summaryrefslogtreecommitdiffstats
path: root/llvm/lib/ProfileData/InstrProfWriter.cpp
blob: 96ab729f91e4dd88d5251a721eea21e01bc937c2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
//===- InstrProfWriter.cpp - Instrumented profiling writer ----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains support for writing profiling data for clang's
// instrumentation based PGO and coverage.
//
//===----------------------------------------------------------------------===//

#include "llvm/ProfileData/InstrProfWriter.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/IR/ProfileSummary.h"
#include "llvm/ProfileData/InstrProf.h"
#include "llvm/ProfileData/MemProf.h"
#include "llvm/ProfileData/ProfileCommon.h"
#include "llvm/Support/Compression.h"
#include "llvm/Support/Endian.h"
#include "llvm/Support/EndianStream.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/FormatVariadic.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/OnDiskHashTable.h"
#include "llvm/Support/raw_ostream.h"
#include <cstdint>
#include <memory>
#include <string>
#include <tuple>
#include <utility>
#include <vector>

using namespace llvm;

// A struct to define how the data stream should be patched. For Indexed
// profiling, only uint64_t data type is needed.
struct PatchItem {
  uint64_t Pos; // Where to patch.
  uint64_t *D;  // Pointer to an array of source data.
  int N;        // Number of elements in \c D array.
};

namespace llvm {

// A wrapper class to abstract writer stream with support of bytes
// back patching.
class ProfOStream {
public:
  ProfOStream(raw_fd_ostream &FD)
      : IsFDOStream(true), OS(FD), LE(FD, llvm::endianness::little) {}
  ProfOStream(raw_string_ostream &STR)
      : IsFDOStream(false), OS(STR), LE(STR, llvm::endianness::little) {}

  uint64_t tell() { return OS.tell(); }
  void write(uint64_t V) { LE.write<uint64_t>(V); }
  void writeByte(uint8_t V) { LE.write<uint8_t>(V); }

  // \c patch can only be called when all data is written and flushed.
  // For raw_string_ostream, the patch is done on the target string
  // directly and it won't be reflected in the stream's internal buffer.
  void patch(ArrayRef<PatchItem> P) {
    using namespace support;

    if (IsFDOStream) {
      raw_fd_ostream &FDOStream = static_cast<raw_fd_ostream &>(OS);
      const uint64_t LastPos = FDOStream.tell();
      for (const auto &K : P) {
        FDOStream.seek(K.Pos);
        for (int I = 0; I < K.N; I++)
          write(K.D[I]);
      }
      // Reset the stream to the last position after patching so that users
      // don't accidentally overwrite data. This makes it consistent with
      // the string stream below which replaces the data directly.
      FDOStream.seek(LastPos);
    } else {
      raw_string_ostream &SOStream = static_cast<raw_string_ostream &>(OS);
      std::string &Data = SOStream.str(); // with flush
      for (const auto &K : P) {
        for (int I = 0; I < K.N; I++) {
          uint64_t Bytes =
              endian::byte_swap<uint64_t, llvm::endianness::little>(K.D[I]);
          Data.replace(K.Pos + I * sizeof(uint64_t), sizeof(uint64_t),
                       (const char *)&Bytes, sizeof(uint64_t));
        }
      }
    }
  }

  // If \c OS is an instance of \c raw_fd_ostream, this field will be
  // true. Otherwise, \c OS will be an raw_string_ostream.
  bool IsFDOStream;
  raw_ostream &OS;
  support::endian::Writer LE;
};

class InstrProfRecordWriterTrait {
public:
  using key_type = StringRef;
  using key_type_ref = StringRef;

  using data_type = const InstrProfWriter::ProfilingData *const;
  using data_type_ref = const InstrProfWriter::ProfilingData *const;

  using hash_value_type = uint64_t;
  using offset_type = uint64_t;

  llvm::endianness ValueProfDataEndianness = llvm::endianness::little;
  InstrProfSummaryBuilder *SummaryBuilder;
  InstrProfSummaryBuilder *CSSummaryBuilder;

  InstrProfRecordWriterTrait() = default;

  static hash_value_type ComputeHash(key_type_ref K) {
    return IndexedInstrProf::ComputeHash(K);
  }

  static std::pair<offset_type, offset_type>
  EmitKeyDataLength(raw_ostream &Out, key_type_ref K, data_type_ref V) {
    using namespace support;

    endian::Writer LE(Out, llvm::endianness::little);

    offset_type N = K.size();
    LE.write<offset_type>(N);

    offset_type M = 0;
    for (const auto &ProfileData : *V) {
      const InstrProfRecord &ProfRecord = ProfileData.second;
      M += sizeof(uint64_t); // The function hash
      M += sizeof(uint64_t); // The size of the Counts vector
      M += ProfRecord.Counts.size() * sizeof(uint64_t);
      M += sizeof(uint64_t); // The size of the Bitmap vector
      M += ProfRecord.BitmapBytes.size() * sizeof(uint64_t);

      // Value data
      M += ValueProfData::getSize(ProfileData.second);
    }
    LE.write<offset_type>(M);

    return std::make_pair(N, M);
  }

  void EmitKey(raw_ostream &Out, key_type_ref K, offset_type N) {
    Out.write(K.data(), N);
  }

  void EmitData(raw_ostream &Out, key_type_ref, data_type_ref V, offset_type) {
    using namespace support;

    endian::Writer LE(Out, llvm::endianness::little);
    for (const auto &ProfileData : *V) {
      const InstrProfRecord &ProfRecord = ProfileData.second;
      if (NamedInstrProfRecord::hasCSFlagInHash(ProfileData.first))
        CSSummaryBuilder->addRecord(ProfRecord);
      else
        SummaryBuilder->addRecord(ProfRecord);

      LE.write<uint64_t>(ProfileData.first); // Function hash
      LE.write<uint64_t>(ProfRecord.Counts.size());
      for (uint64_t I : ProfRecord.Counts)
        LE.write<uint64_t>(I);

      LE.write<uint64_t>(ProfRecord.BitmapBytes.size());
      for (uint64_t I : ProfRecord.BitmapBytes)
        LE.write<uint64_t>(I);

      // Write value data
      std::unique_ptr<ValueProfData> VDataPtr =
          ValueProfData::serializeFrom(ProfileData.second);
      uint32_t S = VDataPtr->getSize();
      VDataPtr->swapBytesFromHost(ValueProfDataEndianness);
      Out.write((const char *)VDataPtr.get(), S);
    }
  }
};

} // end namespace llvm

InstrProfWriter::InstrProfWriter(
    bool Sparse, uint64_t TemporalProfTraceReservoirSize,
    uint64_t MaxTemporalProfTraceLength, bool WritePrevVersion,
    memprof::IndexedVersion MemProfVersionRequested)
    : Sparse(Sparse), MaxTemporalProfTraceLength(MaxTemporalProfTraceLength),
      TemporalProfTraceReservoirSize(TemporalProfTraceReservoirSize),
      InfoObj(new InstrProfRecordWriterTrait()),
      WritePrevVersion(WritePrevVersion),
      MemProfVersionRequested(MemProfVersionRequested) {}

InstrProfWriter::~InstrProfWriter() { delete InfoObj; }

// Internal interface for testing purpose only.
void InstrProfWriter::setValueProfDataEndianness(llvm::endianness Endianness) {
  InfoObj->ValueProfDataEndianness = Endianness;
}

void InstrProfWriter::setOutputSparse(bool Sparse) {
  this->Sparse = Sparse;
}

void InstrProfWriter::addRecord(NamedInstrProfRecord &&I, uint64_t Weight,
                                function_ref<void(Error)> Warn) {
  auto Name = I.Name;
  auto Hash = I.Hash;
  addRecord(Name, Hash, std::move(I), Weight, Warn);
}

void InstrProfWriter::overlapRecord(NamedInstrProfRecord &&Other,
                                    OverlapStats &Overlap,
                                    OverlapStats &FuncLevelOverlap,
                                    const OverlapFuncFilters &FuncFilter) {
  auto Name = Other.Name;
  auto Hash = Other.Hash;
  Other.accumulateCounts(FuncLevelOverlap.Test);
  if (!FunctionData.contains(Name)) {
    Overlap.addOneUnique(FuncLevelOverlap.Test);
    return;
  }
  if (FuncLevelOverlap.Test.CountSum < 1.0f) {
    Overlap.Overlap.NumEntries += 1;
    return;
  }
  auto &ProfileDataMap = FunctionData[Name];
  bool NewFunc;
  ProfilingData::iterator Where;
  std::tie(Where, NewFunc) =
      ProfileDataMap.insert(std::make_pair(Hash, InstrProfRecord()));
  if (NewFunc) {
    Overlap.addOneMismatch(FuncLevelOverlap.Test);
    return;
  }
  InstrProfRecord &Dest = Where->second;

  uint64_t ValueCutoff = FuncFilter.ValueCutoff;
  if (!FuncFilter.NameFilter.empty() && Name.contains(FuncFilter.NameFilter))
    ValueCutoff = 0;

  Dest.overlap(Other, Overlap, FuncLevelOverlap, ValueCutoff);
}

void InstrProfWriter::addRecord(StringRef Name, uint64_t Hash,
                                InstrProfRecord &&I, uint64_t Weight,
                                function_ref<void(Error)> Warn) {
  auto &ProfileDataMap = FunctionData[Name];

  bool NewFunc;
  ProfilingData::iterator Where;
  std::tie(Where, NewFunc) =
      ProfileDataMap.insert(std::make_pair(Hash, InstrProfRecord()));
  InstrProfRecord &Dest = Where->second;

  auto MapWarn = [&](instrprof_error E) {
    Warn(make_error<InstrProfError>(E));
  };

  if (NewFunc) {
    // We've never seen a function with this name and hash, add it.
    Dest = std::move(I);
    if (Weight > 1)
      Dest.scale(Weight, 1, MapWarn);
  } else {
    // We're updating a function we've seen before.
    Dest.merge(I, Weight, MapWarn);
  }

  Dest.sortValueData();
}

void InstrProfWriter::addMemProfRecord(
    const Function::GUID Id, const memprof::IndexedMemProfRecord &Record) {
  auto Result = MemProfRecordData.insert({Id, Record});
  // If we inserted a new record then we are done.
  if (Result.second) {
    return;
  }
  memprof::IndexedMemProfRecord &Existing = Result.first->second;
  Existing.merge(Record);
}

bool InstrProfWriter::addMemProfFrame(const memprof::FrameId Id,
                                      const memprof::Frame &Frame,
                                      function_ref<void(Error)> Warn) {
  auto Result = MemProfFrameData.insert({Id, Frame});
  // If a mapping already exists for the current frame id and it does not
  // match the new mapping provided then reset the existing contents and bail
  // out. We don't support the merging of memprof data whose Frame -> Id
  // mapping across profiles is inconsistent.
  if (!Result.second && Result.first->second != Frame) {
    Warn(make_error<InstrProfError>(instrprof_error::malformed,
                                    "frame to id mapping mismatch"));
    return false;
  }
  return true;
}

void InstrProfWriter::addBinaryIds(ArrayRef<llvm::object::BuildID> BIs) {
  llvm::append_range(BinaryIds, BIs);
}

void InstrProfWriter::addTemporalProfileTrace(TemporalProfTraceTy Trace) {
  if (Trace.FunctionNameRefs.size() > MaxTemporalProfTraceLength)
    Trace.FunctionNameRefs.resize(MaxTemporalProfTraceLength);
  if (Trace.FunctionNameRefs.empty())
    return;

  if (TemporalProfTraceStreamSize < TemporalProfTraceReservoirSize) {
    // Simply append the trace if we have not yet hit our reservoir size limit.
    TemporalProfTraces.push_back(std::move(Trace));
  } else {
    // Otherwise, replace a random trace in the stream.
    std::uniform_int_distribution<uint64_t> Distribution(
        0, TemporalProfTraceStreamSize);
    uint64_t RandomIndex = Distribution(RNG);
    if (RandomIndex < TemporalProfTraces.size())
      TemporalProfTraces[RandomIndex] = std::move(Trace);
  }
  ++TemporalProfTraceStreamSize;
}

void InstrProfWriter::addTemporalProfileTraces(
    SmallVectorImpl<TemporalProfTraceTy> &SrcTraces, uint64_t SrcStreamSize) {
  // Assume that the source has the same reservoir size as the destination to
  // avoid needing to record it in the indexed profile format.
  bool IsDestSampled =
      (TemporalProfTraceStreamSize > TemporalProfTraceReservoirSize);
  bool IsSrcSampled = (SrcStreamSize > TemporalProfTraceReservoirSize);
  if (!IsDestSampled && IsSrcSampled) {
    // If one of the traces are sampled, ensure that it belongs to Dest.
    std::swap(TemporalProfTraces, SrcTraces);
    std::swap(TemporalProfTraceStreamSize, SrcStreamSize);
    std::swap(IsDestSampled, IsSrcSampled);
  }
  if (!IsSrcSampled) {
    // If the source stream is not sampled, we add each source trace normally.
    for (auto &Trace : SrcTraces)
      addTemporalProfileTrace(std::move(Trace));
    return;
  }
  // Otherwise, we find the traces that would have been removed if we added
  // the whole source stream.
  SmallSetVector<uint64_t, 8> IndicesToReplace;
  for (uint64_t I = 0; I < SrcStreamSize; I++) {
    std::uniform_int_distribution<uint64_t> Distribution(
        0, TemporalProfTraceStreamSize);
    uint64_t RandomIndex = Distribution(RNG);
    if (RandomIndex < TemporalProfTraces.size())
      IndicesToReplace.insert(RandomIndex);
    ++TemporalProfTraceStreamSize;
  }
  // Then we insert a random sample of the source traces.
  llvm::shuffle(SrcTraces.begin(), SrcTraces.end(), RNG);
  for (const auto &[Index, Trace] : llvm::zip(IndicesToReplace, SrcTraces))
    TemporalProfTraces[Index] = std::move(Trace);
}

void InstrProfWriter::mergeRecordsFromWriter(InstrProfWriter &&IPW,
                                             function_ref<void(Error)> Warn) {
  for (auto &I : IPW.FunctionData)
    for (auto &Func : I.getValue())
      addRecord(I.getKey(), Func.first, std::move(Func.second), 1, Warn);

  BinaryIds.reserve(BinaryIds.size() + IPW.BinaryIds.size());
  for (auto &I : IPW.BinaryIds)
    addBinaryIds(I);

  addTemporalProfileTraces(IPW.TemporalProfTraces,
                           IPW.TemporalProfTraceStreamSize);

  MemProfFrameData.reserve(IPW.MemProfFrameData.size());
  for (auto &I : IPW.MemProfFrameData) {
    // If we weren't able to add the frame mappings then it doesn't make sense
    // to try to merge the records from this profile.
    if (!addMemProfFrame(I.first, I.second, Warn))
      return;
  }

  MemProfRecordData.reserve(IPW.MemProfRecordData.size());
  for (auto &I : IPW.MemProfRecordData) {
    addMemProfRecord(I.first, I.second);
  }
}

bool InstrProfWriter::shouldEncodeData(const ProfilingData &PD) {
  if (!Sparse)
    return true;
  for (const auto &Func : PD) {
    const InstrProfRecord &IPR = Func.second;
    if (llvm::any_of(IPR.Counts, [](uint64_t Count) { return Count > 0; }))
      return true;
    if (llvm::any_of(IPR.BitmapBytes, [](uint8_t Byte) { return Byte > 0; }))
      return true;
  }
  return false;
}

static void setSummary(IndexedInstrProf::Summary *TheSummary,
                       ProfileSummary &PS) {
  using namespace IndexedInstrProf;

  const std::vector<ProfileSummaryEntry> &Res = PS.getDetailedSummary();
  TheSummary->NumSummaryFields = Summary::NumKinds;
  TheSummary->NumCutoffEntries = Res.size();
  TheSummary->set(Summary::MaxFunctionCount, PS.getMaxFunctionCount());
  TheSummary->set(Summary::MaxBlockCount, PS.getMaxCount());
  TheSummary->set(Summary::MaxInternalBlockCount, PS.getMaxInternalCount());
  TheSummary->set(Summary::TotalBlockCount, PS.getTotalCount());
  TheSummary->set(Summary::TotalNumBlocks, PS.getNumCounts());
  TheSummary->set(Summary::TotalNumFunctions, PS.getNumFunctions());
  for (unsigned I = 0; I < Res.size(); I++)
    TheSummary->setEntry(I, Res[I]);
}

Error InstrProfWriter::writeImpl(ProfOStream &OS) {
  using namespace IndexedInstrProf;
  using namespace support;

  OnDiskChainedHashTableGenerator<InstrProfRecordWriterTrait> Generator;

  InstrProfSummaryBuilder ISB(ProfileSummaryBuilder::DefaultCutoffs);
  InfoObj->SummaryBuilder = &ISB;
  InstrProfSummaryBuilder CSISB(ProfileSummaryBuilder::DefaultCutoffs);
  InfoObj->CSSummaryBuilder = &CSISB;

  // Populate the hash table generator.
  SmallVector<std::pair<StringRef, const ProfilingData *>, 0> OrderedData;
  for (const auto &I : FunctionData)
    if (shouldEncodeData(I.getValue()))
      OrderedData.emplace_back((I.getKey()), &I.getValue());
  llvm::sort(OrderedData, less_first());
  for (const auto &I : OrderedData)
    Generator.insert(I.first, I.second);

  // Write the header.
  IndexedInstrProf::Header Header;
  Header.Magic = IndexedInstrProf::Magic;
  Header.Version = WritePrevVersion
                       ? IndexedInstrProf::ProfVersion::Version11
                       : IndexedInstrProf::ProfVersion::CurrentVersion;
  // The WritePrevVersion handling will either need to be removed or updated
  // if the version is advanced beyond 12.
  assert(IndexedInstrProf::ProfVersion::CurrentVersion ==
         IndexedInstrProf::ProfVersion::Version12);
  if (static_cast<bool>(ProfileKind & InstrProfKind::IRInstrumentation))
    Header.Version |= VARIANT_MASK_IR_PROF;
  if (static_cast<bool>(ProfileKind & InstrProfKind::ContextSensitive))
    Header.Version |= VARIANT_MASK_CSIR_PROF;
  if (static_cast<bool>(ProfileKind &
                        InstrProfKind::FunctionEntryInstrumentation))
    Header.Version |= VARIANT_MASK_INSTR_ENTRY;
  if (static_cast<bool>(ProfileKind & InstrProfKind::SingleByteCoverage))
    Header.Version |= VARIANT_MASK_BYTE_COVERAGE;
  if (static_cast<bool>(ProfileKind & InstrProfKind::FunctionEntryOnly))
    Header.Version |= VARIANT_MASK_FUNCTION_ENTRY_ONLY;
  if (static_cast<bool>(ProfileKind & InstrProfKind::MemProf))
    Header.Version |= VARIANT_MASK_MEMPROF;
  if (static_cast<bool>(ProfileKind & InstrProfKind::TemporalProfile))
    Header.Version |= VARIANT_MASK_TEMPORAL_PROF;

  Header.Unused = 0;
  Header.HashType = static_cast<uint64_t>(IndexedInstrProf::HashType);
  Header.HashOffset = 0;
  Header.MemProfOffset = 0;
  Header.BinaryIdOffset = 0;
  Header.TemporalProfTracesOffset = 0;
  Header.VTableNamesOffset = 0;

  // Only write out the first four fields. We need to remember the offset of the
  // remaining fields to allow back patching later.
  for (int I = 0; I < 4; I++)
    OS.write(reinterpret_cast<uint64_t *>(&Header)[I]);

  // Save the location of Header.HashOffset field in \c OS.
  uint64_t HashTableStartFieldOffset = OS.tell();
  // Reserve the space for HashOffset field.
  OS.write(0);

  // Save the location of MemProf profile data. This is stored in two parts as
  // the schema and as a separate on-disk chained hashtable.
  uint64_t MemProfSectionOffset = OS.tell();
  // Reserve space for the MemProf table field to be patched later if this
  // profile contains memory profile information.
  OS.write(0);

  // Save the location of binary ids section.
  uint64_t BinaryIdSectionOffset = OS.tell();
  // Reserve space for the BinaryIdOffset field to be patched later if this
  // profile contains binary ids.
  OS.write(0);

  uint64_t TemporalProfTracesOffset = OS.tell();
  OS.write(0);

  uint64_t VTableNamesOffset = OS.tell();
  if (!WritePrevVersion)
    OS.write(0);

  // Reserve space to write profile summary data.
  uint32_t NumEntries = ProfileSummaryBuilder::DefaultCutoffs.size();
  uint32_t SummarySize = Summary::getSize(Summary::NumKinds, NumEntries);
  // Remember the summary offset.
  uint64_t SummaryOffset = OS.tell();
  for (unsigned I = 0; I < SummarySize / sizeof(uint64_t); I++)
    OS.write(0);
  uint64_t CSSummaryOffset = 0;
  uint64_t CSSummarySize = 0;
  if (static_cast<bool>(ProfileKind & InstrProfKind::ContextSensitive)) {
    CSSummaryOffset = OS.tell();
    CSSummarySize = SummarySize / sizeof(uint64_t);
    for (unsigned I = 0; I < CSSummarySize; I++)
      OS.write(0);
  }

  // Write the hash table.
  uint64_t HashTableStart = Generator.Emit(OS.OS, *InfoObj);

  // Write the MemProf profile data if we have it. This includes a simple schema
  // with the format described below followed by the hashtable:
  // uint64_t Version
  // uint64_t RecordTableOffset = RecordTableGenerator.Emit
  // uint64_t FramePayloadOffset = Stream offset before emitting the frame table
  // uint64_t FrameTableOffset = FrameTableGenerator.Emit
  // uint64_t Num schema entries
  // uint64_t Schema entry 0
  // uint64_t Schema entry 1
  // ....
  // uint64_t Schema entry N - 1
  // OnDiskChainedHashTable MemProfRecordData
  // OnDiskChainedHashTable MemProfFrameData
  uint64_t MemProfSectionStart = 0;
  if (static_cast<bool>(ProfileKind & InstrProfKind::MemProf)) {
    if (MemProfVersionRequested < memprof::MinimumSupportedVersion ||
        MemProfVersionRequested > memprof::MaximumSupportedVersion) {
      return make_error<InstrProfError>(
          instrprof_error::unsupported_version,
          formatv("MemProf version {} not supported; "
                  "requires version between {} and {}, inclusive",
                  MemProfVersionRequested, memprof::MinimumSupportedVersion,
                  memprof::MaximumSupportedVersion));
    }

    MemProfSectionStart = OS.tell();

    if (MemProfVersionRequested >= memprof::Version1)
      OS.write(MemProfVersionRequested);

    OS.write(0ULL); // Reserve space for the memprof record table offset.
    OS.write(0ULL); // Reserve space for the memprof frame payload offset.
    OS.write(0ULL); // Reserve space for the memprof frame table offset.

    auto Schema = memprof::PortableMemInfoBlock::getSchema();
    OS.write(static_cast<uint64_t>(Schema.size()));
    for (const auto Id : Schema) {
      OS.write(static_cast<uint64_t>(Id));
    }

    auto RecordWriter =
        std::make_unique<memprof::RecordWriterTrait>(memprof::Version1);
    RecordWriter->Schema = &Schema;
    OnDiskChainedHashTableGenerator<memprof::RecordWriterTrait>
        RecordTableGenerator;
    for (auto &I : MemProfRecordData) {
      // Insert the key (func hash) and value (memprof record).
      RecordTableGenerator.insert(I.first, I.second, *RecordWriter.get());
    }
    // Release the memory of this MapVector as it is no longer needed.
    MemProfRecordData.clear();

    // The call to Emit invokes RecordWriterTrait::EmitData which destructs
    // the memprof record copies owned by the RecordTableGenerator. This works
    // because the RecordTableGenerator is not used after this point.
    uint64_t RecordTableOffset =
        RecordTableGenerator.Emit(OS.OS, *RecordWriter);

    uint64_t FramePayloadOffset = OS.tell();

    auto FrameWriter = std::make_unique<memprof::FrameWriterTrait>();
    OnDiskChainedHashTableGenerator<memprof::FrameWriterTrait>
        FrameTableGenerator;
    for (auto &I : MemProfFrameData) {
      // Insert the key (frame id) and value (frame contents).
      FrameTableGenerator.insert(I.first, I.second);
    }
    // Release the memory of this MapVector as it is no longer needed.
    MemProfFrameData.clear();

    uint64_t FrameTableOffset = FrameTableGenerator.Emit(OS.OS, *FrameWriter);

    uint64_t Header[] = {RecordTableOffset, FramePayloadOffset,
                         FrameTableOffset};
    uint64_t HeaderUpdatePos = MemProfSectionStart;
    if (MemProfVersionRequested >= memprof::Version1)
      // The updates go just after the version field.
      HeaderUpdatePos += sizeof(uint64_t);
    OS.patch({{HeaderUpdatePos, Header, std::size(Header)}});
  }

  // BinaryIdSection has two parts:
  // 1. uint64_t BinaryIdsSectionSize
  // 2. list of binary ids that consist of:
  //    a. uint64_t BinaryIdLength
  //    b. uint8_t  BinaryIdData
  //    c. uint8_t  Padding (if necessary)
  uint64_t BinaryIdSectionStart = OS.tell();
  // Calculate size of binary section.
  uint64_t BinaryIdsSectionSize = 0;

  // Remove duplicate binary ids.
  llvm::sort(BinaryIds);
  BinaryIds.erase(std::unique(BinaryIds.begin(), BinaryIds.end()),
                  BinaryIds.end());

  for (auto BI : BinaryIds) {
    // Increment by binary id length data type size.
    BinaryIdsSectionSize += sizeof(uint64_t);
    // Increment by binary id data length, aligned to 8 bytes.
    BinaryIdsSectionSize += alignToPowerOf2(BI.size(), sizeof(uint64_t));
  }
  // Write binary ids section size.
  OS.write(BinaryIdsSectionSize);

  for (auto BI : BinaryIds) {
    uint64_t BILen = BI.size();
    // Write binary id length.
    OS.write(BILen);
    // Write binary id data.
    for (unsigned K = 0; K < BILen; K++)
      OS.writeByte(BI[K]);
    // Write padding if necessary.
    uint64_t PaddingSize = alignToPowerOf2(BILen, sizeof(uint64_t)) - BILen;
    for (unsigned K = 0; K < PaddingSize; K++)
      OS.writeByte(0);
  }

  uint64_t VTableNamesSectionStart = OS.tell();

  if (!WritePrevVersion) {
    std::vector<std::string> VTableNameStrs;
    for (StringRef VTableName : VTableNames.keys())
      VTableNameStrs.push_back(VTableName.str());

    std::string CompressedVTableNames;
    if (!VTableNameStrs.empty())
      if (Error E = collectGlobalObjectNameStrings(
              VTableNameStrs, compression::zlib::isAvailable(),
              CompressedVTableNames))
        return E;

    const uint64_t CompressedStringLen = CompressedVTableNames.length();

    // Record the length of compressed string.
    OS.write(CompressedStringLen);

    // Write the chars in compressed strings.
    for (auto &c : CompressedVTableNames)
      OS.writeByte(static_cast<uint8_t>(c));

    // Pad up to a multiple of 8.
    // InstrProfReader could read bytes according to 'CompressedStringLen'.
    const uint64_t PaddedLength = alignTo(CompressedStringLen, 8);

    for (uint64_t K = CompressedStringLen; K < PaddedLength; K++)
      OS.writeByte(0);
  }

  uint64_t TemporalProfTracesSectionStart = 0;
  if (static_cast<bool>(ProfileKind & InstrProfKind::TemporalProfile)) {
    TemporalProfTracesSectionStart = OS.tell();
    OS.write(TemporalProfTraces.size());
    OS.write(TemporalProfTraceStreamSize);
    for (auto &Trace : TemporalProfTraces) {
      OS.write(Trace.Weight);
      OS.write(Trace.FunctionNameRefs.size());
      for (auto &NameRef : Trace.FunctionNameRefs)
        OS.write(NameRef);
    }
  }

  // Allocate space for data to be serialized out.
  std::unique_ptr<IndexedInstrProf::Summary> TheSummary =
      IndexedInstrProf::allocSummary(SummarySize);
  // Compute the Summary and copy the data to the data
  // structure to be serialized out (to disk or buffer).
  std::unique_ptr<ProfileSummary> PS = ISB.getSummary();
  setSummary(TheSummary.get(), *PS);
  InfoObj->SummaryBuilder = nullptr;

  // For Context Sensitive summary.
  std::unique_ptr<IndexedInstrProf::Summary> TheCSSummary = nullptr;
  if (static_cast<bool>(ProfileKind & InstrProfKind::ContextSensitive)) {
    TheCSSummary = IndexedInstrProf::allocSummary(SummarySize);
    std::unique_ptr<ProfileSummary> CSPS = CSISB.getSummary();
    setSummary(TheCSSummary.get(), *CSPS);
  }
  InfoObj->CSSummaryBuilder = nullptr;

  if (!WritePrevVersion) {
    // Now do the final patch:
    PatchItem PatchItems[] = {
        // Patch the Header.HashOffset field.
        {HashTableStartFieldOffset, &HashTableStart, 1},
        // Patch the Header.MemProfOffset (=0 for profiles without MemProf
        // data).
        {MemProfSectionOffset, &MemProfSectionStart, 1},
        // Patch the Header.BinaryIdSectionOffset.
        {BinaryIdSectionOffset, &BinaryIdSectionStart, 1},
        // Patch the Header.TemporalProfTracesOffset (=0 for profiles without
        // traces).
        {TemporalProfTracesOffset, &TemporalProfTracesSectionStart, 1},
        {VTableNamesOffset, &VTableNamesSectionStart, 1},
        // Patch the summary data.
        {SummaryOffset, reinterpret_cast<uint64_t *>(TheSummary.get()),
         (int)(SummarySize / sizeof(uint64_t))},
        {CSSummaryOffset, reinterpret_cast<uint64_t *>(TheCSSummary.get()),
         (int)CSSummarySize}};

    OS.patch(PatchItems);
  } else {
    // Now do the final patch:
    PatchItem PatchItems[] = {
        // Patch the Header.HashOffset field.
        {HashTableStartFieldOffset, &HashTableStart, 1},
        // Patch the Header.MemProfOffset (=0 for profiles without MemProf
        // data).
        {MemProfSectionOffset, &MemProfSectionStart, 1},
        // Patch the Header.BinaryIdSectionOffset.
        {BinaryIdSectionOffset, &BinaryIdSectionStart, 1},
        // Patch the Header.TemporalProfTracesOffset (=0 for profiles without
        // traces).
        {TemporalProfTracesOffset, &TemporalProfTracesSectionStart, 1},
        // Patch the summary data.
        {SummaryOffset, reinterpret_cast<uint64_t *>(TheSummary.get()),
         (int)(SummarySize / sizeof(uint64_t))},
        {CSSummaryOffset, reinterpret_cast<uint64_t *>(TheCSSummary.get()),
         (int)CSSummarySize}};

    OS.patch(PatchItems);
  }

  for (const auto &I : FunctionData)
    for (const auto &F : I.getValue())
      if (Error E = validateRecord(F.second))
        return E;

  return Error::success();
}

Error InstrProfWriter::write(raw_fd_ostream &OS) {
  // Write the hash table.
  ProfOStream POS(OS);
  return writeImpl(POS);
}

Error InstrProfWriter::write(raw_string_ostream &OS) {
  ProfOStream POS(OS);
  return writeImpl(POS);
}

std::unique_ptr<MemoryBuffer> InstrProfWriter::writeBuffer() {
  std::string Data;
  raw_string_ostream OS(Data);
  // Write the hash table.
  if (Error E = write(OS))
    return nullptr;
  // Return this in an aligned memory buffer.
  return MemoryBuffer::getMemBufferCopy(Data);
}

static const char *ValueProfKindStr[] = {
#define VALUE_PROF_KIND(Enumerator, Value, Descr) #Enumerator,
#include "llvm/ProfileData/InstrProfData.inc"
};

Error InstrProfWriter::validateRecord(const InstrProfRecord &Func) {
  for (uint32_t VK = 0; VK <= IPVK_Last; VK++) {
    uint32_t NS = Func.getNumValueSites(VK);
    if (!NS)
      continue;
    for (uint32_t S = 0; S < NS; S++) {
      uint32_t ND = Func.getNumValueDataForSite(VK, S);
      std::unique_ptr<InstrProfValueData[]> VD = Func.getValueForSite(VK, S);
      DenseSet<uint64_t> SeenValues;
      for (uint32_t I = 0; I < ND; I++)
        if ((VK != IPVK_IndirectCallTarget && VK != IPVK_VTableTarget) &&
            !SeenValues.insert(VD[I].Value).second)
          return make_error<InstrProfError>(instrprof_error::invalid_prof);
    }
  }

  return Error::success();
}

void InstrProfWriter::writeRecordInText(StringRef Name, uint64_t Hash,
                                        const InstrProfRecord &Func,
                                        InstrProfSymtab &Symtab,
                                        raw_fd_ostream &OS) {
  OS << Name << "\n";
  OS << "# Func Hash:\n" << Hash << "\n";
  OS << "# Num Counters:\n" << Func.Counts.size() << "\n";
  OS << "# Counter Values:\n";
  for (uint64_t Count : Func.Counts)
    OS << Count << "\n";

  if (Func.BitmapBytes.size() > 0) {
    OS << "# Num Bitmap Bytes:\n$" << Func.BitmapBytes.size() << "\n";
    OS << "# Bitmap Byte Values:\n";
    for (uint8_t Byte : Func.BitmapBytes) {
      OS << "0x";
      OS.write_hex(Byte);
      OS << "\n";
    }
    OS << "\n";
  }

  uint32_t NumValueKinds = Func.getNumValueKinds();
  if (!NumValueKinds) {
    OS << "\n";
    return;
  }

  OS << "# Num Value Kinds:\n" << Func.getNumValueKinds() << "\n";
  for (uint32_t VK = 0; VK < IPVK_Last + 1; VK++) {
    uint32_t NS = Func.getNumValueSites(VK);
    if (!NS)
      continue;
    OS << "# ValueKind = " << ValueProfKindStr[VK] << ":\n" << VK << "\n";
    OS << "# NumValueSites:\n" << NS << "\n";
    for (uint32_t S = 0; S < NS; S++) {
      uint32_t ND = Func.getNumValueDataForSite(VK, S);
      OS << ND << "\n";
      std::unique_ptr<InstrProfValueData[]> VD = Func.getValueForSite(VK, S);
      for (uint32_t I = 0; I < ND; I++) {
        if (VK == IPVK_IndirectCallTarget || VK == IPVK_VTableTarget)
          OS << Symtab.getFuncOrVarNameIfDefined(VD[I].Value) << ":"
             << VD[I].Count << "\n";
        else
          OS << VD[I].Value << ":" << VD[I].Count << "\n";
      }
    }
  }

  OS << "\n";
}

Error InstrProfWriter::writeText(raw_fd_ostream &OS) {
  // Check CS first since it implies an IR level profile.
  if (static_cast<bool>(ProfileKind & InstrProfKind::ContextSensitive))
    OS << "# CSIR level Instrumentation Flag\n:csir\n";
  else if (static_cast<bool>(ProfileKind & InstrProfKind::IRInstrumentation))
    OS << "# IR level Instrumentation Flag\n:ir\n";

  if (static_cast<bool>(ProfileKind &
                        InstrProfKind::FunctionEntryInstrumentation))
    OS << "# Always instrument the function entry block\n:entry_first\n";
  if (static_cast<bool>(ProfileKind & InstrProfKind::SingleByteCoverage))
    OS << "# Instrument block coverage\n:single_byte_coverage\n";
  InstrProfSymtab Symtab;

  using FuncPair = detail::DenseMapPair<uint64_t, InstrProfRecord>;
  using RecordType = std::pair<StringRef, FuncPair>;
  SmallVector<RecordType, 4> OrderedFuncData;

  for (const auto &I : FunctionData) {
    if (shouldEncodeData(I.getValue())) {
      if (Error E = Symtab.addFuncName(I.getKey()))
        return E;
      for (const auto &Func : I.getValue())
        OrderedFuncData.push_back(std::make_pair(I.getKey(), Func));
    }
  }

  for (const auto &VTableName : VTableNames)
    if (Error E = Symtab.addVTableName(VTableName.getKey()))
      return E;

  if (static_cast<bool>(ProfileKind & InstrProfKind::TemporalProfile))
    writeTextTemporalProfTraceData(OS, Symtab);

  llvm::sort(OrderedFuncData, [](const RecordType &A, const RecordType &B) {
    return std::tie(A.first, A.second.first) <
           std::tie(B.first, B.second.first);
  });

  for (const auto &record : OrderedFuncData) {
    const StringRef &Name = record.first;
    const FuncPair &Func = record.second;
    writeRecordInText(Name, Func.first, Func.second, Symtab, OS);
  }

  for (const auto &record : OrderedFuncData) {
    const FuncPair &Func = record.second;
    if (Error E = validateRecord(Func.second))
      return E;
  }

  return Error::success();
}

void InstrProfWriter::writeTextTemporalProfTraceData(raw_fd_ostream &OS,
                                                     InstrProfSymtab &Symtab) {
  OS << ":temporal_prof_traces\n";
  OS << "# Num Temporal Profile Traces:\n" << TemporalProfTraces.size() << "\n";
  OS << "# Temporal Profile Trace Stream Size:\n"
     << TemporalProfTraceStreamSize << "\n";
  for (auto &Trace : TemporalProfTraces) {
    OS << "# Weight:\n" << Trace.Weight << "\n";
    for (auto &NameRef : Trace.FunctionNameRefs)
      OS << Symtab.getFuncOrVarName(NameRef) << ",";
    OS << "\n";
  }
  OS << "\n";
}