summaryrefslogtreecommitdiffstats
path: root/llvm/lib/Transforms/Vectorize/VPlanTransforms.cpp
blob: 3753060cd6ec90c21b23c984c7de23e1a1179345 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
//===-- VPlanTransforms.cpp - Utility VPlan to VPlan transforms -----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// \file
/// This file implements a set of utility VPlan to VPlan transformations.
///
//===----------------------------------------------------------------------===//

#include "VPlanTransforms.h"
#include "VPRecipeBuilder.h"
#include "VPlanAnalysis.h"
#include "VPlanCFG.h"
#include "VPlanDominatorTree.h"
#include "VPlanPatternMatch.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/Analysis/IVDescriptors.h"
#include "llvm/Analysis/VectorUtils.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/PatternMatch.h"

using namespace llvm;

void VPlanTransforms::VPInstructionsToVPRecipes(
    VPlanPtr &Plan,
    function_ref<const InductionDescriptor *(PHINode *)>
        GetIntOrFpInductionDescriptor,
    ScalarEvolution &SE, const TargetLibraryInfo &TLI) {

  ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<VPBlockBase *>> RPOT(
      Plan->getEntry());
  for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(RPOT)) {
    VPRecipeBase *Term = VPBB->getTerminator();
    auto EndIter = Term ? Term->getIterator() : VPBB->end();
    // Introduce each ingredient into VPlan.
    for (VPRecipeBase &Ingredient :
         make_early_inc_range(make_range(VPBB->begin(), EndIter))) {

      VPValue *VPV = Ingredient.getVPSingleValue();
      Instruction *Inst = cast<Instruction>(VPV->getUnderlyingValue());

      VPRecipeBase *NewRecipe = nullptr;
      if (auto *VPPhi = dyn_cast<VPWidenPHIRecipe>(&Ingredient)) {
        auto *Phi = cast<PHINode>(VPPhi->getUnderlyingValue());
        const auto *II = GetIntOrFpInductionDescriptor(Phi);
        if (!II)
          continue;

        VPValue *Start = Plan->getOrAddLiveIn(II->getStartValue());
        VPValue *Step =
            vputils::getOrCreateVPValueForSCEVExpr(*Plan, II->getStep(), SE);
        NewRecipe = new VPWidenIntOrFpInductionRecipe(Phi, Start, Step, *II);
      } else {
        assert(isa<VPInstruction>(&Ingredient) &&
               "only VPInstructions expected here");
        assert(!isa<PHINode>(Inst) && "phis should be handled above");
        // Create VPWidenMemoryInstructionRecipe for loads and stores.
        if (LoadInst *Load = dyn_cast<LoadInst>(Inst)) {
          NewRecipe = new VPWidenMemoryInstructionRecipe(
              *Load, Ingredient.getOperand(0), nullptr /*Mask*/,
              false /*Consecutive*/, false /*Reverse*/,
              Ingredient.getDebugLoc());
        } else if (StoreInst *Store = dyn_cast<StoreInst>(Inst)) {
          NewRecipe = new VPWidenMemoryInstructionRecipe(
              *Store, Ingredient.getOperand(1), Ingredient.getOperand(0),
              nullptr /*Mask*/, false /*Consecutive*/, false /*Reverse*/,
              Ingredient.getDebugLoc());
        } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Inst)) {
          NewRecipe = new VPWidenGEPRecipe(GEP, Ingredient.operands());
        } else if (CallInst *CI = dyn_cast<CallInst>(Inst)) {
          NewRecipe = new VPWidenCallRecipe(
              *CI, drop_end(Ingredient.operands()),
              getVectorIntrinsicIDForCall(CI, &TLI), CI->getDebugLoc());
        } else if (SelectInst *SI = dyn_cast<SelectInst>(Inst)) {
          NewRecipe = new VPWidenSelectRecipe(*SI, Ingredient.operands());
        } else if (auto *CI = dyn_cast<CastInst>(Inst)) {
          NewRecipe = new VPWidenCastRecipe(
              CI->getOpcode(), Ingredient.getOperand(0), CI->getType(), *CI);
        } else {
          NewRecipe = new VPWidenRecipe(*Inst, Ingredient.operands());
        }
      }

      NewRecipe->insertBefore(&Ingredient);
      if (NewRecipe->getNumDefinedValues() == 1)
        VPV->replaceAllUsesWith(NewRecipe->getVPSingleValue());
      else
        assert(NewRecipe->getNumDefinedValues() == 0 &&
               "Only recpies with zero or one defined values expected");
      Ingredient.eraseFromParent();
    }
  }
}

static bool sinkScalarOperands(VPlan &Plan) {
  auto Iter = vp_depth_first_deep(Plan.getEntry());
  bool Changed = false;
  // First, collect the operands of all recipes in replicate blocks as seeds for
  // sinking.
  SetVector<std::pair<VPBasicBlock *, VPSingleDefRecipe *>> WorkList;
  for (VPRegionBlock *VPR : VPBlockUtils::blocksOnly<VPRegionBlock>(Iter)) {
    VPBasicBlock *EntryVPBB = VPR->getEntryBasicBlock();
    if (!VPR->isReplicator() || EntryVPBB->getSuccessors().size() != 2)
      continue;
    VPBasicBlock *VPBB = dyn_cast<VPBasicBlock>(EntryVPBB->getSuccessors()[0]);
    if (!VPBB || VPBB->getSingleSuccessor() != VPR->getExitingBasicBlock())
      continue;
    for (auto &Recipe : *VPBB) {
      for (VPValue *Op : Recipe.operands())
        if (auto *Def =
                dyn_cast_or_null<VPSingleDefRecipe>(Op->getDefiningRecipe()))
          WorkList.insert(std::make_pair(VPBB, Def));
    }
  }

  bool ScalarVFOnly = Plan.hasScalarVFOnly();
  // Try to sink each replicate or scalar IV steps recipe in the worklist.
  for (unsigned I = 0; I != WorkList.size(); ++I) {
    VPBasicBlock *SinkTo;
    VPSingleDefRecipe *SinkCandidate;
    std::tie(SinkTo, SinkCandidate) = WorkList[I];
    if (SinkCandidate->getParent() == SinkTo ||
        SinkCandidate->mayHaveSideEffects() ||
        SinkCandidate->mayReadOrWriteMemory())
      continue;
    if (auto *RepR = dyn_cast<VPReplicateRecipe>(SinkCandidate)) {
      if (!ScalarVFOnly && RepR->isUniform())
        continue;
    } else if (!isa<VPScalarIVStepsRecipe>(SinkCandidate))
      continue;

    bool NeedsDuplicating = false;
    // All recipe users of the sink candidate must be in the same block SinkTo
    // or all users outside of SinkTo must be uniform-after-vectorization (
    // i.e., only first lane is used) . In the latter case, we need to duplicate
    // SinkCandidate.
    auto CanSinkWithUser = [SinkTo, &NeedsDuplicating,
                            SinkCandidate](VPUser *U) {
      auto *UI = dyn_cast<VPRecipeBase>(U);
      if (!UI)
        return false;
      if (UI->getParent() == SinkTo)
        return true;
      NeedsDuplicating = UI->onlyFirstLaneUsed(SinkCandidate);
      // We only know how to duplicate VPRecipeRecipes for now.
      return NeedsDuplicating && isa<VPReplicateRecipe>(SinkCandidate);
    };
    if (!all_of(SinkCandidate->users(), CanSinkWithUser))
      continue;

    if (NeedsDuplicating) {
      if (ScalarVFOnly)
        continue;
      Instruction *I = SinkCandidate->getUnderlyingInstr();
      auto *Clone = new VPReplicateRecipe(I, SinkCandidate->operands(), true);
      // TODO: add ".cloned" suffix to name of Clone's VPValue.

      Clone->insertBefore(SinkCandidate);
      SinkCandidate->replaceUsesWithIf(Clone, [SinkTo](VPUser &U, unsigned) {
        return cast<VPRecipeBase>(&U)->getParent() != SinkTo;
      });
    }
    SinkCandidate->moveBefore(*SinkTo, SinkTo->getFirstNonPhi());
    for (VPValue *Op : SinkCandidate->operands())
      if (auto *Def =
              dyn_cast_or_null<VPSingleDefRecipe>(Op->getDefiningRecipe()))
        WorkList.insert(std::make_pair(SinkTo, Def));
    Changed = true;
  }
  return Changed;
}

/// If \p R is a region with a VPBranchOnMaskRecipe in the entry block, return
/// the mask.
VPValue *getPredicatedMask(VPRegionBlock *R) {
  auto *EntryBB = dyn_cast<VPBasicBlock>(R->getEntry());
  if (!EntryBB || EntryBB->size() != 1 ||
      !isa<VPBranchOnMaskRecipe>(EntryBB->begin()))
    return nullptr;

  return cast<VPBranchOnMaskRecipe>(&*EntryBB->begin())->getOperand(0);
}

/// If \p R is a triangle region, return the 'then' block of the triangle.
static VPBasicBlock *getPredicatedThenBlock(VPRegionBlock *R) {
  auto *EntryBB = cast<VPBasicBlock>(R->getEntry());
  if (EntryBB->getNumSuccessors() != 2)
    return nullptr;

  auto *Succ0 = dyn_cast<VPBasicBlock>(EntryBB->getSuccessors()[0]);
  auto *Succ1 = dyn_cast<VPBasicBlock>(EntryBB->getSuccessors()[1]);
  if (!Succ0 || !Succ1)
    return nullptr;

  if (Succ0->getNumSuccessors() + Succ1->getNumSuccessors() != 1)
    return nullptr;
  if (Succ0->getSingleSuccessor() == Succ1)
    return Succ0;
  if (Succ1->getSingleSuccessor() == Succ0)
    return Succ1;
  return nullptr;
}

// Merge replicate regions in their successor region, if a replicate region
// is connected to a successor replicate region with the same predicate by a
// single, empty VPBasicBlock.
static bool mergeReplicateRegionsIntoSuccessors(VPlan &Plan) {
  SetVector<VPRegionBlock *> DeletedRegions;

  // Collect replicate regions followed by an empty block, followed by another
  // replicate region with matching masks to process front. This is to avoid
  // iterator invalidation issues while merging regions.
  SmallVector<VPRegionBlock *, 8> WorkList;
  for (VPRegionBlock *Region1 : VPBlockUtils::blocksOnly<VPRegionBlock>(
           vp_depth_first_deep(Plan.getEntry()))) {
    if (!Region1->isReplicator())
      continue;
    auto *MiddleBasicBlock =
        dyn_cast_or_null<VPBasicBlock>(Region1->getSingleSuccessor());
    if (!MiddleBasicBlock || !MiddleBasicBlock->empty())
      continue;

    auto *Region2 =
        dyn_cast_or_null<VPRegionBlock>(MiddleBasicBlock->getSingleSuccessor());
    if (!Region2 || !Region2->isReplicator())
      continue;

    VPValue *Mask1 = getPredicatedMask(Region1);
    VPValue *Mask2 = getPredicatedMask(Region2);
    if (!Mask1 || Mask1 != Mask2)
      continue;

    assert(Mask1 && Mask2 && "both region must have conditions");
    WorkList.push_back(Region1);
  }

  // Move recipes from Region1 to its successor region, if both are triangles.
  for (VPRegionBlock *Region1 : WorkList) {
    if (DeletedRegions.contains(Region1))
      continue;
    auto *MiddleBasicBlock = cast<VPBasicBlock>(Region1->getSingleSuccessor());
    auto *Region2 = cast<VPRegionBlock>(MiddleBasicBlock->getSingleSuccessor());

    VPBasicBlock *Then1 = getPredicatedThenBlock(Region1);
    VPBasicBlock *Then2 = getPredicatedThenBlock(Region2);
    if (!Then1 || !Then2)
      continue;

    // Note: No fusion-preventing memory dependencies are expected in either
    // region. Such dependencies should be rejected during earlier dependence
    // checks, which guarantee accesses can be re-ordered for vectorization.
    //
    // Move recipes to the successor region.
    for (VPRecipeBase &ToMove : make_early_inc_range(reverse(*Then1)))
      ToMove.moveBefore(*Then2, Then2->getFirstNonPhi());

    auto *Merge1 = cast<VPBasicBlock>(Then1->getSingleSuccessor());
    auto *Merge2 = cast<VPBasicBlock>(Then2->getSingleSuccessor());

    // Move VPPredInstPHIRecipes from the merge block to the successor region's
    // merge block. Update all users inside the successor region to use the
    // original values.
    for (VPRecipeBase &Phi1ToMove : make_early_inc_range(reverse(*Merge1))) {
      VPValue *PredInst1 =
          cast<VPPredInstPHIRecipe>(&Phi1ToMove)->getOperand(0);
      VPValue *Phi1ToMoveV = Phi1ToMove.getVPSingleValue();
      Phi1ToMoveV->replaceUsesWithIf(PredInst1, [Then2](VPUser &U, unsigned) {
        auto *UI = dyn_cast<VPRecipeBase>(&U);
        return UI && UI->getParent() == Then2;
      });

      Phi1ToMove.moveBefore(*Merge2, Merge2->begin());
    }

    // Finally, remove the first region.
    for (VPBlockBase *Pred : make_early_inc_range(Region1->getPredecessors())) {
      VPBlockUtils::disconnectBlocks(Pred, Region1);
      VPBlockUtils::connectBlocks(Pred, MiddleBasicBlock);
    }
    VPBlockUtils::disconnectBlocks(Region1, MiddleBasicBlock);
    DeletedRegions.insert(Region1);
  }

  for (VPRegionBlock *ToDelete : DeletedRegions)
    delete ToDelete;
  return !DeletedRegions.empty();
}

static VPRegionBlock *createReplicateRegion(VPReplicateRecipe *PredRecipe,
                                            VPlan &Plan) {
  Instruction *Instr = PredRecipe->getUnderlyingInstr();
  // Build the triangular if-then region.
  std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str();
  assert(Instr->getParent() && "Predicated instruction not in any basic block");
  auto *BlockInMask = PredRecipe->getMask();
  auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask);
  auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe);

  // Replace predicated replicate recipe with a replicate recipe without a
  // mask but in the replicate region.
  auto *RecipeWithoutMask = new VPReplicateRecipe(
      PredRecipe->getUnderlyingInstr(),
      make_range(PredRecipe->op_begin(), std::prev(PredRecipe->op_end())),
      PredRecipe->isUniform());
  auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", RecipeWithoutMask);

  VPPredInstPHIRecipe *PHIRecipe = nullptr;
  if (PredRecipe->getNumUsers() != 0) {
    PHIRecipe = new VPPredInstPHIRecipe(RecipeWithoutMask);
    PredRecipe->replaceAllUsesWith(PHIRecipe);
    PHIRecipe->setOperand(0, RecipeWithoutMask);
  }
  PredRecipe->eraseFromParent();
  auto *Exiting = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe);
  VPRegionBlock *Region = new VPRegionBlock(Entry, Exiting, RegionName, true);

  // Note: first set Entry as region entry and then connect successors starting
  // from it in order, to propagate the "parent" of each VPBasicBlock.
  VPBlockUtils::insertTwoBlocksAfter(Pred, Exiting, Entry);
  VPBlockUtils::connectBlocks(Pred, Exiting);

  return Region;
}

static void addReplicateRegions(VPlan &Plan) {
  SmallVector<VPReplicateRecipe *> WorkList;
  for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(
           vp_depth_first_deep(Plan.getEntry()))) {
    for (VPRecipeBase &R : *VPBB)
      if (auto *RepR = dyn_cast<VPReplicateRecipe>(&R)) {
        if (RepR->isPredicated())
          WorkList.push_back(RepR);
      }
  }

  unsigned BBNum = 0;
  for (VPReplicateRecipe *RepR : WorkList) {
    VPBasicBlock *CurrentBlock = RepR->getParent();
    VPBasicBlock *SplitBlock = CurrentBlock->splitAt(RepR->getIterator());

    BasicBlock *OrigBB = RepR->getUnderlyingInstr()->getParent();
    SplitBlock->setName(
        OrigBB->hasName() ? OrigBB->getName() + "." + Twine(BBNum++) : "");
    // Record predicated instructions for above packing optimizations.
    VPBlockBase *Region = createReplicateRegion(RepR, Plan);
    Region->setParent(CurrentBlock->getParent());
    VPBlockUtils::disconnectBlocks(CurrentBlock, SplitBlock);
    VPBlockUtils::connectBlocks(CurrentBlock, Region);
    VPBlockUtils::connectBlocks(Region, SplitBlock);
  }
}

/// Remove redundant VPBasicBlocks by merging them into their predecessor if
/// the predecessor has a single successor.
static bool mergeBlocksIntoPredecessors(VPlan &Plan) {
  SmallVector<VPBasicBlock *> WorkList;
  for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(
           vp_depth_first_deep(Plan.getEntry()))) {
    auto *PredVPBB =
        dyn_cast_or_null<VPBasicBlock>(VPBB->getSinglePredecessor());
    if (PredVPBB && PredVPBB->getNumSuccessors() == 1)
      WorkList.push_back(VPBB);
  }

  for (VPBasicBlock *VPBB : WorkList) {
    VPBasicBlock *PredVPBB = cast<VPBasicBlock>(VPBB->getSinglePredecessor());
    for (VPRecipeBase &R : make_early_inc_range(*VPBB))
      R.moveBefore(*PredVPBB, PredVPBB->end());
    VPBlockUtils::disconnectBlocks(PredVPBB, VPBB);
    auto *ParentRegion = cast_or_null<VPRegionBlock>(VPBB->getParent());
    if (ParentRegion && ParentRegion->getExiting() == VPBB)
      ParentRegion->setExiting(PredVPBB);
    for (auto *Succ : to_vector(VPBB->successors())) {
      VPBlockUtils::disconnectBlocks(VPBB, Succ);
      VPBlockUtils::connectBlocks(PredVPBB, Succ);
    }
    delete VPBB;
  }
  return !WorkList.empty();
}

void VPlanTransforms::createAndOptimizeReplicateRegions(VPlan &Plan) {
  // Convert masked VPReplicateRecipes to if-then region blocks.
  addReplicateRegions(Plan);

  bool ShouldSimplify = true;
  while (ShouldSimplify) {
    ShouldSimplify = sinkScalarOperands(Plan);
    ShouldSimplify |= mergeReplicateRegionsIntoSuccessors(Plan);
    ShouldSimplify |= mergeBlocksIntoPredecessors(Plan);
  }
}

/// Remove redundant casts of inductions.
///
/// Such redundant casts are casts of induction variables that can be ignored,
/// because we already proved that the casted phi is equal to the uncasted phi
/// in the vectorized loop. There is no need to vectorize the cast - the same
/// value can be used for both the phi and casts in the vector loop.
static void removeRedundantInductionCasts(VPlan &Plan) {
  for (auto &Phi : Plan.getVectorLoopRegion()->getEntryBasicBlock()->phis()) {
    auto *IV = dyn_cast<VPWidenIntOrFpInductionRecipe>(&Phi);
    if (!IV || IV->getTruncInst())
      continue;

    // A sequence of IR Casts has potentially been recorded for IV, which
    // *must be bypassed* when the IV is vectorized, because the vectorized IV
    // will produce the desired casted value. This sequence forms a def-use
    // chain and is provided in reverse order, ending with the cast that uses
    // the IV phi. Search for the recipe of the last cast in the chain and
    // replace it with the original IV. Note that only the final cast is
    // expected to have users outside the cast-chain and the dead casts left
    // over will be cleaned up later.
    auto &Casts = IV->getInductionDescriptor().getCastInsts();
    VPValue *FindMyCast = IV;
    for (Instruction *IRCast : reverse(Casts)) {
      VPSingleDefRecipe *FoundUserCast = nullptr;
      for (auto *U : FindMyCast->users()) {
        auto *UserCast = dyn_cast<VPSingleDefRecipe>(U);
        if (UserCast && UserCast->getUnderlyingValue() == IRCast) {
          FoundUserCast = UserCast;
          break;
        }
      }
      FindMyCast = FoundUserCast;
    }
    FindMyCast->replaceAllUsesWith(IV);
  }
}

/// Try to replace VPWidenCanonicalIVRecipes with a widened canonical IV
/// recipe, if it exists.
static void removeRedundantCanonicalIVs(VPlan &Plan) {
  VPCanonicalIVPHIRecipe *CanonicalIV = Plan.getCanonicalIV();
  VPWidenCanonicalIVRecipe *WidenNewIV = nullptr;
  for (VPUser *U : CanonicalIV->users()) {
    WidenNewIV = dyn_cast<VPWidenCanonicalIVRecipe>(U);
    if (WidenNewIV)
      break;
  }

  if (!WidenNewIV)
    return;

  VPBasicBlock *HeaderVPBB = Plan.getVectorLoopRegion()->getEntryBasicBlock();
  for (VPRecipeBase &Phi : HeaderVPBB->phis()) {
    auto *WidenOriginalIV = dyn_cast<VPWidenIntOrFpInductionRecipe>(&Phi);

    if (!WidenOriginalIV || !WidenOriginalIV->isCanonical() ||
        WidenOriginalIV->getScalarType() != WidenNewIV->getScalarType())
      continue;

    // Replace WidenNewIV with WidenOriginalIV if WidenOriginalIV provides
    // everything WidenNewIV's users need. That is, WidenOriginalIV will
    // generate a vector phi or all users of WidenNewIV demand the first lane
    // only.
    if (any_of(WidenOriginalIV->users(),
               [WidenOriginalIV](VPUser *U) {
                 return !U->usesScalars(WidenOriginalIV);
               }) ||
        vputils::onlyFirstLaneUsed(WidenNewIV)) {
      WidenNewIV->replaceAllUsesWith(WidenOriginalIV);
      WidenNewIV->eraseFromParent();
      return;
    }
  }
}

/// Returns true if \p R is dead and can be removed.
static bool isDeadRecipe(VPRecipeBase &R) {
  using namespace llvm::PatternMatch;
  // Do remove conditional assume instructions as their conditions may be
  // flattened.
  auto *RepR = dyn_cast<VPReplicateRecipe>(&R);
  bool IsConditionalAssume =
      RepR && RepR->isPredicated() &&
      match(RepR->getUnderlyingInstr(), m_Intrinsic<Intrinsic::assume>());
  if (IsConditionalAssume)
    return true;

  if (R.mayHaveSideEffects())
    return false;

  // Recipe is dead if no user keeps the recipe alive.
  return all_of(R.definedValues(),
                [](VPValue *V) { return V->getNumUsers() == 0; });
}

static void removeDeadRecipes(VPlan &Plan) {
  ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<VPBlockBase *>> RPOT(
      Plan.getEntry());

  for (VPBasicBlock *VPBB : reverse(VPBlockUtils::blocksOnly<VPBasicBlock>(RPOT))) {
    // The recipes in the block are processed in reverse order, to catch chains
    // of dead recipes.
    for (VPRecipeBase &R : make_early_inc_range(reverse(*VPBB))) {
      if (isDeadRecipe(R))
        R.eraseFromParent();
    }
  }
}

static VPValue *createScalarIVSteps(VPlan &Plan,
                                    InductionDescriptor::InductionKind Kind,
                                    Instruction::BinaryOps InductionOpcode,
                                    FPMathOperator *FPBinOp,
                                    ScalarEvolution &SE, Instruction *TruncI,
                                    VPValue *StartV, VPValue *Step,
                                    VPBasicBlock::iterator IP) {
  VPBasicBlock *HeaderVPBB = Plan.getVectorLoopRegion()->getEntryBasicBlock();
  VPCanonicalIVPHIRecipe *CanonicalIV = Plan.getCanonicalIV();
  VPSingleDefRecipe *BaseIV = CanonicalIV;
  if (!CanonicalIV->isCanonical(Kind, StartV, Step)) {
    BaseIV = new VPDerivedIVRecipe(Kind, FPBinOp, StartV, CanonicalIV, Step);
    HeaderVPBB->insert(BaseIV, IP);
  }

  // Truncate base induction if needed.
  VPTypeAnalysis TypeInfo(Plan.getCanonicalIV()->getScalarType(),
                          SE.getContext());
  Type *ResultTy = TypeInfo.inferScalarType(BaseIV);
  if (TruncI) {
    Type *TruncTy = TruncI->getType();
    assert(ResultTy->getScalarSizeInBits() > TruncTy->getScalarSizeInBits() &&
           "Not truncating.");
    assert(ResultTy->isIntegerTy() && "Truncation requires an integer type");
    BaseIV = new VPScalarCastRecipe(Instruction::Trunc, BaseIV, TruncTy);
    HeaderVPBB->insert(BaseIV, IP);
    ResultTy = TruncTy;
  }

  // Truncate step if needed.
  Type *StepTy = TypeInfo.inferScalarType(Step);
  if (ResultTy != StepTy) {
    assert(StepTy->getScalarSizeInBits() > ResultTy->getScalarSizeInBits() &&
           "Not truncating.");
    assert(StepTy->isIntegerTy() && "Truncation requires an integer type");
    Step = new VPScalarCastRecipe(Instruction::Trunc, Step, ResultTy);
    auto *VecPreheader =
        cast<VPBasicBlock>(HeaderVPBB->getSingleHierarchicalPredecessor());
    VecPreheader->appendRecipe(Step->getDefiningRecipe());
  }

  VPScalarIVStepsRecipe *Steps = new VPScalarIVStepsRecipe(
      BaseIV, Step, InductionOpcode,
      FPBinOp ? FPBinOp->getFastMathFlags() : FastMathFlags());
  HeaderVPBB->insert(Steps, IP);
  return Steps;
}

/// Legalize VPWidenPointerInductionRecipe, by replacing it with a PtrAdd
/// (IndStart, ScalarIVSteps (0, Step)) if only its scalar values are used, as
/// VPWidenPointerInductionRecipe will generate vectors only. If some users
/// require vectors while other require scalars, the scalar uses need to extract
/// the scalars from the generated vectors (Note that this is different to how
/// int/fp inductions are handled). Also optimize VPWidenIntOrFpInductionRecipe,
/// if any of its users needs scalar values, by providing them scalar steps
/// built on the canonical scalar IV and update the original IV's users. This is
/// an optional optimization to reduce the needs of vector extracts.
static void legalizeAndOptimizeInductions(VPlan &Plan, ScalarEvolution &SE) {
  SmallVector<VPRecipeBase *> ToRemove;
  VPBasicBlock *HeaderVPBB = Plan.getVectorLoopRegion()->getEntryBasicBlock();
  bool HasOnlyVectorVFs = !Plan.hasVF(ElementCount::getFixed(1));
  VPBasicBlock::iterator InsertPt = HeaderVPBB->getFirstNonPhi();
  for (VPRecipeBase &Phi : HeaderVPBB->phis()) {
    // Replace wide pointer inductions which have only their scalars used by
    // PtrAdd(IndStart, ScalarIVSteps (0, Step)).
    if (auto *PtrIV = dyn_cast<VPWidenPointerInductionRecipe>(&Phi)) {
      if (!PtrIV->onlyScalarsGenerated(Plan.hasScalableVF()))
        continue;

      const InductionDescriptor &ID = PtrIV->getInductionDescriptor();
      VPValue *StartV =
          Plan.getOrAddLiveIn(ConstantInt::get(ID.getStep()->getType(), 0));
      VPValue *StepV = PtrIV->getOperand(1);
      VPRecipeBase *Steps =
          createScalarIVSteps(Plan, InductionDescriptor::IK_IntInduction,
                              Instruction::Add, nullptr, SE, nullptr, StartV,
                              StepV, InsertPt)
              ->getDefiningRecipe();

      auto *Recipe =
          new VPInstruction(VPInstruction::PtrAdd,
                            {PtrIV->getStartValue(), Steps->getVPSingleValue()},
                            PtrIV->getDebugLoc(), "next.gep");

      Recipe->insertAfter(Steps);
      PtrIV->replaceAllUsesWith(Recipe);
      continue;
    }

    // Replace widened induction with scalar steps for users that only use
    // scalars.
    auto *WideIV = dyn_cast<VPWidenIntOrFpInductionRecipe>(&Phi);
    if (!WideIV)
      continue;
    if (HasOnlyVectorVFs && none_of(WideIV->users(), [WideIV](VPUser *U) {
          return U->usesScalars(WideIV);
        }))
      continue;

    const InductionDescriptor &ID = WideIV->getInductionDescriptor();
    VPValue *Steps = createScalarIVSteps(
        Plan, ID.getKind(), ID.getInductionOpcode(),
        dyn_cast_or_null<FPMathOperator>(ID.getInductionBinOp()), SE,
        WideIV->getTruncInst(), WideIV->getStartValue(), WideIV->getStepValue(),
        InsertPt);

    // Update scalar users of IV to use Step instead.
    if (!HasOnlyVectorVFs)
      WideIV->replaceAllUsesWith(Steps);
    else
      WideIV->replaceUsesWithIf(Steps, [WideIV](VPUser &U, unsigned) {
        return U.usesScalars(WideIV);
      });
  }
}

/// Remove redundant EpxandSCEVRecipes in \p Plan's entry block by replacing
/// them with already existing recipes expanding the same SCEV expression.
static void removeRedundantExpandSCEVRecipes(VPlan &Plan) {
  DenseMap<const SCEV *, VPValue *> SCEV2VPV;

  for (VPRecipeBase &R :
       make_early_inc_range(*Plan.getEntry()->getEntryBasicBlock())) {
    auto *ExpR = dyn_cast<VPExpandSCEVRecipe>(&R);
    if (!ExpR)
      continue;

    auto I = SCEV2VPV.insert({ExpR->getSCEV(), ExpR});
    if (I.second)
      continue;
    ExpR->replaceAllUsesWith(I.first->second);
    ExpR->eraseFromParent();
  }
}

void VPlanTransforms::optimizeForVFAndUF(VPlan &Plan, ElementCount BestVF,
                                         unsigned BestUF,
                                         PredicatedScalarEvolution &PSE) {
  assert(Plan.hasVF(BestVF) && "BestVF is not available in Plan");
  assert(Plan.hasUF(BestUF) && "BestUF is not available in Plan");
  VPBasicBlock *ExitingVPBB =
      Plan.getVectorLoopRegion()->getExitingBasicBlock();
  auto *Term = &ExitingVPBB->back();
  // Try to simplify the branch condition if TC <= VF * UF when preparing to
  // execute the plan for the main vector loop. We only do this if the
  // terminator is:
  //  1. BranchOnCount, or
  //  2. BranchOnCond where the input is Not(ActiveLaneMask).
  using namespace llvm::VPlanPatternMatch;
  if (!match(Term, m_BranchOnCount(m_VPValue(), m_VPValue())) &&
      !match(Term,
             m_BranchOnCond(m_Not(m_ActiveLaneMask(m_VPValue(), m_VPValue())))))
    return;

  Type *IdxTy =
      Plan.getCanonicalIV()->getStartValue()->getLiveInIRValue()->getType();
  const SCEV *TripCount = createTripCountSCEV(IdxTy, PSE);
  ScalarEvolution &SE = *PSE.getSE();
  ElementCount NumElements = BestVF.multiplyCoefficientBy(BestUF);
  const SCEV *C = SE.getElementCount(TripCount->getType(), NumElements);
  if (TripCount->isZero() ||
      !SE.isKnownPredicate(CmpInst::ICMP_ULE, TripCount, C))
    return;

  LLVMContext &Ctx = SE.getContext();
  auto *BOC =
      new VPInstruction(VPInstruction::BranchOnCond,
                        {Plan.getOrAddLiveIn(ConstantInt::getTrue(Ctx))});
  Term->eraseFromParent();
  ExitingVPBB->appendRecipe(BOC);
  Plan.setVF(BestVF);
  Plan.setUF(BestUF);
  // TODO: Further simplifications are possible
  //      1. Replace inductions with constants.
  //      2. Replace vector loop region with VPBasicBlock.
}

#ifndef NDEBUG
static VPRegionBlock *GetReplicateRegion(VPRecipeBase *R) {
  auto *Region = dyn_cast_or_null<VPRegionBlock>(R->getParent()->getParent());
  if (Region && Region->isReplicator()) {
    assert(Region->getNumSuccessors() == 1 &&
           Region->getNumPredecessors() == 1 && "Expected SESE region!");
    assert(R->getParent()->size() == 1 &&
           "A recipe in an original replicator region must be the only "
           "recipe in its block");
    return Region;
  }
  return nullptr;
}
#endif

static bool properlyDominates(const VPRecipeBase *A, const VPRecipeBase *B,
                              VPDominatorTree &VPDT) {
  if (A == B)
    return false;

  auto LocalComesBefore = [](const VPRecipeBase *A, const VPRecipeBase *B) {
    for (auto &R : *A->getParent()) {
      if (&R == A)
        return true;
      if (&R == B)
        return false;
    }
    llvm_unreachable("recipe not found");
  };
  const VPBlockBase *ParentA = A->getParent();
  const VPBlockBase *ParentB = B->getParent();
  if (ParentA == ParentB)
    return LocalComesBefore(A, B);

  assert(!GetReplicateRegion(const_cast<VPRecipeBase *>(A)) &&
         "No replicate regions expected at this point");
  assert(!GetReplicateRegion(const_cast<VPRecipeBase *>(B)) &&
         "No replicate regions expected at this point");
  return VPDT.properlyDominates(ParentA, ParentB);
}

/// Sink users of \p FOR after the recipe defining the previous value \p
/// Previous of the recurrence. \returns true if all users of \p FOR could be
/// re-arranged as needed or false if it is not possible.
static bool
sinkRecurrenceUsersAfterPrevious(VPFirstOrderRecurrencePHIRecipe *FOR,
                                 VPRecipeBase *Previous,
                                 VPDominatorTree &VPDT) {
  // Collect recipes that need sinking.
  SmallVector<VPRecipeBase *> WorkList;
  SmallPtrSet<VPRecipeBase *, 8> Seen;
  Seen.insert(Previous);
  auto TryToPushSinkCandidate = [&](VPRecipeBase *SinkCandidate) {
    // The previous value must not depend on the users of the recurrence phi. In
    // that case, FOR is not a fixed order recurrence.
    if (SinkCandidate == Previous)
      return false;

    if (isa<VPHeaderPHIRecipe>(SinkCandidate) ||
        !Seen.insert(SinkCandidate).second ||
        properlyDominates(Previous, SinkCandidate, VPDT))
      return true;

    if (SinkCandidate->mayHaveSideEffects())
      return false;

    WorkList.push_back(SinkCandidate);
    return true;
  };

  // Recursively sink users of FOR after Previous.
  WorkList.push_back(FOR);
  for (unsigned I = 0; I != WorkList.size(); ++I) {
    VPRecipeBase *Current = WorkList[I];
    assert(Current->getNumDefinedValues() == 1 &&
           "only recipes with a single defined value expected");

    for (VPUser *User : Current->getVPSingleValue()->users()) {
      if (auto *R = dyn_cast<VPRecipeBase>(User))
        if (!TryToPushSinkCandidate(R))
          return false;
    }
  }

  // Keep recipes to sink ordered by dominance so earlier instructions are
  // processed first.
  sort(WorkList, [&VPDT](const VPRecipeBase *A, const VPRecipeBase *B) {
    return properlyDominates(A, B, VPDT);
  });

  for (VPRecipeBase *SinkCandidate : WorkList) {
    if (SinkCandidate == FOR)
      continue;

    SinkCandidate->moveAfter(Previous);
    Previous = SinkCandidate;
  }
  return true;
}

bool VPlanTransforms::adjustFixedOrderRecurrences(VPlan &Plan,
                                                  VPBuilder &Builder) {
  VPDominatorTree VPDT;
  VPDT.recalculate(Plan);

  SmallVector<VPFirstOrderRecurrencePHIRecipe *> RecurrencePhis;
  for (VPRecipeBase &R :
       Plan.getVectorLoopRegion()->getEntry()->getEntryBasicBlock()->phis())
    if (auto *FOR = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R))
      RecurrencePhis.push_back(FOR);

  for (VPFirstOrderRecurrencePHIRecipe *FOR : RecurrencePhis) {
    SmallPtrSet<VPFirstOrderRecurrencePHIRecipe *, 4> SeenPhis;
    VPRecipeBase *Previous = FOR->getBackedgeValue()->getDefiningRecipe();
    // Fixed-order recurrences do not contain cycles, so this loop is guaranteed
    // to terminate.
    while (auto *PrevPhi =
               dyn_cast_or_null<VPFirstOrderRecurrencePHIRecipe>(Previous)) {
      assert(PrevPhi->getParent() == FOR->getParent());
      assert(SeenPhis.insert(PrevPhi).second);
      Previous = PrevPhi->getBackedgeValue()->getDefiningRecipe();
    }

    if (!sinkRecurrenceUsersAfterPrevious(FOR, Previous, VPDT))
      return false;

    // Introduce a recipe to combine the incoming and previous values of a
    // fixed-order recurrence.
    VPBasicBlock *InsertBlock = Previous->getParent();
    if (isa<VPHeaderPHIRecipe>(Previous))
      Builder.setInsertPoint(InsertBlock, InsertBlock->getFirstNonPhi());
    else
      Builder.setInsertPoint(InsertBlock, std::next(Previous->getIterator()));

    auto *RecurSplice = cast<VPInstruction>(
        Builder.createNaryOp(VPInstruction::FirstOrderRecurrenceSplice,
                             {FOR, FOR->getBackedgeValue()}));

    FOR->replaceAllUsesWith(RecurSplice);
    // Set the first operand of RecurSplice to FOR again, after replacing
    // all users.
    RecurSplice->setOperand(0, FOR);
  }
  return true;
}

void VPlanTransforms::clearReductionWrapFlags(VPlan &Plan) {
  for (VPRecipeBase &R :
       Plan.getVectorLoopRegion()->getEntryBasicBlock()->phis()) {
    auto *PhiR = dyn_cast<VPReductionPHIRecipe>(&R);
    if (!PhiR)
      continue;
    const RecurrenceDescriptor &RdxDesc = PhiR->getRecurrenceDescriptor();
    RecurKind RK = RdxDesc.getRecurrenceKind();
    if (RK != RecurKind::Add && RK != RecurKind::Mul)
      continue;

    SmallSetVector<VPValue *, 8> Worklist;
    Worklist.insert(PhiR);

    for (unsigned I = 0; I != Worklist.size(); ++I) {
      VPValue *Cur = Worklist[I];
      if (auto *RecWithFlags =
              dyn_cast<VPRecipeWithIRFlags>(Cur->getDefiningRecipe())) {
        RecWithFlags->dropPoisonGeneratingFlags();
      }

      for (VPUser *U : Cur->users()) {
        auto *UserRecipe = dyn_cast<VPRecipeBase>(U);
        if (!UserRecipe)
          continue;
        for (VPValue *V : UserRecipe->definedValues())
          Worklist.insert(V);
      }
    }
  }
}

/// Try to simplify recipe \p R.
static void simplifyRecipe(VPRecipeBase &R, VPTypeAnalysis &TypeInfo) {
  // Try to remove redundant blend recipes.
  if (auto *Blend = dyn_cast<VPBlendRecipe>(&R)) {
    VPValue *Inc0 = Blend->getIncomingValue(0);
    for (unsigned I = 1; I != Blend->getNumIncomingValues(); ++I)
      if (Inc0 != Blend->getIncomingValue(I))
        return;
    Blend->replaceAllUsesWith(Inc0);
    Blend->eraseFromParent();
    return;
  }

  using namespace llvm::VPlanPatternMatch;
  VPValue *A;
  if (match(&R, m_Trunc(m_ZExtOrSExt(m_VPValue(A))))) {
    VPValue *Trunc = R.getVPSingleValue();
    Type *TruncTy = TypeInfo.inferScalarType(Trunc);
    Type *ATy = TypeInfo.inferScalarType(A);
    if (TruncTy == ATy) {
      Trunc->replaceAllUsesWith(A);
    } else {
      // Don't replace a scalarizing recipe with a widened cast.
      if (isa<VPReplicateRecipe>(&R))
        return;
      if (ATy->getScalarSizeInBits() < TruncTy->getScalarSizeInBits()) {

        unsigned ExtOpcode = match(R.getOperand(0), m_SExt(m_VPValue()))
                                 ? Instruction::SExt
                                 : Instruction::ZExt;
        auto *VPC =
            new VPWidenCastRecipe(Instruction::CastOps(ExtOpcode), A, TruncTy);
        VPC->insertBefore(&R);
        Trunc->replaceAllUsesWith(VPC);
      } else if (ATy->getScalarSizeInBits() > TruncTy->getScalarSizeInBits()) {
        auto *VPC = new VPWidenCastRecipe(Instruction::Trunc, A, TruncTy);
        VPC->insertBefore(&R);
        Trunc->replaceAllUsesWith(VPC);
      }
    }
#ifndef NDEBUG
    // Verify that the cached type info is for both A and its users is still
    // accurate by comparing it to freshly computed types.
    VPTypeAnalysis TypeInfo2(
        R.getParent()->getPlan()->getCanonicalIV()->getScalarType(),
        TypeInfo.getContext());
    assert(TypeInfo.inferScalarType(A) == TypeInfo2.inferScalarType(A));
    for (VPUser *U : A->users()) {
      auto *R = dyn_cast<VPRecipeBase>(U);
      if (!R)
        continue;
      for (VPValue *VPV : R->definedValues())
        assert(TypeInfo.inferScalarType(VPV) == TypeInfo2.inferScalarType(VPV));
    }
#endif
  }

  if (match(&R, m_CombineOr(m_Mul(m_VPValue(A), m_SpecificInt(1)),
                            m_Mul(m_SpecificInt(1), m_VPValue(A)))))
    return R.getVPSingleValue()->replaceAllUsesWith(A);
}

/// Try to simplify the recipes in \p Plan.
static void simplifyRecipes(VPlan &Plan, LLVMContext &Ctx) {
  ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<VPBlockBase *>> RPOT(
      Plan.getEntry());
  VPTypeAnalysis TypeInfo(Plan.getCanonicalIV()->getScalarType(), Ctx);
  for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(RPOT)) {
    for (VPRecipeBase &R : make_early_inc_range(*VPBB)) {
      simplifyRecipe(R, TypeInfo);
    }
  }
}

void VPlanTransforms::truncateToMinimalBitwidths(
    VPlan &Plan, const MapVector<Instruction *, uint64_t> &MinBWs,
    LLVMContext &Ctx) {
#ifndef NDEBUG
  // Count the processed recipes and cross check the count later with MinBWs
  // size, to make sure all entries in MinBWs have been handled.
  unsigned NumProcessedRecipes = 0;
#endif
  // Keep track of created truncates, so they can be re-used. Note that we
  // cannot use RAUW after creating a new truncate, as this would could make
  // other uses have different types for their operands, making them invalidly
  // typed.
  DenseMap<VPValue *, VPWidenCastRecipe *> ProcessedTruncs;
  VPTypeAnalysis TypeInfo(Plan.getCanonicalIV()->getScalarType(), Ctx);
  VPBasicBlock *PH = Plan.getEntry();
  for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(
           vp_depth_first_deep(Plan.getVectorLoopRegion()))) {
    for (VPRecipeBase &R : make_early_inc_range(*VPBB)) {
      if (!isa<VPWidenRecipe, VPWidenCastRecipe, VPReplicateRecipe,
               VPWidenSelectRecipe, VPWidenMemoryInstructionRecipe>(&R))
        continue;
      if (isa<VPWidenMemoryInstructionRecipe>(&R) &&
          cast<VPWidenMemoryInstructionRecipe>(&R)->isStore())
        continue;

      VPValue *ResultVPV = R.getVPSingleValue();
      auto *UI = cast_or_null<Instruction>(ResultVPV->getUnderlyingValue());
      unsigned NewResSizeInBits = MinBWs.lookup(UI);
      if (!NewResSizeInBits)
        continue;

#ifndef NDEBUG
      NumProcessedRecipes++;
#endif
      // If the value wasn't vectorized, we must maintain the original scalar
      // type. Skip those here, after incrementing NumProcessedRecipes. Also
      // skip casts which do not need to be handled explicitly here, as
      // redundant casts will be removed during recipe simplification.
      if (isa<VPReplicateRecipe, VPWidenCastRecipe>(&R)) {
#ifndef NDEBUG
        // If any of the operands is a live-in and not used by VPWidenRecipe or
        // VPWidenSelectRecipe, but in MinBWs, make sure it is counted as
        // processed as well. When MinBWs is currently constructed, there is no
        // information about whether recipes are widened or replicated and in
        // case they are reciplicated the operands are not truncated. Counting
        // them them here ensures we do not miss any recipes in MinBWs.
        // TODO: Remove once the analysis is done on VPlan.
        for (VPValue *Op : R.operands()) {
          if (!Op->isLiveIn())
            continue;
          auto *UV = dyn_cast_or_null<Instruction>(Op->getUnderlyingValue());
          if (UV && MinBWs.contains(UV) && !ProcessedTruncs.contains(Op) &&
              all_of(Op->users(), [](VPUser *U) {
                return !isa<VPWidenRecipe, VPWidenSelectRecipe>(U);
              })) {
            // Add an entry to ProcessedTruncs to avoid counting the same
            // operand multiple times.
            ProcessedTruncs[Op] = nullptr;
            NumProcessedRecipes += 1;
          }
        }
#endif
        continue;
      }

      Type *OldResTy = TypeInfo.inferScalarType(ResultVPV);
      unsigned OldResSizeInBits = OldResTy->getScalarSizeInBits();
      assert(OldResTy->isIntegerTy() && "only integer types supported");
      (void)OldResSizeInBits;

      auto *NewResTy = IntegerType::get(Ctx, NewResSizeInBits);

      // Any wrapping introduced by shrinking this operation shouldn't be
      // considered undefined behavior. So, we can't unconditionally copy
      // arithmetic wrapping flags to VPW.
      if (auto *VPW = dyn_cast<VPRecipeWithIRFlags>(&R))
        VPW->dropPoisonGeneratingFlags();

      if (OldResSizeInBits != NewResSizeInBits) {
        // Extend result to original width.
        auto *Ext =
            new VPWidenCastRecipe(Instruction::ZExt, ResultVPV, OldResTy);
        Ext->insertAfter(&R);
        ResultVPV->replaceAllUsesWith(Ext);
        Ext->setOperand(0, ResultVPV);
        assert(OldResSizeInBits > NewResSizeInBits && "Nothing to shrink?");
      } else
        assert(cast<VPWidenRecipe>(&R)->getOpcode() == Instruction::ICmp &&
               "Only ICmps should not need extending the result.");

      if (isa<VPWidenMemoryInstructionRecipe>(&R)) {
        assert(!cast<VPWidenMemoryInstructionRecipe>(&R)->isStore() && "stores cannot be narrowed");
        continue;
      }

      // Shrink operands by introducing truncates as needed.
      unsigned StartIdx = isa<VPWidenSelectRecipe>(&R) ? 1 : 0;
      for (unsigned Idx = StartIdx; Idx != R.getNumOperands(); ++Idx) {
        auto *Op = R.getOperand(Idx);
        unsigned OpSizeInBits =
            TypeInfo.inferScalarType(Op)->getScalarSizeInBits();
        if (OpSizeInBits == NewResSizeInBits)
          continue;
        assert(OpSizeInBits > NewResSizeInBits && "nothing to truncate");
        auto [ProcessedIter, IterIsEmpty] =
            ProcessedTruncs.insert({Op, nullptr});
        VPWidenCastRecipe *NewOp =
            IterIsEmpty
                ? new VPWidenCastRecipe(Instruction::Trunc, Op, NewResTy)
                : ProcessedIter->second;
        R.setOperand(Idx, NewOp);
        if (!IterIsEmpty)
          continue;
        ProcessedIter->second = NewOp;
        if (!Op->isLiveIn()) {
          NewOp->insertBefore(&R);
        } else {
          PH->appendRecipe(NewOp);
#ifndef NDEBUG
          auto *OpInst = dyn_cast<Instruction>(Op->getLiveInIRValue());
          bool IsContained = MinBWs.contains(OpInst);
          NumProcessedRecipes += IsContained;
#endif
        }
      }

    }
  }

  assert(MinBWs.size() == NumProcessedRecipes &&
         "some entries in MinBWs haven't been processed");
}

void VPlanTransforms::optimize(VPlan &Plan, ScalarEvolution &SE) {
  removeRedundantCanonicalIVs(Plan);
  removeRedundantInductionCasts(Plan);

  simplifyRecipes(Plan, SE.getContext());
  legalizeAndOptimizeInductions(Plan, SE);
  removeDeadRecipes(Plan);

  createAndOptimizeReplicateRegions(Plan);

  removeRedundantExpandSCEVRecipes(Plan);
  mergeBlocksIntoPredecessors(Plan);
}

// Add a VPActiveLaneMaskPHIRecipe and related recipes to \p Plan and replace
// the loop terminator with a branch-on-cond recipe with the negated
// active-lane-mask as operand. Note that this turns the loop into an
// uncountable one. Only the existing terminator is replaced, all other existing
// recipes/users remain unchanged, except for poison-generating flags being
// dropped from the canonical IV increment. Return the created
// VPActiveLaneMaskPHIRecipe.
//
// The function uses the following definitions:
//
//  %TripCount = DataWithControlFlowWithoutRuntimeCheck ?
//    calculate-trip-count-minus-VF (original TC) : original TC
//  %IncrementValue = DataWithControlFlowWithoutRuntimeCheck ?
//     CanonicalIVPhi : CanonicalIVIncrement
//  %StartV is the canonical induction start value.
//
// The function adds the following recipes:
//
// vector.ph:
//   %TripCount = calculate-trip-count-minus-VF (original TC)
//       [if DataWithControlFlowWithoutRuntimeCheck]
//   %EntryInc = canonical-iv-increment-for-part %StartV
//   %EntryALM = active-lane-mask %EntryInc, %TripCount
//
// vector.body:
//   ...
//   %P = active-lane-mask-phi [ %EntryALM, %vector.ph ], [ %ALM, %vector.body ]
//   ...
//   %InLoopInc = canonical-iv-increment-for-part %IncrementValue
//   %ALM = active-lane-mask %InLoopInc, TripCount
//   %Negated = Not %ALM
//   branch-on-cond %Negated
//
static VPActiveLaneMaskPHIRecipe *addVPLaneMaskPhiAndUpdateExitBranch(
    VPlan &Plan, bool DataAndControlFlowWithoutRuntimeCheck) {
  VPRegionBlock *TopRegion = Plan.getVectorLoopRegion();
  VPBasicBlock *EB = TopRegion->getExitingBasicBlock();
  auto *CanonicalIVPHI = Plan.getCanonicalIV();
  VPValue *StartV = CanonicalIVPHI->getStartValue();

  auto *CanonicalIVIncrement =
      cast<VPInstruction>(CanonicalIVPHI->getBackedgeValue());
  // TODO: Check if dropping the flags is needed if
  // !DataAndControlFlowWithoutRuntimeCheck.
  CanonicalIVIncrement->dropPoisonGeneratingFlags();
  DebugLoc DL = CanonicalIVIncrement->getDebugLoc();
  // We can't use StartV directly in the ActiveLaneMask VPInstruction, since
  // we have to take unrolling into account. Each part needs to start at
  //   Part * VF
  auto *VecPreheader = cast<VPBasicBlock>(TopRegion->getSinglePredecessor());
  VPBuilder Builder(VecPreheader);

  // Create the ActiveLaneMask instruction using the correct start values.
  VPValue *TC = Plan.getTripCount();

  VPValue *TripCount, *IncrementValue;
  if (!DataAndControlFlowWithoutRuntimeCheck) {
    // When the loop is guarded by a runtime overflow check for the loop
    // induction variable increment by VF, we can increment the value before
    // the get.active.lane mask and use the unmodified tripcount.
    IncrementValue = CanonicalIVIncrement;
    TripCount = TC;
  } else {
    // When avoiding a runtime check, the active.lane.mask inside the loop
    // uses a modified trip count and the induction variable increment is
    // done after the active.lane.mask intrinsic is called.
    IncrementValue = CanonicalIVPHI;
    TripCount = Builder.createNaryOp(VPInstruction::CalculateTripCountMinusVF,
                                     {TC}, DL);
  }
  auto *EntryIncrement = Builder.createOverflowingOp(
      VPInstruction::CanonicalIVIncrementForPart, {StartV}, {false, false}, DL,
      "index.part.next");

  // Create the active lane mask instruction in the VPlan preheader.
  auto *EntryALM =
      Builder.createNaryOp(VPInstruction::ActiveLaneMask, {EntryIncrement, TC},
                           DL, "active.lane.mask.entry");

  // Now create the ActiveLaneMaskPhi recipe in the main loop using the
  // preheader ActiveLaneMask instruction.
  auto LaneMaskPhi = new VPActiveLaneMaskPHIRecipe(EntryALM, DebugLoc());
  LaneMaskPhi->insertAfter(CanonicalIVPHI);

  // Create the active lane mask for the next iteration of the loop before the
  // original terminator.
  VPRecipeBase *OriginalTerminator = EB->getTerminator();
  Builder.setInsertPoint(OriginalTerminator);
  auto *InLoopIncrement =
      Builder.createOverflowingOp(VPInstruction::CanonicalIVIncrementForPart,
                                  {IncrementValue}, {false, false}, DL);
  auto *ALM = Builder.createNaryOp(VPInstruction::ActiveLaneMask,
                                   {InLoopIncrement, TripCount}, DL,
                                   "active.lane.mask.next");
  LaneMaskPhi->addOperand(ALM);

  // Replace the original terminator with BranchOnCond. We have to invert the
  // mask here because a true condition means jumping to the exit block.
  auto *NotMask = Builder.createNot(ALM, DL);
  Builder.createNaryOp(VPInstruction::BranchOnCond, {NotMask}, DL);
  OriginalTerminator->eraseFromParent();
  return LaneMaskPhi;
}

void VPlanTransforms::addActiveLaneMask(
    VPlan &Plan, bool UseActiveLaneMaskForControlFlow,
    bool DataAndControlFlowWithoutRuntimeCheck) {
  assert((!DataAndControlFlowWithoutRuntimeCheck ||
          UseActiveLaneMaskForControlFlow) &&
         "DataAndControlFlowWithoutRuntimeCheck implies "
         "UseActiveLaneMaskForControlFlow");

  auto FoundWidenCanonicalIVUser =
      find_if(Plan.getCanonicalIV()->users(),
              [](VPUser *U) { return isa<VPWidenCanonicalIVRecipe>(U); });
  assert(FoundWidenCanonicalIVUser &&
         "Must have widened canonical IV when tail folding!");
  auto *WideCanonicalIV =
      cast<VPWidenCanonicalIVRecipe>(*FoundWidenCanonicalIVUser);
  VPSingleDefRecipe *LaneMask;
  if (UseActiveLaneMaskForControlFlow) {
    LaneMask = addVPLaneMaskPhiAndUpdateExitBranch(
        Plan, DataAndControlFlowWithoutRuntimeCheck);
  } else {
    VPBuilder B = VPBuilder::getToInsertAfter(WideCanonicalIV);
    LaneMask = B.createNaryOp(VPInstruction::ActiveLaneMask,
                              {WideCanonicalIV, Plan.getTripCount()}, nullptr,
                              "active.lane.mask");
  }

  // Walk users of WideCanonicalIV and replace all compares of the form
  // (ICMP_ULE, WideCanonicalIV, backedge-taken-count) with an
  // active-lane-mask.
  VPValue *BTC = Plan.getOrCreateBackedgeTakenCount();
  for (VPUser *U : SmallVector<VPUser *>(WideCanonicalIV->users())) {
    auto *CompareToReplace = dyn_cast<VPInstruction>(U);
    if (!CompareToReplace ||
        CompareToReplace->getOpcode() != Instruction::ICmp ||
        CompareToReplace->getPredicate() != CmpInst::ICMP_ULE ||
        CompareToReplace->getOperand(1) != BTC)
      continue;

    assert(CompareToReplace->getOperand(0) == WideCanonicalIV &&
           "WidenCanonicalIV must be the first operand of the compare");
    CompareToReplace->replaceAllUsesWith(LaneMask);
    CompareToReplace->eraseFromParent();
  }
}

void VPlanTransforms::dropPoisonGeneratingRecipes(
    VPlan &Plan, function_ref<bool(BasicBlock *)> BlockNeedsPredication) {
  // Collect recipes in the backward slice of `Root` that may generate a poison
  // value that is used after vectorization.
  SmallPtrSet<VPRecipeBase *, 16> Visited;
  auto collectPoisonGeneratingInstrsInBackwardSlice([&](VPRecipeBase *Root) {
    SmallVector<VPRecipeBase *, 16> Worklist;
    Worklist.push_back(Root);

    // Traverse the backward slice of Root through its use-def chain.
    while (!Worklist.empty()) {
      VPRecipeBase *CurRec = Worklist.back();
      Worklist.pop_back();

      if (!Visited.insert(CurRec).second)
        continue;

      // Prune search if we find another recipe generating a widen memory
      // instruction. Widen memory instructions involved in address computation
      // will lead to gather/scatter instructions, which don't need to be
      // handled.
      if (isa<VPWidenMemoryInstructionRecipe>(CurRec) ||
          isa<VPInterleaveRecipe>(CurRec) ||
          isa<VPScalarIVStepsRecipe>(CurRec) ||
          isa<VPCanonicalIVPHIRecipe>(CurRec) ||
          isa<VPActiveLaneMaskPHIRecipe>(CurRec))
        continue;

      // This recipe contributes to the address computation of a widen
      // load/store. If the underlying instruction has poison-generating flags,
      // drop them directly.
      if (auto *RecWithFlags = dyn_cast<VPRecipeWithIRFlags>(CurRec)) {
        VPValue *A, *B;
        using namespace llvm::VPlanPatternMatch;
        // Dropping disjoint from an OR may yield incorrect results, as some
        // analysis may have converted it to an Add implicitly (e.g. SCEV used
        // for dependence analysis). Instead, replace it with an equivalent Add.
        // This is possible as all users of the disjoint OR only access lanes
        // where the operands are disjoint or poison otherwise.
        if (match(RecWithFlags, m_Or(m_VPValue(A), m_VPValue(B))) &&
            RecWithFlags->isDisjoint()) {
          VPBuilder Builder(RecWithFlags);
          VPInstruction *New = Builder.createOverflowingOp(
              Instruction::Add, {A, B}, {false, false},
              RecWithFlags->getDebugLoc());
          RecWithFlags->replaceAllUsesWith(New);
          RecWithFlags->eraseFromParent();
          CurRec = New;
        } else
          RecWithFlags->dropPoisonGeneratingFlags();
      } else {
        Instruction *Instr = dyn_cast_or_null<Instruction>(
            CurRec->getVPSingleValue()->getUnderlyingValue());
        (void)Instr;
        assert((!Instr || !Instr->hasPoisonGeneratingFlags()) &&
               "found instruction with poison generating flags not covered by "
               "VPRecipeWithIRFlags");
      }

      // Add new definitions to the worklist.
      for (VPValue *operand : CurRec->operands())
        if (VPRecipeBase *OpDef = operand->getDefiningRecipe())
          Worklist.push_back(OpDef);
    }
  });

  // Traverse all the recipes in the VPlan and collect the poison-generating
  // recipes in the backward slice starting at the address of a VPWidenRecipe or
  // VPInterleaveRecipe.
  auto Iter = vp_depth_first_deep(Plan.getEntry());
  for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(Iter)) {
    for (VPRecipeBase &Recipe : *VPBB) {
      if (auto *WidenRec = dyn_cast<VPWidenMemoryInstructionRecipe>(&Recipe)) {
        Instruction &UnderlyingInstr = WidenRec->getIngredient();
        VPRecipeBase *AddrDef = WidenRec->getAddr()->getDefiningRecipe();
        if (AddrDef && WidenRec->isConsecutive() &&
            BlockNeedsPredication(UnderlyingInstr.getParent()))
          collectPoisonGeneratingInstrsInBackwardSlice(AddrDef);
      } else if (auto *InterleaveRec = dyn_cast<VPInterleaveRecipe>(&Recipe)) {
        VPRecipeBase *AddrDef = InterleaveRec->getAddr()->getDefiningRecipe();
        if (AddrDef) {
          // Check if any member of the interleave group needs predication.
          const InterleaveGroup<Instruction> *InterGroup =
              InterleaveRec->getInterleaveGroup();
          bool NeedPredication = false;
          for (int I = 0, NumMembers = InterGroup->getNumMembers();
               I < NumMembers; ++I) {
            Instruction *Member = InterGroup->getMember(I);
            if (Member)
              NeedPredication |= BlockNeedsPredication(Member->getParent());
          }

          if (NeedPredication)
            collectPoisonGeneratingInstrsInBackwardSlice(AddrDef);
        }
      }
    }
  }
}