float128 array[] = {0, 0.1, 1};
  for (float128 value : array) {
    LL_UInt128 back = cpp::bit_cast<LL_UInt128>(value);
    float128 forth = cpp::bit_cast<float128>(back);
    EXPECT_TRUE(value == forth);
  }
}
#endif // LIBC_TYPES_HAS_FLOAT128

TEST(LlvmLibcUIntClassTest, BasicInit) {
  LL_UInt128 half_val(12345);
  LL_UInt128 full_val({12345, 67890});
  ASSERT_TRUE(half_val != full_val);
}

TEST(LlvmLibcUIntClassTest, AdditionTests) {
  LL_UInt128 val1(12345);
  LL_UInt128 val2(54321);
  LL_UInt128 result1(66666);
  EXPECT_EQ(val1 + val2, result1);
  EXPECT_EQ((val1 + val2), (val2 + val1)); // addition is commutative

  // Test overflow
  LL_UInt128 val3({0xf000000000000001, 0});
  LL_UInt128 val4({0x100000000000000f, 0});
  LL_UInt128 result2({0x10, 0x1});
  EXPECT_EQ(val3 + val4, result2);
  EXPECT_EQ(val3 + val4, val4 + val3);

  // Test overflow
  LL_UInt128 val5({0x0123456789abcdef, 0xfedcba9876543210});
  LL_UInt128 val6({0x1111222233334444, 0xaaaabbbbccccdddd});
  LL_UInt128 result3({0x12346789bcdf1233, 0xa987765443210fed});
  EXPECT_EQ(val5 + val6, result3);
  EXPECT_EQ(val5 + val6, val6 + val5);

  // Test 192-bit addition
  LL_UInt192 val7({0x0123456789abcdef, 0xfedcba9876543210, 0xfedcba9889abcdef});
  LL_UInt192 val8({0x1111222233334444, 0xaaaabbbbccccdddd, 0xeeeeffffeeeeffff});
  LL_UInt192 result4(
      {0x12346789bcdf1233, 0xa987765443210fed, 0xedcbba98789acdef});
  EXPECT_EQ(val7 + val8, result4);
  EXPECT_EQ(val7 + val8, val8 + val7);

  // Test 256-bit addition
  LL_UInt256 val9({0x1f1e1d1c1b1a1918, 0xf1f2f3f4f5f6f7f8, 0x0123456789abcdef,
                   0xfedcba9876543210});
  LL_UInt256 val10({0x1111222233334444, 0xaaaabbbbccccdddd, 0x1111222233334444,
                    0xaaaabbbbccccdddd});
  LL_UInt256 result5({0x302f3f3e4e4d5d5c, 0x9c9dafb0c2c3d5d5,
                      0x12346789bcdf1234, 0xa987765443210fed});
  EXPECT_EQ(val9 + val10, result5);
  EXPECT_EQ(val9 + val10, val10 + val9);
}

TEST(LlvmLibcUIntClassTest, SubtractionTests) {
  LL_UInt128 val1(12345);
  LL_UInt128 val2(54321);
  LL_UInt128 result1({0xffffffffffff5c08, 0xffffffffffffffff});
  LL_UInt128 result2(0xa3f8);
  EXPECT_EQ(val1 - val2, result1);
  EXPECT_EQ(val1, val2 + result1);
  EXPECT_EQ(val2 - val1, result2);
  EXPECT_EQ(val2, val1 + result2);

  LL_UInt128 val3({0xf000000000000001, 0});
  LL_UInt128 val4({0x100000000000000f, 0});
  LL_UInt128 result3(0xdffffffffffffff2);
  LL_UInt128 result4({0x200000000000000e, 0xffffffffffffffff});
  EXPECT_EQ(val3 - val4, result3);
  EXPECT_EQ(val3, val4 + result3);
  EXPECT_EQ(val4 - val3, result4);
  EXPECT_EQ(val4, val3 + result4);

  LL_UInt128 val5({0x0123456789abcdef, 0xfedcba9876543210});
  LL_UInt128 val6({0x1111222233334444, 0xaaaabbbbccccdddd});
  LL_UInt128 result5({0xf0122345567889ab, 0x5431fedca9875432});
  LL_UInt128 result6({0x0feddcbaa9877655, 0xabce01235678abcd});
  EXPECT_EQ(val5 - val6, result5);
  EXPECT_EQ(val5, val6 + result5);
  EXPECT_EQ(val6 - val5, result6);
  EXPECT_EQ(val6, val5 + result6);
}

TEST(LlvmLibcUIntClassTest, MultiplicationTests) {
  LL_UInt128 val1({5, 0});
  LL_UInt128 val2({10, 0});
  LL_UInt128 result1({50, 0});
  EXPECT_EQ((val1 * val2), result1);
  EXPECT_EQ((val1 * val2), (val2 * val1)); // multiplication is commutative

  // Check that the multiplication works accross the whole number
  LL_UInt128 val3({0xf, 0});
  LL_UInt128 val4({0x1111111111111111, 0x1111111111111111});
  LL_UInt128 result2({0xffffffffffffffff, 0xffffffffffffffff});
  EXPECT_EQ((val3 * val4), result2);
  EXPECT_EQ((val3 * val4), (val4 * val3));

  // Check that multiplication doesn't reorder the bits.
  LL_UInt128 val5({2, 0});
  LL_UInt128 val6({0x1357024675316420, 0x0123456776543210});
  LL_UInt128 result3({0x26ae048cea62c840, 0x02468aceeca86420});

  EXPECT_EQ((val5 * val6), result3);
  EXPECT_EQ((val5 * val6), (val6 * val5));

  // Make sure that multiplication handles overflow correctly.
  LL_UInt128 val7(2);
  LL_UInt128 val8({0x8000800080008000, 0x8000800080008000});
  LL_UInt128 result4({0x0001000100010000, 0x0001000100010001});
  EXPECT_EQ((val7 * val8), result4);
  EXPECT_EQ((val7 * val8), (val8 * val7));

  // val9 is the 128 bit mantissa of 1e60 as a float, val10 is the mantissa for
  // 1e-60. They almost cancel on the high bits, but the result we're looking
  // for is just the low bits. The full result would be
  // 0x7fffffffffffffffffffffffffffffff3a4f32d17f40d08f917cf11d1e039c50
  LL_UInt128 val9({0x01D762422C946590, 0x9F4F2726179A2245});
  LL_UInt128 val10({0x3792F412CB06794D, 0xCDB02555653131B6});
  LL_UInt128 result5({0x917cf11d1e039c50, 0x3a4f32d17f40d08f});
  EXPECT_EQ((val9 * val10), result5);
  EXPECT_EQ((val9 * val10), (val10 * val9));

  // Test 192-bit multiplication
  LL_UInt192 val11(
      {0xffffffffffffffff, 0x01D762422C946590, 0x9F4F2726179A2245});
  LL_UInt192 val12(
      {0xffffffffffffffff, 0x3792F412CB06794D, 0xCDB02555653131B6});

  LL_UInt192 result6(
      {0x0000000000000001, 0xc695a9ab08652121, 0x5de7faf698d32732});
  EXPECT_EQ((val11 * val12), result6);
  EXPECT_EQ((val11 * val12), (val12 * val11));

  LL_UInt256 val13({0xffffffffffffffff, 0x01D762422C946590, 0x9F4F2726179A2245,
                    0xffffffffffffffff});
  LL_UInt256 val14({0xffffffffffffffff, 0xffffffffffffffff, 0x3792F412CB06794D,
                    0xCDB02555653131B6});
  LL_UInt256 result7({0x0000000000000001, 0xfe289dbdd36b9a6f,
                      0x291de4c71d5f646c, 0xfd37221cb06d4978});
  EXPECT_EQ((val13 * val14), result7);
  EXPECT_EQ((val13 * val14), (val14 * val13));
}

TEST(LlvmLibcUIntClassTest, DivisionTests) {
  LL_UInt128 val1({10, 0});
  LL_UInt128 val2({5, 0});
  LL_UInt128 result1({2, 0});
  EXPECT_EQ((val1 / val2), result1);
  EXPECT_EQ((val1 / result1), val2);

  // Check that the division works accross the whole number
  LL_UInt128 val3({0xffffffffffffffff, 0xffffffffffffffff});
  LL_UInt128 val4({0xf, 0});
  LL_UInt128 result2({0x1111111111111111, 0x1111111111111111});
  EXPECT_EQ((val3 / val4), result2);
  EXPECT_EQ((val3 / result2), val4);

  // Check that division doesn't reorder the bits.
  LL_UInt128 val5({0x26ae048cea62c840, 0x02468aceeca86420});
  LL_UInt128 val6({2, 0});
  LL_UInt128 result3({0x1357024675316420, 0x0123456776543210});
  EXPECT_EQ((val5 / val6), result3);
  EXPECT_EQ((val5 / result3), val6);

  // Make sure that division handles inexact results correctly.
  LL_UInt128 val7({1001, 0});
  LL_UInt128 val8({10, 0});
  LL_UInt128 result4({100, 0});
  EXPECT_EQ((val7 / val8), result4);
  EXPECT_EQ((val7 / result4), val8);

  // Make sure that division handles divisors of one correctly.
  LL_UInt128 val9({0x1234567812345678, 0x9abcdef09abcdef0});
  LL_UInt128 val10({1, 0});
  LL_UInt128 result5({0x1234567812345678, 0x9abcdef09abcdef0});
  EXPECT_EQ((val9 / val10), result5);
  EXPECT_EQ((val9 / result5), val10);

  // Make sure that division handles results of slightly more than 1 correctly.
  LL_UInt128 val11({1050, 0});
  LL_UInt128 val12({1030, 0});
  LL_UInt128 result6({1, 0});
  EXPECT_EQ((val11 / val12), result6);

  // Make sure that division handles dividing by zero correctly.
  LL_UInt128 val13({1234, 0});
  LL_UInt128 val14({0, 0});
  EXPECT_FALSE(val13.div(val14).has_value());
}

TEST(LlvmLibcUIntClassTest, ModuloTests) {
  LL_UInt128 val1({10, 0});
  LL_UInt128 val2({5, 0});
  LL_UInt128 result1({0, 0});
  EXPECT_EQ((val1 % val2), result1);

  LL_UInt128 val3({101, 0});
  LL_UInt128 val4({10, 0});
  LL_UInt128 result2({1, 0});
  EXPECT_EQ((val3 % val4), result2);

  LL_UInt128 val5({10000001, 0});
  LL_UInt128 val6({10, 0});
  LL_UInt128 result3({1, 0});
  EXPECT_EQ((val5 % val6), result3);

  LL_UInt128 val7({12345, 10});
  LL_UInt128 val8({0, 1});
  LL_UInt128 result4({12345, 0});
  EXPECT_EQ((val7 % val8), result4);

  LL_UInt128 val9({12345, 10});
  LL_UInt128 val10({0, 11});
  LL_UInt128 result5({12345, 10});
  EXPECT_EQ((val9 % val10), result5);

  LL_UInt128 val11({10, 10});
  LL_UInt128 val12({10, 10});
  LL_UInt128 result6({0, 0});
  EXPECT_EQ((val11 % val12), result6);

  LL_UInt128 val13({12345, 0});
  LL_UInt128 val14({1, 0});
  LL_UInt128 result7({0, 0});
  EXPECT_EQ((val13 % val14), result7);

  LL_UInt128 val15({0xffffffffffffffff, 0xffffffffffffffff});
  LL_UInt128 val16({0x1111111111111111, 0x111111111111111});
  LL_UInt128 result8({0xf, 0});
  EXPECT_EQ((val15 % val16), result8);

  LL_UInt128 val17({5076944270305263619, 54210108624}); // (10 ^ 30) + 3
  LL_UInt128 val18({10, 0});
  LL_UInt128 result9({3, 0});
  EXPECT_EQ((val17 % val18), result9);
}

TEST(LlvmLibcUIntClassTest, PowerTests) {
  LL_UInt128 val1({10, 0});
  val1.pow_n(30);
  LL_UInt128 result1({5076944270305263616, 54210108624}); // (10 ^ 30)
  EXPECT_EQ(val1, result1);

  LL_UInt128 val2({1, 0});
  val2.pow_n(10);
  LL_UInt128 result2({1, 0});
  EXPECT_EQ(val2, result2);

  LL_UInt128 val3({0, 0});
  val3.pow_n(10);
  LL_UInt128 result3({0, 0});
  EXPECT_EQ(val3, result3);

  LL_UInt128 val4({10, 0});
  val4.pow_n(0);
  LL_UInt128 result4({1, 0});
  EXPECT_EQ(val4, result4);

  // Test zero to the zero. Currently it returns 1, since that's the easiest
  // result.
  LL_UInt128 val5({0, 0});
  val5.pow_n(0);
  LL_UInt128 result5({1, 0});
  EXPECT_EQ(val5, result5);

  // Test a number that overflows. 100 ^ 20 is larger than 2 ^ 128.
  LL_UInt128 val6({100, 0});
  val6.pow_n(20);
  LL_UInt128 result6({0xb9f5610000000000, 0x6329f1c35ca4bfab});
  EXPECT_EQ(val6, result6);

  // Test that both halves of the number are being used.
  LL_UInt128 val7({1, 1});
  val7.pow_n(2);
  LL_UInt128 result7({1, 2});
  EXPECT_EQ(val7, result7);

  LL_UInt128 val_pow_two;
  LL_UInt128 result_pow_two;
  for (size_t i = 0; i < 128; ++i) {
    val_pow_two = 2;
    val_pow_two.pow_n(i);
    result_pow_two = 1;
    result_pow_two = result_pow_two << i;
    EXPECT_EQ(val_pow_two, result_pow_two);
  }
}

TEST(LlvmLibcUIntClassTest, ShiftLeftTests) {
  LL_UInt128 val1(0x0123456789abcdef);
  LL_UInt128 result1(0x123456789abcdef0);
  EXPECT_EQ((val1 << 4), result1);

  LL_UInt128 val2({0x13579bdf02468ace, 0x123456789abcdef0});
  LL_UInt128 result2({0x02468ace00000000, 0x9abcdef013579bdf});
  EXPECT_EQ((val2 << 32), result2);
  LL_UInt128 val22 = val2;
  val22 <<= 32;
  EXPECT_EQ(val22, result2);

  LL_UInt128 result3({0, 0x13579bdf02468ace});
  EXPECT_EQ((val2 << 64), result3);

  LL_UInt128 result4({0, 0x02468ace00000000});
  EXPECT_EQ((val2 << 96), result4);

  LL_UInt128 result5({0, 0x2468ace000000000});
  EXPECT_EQ((val2 << 100), result5);

  LL_UInt128 result6({0, 0});
  EXPECT_EQ((val2 << 128), result6);
  EXPECT_EQ((val2 << 256), result6);

  LL_UInt192 val3({1, 0, 0});
  LL_UInt192 result7({0, 1, 0});
  EXPECT_EQ((val3 << 64), result7);
}

TEST(LlvmLibcUIntClassTest, ShiftRightTests) {
  LL_UInt128 val1(0x0123456789abcdef);
  LL_UInt128 result1(0x00123456789abcde);
  EXPECT_EQ((val1 >> 4), result1);

  LL_UInt128 val2({0x13579bdf02468ace, 0x123456789abcdef0});
  LL_UInt128 result2({0x9abcdef013579bdf, 0x0000000012345678});
  EXPECT_EQ((val2 >> 32), result2);
  LL_UInt128 val22 = val2;
  val22 >>= 32;
  EXPECT_EQ(val22, result2);

  LL_UInt128 result3({0x123456789abcdef0, 0});
  EXPECT_EQ((val2 >> 64), result3);

  LL_UInt128 result4({0x0000000012345678, 0});
  EXPECT_EQ((val2 >> 96), result4);

  LL_UInt128 result5({0x0000000001234567, 0});
  EXPECT_EQ((val2 >> 100), result5);

  LL_UInt128 result6({0, 0});
  EXPECT_EQ((val2 >> 128), result6);
  EXPECT_EQ((val2 >> 256), result6);

  LL_UInt128 v1({0x1111222233334444, 0xaaaabbbbccccdddd});
  LL_UInt128 r1({0xaaaabbbbccccdddd, 0});
  EXPECT_EQ((v1 >> 64), r1);

  LL_UInt192 v2({0x1111222233334444, 0x5555666677778888, 0xaaaabbbbccccdddd});
  LL_UInt192 r2({0x5555666677778888, 0xaaaabbbbccccdddd, 0});
  LL_UInt192 r3({0xaaaabbbbccccdddd, 0, 0});
  EXPECT_EQ((v2 >> 64), r2);
  EXPECT_EQ((v2 >> 128), r3);
  EXPECT_EQ((r2 >> 64), r3);

  LL_UInt192 val3({0, 0, 1});
  LL_UInt192 result7({0, 1, 0});
  EXPECT_EQ((val3 >> 64), result7);
}

TEST(LlvmLibcUIntClassTest, AndTests) {
  LL_UInt128 base({0xffff00000000ffff, 0xffffffff00000000});
  LL_UInt128 val128({0xf0f0f0f00f0f0f0f, 0xff00ff0000ff00ff});
  uint64_t val64 = 0xf0f0f0f00f0f0f0f;
  int val32 = 0x0f0f0f0f;
  LL_UInt128 result128({0xf0f0000000000f0f, 0xff00ff0000000000});
  LL_UInt128 result64(0xf0f0000000000f0f);
  LL_UInt128 result32(0x00000f0f);
  EXPECT_EQ((base & val128), result128);
  EXPECT_EQ((base & val64), result64);
  EXPECT_EQ((base & val32), result32);
}

TEST(LlvmLibcUIntClassTest, OrTests) {
  LL_UInt128 base({0xffff00000000ffff, 0xffffffff00000000});
  LL_UInt128 val128({0xf0f0f0f00f0f0f0f, 0xff00ff0000ff00ff});
  uint64_t val64 = 0xf0f0f0f00f0f0f0f;
  int val32 = 0x0f0f0f0f;
  LL_UInt128 result128({0xfffff0f00f0fffff, 0xffffffff00ff00ff});
  LL_UInt128 result64({0xfffff0f00f0fffff, 0xffffffff00000000});
  LL_UInt128 result32({0xffff00000f0fffff, 0xffffffff00000000});
  EXPECT_EQ((base | val128), result128);
  EXPECT_EQ((base | val64), result64);
  EXPECT_EQ((base | val32), result32);
}

TEST(LlvmLibcUIntClassTest, CompoundAssignments) {
  LL_UInt128 x({0xffff00000000ffff, 0xffffffff00000000});
  LL_UInt128 b({0xf0f0f0f00f0f0f0f, 0xff00ff0000ff00ff});

  LL_UInt128 a = x;
  a |= b;
  LL_UInt128 or_result({0xfffff0f00f0fffff, 0xffffffff00ff00ff});
  EXPECT_EQ(a, or_result);

  a = x;
  a &= b;
  LL_UInt128 and_result({0xf0f0000000000f0f, 0xff00ff0000000000});
  EXPECT_EQ(a, and_result);

  a = x;
  a ^= b;
  LL_UInt128 xor_result({0x0f0ff0f00f0ff0f0, 0x00ff00ff00ff00ff});
  EXPECT_EQ(a, xor_result);

  a = LL_UInt128(uint64_t(0x0123456789abcdef));
  LL_UInt128 shift_left_result(uint64_t(0x123456789abcdef0));
  a <<= 4;
  EXPECT_EQ(a, shift_left_result);

  a = LL_UInt128(uint64_t(0x123456789abcdef1));
  LL_UInt128 shift_right_result(uint64_t(0x0123456789abcdef));
  a >>= 4;
  EXPECT_EQ(a, shift_right_result);

  a = LL_UInt128({0xf000000000000001, 0});
  b = LL_UInt128({0x100000000000000f, 0});
  LL_UInt128 add_result({0x10, 0x1});
  a += b;
  EXPECT_EQ(a, add_result);

  a = LL_UInt128({0xf, 0});
  b = LL_UInt128({0x1111111111111111, 0x1111111111111111});
  LL_UInt128 mul_result({0xffffffffffffffff, 0xffffffffffffffff});
  a *= b;
  EXPECT_EQ(a, mul_result);
}

TEST(LlvmLibcUIntClassTest, UnaryPredecrement) {
  LL_UInt128 a = LL_UInt128({0x1111111111111111, 0x1111111111111111});
  ++a;
  EXPECT_EQ(a, LL_UInt128({0x1111111111111112, 0x1111111111111111}));

  a = LL_UInt128({0xffffffffffffffff, 0x0});
  ++a;
  EXPECT_EQ(a, LL_UInt128({0x0, 0x1}));

  a = LL_UInt128({0xffffffffffffffff, 0xffffffffffffffff});
  ++a;
  EXPECT_EQ(a, LL_UInt128({0x0, 0x0}));
}

TEST(LlvmLibcUIntClassTest, EqualsTests) {
  LL_UInt128 a1({0xffffffff00000000, 0xffff00000000ffff});
  LL_UInt128 a2({0xffffffff00000000, 0xffff00000000ffff});
  LL_UInt128 b({0xff00ff0000ff00ff, 0xf0f0f0f00f0f0f0f});
  LL_UInt128 a_reversed({0xffff00000000ffff, 0xffffffff00000000});
  LL_UInt128 a_upper(0xffff00000000ffff);
  LL_UInt128 a_lower(0xffffffff00000000);
  ASSERT_TRUE(a1 == a1);
  ASSERT_TRUE(a1 == a2);
  ASSERT_FALSE(a1 == b);
  ASSERT_FALSE(a1 == a_reversed);
  ASSERT_FALSE(a1 == a_lower);
  ASSERT_FALSE(a1 == a_upper);
  ASSERT_TRUE(a_lower != a_upper);
}

TEST(LlvmLibcUIntClassTest, ComparisonTests) {
  LL_UInt128 a({0xffffffff00000000, 0xffff00000000ffff});
  LL_UInt128 b({0xff00ff0000ff00ff, 0xf0f0f0f00f0f0f0f});
  EXPECT_GT(a, b);
  EXPECT_GE(a, b);
  EXPECT_LT(b, a);
  EXPECT_LE(b, a);

  LL_UInt128 x(0xffffffff00000000);
  LL_UInt128 y(0x00000000ffffffff);
  EXPECT_GT(x, y);
  EXPECT_GE(x, y);
  EXPECT_LT(y, x);
  EXPECT_LE(y, x);

  EXPECT_LE(a, a);
  EXPECT_GE(a, a);
}

TEST(LlvmLibcUIntClassTest, FullMulTests) {
  LL_UInt128 a({0xffffffffffffffffULL, 0xffffffffffffffffULL});
  LL_UInt128 b({0xfedcba9876543210ULL, 0xfefdfcfbfaf9f8f7ULL});
  LL_UInt256 r({0x0123456789abcdf0ULL, 0x0102030405060708ULL,
                0xfedcba987654320fULL, 0xfefdfcfbfaf9f8f7ULL});
  LL_UInt128 r_hi({0xfedcba987654320eULL, 0xfefdfcfbfaf9f8f7ULL});

  EXPECT_EQ(a.ful_mul(b), r);
  EXPECT_EQ(a.quick_mul_hi(b), r_hi);

  LL_UInt192 c(
      {0x7766554433221101ULL, 0xffeeddccbbaa9988ULL, 0x1f2f3f4f5f6f7f8fULL});
  LL_UInt320 rr({0x8899aabbccddeeffULL, 0x0011223344556677ULL,
                 0x583715f4d3b29171ULL, 0xffeeddccbbaa9988ULL,
                 0x1f2f3f4f5f6f7f8fULL});

  EXPECT_EQ(a.ful_mul(c), rr);
  EXPECT_EQ(a.ful_mul(c), c.ful_mul(a));
}

#define TEST_QUICK_MUL_HI(Bits, Error)                                         \
  do {                                                                         \
    LL_UInt##Bits a = ~LL_UInt##Bits(0);                                       \
    LL_UInt##Bits hi = a.quick_mul_hi(a);                                      \
    LL_UInt##Bits trunc = static_cast<LL_UInt##Bits>(a.ful_mul(a) >> Bits);    \
    uint64_t overflow = trunc.sub_overflow(hi);                                \
    EXPECT_EQ(overflow, uint64_t(0));                                          \
    EXPECT_LE(uint64_t(trunc), uint64_t(Error));                               \
  } while (0)

TEST(LlvmLibcUIntClassTest, QuickMulHiTests) {
  TEST_QUICK_MUL_HI(128, 1);
  TEST_QUICK_MUL_HI(192, 2);
  TEST_QUICK_MUL_HI(256, 3);
  TEST_QUICK_MUL_HI(512, 7);
}

TEST(LlvmLibcUIntClassTest, ConstexprInitTests) {
  constexpr LL_UInt128 add = LL_UInt128(1) + LL_UInt128(2);
  ASSERT_EQ(add, LL_UInt128(3));
  constexpr LL_UInt128 sub = LL_UInt128(5) - LL_UInt128(4);
  ASSERT_EQ(sub, LL_UInt128(1));
}

#define TEST_QUICK_DIV_UINT32_POW2(x, e)                                       \
  do {                                                                         \
    LL_UInt320 y({0x8899aabbccddeeffULL, 0x0011223344556677ULL,                \
                  0x583715f4d3b29171ULL, 0xffeeddccbbaa9988ULL,                \
                  0x1f2f3f4f5f6f7f8fULL});                                     \
    LL_UInt320 d = LL_UInt320(x);                                              \
    d <<= e;                                                                   \
    LL_UInt320 q1 = y / d;                                                     \
    LL_UInt320 r1 = y % d;                                                     \
    LL_UInt320 r2 = *y.div_uint_half_times_pow_2(x, e);                        \
    EXPECT_EQ(q1, y);                                                          \
    EXPECT_EQ(r1, r2);                                                         \
  } while (0)

TEST(LlvmLibcUIntClassTest, DivUInt32TimesPow2Tests) {
  for (size_t i = 0; i < 320; i += 32) {
    TEST_QUICK_DIV_UINT32_POW2(1, i);
    TEST_QUICK_DIV_UINT32_POW2(13151719, i);
  }

  TEST_QUICK_DIV_UINT32_POW2(1, 75);
  TEST_QUICK_DIV_UINT32_POW2(1, 101);

  TEST_QUICK_DIV_UINT32_POW2(1000000000, 75);
  TEST_QUICK_DIV_UINT32_POW2(1000000000, 101);
}

TEST(LlvmLibcUIntClassTest, ComparisonInt128Tests) {
  LL_Int128 a(123);
  LL_Int128 b(0);
  LL_Int128 c(-1);

  ASSERT_TRUE(a == a);
  ASSERT_TRUE(b == b);
  ASSERT_TRUE(c == c);

  ASSERT_TRUE(a != b);
  ASSERT_TRUE(a != c);
  ASSERT_TRUE(b != a);
  ASSERT_TRUE(b != c);
  ASSERT_TRUE(c != a);
  ASSERT_TRUE(c != b);

  ASSERT_TRUE(a > b);
  ASSERT_TRUE(a >= b);
  ASSERT_TRUE(a > c);
  ASSERT_TRUE(a >= c);
  ASSERT_TRUE(b > c);
  ASSERT_TRUE(b >= c);

  ASSERT_TRUE(b < a);
  ASSERT_TRUE(b <= a);
  ASSERT_TRUE(c < a);
  ASSERT_TRUE(c <= a);
  ASSERT_TRUE(c < b);
  ASSERT_TRUE(c <= b);
}

TEST(LlvmLibcUIntClassTest, BasicArithmeticInt128Tests) {
  LL_Int128 a(123);
  LL_Int128 b(0);
  LL_Int128 c(-3);

  ASSERT_EQ(a * a, LL_Int128(123 * 123));
  ASSERT_EQ(a * c, LL_Int128(-369));
  ASSERT_EQ(c * a, LL_Int128(-369));
  ASSERT_EQ(c * c, LL_Int128(9));
  ASSERT_EQ(a * b, b);
  ASSERT_EQ(b * a, b);
  ASSERT_EQ(b * c, b);
  ASSERT_EQ(c * b, b);
}

#ifdef LIBC_TYPES_HAS_INT128

TEST(LlvmLibcUIntClassTest, ConstructorFromUInt128Tests) {
  __uint128_t a = (__uint128_t(123) << 64) + 1;
  __int128_t b = -static_cast<__int128_t>(a);
  LL_Int128 c(a);
  LL_Int128 d(b);

  LL_Int192 e(a);
  LL_Int192 f(b);

  ASSERT_EQ(static_cast<int>(c), 1);
  ASSERT_EQ(static_cast<int>(c >> 64), 123);
  ASSERT_EQ(static_cast<uint64_t>(d), static_cast<uint64_t>(b));
  ASSERT_EQ(static_cast<uint64_t>(d >> 64), static_cast<uint64_t>(b >> 64));
  ASSERT_EQ(c + d, LL_Int128(a + b));

  ASSERT_EQ(static_cast<int>(e), 1);
  ASSERT_EQ(static_cast<int>(e >> 64), 123);
  ASSERT_EQ(static_cast<uint64_t>(f), static_cast<uint64_t>(b));
  ASSERT_EQ(static_cast<uint64_t>(f >> 64), static_cast<uint64_t>(b >> 64));
  ASSERT_EQ(LL_UInt192(e + f), LL_UInt192(a + b));
}

TEST(LlvmLibcUIntClassTest, WordTypeUInt128Tests) {
  using LL_UInt256_128 = BigInt<256, false, __uint128_t>;
  using LL_UInt128_128 = BigInt<128, false, __uint128_t>;

  LL_UInt256_128 a(1);

  ASSERT_EQ(static_cast<int>(a), 1);
  a = (a << 128) + 2;
  ASSERT_EQ(static_cast<int>(a), 2);
  ASSERT_EQ(static_cast<uint64_t>(a), uint64_t(2));
  a = (a << 32) + 3;
  ASSERT_EQ(static_cast<int>(a), 3);
  ASSERT_EQ(static_cast<uint64_t>(a), uint64_t(0x2'0000'0003));
  ASSERT_EQ(static_cast<int>(a >> 32), 2);
  ASSERT_EQ(static_cast<int>(a >> (128 + 32)), 1);

  LL_UInt128_128 b(__uint128_t(1) << 127);
  LL_UInt128_128 c(b);
  a = b.ful_mul(c);

  ASSERT_EQ(static_cast<int>(a >> 254), 1);

  LL_UInt256_128 d = LL_UInt256_128(123) << 4;
  ASSERT_EQ(static_cast<int>(d), 123 << 4);
  LL_UInt256_128 e = a / d;
  LL_UInt256_128 f = a % d;
  LL_UInt256_128 r = *a.div_uint_half_times_pow_2(123, 4);
  EXPECT_TRUE(e == a);
  EXPECT_TRUE(f == r);
}

#endif // LIBC_TYPES_HAS_INT128

TEST(LlvmLibcUIntClassTest, OtherWordTypeTests) {
  using LL_UInt96 = BigInt<96, false, uint32_t>;

  LL_UInt96 a(1);

  ASSERT_EQ(static_cast<int>(a), 1);
  a = (a << 32) + 2;
  ASSERT_EQ(static_cast<int>(a), 2);
  ASSERT_EQ(static_cast<uint64_t>(a), uint64_t(0x1'0000'0002));
  a = (a << 32) + 3;
  ASSERT_EQ(static_cast<int>(a), 3);
  ASSERT_EQ(static_cast<int>(a >> 32), 2);
  ASSERT_EQ(static_cast<int>(a >> 64), 1);
}

} // namespace LIBC_NAMESPACE