summaryrefslogtreecommitdiffstats
path: root/mlir/lib/Dialect/Linalg/Transforms/HoistPadding.cpp
blob: b32ea8eebaecb9270f52ccc3c6627a237effed68 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
//===- HoistPadding.cpp - Hoisting for tensor::PadOp ----------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements functions concerned with hoisting padding operations.
//
//===----------------------------------------------------------------------===//

#include "mlir/Analysis/Presburger/IntegerRelation.h"
#include "mlir/Analysis/SliceAnalysis.h"
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Affine/Transforms/Transforms.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/Dialect/Linalg/IR/Linalg.h"
#include "mlir/Dialect/Linalg/Transforms/Hoisting.h"
#include "mlir/Dialect/Linalg/Transforms/Transforms.h"
#include "mlir/Dialect/SCF/IR/SCF.h"
#include "mlir/Dialect/Tensor/Utils/Utils.h"
#include "mlir/Dialect/Utils/IndexingUtils.h"
#include "mlir/IR/AsmState.h"
#include "mlir/IR/Dominance.h"
#include "mlir/IR/Matchers.h"
#include "mlir/Interfaces/DestinationStyleOpInterface.h"
#include "mlir/Transforms/LoopInvariantCodeMotionUtils.h"
#include "mlir/Transforms/RegionUtils.h"
#include "llvm/Support/Debug.h"

using llvm::dbgs;

#define DEBUG_TYPE "hoist-padding"

#define DBGS() (dbgs() << '[' << DEBUG_TYPE << "] ")

using namespace mlir;
using namespace mlir::linalg;
using namespace mlir::linalg::detail;

#ifndef NDEBUG
static bool debugPrintLoopInShortForm(Operation *op) {
  AsmState state(op->getParentOfType<func::FuncOp>());
  (void)state;
  if (auto forOp = dyn_cast<scf::ForOp>(op)) {
    forOp.getInductionVar().printAsOperand(dbgs(), state);
    dbgs() << " @ " << forOp.getOperation();
    return true;
  }
  return false;
}
#endif

static void debugPrintBackwardSlice(SetVector<Operation *> &backwardSlice) {
  LLVM_DEBUG(llvm::interleaveComma(backwardSlice, DBGS() << "--backwardSlice:",
                                   [](Operation *op) {
                                     dbgs() << "\n";
                                     DBGS() << "----";
                                     if (debugPrintLoopInShortForm(op)) {
                                       dbgs() << "\n";
                                       return;
                                     }
                                     dbgs() << *op << "\n";
                                   });
             DBGS() << "\n";);
}

/// Return at most nLevels of immediately enclosing scf::ForOp loops.
/// Stops at the first parent that is not an scf::ForOp.
/// Multi-loops such as scf.parallel or linalg.tiled_loop are not modeled atm.
/// Control-flow and other containing ops with regions are not modeled atm.
static void
getAtMostNEnclosingLoops(tensor::PadOp padOp, int nLevels,
                         SmallVector<scf::ForOp> &reverseEnclosingLoops) {
  scf::ForOp outermostEnclosingForOp = nullptr;
  Operation *nextEnclosingOp = padOp->getParentOp();
  while (nLevels-- > 0 &&
         (outermostEnclosingForOp = dyn_cast<scf::ForOp>(nextEnclosingOp))) {
    LLVM_DEBUG(DBGS() << "loops: ";
               debugPrintLoopInShortForm(outermostEnclosingForOp);
               dbgs() << "\n");
    reverseEnclosingLoops.push_back(outermostEnclosingForOp);
    nextEnclosingOp = outermostEnclosingForOp->getParentOp();
  }
}

/// Return at most nLevels of immediately enclosing scf::ForOp loops.
/// Stops at the first parent that is not an scf::ForOp.
/// Multi-loops such as scf.parallel or linalg.tiled_loop are not modeled atm.
/// Control-flow and other containing ops with regions are not modeled atm.
static void
getEnclosingLoopsUntil(tensor::PadOp padOp, scf::ForOp untilLoop,
                       SmallVector<scf::ForOp> &reverseEnclosingLoops) {
  scf::ForOp outermostEnclosingForOp = nullptr;
  Operation *nextEnclosingOp = padOp->getParentOp();
  while (outermostEnclosingForOp != untilLoop &&
         (outermostEnclosingForOp = dyn_cast<scf::ForOp>(nextEnclosingOp))) {
    LLVM_DEBUG(DBGS() << "loops: ";
               debugPrintLoopInShortForm(outermostEnclosingForOp);
               dbgs() << "\n");
    reverseEnclosingLoops.push_back(outermostEnclosingForOp);
    nextEnclosingOp = outermostEnclosingForOp->getParentOp();
  }
}

// Get all the ops in the backwards slice starting from `padOp` and that
// are dominated by the outermost enclosing loop.
// This also requires tracking ops defining values used in the region but
// defined above.
static void computeBackwardSlice(tensor::PadOp padOp,
                                 scf::ForOp outermostEnclosingForOp,
                                 SetVector<Operation *> &backwardSlice) {
  DominanceInfo domInfo(outermostEnclosingForOp);
  BackwardSliceOptions sliceOptions;
  sliceOptions.filter = [&](Operation *op) {
    return domInfo.dominates(outermostEnclosingForOp, op) &&
           !padOp->isProperAncestor(op);
  };
  sliceOptions.inclusive = true;

  // First, add the ops required to compute the region to the backwardSlice.
  SetVector<Value> valuesDefinedAbove;
  getUsedValuesDefinedAbove(padOp.getRegion(), padOp.getRegion(),
                            valuesDefinedAbove);
  for (Value v : valuesDefinedAbove) {
    getBackwardSlice(v, &backwardSlice, sliceOptions);
  }
  // Then, add the backward slice from padOp itself.
  getBackwardSlice(padOp.getOperation(), &backwardSlice, sliceOptions);
}

//===----------------------------------------------------------------------===//
// HoistPaddingAnalysis Implementation.
//===----------------------------------------------------------------------===//

namespace {
/// Analysis class to support tensor::PadOp hoisting across multiple enclosing
/// loops. The failure conditions are:
///   1. Pad op has a use that is not an input of a LinalgOp.
///   2. Pad op does not have a constant padding value.
///   3. There is no immediately enclosing scf::ForOp.
///   4. The backward slice from the pad op to the scf::ForOp to hoist above
///      contains an unknown op with non index type operands, a region, or a
///      memory effect.
///   5. The backward slice from the pad op to the scf::ForOp to hoist above is
///      empty.
///   6. The source tensor of pad op is not defined by an extract slice op.
///   7. The source tensor of the extract slice op is not defined outside of
///      the outermost enclosing scf::ForOp.
///   8. There is no enclosing scf::ForOp that indexes the padded data.
/// Other cases succeed and will trigger hoisting of the pad op.
struct HoistPaddingAnalysis {
  HoistPaddingAnalysis(tensor::PadOp padOp, int numLoops);
  HoistPaddingAnalysis(tensor::PadOp padOp, scf::ForOp outermostEnclosingForOp);

  bool isValid() { return valid.has_value() && valid.value(); }
  bool isInvalid() { return valid.has_value() && !valid.value(); }

  /// Footprint of the hoistedPackedTensor, computed from the packingLoops.
  SmallVector<Value> getHoistedPackedTensorSizes(RewriterBase &rewriter,
                                                 Location loc) const;

  /// Performs optional hoisting to enable hoist padding to occur. This may be
  /// necessary when `sliceOp` is not defined outside of the outermost enclosing
  /// loop we want to hoist above.
  ///
  /// Example:
  /// ```
  /// %source = linalg.fill(%cst, %arg0)
  /// // %source is available for packing here!
  /// scf.for %i
  ///   scf.for %j
  ///     scf.for %k
  ///       %slice = tensor.extract_slice %source [%i, %j]
  ///       %padded_slice = tensor.pad %slice
  /// ```
  void enableHoistPadding(RewriterBase &rewriter);

  /// Common analysis builder to finalize the construction of the analysis once
  /// optional `enableHoistPadding` has run.
  /// `reverseEnclosingLoops.back()` is the loop to hoist above.
  void finalizeHoistPaddingAnalysis();

private:
  /// Encodes whether the analysis is valid and hoisting can proceed.
  std::optional<bool> valid;

  /// The padOp to hoist.
  tensor::PadOp opToHoist;

  /// Immediately enclosing loops considered for hoisting padding.
  SmallVector<scf::ForOp> reverseEnclosingLoops;

  /// Drop any non-index dependencies of `padOp` and `sliceOp` from
  /// `backwardSlice`. The method follows the use-def chains of the index
  /// operands consumed by `padOp` and `sliceOp` and drops the operations
  /// not part of this index computation. Afterwards, the filtered
  /// `backwardSlice` contains only the loops whose induction variable is
  /// used, directly or indirectly, to index the padded tensor. The method
  /// returns failure if the filtered backward slice contains an unexpected
  /// operation.
  ///
  /// Example:
  /// ```
  /// %source = linalg.fill(%cst, %arg0)
  /// scf.for %i
  ///   %unrelated = linalg.fill(%cst, %arg1)    // not used to index
  ///   %source! scf.for %j (%arg2 = %unrelated)
  ///     scf.for %k                             // not used to index
  ///     %source!
  ///       %ubi = affine.min #map(%i)
  ///       %ubj = affine.min #map(%j)
  ///       %slice = tensor.extract_slice %source [%i, %j] [%ubi, %ubj]
  ///       %padded_slice = tensor.pad %slice
  /// ```
  /// dropNonIndexDependencies(%padded_slice, %slice)
  /// removes [scf.for %k, linalg.fill(%cst, %arg1)] from backwardSlice.
  LogicalResult dropNonIndexDependencies();

public:
  /// The outermost loop, determined by `nLevels` above which `padOp` will
  /// be hoisted.
  scf::ForOp outermostEnclosingForOp;

  /// Backward slice rooted at `padOp` and nested under
  /// `outermostEnclosingForOp`.
  SetVector<Operation *> backwardSlice;

  /// The scf::ForOp immediately enclosing `padOp` such that:
  ///  1. they are nested under `outermostEnclosingForOp` (inclusive)
  ///  2. whose induction variable is used, directly or indirectly, in the
  ///     computation of `padOp`.
  /// The span of these loops determines the footprint of the packed tensor.
  SmallVector<scf::ForOp> packingLoops;

  /// The ExtractSliceOp that feeds the PadOp we want to hoist.
  tensor::ExtractSliceOp sliceOp;

  /// If non-empty, this is the unique scf::ForOp that consumes the `sliceOp`.
  scf::ForOp padConsumingForOp;
};

} // namespace

HoistPaddingAnalysis::HoistPaddingAnalysis(tensor::PadOp padOp, int numLoops)
    : valid(std::nullopt), opToHoist(padOp) {
  // Get at most `numLoops` of immediately enclosing loops.
  getAtMostNEnclosingLoops(opToHoist, numLoops, reverseEnclosingLoops);
  if (reverseEnclosingLoops.empty()) {
    LLVM_DEBUG(DBGS() << "--No immediately enclosing loop -> Skip\n");
    valid = false;
    return;
  }
  outermostEnclosingForOp = reverseEnclosingLoops.back();
  sliceOp = opToHoist.getSource().getDefiningOp<tensor::ExtractSliceOp>();
  if (!sliceOp) {
    LLVM_DEBUG(DBGS() << "--Cannot find the extract slice op -> Skip\n");
    valid = false;
    return;
  }
}

HoistPaddingAnalysis::HoistPaddingAnalysis(tensor::PadOp padOp,
                                           scf::ForOp outermostEnclosingForOp)
    : valid(std::nullopt), opToHoist(padOp) {
  // Get enclosing loops until outermostEnclosingForOp.
  getEnclosingLoopsUntil(opToHoist, outermostEnclosingForOp,
                         reverseEnclosingLoops);
  if (reverseEnclosingLoops.empty()) {
    LLVM_DEBUG(DBGS() << "--No immediately enclosing loop -> Skip\n");
    valid = false;
    return;
  }
  this->outermostEnclosingForOp = reverseEnclosingLoops.back();
  if (this->outermostEnclosingForOp != outermostEnclosingForOp) {
    LLVM_DEBUG(DBGS() << "--Unexpected outermost enclosing loop -> Skip\n");
    valid = false;
    return;
  }
  sliceOp = opToHoist.getSource().getDefiningOp<tensor::ExtractSliceOp>();
  if (!sliceOp) {
    LLVM_DEBUG(DBGS() << "--Cannot find the extract slice op -> Skip\n");
    valid = false;
    return;
  }
}

void HoistPaddingAnalysis::enableHoistPadding(RewriterBase &rewriter) {
  if (isInvalid())
    return;
  // If the padded data is not yet available before entering the outermost
  // enclosing loop, try to apply hoisting on this outermost loop.
  // TODO: we may want finer-grained hoisting of only that particular `sliceOp`.
  if (!outermostEnclosingForOp.isDefinedOutsideOfLoop(sliceOp.getSource())) {
    outermostEnclosingForOp = cast<scf::ForOp>(
        hoistLoopInvariantSubsets(rewriter, outermostEnclosingForOp));
  }
}

void HoistPaddingAnalysis::finalizeHoistPaddingAnalysis() {
  if (isInvalid())
    return;

  if (!outermostEnclosingForOp.isDefinedOutsideOfLoop(sliceOp.getSource())) {
    LLVM_DEBUG(DBGS() << "--outermostEnclosingForOp:\n"
                      << outermostEnclosingForOp << "\n"
                      << "--sliceOp: " << sliceOp << "\n"
                      << "--sliceOp.getSource(): " << sliceOp.getSource()
                      << "\n");
    LLVM_DEBUG(DBGS() << "----Source not defined outside of loops -> Skip\n");
    valid = false;
    return;
  }
  if (sliceOp->hasOneUse()) {
    padConsumingForOp = dyn_cast<scf::ForOp>(*(sliceOp->getUsers().begin()));
  }

  // Check the region of `padOp` depends on a constant only. Adding hoisting
  // support for arbitrary padding regions would require cloning all
  // dependencies captured by the padding region.
  Value paddingValue = opToHoist.getConstantPaddingValue();
  if (!paddingValue ||
      !isa_and_nonnull<arith::ConstantOp>(paddingValue.getDefiningOp())) {
    LLVM_DEBUG(DBGS() << "Cannot find constant padding value -> Skip\n");
    valid = false;
    return;
  }

  computeBackwardSlice(opToHoist, outermostEnclosingForOp, backwardSlice);
  if (backwardSlice.size() <= 1) {
    valid = false;
    return;
  }

  debugPrintBackwardSlice(backwardSlice);
  // Remove all ops in the backward slice that are not used to index
  // the padded tensor. In particular, keep `padOp`, `sliceOp`, and
  // the loop and affine operations used for the index computation.
  if (failed(dropNonIndexDependencies())) {
    LLVM_DEBUG(DBGS() << "--Cannot dropNonIndexDependencies -> Skip\n");
    valid = false;
    return;
  }
  debugPrintBackwardSlice(backwardSlice);

  // Add only the loops part of the filtered `backwardSlice` to the
  // packing loops. All other loops are not used to index the padded
  // data and consequently access the same data in every loop
  // iteration. Adding them to the packing loops would increase the
  // cache footprint of the packed data by storing the same data
  // multiple times.
  for (scf::ForOp forOp : llvm::reverse(reverseEnclosingLoops))
    if (backwardSlice.contains(forOp))
      packingLoops.push_back(forOp);

  // TODO: for multiple loops we need to track the use to the innermost loop.
  if (packingLoops.size() > 1 && padConsumingForOp) {
    LLVM_DEBUG(DBGS() << "--Cannot hoist multiple loops through iter_args -> "
                         "Downgrade to 1 loop\n");
    packingLoops.resize(1);
  }

  // Note: at this point, packing loops may be empty but we would still like
  // to hoist the padding if so specified.

  // The analysis is valid and hoisting can occur.
  valid = true;
}

LogicalResult HoistPaddingAnalysis::dropNonIndexDependencies() {
  // Set of all values used for index computation.
  SetVector<Value> indexEdges;

  // Add all index operands of `operation` to `indexEdges`. An index operand
  // is an operand of type index.
  auto addIndexOperandsToIndexEdges = [&](Operation *operation) {
    for (Value operand : operation->getOperands())
      if (operand.getType().isIndex())
        indexEdges.insert(operand);
  };

  // Check if any operation result is contained in `indexEdges`.
  auto hasIndexResult = [&](Operation *operation) {
    return llvm::any_of(operation->getResults(), [&](Value result) {
      return indexEdges.contains(result);
    });
  };

  // Starting from `opToHoist` and `sliceOp` walk the use-def edges of index
  // type in `backwardSlice`. Add the index operands of an operation to
  // `indexEdges` and remove all operations from `backwardSlice` that are not
  // part of the index computation.
  //
  // Example:
  // ```
  // %source = linalg.fill(%cst, %arg0)
  // scf.for %i
  //   %unrelated = linalg.fill(%cst, %arg1)    // not used to index %source!
  //   scf.for %j (%arg2 = %unrelated)
  //     scf.for %k                             // not used to index %source!
  //       %ubi = affine.min #map(%i)
  //       %ubj = affine.min #map(%j)
  //       %slice = tensor.extract_slice %source [%i, %j] [%ubi, %ubj]
  //       %padded_slice = tensor.pad %slice
  // ```
  // After iterating `backwardSlice` we obtain:
  // indexEdges = [%i, %j, %ubi, %ubj]
  // backwardSlice = backwardSlice / [linalg.fill(%cst, %arg1), scf.for %k]
  SetVector<Operation *> operationsToRemove;
  for (Operation *op : llvm::reverse(backwardSlice)) {
    // Add the index operands of `opToHoist` and `sliceOp` to start the
    // exploration of the index computation.
    if (op == opToHoist || op == sliceOp) {
      addIndexOperandsToIndexEdges(op);
      continue;
    }
    // Add the index operands of the loop if its induction variable is
    // used for index computation.
    if (auto forOp = dyn_cast<scf::ForOp>(op)) {
      if (!hasIndexResult(op) && indexEdges.contains(forOp.getInductionVar())) {
        addIndexOperandsToIndexEdges(op);
        continue;
      }
    }
    // Add the index operands of all other operations if at least one result
    // is used for index computation.
    if (hasIndexResult(op)) {
      addIndexOperandsToIndexEdges(op);
      // Check the operands of the remaining operations all have index type.
      if (llvm::any_of(op->getOperandTypes(),
                       [](Type type) { return !type.isIndex(); })) {
        LLVM_DEBUG(DBGS() << "Unsupported op with non index type operands: "
                          << op << " -> Skip\n");
        return failure();
      }
      // Check the remaining operations do not have regions or memory effects.
      auto effectInterface = dyn_cast<MemoryEffectOpInterface>(op);
      bool hasMemoryEffect = effectInterface && !effectInterface.hasNoEffect();
      if (hasMemoryEffect || op->getNumRegions() != 0) {
        LLVM_DEBUG(DBGS() << "Unsupported op with region or memory effect: "
                          << op << " -> Skip\n");
        return failure();
      }
      continue;
    }
    // Remove all other operations not used by the index computation. An
    // exception are constant operations that may be used by `opToHoist`.
    if (!isa<arith::ConstantOp>(op))
      operationsToRemove.insert(op);
  }
  backwardSlice.set_subtract(operationsToRemove);
  return success();
}

SmallVector<Value>
HoistPaddingAnalysis::getHoistedPackedTensorSizes(RewriterBase &rewriter,
                                                  Location loc) const {
  SmallVector<Value> dynamicTensorSizes;

  // Upper bound the packing loop lengths to size the packed tensor. Taking
  // upper bounds can make the sizes of the packed tensor independent of the
  // enclosing loops. This independence is a prerequisite for reusing the same
  // buffer for all enclosing loop iterations and hoisting its allocation out
  // of the enclosing loops.
  for (auto forOp : packingLoops) {
    // Compute an upper bound `ubVal` for the upper bound of `forOp`.
    FailureOr<OpFoldResult> loopUb = affine::reifyIndexValueBound(
        rewriter, loc, presburger::BoundType::UB, forOp.getUpperBound(),
        /*stopCondition=*/
        [&](Value v, std::optional<int64_t> d) {
          if (v == forOp.getUpperBound())
            return false;
          // Compute a bound that is independent of any affine op results.
          Operation *op = v.getDefiningOp();
          if (!op)
            return true;
          return !isa<affine::AffineMinOp, affine::AffineMaxOp,
                      affine::AffineApplyOp>(op);
        },
        /*closedUB=*/true);
    assert(succeeded(loopUb) && "could not get upper bound");
    Value ubVal = getValueOrCreateConstantIndexOp(rewriter, loc, *loopUb);

    // Compute the maximal packing loop length as (ub - lb).ceilDiv(step) and
    // store the result to `dynamicTensorSizes`.
    // TODO: instead of using the lower bound of `forOp` directly, implement a
    // lower bound computation similar to the upper bound computation.
    AffineExpr lb, ub, step;
    bindDims(rewriter.getContext(), lb, ub);
    bindSymbols(rewriter.getContext(), step);
    Value res = rewriter.createOrFold<affine::AffineApplyOp>(
        loc, (ub - lb).ceilDiv(step),
        ValueRange{forOp.getLowerBound(), ubVal,
                   cast<scf::ForOp>(forOp).getStep()});
    dynamicTensorSizes.push_back(res);
  }

  return dynamicTensorSizes;
}

static bool isDefinedOutsideOrConstant(scf::ForOp outer, Value v) {
  return outer.isDefinedOutsideOfLoop(v) || matchPattern(v, m_Constant());
}

//===----------------------------------------------------------------------===//
// buildPackingLoopNest Implementation.
//===----------------------------------------------------------------------===//

/// Return the current iteration number in the loop (iv - lb).ceilDiv(step).
/// The returned Value is guaranteed not to depend on any loop comprised in
/// [`outer`, `forOp`].
/// Return null if such a loop-independent quantity cannot be computed.
static Value buildLoopIterationCount(RewriterBase &rewriter, scf::ForOp outer,
                                     scf::ForOp forOp) {
  MLIRContext *ctx = forOp->getContext();
  AffineExpr iv, lb, step;
  bindDims(ctx, iv, lb);
  bindSymbols(ctx, step);
  if (!isDefinedOutsideOrConstant(outer, forOp.getLowerBound()) ||
      !isDefinedOutsideOrConstant(outer, forOp.getStep()))
    return Value();
  Value ivVal = forOp.getInductionVar(), lbVal = forOp.getLowerBound(),
        stepVal = forOp.getStep();
  auto loc = forOp->getLoc();
  return rewriter.createOrFold<affine::AffineApplyOp>(
      loc, (iv - lb).ceilDiv(step), ValueRange{ivVal, lbVal, stepVal});
}

// Build a packing loop nest by iteratively traversing the backward slice and
// clone the operations, iteratively stepping into the loops that we encounter.
// The implementation proceeds in a stack-like fashion:
//   1. Iteratively clone and step into the loops, pushing the
//   `hoistedPackedTensor`
//      deeper in the stack.
//   2. At the innermost loop level, create a GenericOp if `transposeVector` is
//      non-empty.
//   3. At the innermost loop level, create a InsertSliceOp.
//   4. Iteratively pop and yield the result of the InsertSliceOp across the
//      cloned loops.
static FailureOr<PackingResult> buildPackingLoopNestImpl(
    RewriterBase &rewriter, IRMapping &bvm, tensor::PadOp opToHoist,
    ArrayRef<int64_t> transposeVector, RankedTensorType transposedTensorType,
    tensor::EmptyOp emptyOp, const HoistPaddingAnalysis &analysis) {
  SmallVector<OpFoldResult> offsets, sizes, strides;
  SmallVector<Value> clonedLoopIvs, leadingHoistedPackedTensorIndexings;

  scf::ForOp outerLoop = analysis.outermostEnclosingForOp;

  Location loc = opToHoist->getLoc();
  RankedTensorType paddedTensorType = opToHoist.getResultType();
  int paddedRank = paddedTensorType.getRank();

  // Step 0. Populate bvm with opToHoist.getSource if relevant.
  BlockArgument bbArg = dyn_cast<BlockArgument>(opToHoist.getSource());
  while (bbArg) {
    auto forOp = dyn_cast<scf::ForOp>(bbArg.getOwner()->getParentOp());
    if (!forOp)
      break;
    if (forOp != outerLoop && !outerLoop->isAncestor(forOp))
      break;
    OpOperand &operand = *forOp.getTiedLoopInit(bbArg);
    bvm.map(bbArg, operand.get());
    bbArg = dyn_cast<BlockArgument>(operand.get());
  }

  // Step 1. iteratively clone loops and push `hoistedPackedTensor`.
  Value hoistedPackedTensor = emptyOp.getResult();
  OpBuilder::InsertionGuard g(rewriter);
  for (Operation *op : analysis.backwardSlice) {
    // Specifically sit out in the extract_slice(hoistedPackedTensor) case: this
    // is the piece we seek to replace.
    if (auto sliceOp = dyn_cast<tensor::ExtractSliceOp>(op)) {
      if (bvm.lookupOrDefault(sliceOp.getSource()) == hoistedPackedTensor) {
        LLVM_DEBUG(DBGS() << "--Skip: " << sliceOp << "\n");
        continue;
      }
    }

    // Clone all operations except loops which require special handling.
    auto forOp = dyn_cast<scf::ForOp>(op);
    if (!forOp) {
      // We are at the right insertion point within the loop nest.
      rewriter.clone(*op, bvm);
      continue;
    }

    // Create a packing loop that takes `hoistedPackedTensor` as iteration
    // argument.
    auto clonedForOp = rewriter.create<scf::ForOp>(
        loc, bvm.lookupOrDefault(forOp.getLowerBound()),
        bvm.lookupOrDefault(forOp.getUpperBound()),
        bvm.lookupOrDefault(forOp.getStep()), hoistedPackedTensor);

    // Map the induction var, region args and results to the `clonedForOp`.
    bvm.map(forOp.getInductionVar(), clonedForOp.getInductionVar());
    bvm.map(forOp.getRegionIterArgs(), clonedForOp.getRegionIterArgs());
    bvm.map(forOp.getResults(), clonedForOp.getResults());
    assert(clonedForOp->getNumRegions() == 1);
    clonedLoopIvs.push_back(clonedForOp.getInductionVar());

    // Do not insert guard here, we get deeper into the loop nest.
    rewriter.setInsertionPointToStart(&clonedForOp->getRegion(0).front());
    Value loopIndependentIterationCount =
        buildLoopIterationCount(rewriter, outerLoop, clonedForOp);

    // Assert the loop-independent iteration count can be computed.
    if (!loopIndependentIterationCount)
      llvm_unreachable("loop independence prerequisite not met");
    leadingHoistedPackedTensorIndexings.push_back(
        loopIndependentIterationCount);
    hoistedPackedTensor = clonedForOp.getRegionIterArgs().front();
  }

  // Step 2. Construct offsets, sizes and strides for the innermost level of the
  // packing loop.
  int64_t nPackedLoops = clonedLoopIvs.size();
  // offsets = [clonedLoopIvs, 0 .. 0].
  offsets =
      SmallVector<OpFoldResult>{leadingHoistedPackedTensorIndexings.begin(),
                                leadingHoistedPackedTensorIndexings.end()};
  offsets.append(paddedRank, rewriter.getIndexAttr(0));
  // sizes = [1 .. 1, transposedShape].
  sizes = SmallVector<OpFoldResult>(nPackedLoops, rewriter.getIndexAttr(1));
  for (int64_t sz : transposedTensorType.getShape()) {
    // TODO: go grab dims when needed, atm tensor::PadOp yields a static tensor.
    if (ShapedType::isDynamic(sz))
      return failure();
    sizes.push_back(rewriter.getIndexAttr(sz));
  }
  // strides = [1 .. 1].
  strides = SmallVector<OpFoldResult>(nPackedLoops + paddedRank,
                                      rewriter.getIndexAttr(1));

  // Step 3. Optionally transpose the padded tensor.
  GenericOp maybeTransposeOp;
  Value paddedTensor = bvm.lookup(opToHoist.getResult());
  if (!transposeVector.empty()) {
    Value outputTensor = rewriter.create<tensor::ExtractSliceOp>(
        loc, transposedTensorType, hoistedPackedTensor, offsets, sizes,
        strides);
    maybeTransposeOp = makeTransposeOp(rewriter, loc, paddedTensor,
                                       outputTensor, transposeVector);
    paddedTensor = maybeTransposeOp.getResult(0);
  }

  // Innermost tensor.insert_slice and yields are optional / need loops.
  if (nPackedLoops > 0) {
    // Step 4. Create InsertSliceOp at the innermost loop level, inserting an
    // optionally transposed padded slice into the packed tensor.
    Value inserted = rewriter.create<tensor::InsertSliceOp>(
        loc, paddedTensor, hoistedPackedTensor, offsets, sizes, strides);

    // Step 5. Iteratively pop the stack and propagate the yield.
    Value valueToYield = inserted;
    for (Value iv : llvm::reverse(clonedLoopIvs)) {
      auto forOp = scf::getForInductionVarOwner(iv);
      rewriter.setInsertionPointToEnd(&forOp.getRegion().front());
      rewriter.create<scf::YieldOp>(loc, valueToYield);
      valueToYield = forOp.getResult(0);
    }
  }

  return PackingResult{
      offsets,
      sizes,
      strides,
      clonedLoopIvs,
      leadingHoistedPackedTensorIndexings,
      maybeTransposeOp,
      cast<tensor::PadOp>(bvm.lookup(opToHoist.getResult()).getDefiningOp())};
}

/// Build the packing loop nest required to hoist `opToHoist` above
/// `outermostEnclosingForOp`.
/// The loop nest is built just before `outermostEnclosingForOp`.
static FailureOr<PackingResult> buildPackingLoopNestImpl(
    RewriterBase &rewriter, IRMapping &bvm, tensor::PadOp opToHoist,
    ArrayRef<int64_t> transposeVector, const HoistPaddingAnalysis &analysis) {
  // Update actual number of loops, which may be smaller.
  int nPackedLoops = analysis.packingLoops.size();
  LLVM_DEBUG(DBGS() << "\n";
             DBGS() << "Func:\n"
                    << *opToHoist->getParentOfType<func::FuncOp>() << "\n";
             DBGS() << "Start hoisting above " << nPackedLoops << " loops\n");

  Location loc = opToHoist->getLoc();
  RankedTensorType paddedTensorType = opToHoist.getResultType();

  // Compute the type of the transposed padded tensor.
  FailureOr<RankedTensorType> transposedTensorType =
      tensor::computeTransposedType(paddedTensorType, transposeVector);
  if (failed(transposedTensorType)) {
    LLVM_DEBUG(DBGS() << "--Could not compute transposed type -> Skip\n");
    return failure();
  }

  // Create the packed tensor<?x?x..? x transposedShape>.
  SmallVector<int64_t> packedShape(nPackedLoops, ShapedType::kDynamic);
  // TODO: go grab dims when needed, atm tensor::PadOp yields a static tensor.
  llvm::append_range(packedShape, transposedTensorType->getShape());
  auto hoistedPackedTensorType = RankedTensorType::get(
      packedShape, transposedTensorType->getElementType());

  // Set the insertion point right before the outer loop and start packing.
  scf::ForOp outerLoop = analysis.outermostEnclosingForOp;
  OpBuilder::InsertionGuard g(rewriter);
  rewriter.setInsertionPoint(outerLoop);
  SmallVector<Value> dynamicTensorSizes =
      analysis.getHoistedPackedTensorSizes(rewriter, loc);
  auto emptyOp = rewriter.create<tensor::EmptyOp>(
      loc, hoistedPackedTensorType.getShape(),
      hoistedPackedTensorType.getElementType(), dynamicTensorSizes);

  return buildPackingLoopNestImpl(rewriter, bvm, opToHoist, transposeVector,
                                  *transposedTensorType, emptyOp, analysis);
}

/// Build the packing loop nest required to hoist `opToHoist` above
/// `outermostEnclosingForOp`.
/// The loop nest is built just before `outermostEnclosingForOp`.
FailureOr<PackingResult> mlir::linalg::detail::buildPackingLoopNest(
    RewriterBase &rewriter, tensor::PadOp opToHoist,
    scf::ForOp outermostEnclosingForOp, ArrayRef<int64_t> transposeVector) {
  HoistPaddingAnalysis analysis(opToHoist, outermostEnclosingForOp);
  analysis.enableHoistPadding(rewriter);
  analysis.finalizeHoistPaddingAnalysis();
  if (!analysis.isValid()) {
    LLVM_DEBUG(DBGS() << "--Analysis failed -> Skip\n");
    return failure();
  }
  IRMapping bvm;
  return buildPackingLoopNestImpl(rewriter, bvm, opToHoist, transposeVector,
                                  analysis);
}

//===----------------------------------------------------------------------===//
// hoistPaddingOnTensors Implementation.
//===----------------------------------------------------------------------===//

/// Return true if we can walk back the use-def chain from `extractSliceOp` to
/// expectedSource going through DestinationStyleOpInterface inits only.
/// This is a poor man's analysis that is sufficient to check the extractSliceOp
/// the matches tensor.pad we want to hoist.
/// In the future, it will be easier to ensure this with a matching symmetric
/// tensor.unpad op.
static bool tracesBackToExpectedValue(tensor::ExtractSliceOp extractSliceOp,
                                      Value expectedSource) {
  LLVM_DEBUG(DBGS() << "Start tracesBackToExpectedValue on: " << extractSliceOp
                    << "\n");
  LLVM_DEBUG(DBGS() << "--with extractSlice: " << extractSliceOp << "\n");
  Value source = extractSliceOp.getSource();
  LLVM_DEBUG(DBGS() << "--with starting source: " << source << "\n");
  while (source && source != expectedSource) {
    auto destOp =
        dyn_cast_or_null<DestinationStyleOpInterface>(source.getDefiningOp());
    if (!destOp)
      break;
    LLVM_DEBUG(DBGS() << "--step dest op: " << destOp << "\n");
    source = destOp.getDpsInitOperand(cast<OpResult>(source).getResultNumber())
                 ->get();
  }
  LLVM_DEBUG(DBGS() << "--final source: " << source << "\n");
  LLVM_DEBUG(DBGS() << "--expected source: " << expectedSource << "\n");
  return source == expectedSource;
}

/// If the original consumer of `outerSliceOp` was a `forOp` (i.e. through an
/// iter arg), propagate the `hoistedPackedTensor` value through the same iter
/// arg.
/// TODO: for multiple loops we need to track the use to the innermost loop.
///
/// Match:
/// ```
///   %outerSliceOp = tensor.extract_slice ..
///   %f = scf.for ... iter_args(%arg0 = %outerSliceOp) {
///     %hoistedPackedTensor = tensor.pad %arg0
///     %1 = compute %hoistedPackedTensor
///     %2 = tensor.extract_slice %1
///     scf.yield %2
///   }
/// ```
///
/// and rewrite as:
/// ```
///   %outerSliceOp = tensor.extract_slice ..
///   %hoistedPackedTensor = tensor.pad %outerSliceOp
///   %f = scf.for ... iter_args(%arg0 = %hoistedPackedTensor) {
///     %1 = compute %arg0
///     scf.yield %1
///   }
///   %2 = tensor.extract_slice %forOp
/// ```
///
/// Return null when no rewrite happened.
static tensor::ExtractSliceOp
padThroughLoopIterArg(RewriterBase &rewriter, Value paddedValueBeforeHoisting,
                      Value hoistedPackedTensor,
                      tensor::ExtractSliceOp outerSliceOp, scf::ForOp forOp) {
  LLVM_DEBUG(DBGS() << "Start padThroughLoopIterArg on: " << forOp << "\n");
  LLVM_DEBUG(DBGS() << "--paddedValueBeforeHoisting: "
                    << paddedValueBeforeHoisting << "\n");
  OpOperand *pUse = nullptr;
  for (OpOperand &use : outerSliceOp->getUses()) {
    if (use.getOwner() == forOp) {
      assert(!pUse && "Multiple slice uses in the for loop");
      pUse = &use;
    }
  }
  assert(pUse && "No slice use in the for loop");
  OpBuilder::InsertionGuard g(rewriter);
  rewriter.setInsertionPointAfter(hoistedPackedTensor.getDefiningOp());

  unsigned iterArgNumber = forOp.getTiedLoopResult(pUse).getResultNumber();
  auto yieldingExtractSliceOp = forOp.getYieldedValues()[iterArgNumber]
                                    .getDefiningOp<tensor::ExtractSliceOp>();
  if (!yieldingExtractSliceOp)
    return tensor::ExtractSliceOp();

  // Poor man's analysis sufficient to ensure extractSlice matches tensor.pad.
  // In the future, it will be easier to ensure this with a matching symmetric
  // tensor.unpad op.
  if (!tracesBackToExpectedValue(yieldingExtractSliceOp,
                                 paddedValueBeforeHoisting))
    return tensor::ExtractSliceOp();

  SmallVector<Value> initArgs = forOp.getInitArgs();
  initArgs[iterArgNumber] = hoistedPackedTensor;
  SmallVector<Value> yieldOperands = llvm::to_vector(forOp.getYieldedValues());
  yieldOperands[iterArgNumber] = yieldingExtractSliceOp.getSource();

  int64_t numOriginalForOpResults = initArgs.size();
  LLVM_DEBUG(DBGS() << "numOriginalForOpResults: " << numOriginalForOpResults
                    << "\n");
  tensor::ExtractSliceOp extracted;
  {
    OpBuilder::InsertionGuard g(rewriter);
    rewriter.setInsertionPointAfter(forOp);
    extracted = rewriter.create<tensor::ExtractSliceOp>(
        hoistedPackedTensor.getLoc(), hoistedPackedTensor,
        outerSliceOp.getMixedOffsets(), outerSliceOp.getMixedSizes(),
        outerSliceOp.getMixedStrides());
    rewriter.replaceAllUsesWith(forOp.getResult(iterArgNumber), extracted);
  }
  scf::ForOp newForOp = cast<scf::ForOp>(*forOp.replaceWithAdditionalYields(
      rewriter, initArgs, /*replaceInitOperandUsesInLoop=*/true,
      [&](OpBuilder &b, Location loc, ArrayRef<BlockArgument> newBBArgs) {
        return yieldOperands;
      }));

  LLVM_DEBUG(DBGS() << "newForOp results: " << newForOp.getNumResults()
                    << "\n");
  LLVM_DEBUG(DBGS() << "replace source of: " << extracted << "\n");
  LLVM_DEBUG(DBGS() << "with result #"
                    << numOriginalForOpResults + iterArgNumber
                    << " of forOp, giving us: " << extracted << "\n");
  rewriter.startOpModification(extracted);
  extracted.getSourceMutable().assign(
      newForOp.getResult(numOriginalForOpResults + iterArgNumber));
  rewriter.finalizeOpModification(extracted);

  LLVM_DEBUG(DBGS() << "replace uses of: " << paddedValueBeforeHoisting
                    << "\n");
  LLVM_DEBUG(DBGS() << "with region iter arg #"
                    << numOriginalForOpResults + iterArgNumber << "\n");
  rewriter.replaceAllUsesWith(
      paddedValueBeforeHoisting,
      newForOp.getRegionIterArg(numOriginalForOpResults + iterArgNumber));

  return extracted;
}

/// Produce a tensor extracted from the packingResult. This can be used as a
/// replacement for `opToHoist` in callers.
static Value replaceByPackingResult(RewriterBase &rewriter,
                                    const IRMapping &bvm,
                                    tensor::PadOp opToHoist,
                                    RankedTensorType transposedTensorType,
                                    const HoistPaddingAnalysis &analysis,
                                    const PackingResult &packingResult) {
  // The replacement occurs under a single insertion point within the original
  // loop, just before opToHoist.
  OpBuilder::InsertionGuard g(rewriter);
  rewriter.setInsertionPoint(opToHoist);

  Location loc = opToHoist->getLoc();
  RankedTensorType paddedTensorType = opToHoist.getResultType();
  int paddedRank = paddedTensorType.getRank();

  int64_t nPackedLoops = packingResult.clonedLoopIvs.size();
  LLVM_DEBUG(DBGS() << "nPackedLoops: " << nPackedLoops << " loops\n");

  scf::ForOp outerLoop = analysis.outermostEnclosingForOp;
  ArrayRef<scf::ForOp> packingLoops = analysis.packingLoops;

  Value hoistedPackedTensor;
  SmallVector<Value> loopIterationCounts;
  SmallVector<OpFoldResult> offsets(nPackedLoops + paddedRank,
                                    rewriter.getIndexAttr(0));
  if (nPackedLoops > 0) {
    loopIterationCounts =
        llvm::to_vector<4>(llvm::map_range(packingLoops, [&](Operation *loop) {
          return buildLoopIterationCount(rewriter, outerLoop,
                                         cast<scf::ForOp>(loop));
        }));
    // Assert all loop iteration counts can be computed.
    if (llvm ::any_of(loopIterationCounts, [](Value v) { return !v; }))
      llvm_unreachable("loop independence prerequisite not met");

    // offsets = [maybe_leading_ivs = originalLoopIvs, 0 .. 0].
    std::copy(loopIterationCounts.begin(), loopIterationCounts.end(),
              offsets.begin());
    hoistedPackedTensor =
        scf::getForInductionVarOwner(packingResult.clonedLoopIvs.front())
            ->getResult(0);
  } else {
    // If no loops were created, this is just hoisting without packing.
    hoistedPackedTensor = bvm.lookup(opToHoist.getResult());
  }

  LLVM_DEBUG(DBGS() << "hoistedPackedTensor: " << hoistedPackedTensor << "\n");

  // If the consumer of `padOp` was a `forOp`, propagate through iter args.
  scf::ForOp forOp = analysis.padConsumingForOp;
  if (forOp) {
    return padThroughLoopIterArg(rewriter, opToHoist, hoistedPackedTensor,
                                 analysis.sliceOp, forOp);
  }

  // offsets = [maybe_leading_ivs, 0 .. 0].
  // sizes = [1 .. 1, transposedShape] (defined above).
  // strides = [1 .. 1] (defined above)
  return rewriter.create<tensor::ExtractSliceOp>(
      loc, transposedTensorType, hoistedPackedTensor, offsets,
      packingResult.sizes, packingResult.strides);
}

FailureOr<Value> mlir::linalg::hoistPaddingOnTensors(
    RewriterBase &rewriter, tensor::PadOp opToHoist, int64_t numLoops,
    ArrayRef<int64_t> transposeVector, tensor::PadOp &hoistedOp,
    SmallVectorImpl<GenericOp> &transposeOps) {
  LLVM_DEBUG(DBGS() << "\n"; DBGS() << " Try to hoist " << *(opToHoist) << "\n";
             DBGS() << " by " << numLoops << " loops\n");

  HoistPaddingAnalysis analysis(opToHoist, numLoops);
  analysis.enableHoistPadding(rewriter);
  analysis.finalizeHoistPaddingAnalysis();
  if (!analysis.isValid()) {
    LLVM_DEBUG(DBGS() << "--Analysis failed -> Skip\n");
    return failure();
  }

  /// Construct the packing loop nest.
  IRMapping bvm;
  FailureOr<PackingResult> packingResult = buildPackingLoopNestImpl(
      rewriter, bvm, opToHoist, transposeVector, analysis);
  if (failed(packingResult)) {
    LLVM_DEBUG(DBGS() << "--buildPackingLoopNestImpl failed -> Skip\n");
    return failure();
  }

  if (!transposeVector.empty())
    transposeOps.push_back(packingResult->maybeTransposeOp);

  FailureOr<RankedTensorType> transposedTensorType =
      tensor::computeTransposedType(opToHoist.getResultType(), transposeVector);
  assert(succeeded(transposedTensorType) && "unexpected failure in type");

  // Now the packed tensor is ready, replace the original padding op by a
  // 1x..x1 slice [originalLoopIvs, 0 .. 0][1 .. 1, paddedShape][1 .. 1].
  Value newResult =
      replaceByPackingResult(rewriter, bvm, opToHoist, *transposedTensorType,
                             analysis, *packingResult);

  Location loc = opToHoist->getLoc();
  RankedTensorType paddedTensorType = opToHoist.getResultType();
  if (!transposeVector.empty()) {
    OpBuilder::InsertionGuard g(rewriter);
    rewriter.setInsertionPointAfter(newResult.getDefiningOp());
    // Transpose the packed tensor back to the original storage order.
    Value emptyTensor = rewriter.create<tensor::EmptyOp>(
        loc, paddedTensorType.getShape(), paddedTensorType.getElementType());
    GenericOp unTransposeOp =
        makeTransposeOp(rewriter, loc, newResult, emptyTensor, transposeVector);
    newResult = unTransposeOp.getResult(0);
    transposeOps.push_back(unTransposeOp);
  }

  LLVM_DEBUG(DBGS() << "newResult: " << newResult << "\n");
  LLVM_DEBUG(
      DBGS() << "After hoisting: "
             << newResult.getDefiningOp()->getParentOfType<func::FuncOp>()
             << "\n");

  // Make the newly cloned `opToHoist` available to the caller.
  hoistedOp = packingResult->hoistedPadOp;

  LLVM_DEBUG(DBGS() << "--SUCCESS\n");
  return newResult;
}

FailureOr<Value>
mlir::linalg::hoistPaddingOnTensors(tensor::PadOp opToHoist, int64_t numLoops,
                                    ArrayRef<int64_t> transposeVector,
                                    tensor::PadOp &hoistedOp,
                                    SmallVectorImpl<GenericOp> &transposeOps) {
  IRRewriter rewriter(opToHoist.getContext());
  return hoistPaddingOnTensors(rewriter, opToHoist, numLoops, transposeVector,
                               hoistedOp, transposeOps);
}