summaryrefslogtreecommitdiffstats
path: root/src/libs/7zip/unix/CPP/7zip/Crypto/RarAes.cpp
blob: b0f00ea85418c525732ff753c67b78e67965e224 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
// Crypto/RarAes.cpp
// Note: you must include MyAes.cpp to project to initialize AES tables

#include "StdAfx.h"

#include "RarAes.h"
#include "Sha1.h"

namespace NCrypto {
namespace NRar29 {

CDecoder::CDecoder():
  _thereIsSalt(false),
  _needCalculate(true),
  _rar350Mode(false)
{
  for (int i = 0; i < sizeof(_salt); i++)
    _salt[i] = 0;
}

STDMETHODIMP CDecoder::SetDecoderProperties2(const Byte *data, UInt32 size)
{
  bool thereIsSaltPrev = _thereIsSalt;
  _thereIsSalt = false;
  if (size == 0)
    return S_OK;
  if (size < 8)
    return E_INVALIDARG;
  _thereIsSalt = true;
  bool same = false;
  if (_thereIsSalt == thereIsSaltPrev)
  {
    same = true;
    if (_thereIsSalt)
    {
      for (unsigned i = 0; i < sizeof(_salt); i++)
        if (_salt[i] != data[i])
        {
          same = false;
          break;
        }
    }
  }
  for (unsigned i = 0; i < sizeof(_salt); i++)
    _salt[i] = data[i];
  if (!_needCalculate && !same)
    _needCalculate = true;
  return S_OK;
}

static const unsigned kMaxPasswordLength = 127 * 2;

STDMETHODIMP CDecoder::CryptoSetPassword(const Byte *data, UInt32 size)
{
  if (size > kMaxPasswordLength)
    size = kMaxPasswordLength;
  bool same = false;
  if (size == buffer.GetCapacity())
  {
    same = true;
    for (UInt32 i = 0; i < size; i++)
      if (data[i] != buffer[i])
      {
        same = false;
        break;
      }
  }
  if (!_needCalculate && !same)
    _needCalculate = true;
  buffer.SetCapacity(size);
  memcpy(buffer, data, size);
  return S_OK;
}

STDMETHODIMP CDecoder::Init()
{
  Calculate();
  SetKey(aesKey, kRarAesKeySize);
  AesCbc_Init(_aes + _offset, _aesInit);
  return S_OK;
}

void CDecoder::Calculate()
{
  if (_needCalculate)
  {
    const unsigned kSaltSize = 8;
    
    Byte rawPassword[kMaxPasswordLength + kSaltSize];
    
    memcpy(rawPassword, buffer, buffer.GetCapacity());
    
    size_t rawLength = buffer.GetCapacity();
    
    if (_thereIsSalt)
    {
      memcpy(rawPassword + rawLength, _salt, kSaltSize);
      rawLength += kSaltSize;
    }
    
    NSha1::CContext sha;
    sha.Init();

    // rar reverts hash for sha.
    const unsigned kNumRounds = (1 << 18);
    unsigned i;
    for (i = 0; i < kNumRounds; i++)
    {
      sha.UpdateRar(rawPassword, rawLength, _rar350Mode);
      Byte pswNum[3] = { (Byte)i, (Byte)(i >> 8), (Byte)(i >> 16) };
      sha.UpdateRar(pswNum, 3, _rar350Mode);
      if (i % (kNumRounds / 16) == 0)
      {
        NSha1::CContext shaTemp = sha;
        Byte digest[NSha1::kDigestSize];
        shaTemp.Final(digest);
        _aesInit[i / (kNumRounds / 16)] = (Byte)digest[4 * 4 + 3];
      }
    }
    /*
    // it's test message for sha
    const char *message = "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq";
    sha.Update((const Byte *)message, strlen(message));
    */
    Byte digest[20];
    sha.Final(digest);
    for (i = 0; i < 4; i++)
      for (unsigned j = 0; j < 4; j++)
        aesKey[i * 4 + j] = (digest[i * 4 + 3 - j]);
  }
  _needCalculate = false;
}

}}