/**************************************************************************** ** ** Copyright (C) 2016 The Qt Company Ltd. ** Contact: https://www.qt.io/licensing/ ** ** This file is part of Qt for Python. ** ** $QT_BEGIN_LICENSE:LGPL$ ** Commercial License Usage ** Licensees holding valid commercial Qt licenses may use this file in ** accordance with the commercial license agreement provided with the ** Software or, alternatively, in accordance with the terms contained in ** a written agreement between you and The Qt Company. For licensing terms ** and conditions see https://www.qt.io/terms-conditions. For further ** information use the contact form at https://www.qt.io/contact-us. ** ** GNU Lesser General Public License Usage ** Alternatively, this file may be used under the terms of the GNU Lesser ** General Public License version 3 as published by the Free Software ** Foundation and appearing in the file LICENSE.LGPL3 included in the ** packaging of this file. Please review the following information to ** ensure the GNU Lesser General Public License version 3 requirements ** will be met: https://www.gnu.org/licenses/lgpl-3.0.html. ** ** GNU General Public License Usage ** Alternatively, this file may be used under the terms of the GNU ** General Public License version 2.0 or (at your option) the GNU General ** Public license version 3 or any later version approved by the KDE Free ** Qt Foundation. The licenses are as published by the Free Software ** Foundation and appearing in the file LICENSE.GPL2 and LICENSE.GPL3 ** included in the packaging of this file. Please review the following ** information to ensure the GNU General Public License requirements will ** be met: https://www.gnu.org/licenses/gpl-2.0.html and ** https://www.gnu.org/licenses/gpl-3.0.html. ** ** $QT_END_LICENSE$ ** ****************************************************************************/ #include #include "pysidesignal.h" #include "pysidesignal_p.h" #include "signalmanager.h" #include #include #include #include #include #include #define SIGNAL_CLASS_NAME "Signal" #define SIGNAL_INSTANCE_NAME "SignalInstance" #define QT_SIGNAL_SENTINEL '2' namespace PySide { namespace Signal { //aux class SignalSignature { public: SignalSignature() = default; explicit SignalSignature(QByteArray parameterTypes) : m_parameterTypes(std::move(parameterTypes)) {} explicit SignalSignature(QByteArray parameterTypes, QMetaMethod::Attributes attributes) : m_parameterTypes(std::move(parameterTypes)), m_attributes(attributes) {} QByteArray m_parameterTypes; QMetaMethod::Attributes m_attributes = QMetaMethod::Compatibility; }; static QByteArray buildSignature(const QByteArray &, const QByteArray &); static void appendSignature(PySideSignal *, const SignalSignature &); static void instanceInitialize(PySideSignalInstance *, PyObject *, PySideSignal *, PyObject *, int); static QByteArray parseSignature(PyObject *); static PyObject *buildQtCompatible(const QByteArray &); } } extern "C" { // Signal methods static int signalTpInit(PyObject *, PyObject *, PyObject *); static void signalFree(void *); static void signalInstanceFree(void *); static PyObject *signalGetItem(PyObject *self, PyObject *key); static PyObject *signalToString(PyObject *self); // Signal Instance methods static PyObject *signalInstanceConnect(PyObject *, PyObject *, PyObject *); static PyObject *signalInstanceDisconnect(PyObject *, PyObject *); static PyObject *signalInstanceEmit(PyObject *, PyObject *); static PyObject *signalInstanceGetItem(PyObject *, PyObject *); static PyObject *signalInstanceCall(PyObject *self, PyObject *args, PyObject *kw); static PyObject *signalCall(PyObject *, PyObject *, PyObject *); static PyObject *metaSignalCheck(PyObject *, PyObject *); static PyMethodDef Signal_methods[] = { {"__instancecheck__", (PyCFunction)metaSignalCheck, METH_O, NULL}, {0, 0, 0, 0} }; static PyType_Slot PySideSignalMetaType_slots[] = { {Py_tp_methods, (void *)Signal_methods}, {Py_tp_base, (void *)&PyType_Type}, {Py_tp_free, (void *)PyObject_GC_Del}, {Py_tp_dealloc, (void *)object_dealloc}, {0, 0} }; static PyType_Spec PySideSignalMetaType_spec = { "PySide2.QtCore.MetaSignal", 0, // sizeof(PyHeapTypeObject) is filled in by PyType_FromSpecWithBases // which calls PyType_Ready which calls inherit_special. 0, Py_TPFLAGS_DEFAULT, PySideSignalMetaType_slots, }; PyTypeObject *PySideSignalMetaTypeF(void) { static PyTypeObject *type = nullptr; if (!type) { PyObject *bases = Py_BuildValue("(O)", &PyType_Type); type = (PyTypeObject *)PyType_FromSpecWithBases(&PySideSignalMetaType_spec, bases); Py_XDECREF(bases); } return type; } static PyType_Slot PySideSignalType_slots[] = { {Py_mp_subscript, (void *)signalGetItem}, {Py_tp_call, (void *)signalCall}, {Py_tp_str, (void *)signalToString}, {Py_tp_init, (void *)signalTpInit}, {Py_tp_new, (void *)PyType_GenericNew}, {Py_tp_free, (void *)signalFree}, {Py_tp_dealloc, (void *)object_dealloc}, {0, 0} }; static PyType_Spec PySideSignalType_spec = { "PySide2.QtCore." SIGNAL_CLASS_NAME, sizeof(PySideSignal), 0, Py_TPFLAGS_DEFAULT, PySideSignalType_slots, }; PyTypeObject *PySideSignalTypeF(void) { static PyTypeObject *type = nullptr; if (!type) { type = (PyTypeObject *)PyType_FromSpec(&PySideSignalType_spec); PyTypeObject *hold = Py_TYPE(type); Py_TYPE(type) = PySideSignalMetaTypeF(); Py_INCREF(Py_TYPE(type)); Py_DECREF(hold); } return type; } static PyMethodDef SignalInstance_methods[] = { {"connect", (PyCFunction)signalInstanceConnect, METH_VARARGS|METH_KEYWORDS, 0}, {"disconnect", signalInstanceDisconnect, METH_VARARGS, 0}, {"emit", signalInstanceEmit, METH_VARARGS, 0}, {0, 0, 0, 0} /* Sentinel */ }; static PyType_Slot PySideSignalInstanceType_slots[] = { //{Py_tp_as_mapping, (void *)&SignalInstance_as_mapping}, {Py_mp_subscript, (void *)signalInstanceGetItem}, {Py_tp_call, (void *)signalInstanceCall}, {Py_tp_methods, (void *)SignalInstance_methods}, {Py_tp_new, (void *)PyType_GenericNew}, {Py_tp_free, (void *)signalInstanceFree}, {Py_tp_dealloc, (void *)object_dealloc}, {0, 0} }; static PyType_Spec PySideSignalInstanceType_spec = { "PySide2.QtCore." SIGNAL_INSTANCE_NAME, sizeof(PySideSignalInstance), 0, Py_TPFLAGS_DEFAULT, PySideSignalInstanceType_slots, }; PyTypeObject *PySideSignalInstanceTypeF(void) { static PyTypeObject *type = (PyTypeObject *)PyType_FromSpec(&PySideSignalInstanceType_spec); return type; } int signalTpInit(PyObject *self, PyObject *args, PyObject *kwds) { static PyObject *emptyTuple = nullptr; static const char *kwlist[] = {"name", "arguments", nullptr}; char *argName = nullptr; PyObject *argArguments = nullptr; if (emptyTuple == 0) emptyTuple = PyTuple_New(0); if (!PyArg_ParseTupleAndKeywords(emptyTuple, kwds, "|sO:QtCore." SIGNAL_CLASS_NAME, const_cast(kwlist), &argName, &argArguments)) return 0; bool tupledArgs = false; PySideSignal *data = reinterpret_cast(self); if (!data->data) data->data = new PySideSignalData; if (argName) data->data->signalName = argName; data->data->signalArguments = new QByteArrayList(); if (argArguments && PySequence_Check(argArguments)) { Py_ssize_t argument_size = PySequence_Size(argArguments); for (Py_ssize_t i = 0; i < argument_size; ++i) { PyObject *item = PySequence_GetItem(argArguments, i); #ifdef IS_PY3K PyObject *strObj = PyUnicode_AsUTF8String(item); char *s = PyBytes_AsString(strObj); Py_DECREF(strObj); #else char *s = PyBytes_AsString(item); #endif Py_DECREF(item); if (s != nullptr) data->data->signalArguments->append(QByteArray(s)); } } for (Py_ssize_t i = 0, i_max = PyTuple_Size(args); i < i_max; i++) { PyObject *arg = PyTuple_GET_ITEM(args, i); if (PySequence_Check(arg) && !Shiboken::String::check(arg)) { tupledArgs = true; const auto sig = PySide::Signal::parseSignature(arg); PySide::Signal::appendSignature( data, PySide::Signal::SignalSignature(sig)); } } if (!tupledArgs) { const auto sig = PySide::Signal::parseSignature(args); PySide::Signal::appendSignature( data, PySide::Signal::SignalSignature(sig)); } return 1; } void signalFree(void *self) { auto pySelf = reinterpret_cast(self); auto data = reinterpret_cast(self); delete data->data; data->data = nullptr; Py_XDECREF(data->homonymousMethod); data->homonymousMethod = 0; Py_TYPE(pySelf)->tp_base->tp_free(self); } PyObject *signalGetItem(PyObject *self, PyObject *key) { auto data = reinterpret_cast(self); QByteArray sigKey; if (key) { sigKey = PySide::Signal::parseSignature(key); } else { sigKey = data->data == nullptr || data->data->signatures.isEmpty() ? PySide::Signal::voidType() : data->data->signatures.constFirst().signature; } auto sig = PySide::Signal::buildSignature(data->data->signalName, sigKey); return Shiboken::String::fromCString(sig.constData()); } PyObject *signalToString(PyObject *self) { return signalGetItem(self, 0); } void signalInstanceFree(void *self) { auto pySelf = reinterpret_cast(self); auto data = reinterpret_cast(self); PySideSignalInstancePrivate *dataPvt = data->d; Py_XDECREF(dataPvt->homonymousMethod); if (dataPvt->next) { Py_DECREF(dataPvt->next); dataPvt->next = 0; } delete dataPvt; data->d = 0; Py_TYPE(pySelf)->tp_base->tp_free(self); } PyObject *signalInstanceConnect(PyObject *self, PyObject *args, PyObject *kwds) { PyObject *slot = nullptr; PyObject *type = nullptr; static const char *kwlist[] = {"slot", "type", nullptr}; if (!PyArg_ParseTupleAndKeywords(args, kwds, "O|O:" SIGNAL_INSTANCE_NAME, const_cast(kwlist), &slot, &type)) return 0; PySideSignalInstance *source = reinterpret_cast(self); Shiboken::AutoDecRef pyArgs(PyList_New(0)); bool match = false; if (Py_TYPE(slot) == PySideSignalInstanceTypeF()) { PySideSignalInstance *sourceWalk = source; PySideSignalInstance *targetWalk; //find best match while (sourceWalk && !match) { targetWalk = reinterpret_cast(slot); while (targetWalk && !match) { if (QMetaObject::checkConnectArgs(sourceWalk->d->signature, targetWalk->d->signature)) { PyList_Append(pyArgs, sourceWalk->d->source); Shiboken::AutoDecRef sourceSignature(PySide::Signal::buildQtCompatible(sourceWalk->d->signature)); PyList_Append(pyArgs, sourceSignature); PyList_Append(pyArgs, targetWalk->d->source); Shiboken::AutoDecRef targetSignature(PySide::Signal::buildQtCompatible(targetWalk->d->signature)); PyList_Append(pyArgs, targetSignature); match = true; } targetWalk = reinterpret_cast(targetWalk->d->next); } sourceWalk = reinterpret_cast(sourceWalk->d->next); } } else { // Check signature of the slot (method or function) to match signal int slotArgs = -1; bool useSelf = false; bool isMethod = PyMethod_Check(slot); bool isFunction = PyFunction_Check(slot); bool matchedSlot = false; QByteArray functionName; PySideSignalInstance *it = source; if (isMethod || isFunction) { PyObject *function = isMethod ? PyMethod_GET_FUNCTION(slot) : slot; PyCodeObject *objCode = reinterpret_cast(PyFunction_GET_CODE(function)); useSelf = isMethod; slotArgs = PepCode_GET_FLAGS(objCode) & CO_VARARGS ? -1 : PepCode_GET_ARGCOUNT(objCode); if (useSelf) slotArgs -= 1; // Get signature args bool isShortCircuit = false; int signatureArgs = 0; QStringList argsSignature; argsSignature = PySide::Signal::getArgsFromSignature(it->d->signature, &isShortCircuit); signatureArgs = argsSignature.length(); // Iterate the possible types of connection for this signal and compare // it with slot arguments if (signatureArgs != slotArgs) { while (it->d->next != nullptr) { it = it->d->next; argsSignature = PySide::Signal::getArgsFromSignature(it->d->signature, &isShortCircuit); signatureArgs = argsSignature.length(); if (signatureArgs == slotArgs) { matchedSlot = true; break; } } } } // Adding references to pyArgs PyList_Append(pyArgs, source->d->source); if (matchedSlot) { // If a slot matching the same number of arguments was found, // include signature to the pyArgs Shiboken::AutoDecRef signature(PySide::Signal::buildQtCompatible(it->d->signature)); PyList_Append(pyArgs, signature); } else { // Try the first by default if the slot was not found Shiboken::AutoDecRef signature(PySide::Signal::buildQtCompatible(source->d->signature)); PyList_Append(pyArgs, signature); } PyList_Append(pyArgs, slot); match = true; } if (type) PyList_Append(pyArgs, type); if (match) { Shiboken::AutoDecRef tupleArgs(PyList_AsTuple(pyArgs)); Shiboken::AutoDecRef pyMethod(PyObject_GetAttrString(source->d->source, "connect")); if (pyMethod.isNull()) { // PYSIDE-79: check if pyMethod exists. PyErr_SetString(PyExc_RuntimeError, "method 'connect' vanished!"); return 0; } PyObject *result = PyObject_CallObject(pyMethod, tupleArgs); if (result == Py_True || result == Py_False) return result; Py_XDECREF(result); } if (!PyErr_Occurred()) // PYSIDE-79: inverse the logic. A Null return needs an error. PyErr_Format(PyExc_RuntimeError, "Failed to connect signal %s.", source->d->signature.constData()); return 0; } int argCountInSignature(const char *signature) { return QByteArray(signature).count(",") + 1; } PyObject *signalInstanceEmit(PyObject *self, PyObject *args) { PySideSignalInstance *source = reinterpret_cast(self); Shiboken::AutoDecRef pyArgs(PyList_New(0)); int numArgsGiven = PySequence_Fast_GET_SIZE(args); int numArgsInSignature = argCountInSignature(source->d->signature); // If number of arguments given to emit is smaller than the first source signature expects, // it is possible it's a case of emitting a signal with default parameters. // Search through all the overloaded signals with the same name, and try to find a signature // with the same number of arguments as given to emit, and is also marked as a cloned method // (which in metaobject parlance means a signal with default parameters). // @TODO: This should be improved to take into account argument types as well. The current // assumption is there are no signals which are both overloaded on argument types and happen to // have signatures with default parameters. if (numArgsGiven < numArgsInSignature) { PySideSignalInstance *possibleDefaultInstance = source; while ((possibleDefaultInstance = possibleDefaultInstance->d->next)) { if (possibleDefaultInstance->d->attributes & QMetaMethod::Cloned && argCountInSignature(possibleDefaultInstance->d->signature) == numArgsGiven) { source = possibleDefaultInstance; break; } } } Shiboken::AutoDecRef sourceSignature(PySide::Signal::buildQtCompatible(source->d->signature)); PyList_Append(pyArgs, sourceSignature); for (Py_ssize_t i = 0, max = PyTuple_Size(args); i < max; i++) PyList_Append(pyArgs, PyTuple_GetItem(args, i)); Shiboken::AutoDecRef pyMethod(PyObject_GetAttrString(source->d->source, "emit")); Shiboken::AutoDecRef tupleArgs(PyList_AsTuple(pyArgs)); return PyObject_CallObject(pyMethod, tupleArgs); } PyObject *signalInstanceGetItem(PyObject *self, PyObject *key) { auto data = reinterpret_cast(self); const auto sigName = data->d->signalName; const auto sigKey = PySide::Signal::parseSignature(key); const auto sig = PySide::Signal::buildSignature(sigName, sigKey); while (data) { if (data->d->signature == sig) { PyObject *result = reinterpret_cast(data); Py_INCREF(result); return result; } data = data->d->next; } PyErr_Format(PyExc_IndexError, "Signature %s not found for signal: %s", sig.constData(), sigName.constData()); return 0; } PyObject *signalInstanceDisconnect(PyObject *self, PyObject *args) { auto source = reinterpret_cast(self); Shiboken::AutoDecRef pyArgs(PyList_New(0)); PyObject *slot; if (PyTuple_Check(args) && PyTuple_GET_SIZE(args)) slot = PyTuple_GET_ITEM(args, 0); else slot = Py_None; bool match = false; if (Py_TYPE(slot) == PySideSignalInstanceTypeF()) { PySideSignalInstance *target = reinterpret_cast(slot); if (QMetaObject::checkConnectArgs(source->d->signature, target->d->signature)) { PyList_Append(pyArgs, source->d->source); Shiboken::AutoDecRef source_signature(PySide::Signal::buildQtCompatible(source->d->signature)); PyList_Append(pyArgs, source_signature); PyList_Append(pyArgs, target->d->source); Shiboken::AutoDecRef target_signature(PySide::Signal::buildQtCompatible(target->d->signature)); PyList_Append(pyArgs, target_signature); match = true; } } else { //try the first signature PyList_Append(pyArgs, source->d->source); Shiboken::AutoDecRef signature(PySide::Signal::buildQtCompatible(source->d->signature)); PyList_Append(pyArgs, signature); // disconnect all, so we need to use the c++ signature disconnect(qobj, signal, 0, 0) if (slot == Py_None) PyList_Append(pyArgs, slot); PyList_Append(pyArgs, slot); match = true; } if (match) { Shiboken::AutoDecRef tupleArgs(PyList_AsTuple(pyArgs)); Shiboken::AutoDecRef pyMethod(PyObject_GetAttrString(source->d->source, "disconnect")); PyObject *result = PyObject_CallObject(pyMethod, tupleArgs); if (!result || result == Py_True) return result; else Py_DECREF(result); } PyErr_Format(PyExc_RuntimeError, "Failed to disconnect signal %s.", source->d->signature.constData()); return 0; } PyObject *signalCall(PyObject *self, PyObject *args, PyObject *kw) { auto signal = reinterpret_cast(self); // Native C++ signals can't be called like functions, thus we throw an exception. // The only way calling a signal can succeed (the Python equivalent of C++'s operator() ) // is when a method with the same name as the signal is attached to an object. // An example is QProcess::error() (don't check the docs, but the source code of qprocess.h). if (!signal->homonymousMethod) { PyErr_SetString(PyExc_TypeError, "native Qt signal is not callable"); return 0; } descrgetfunc getDescriptor = Py_TYPE(signal->homonymousMethod)->tp_descr_get; // Check if there exists a method with the same name as the signal, which is also a static // method in C++ land. Shiboken::AutoDecRef homonymousMethod(getDescriptor(signal->homonymousMethod, 0, 0)); if (PyCFunction_Check(homonymousMethod) && (PyCFunction_GET_FLAGS(homonymousMethod.object()) & METH_STATIC)) { return PyCFunction_Call(homonymousMethod, args, kw); } // Assumes homonymousMethod is not a static method. ternaryfunc callFunc = Py_TYPE(signal->homonymousMethod)->tp_call; return callFunc(homonymousMethod, args, kw); } PyObject *signalInstanceCall(PyObject *self, PyObject *args, PyObject *kw) { auto PySideSignal = reinterpret_cast(self); if (!PySideSignal->d->homonymousMethod) { PyErr_SetString(PyExc_TypeError, "native Qt signal is not callable"); return 0; } descrgetfunc getDescriptor = Py_TYPE(PySideSignal->d->homonymousMethod)->tp_descr_get; Shiboken::AutoDecRef homonymousMethod(getDescriptor(PySideSignal->d->homonymousMethod, PySideSignal->d->source, 0)); return PyCFunction_Call(homonymousMethod, args, kw); } static PyObject *metaSignalCheck(PyObject * /* klass */, PyObject *args) { if (PyType_IsSubtype(Py_TYPE(args), PySideSignalInstanceTypeF())) Py_RETURN_TRUE; else Py_RETURN_FALSE; } } // extern "C" namespace PySide { namespace Signal { void init(PyObject *module) { if (PyType_Ready(PySideSignalMetaTypeF()) < 0) return; if (PyType_Ready(PySideSignalTypeF()) < 0) return; Py_INCREF(PySideSignalTypeF()); PyModule_AddObject(module, SIGNAL_CLASS_NAME, reinterpret_cast(PySideSignalTypeF())); if (PyType_Ready(PySideSignalInstanceTypeF()) < 0) return; Py_INCREF(PySideSignalInstanceTypeF()); } bool checkType(PyObject *pyObj) { if (pyObj) return PyType_IsSubtype(Py_TYPE(pyObj), PySideSignalTypeF()); return false; } void updateSourceObject(PyObject *source) { PyTypeObject *objType = reinterpret_cast(PyObject_Type(source)); Py_ssize_t pos = 0; PyObject *value; PyObject *key; while (PyDict_Next(objType->tp_dict, &pos, &key, &value)) { if (PyObject_TypeCheck(value, PySideSignalTypeF())) { Shiboken::AutoDecRef signalInstance(reinterpret_cast(PyObject_New(PySideSignalInstance, PySideSignalInstanceTypeF()))); instanceInitialize(signalInstance.cast(), key, reinterpret_cast(value), source, 0); PyObject_SetAttr(source, key, signalInstance); } } Py_XDECREF(objType); } QByteArray getTypeName(PyObject *type) { if (PyType_Check(type)) { if (PyType_IsSubtype(reinterpret_cast(type), reinterpret_cast(SbkObject_TypeF()))) { auto objType = reinterpret_cast(type); return Shiboken::ObjectType::getOriginalName(objType); } // Translate python types to Qt names auto objType = reinterpret_cast(type); if (Shiboken::String::checkType(objType)) return QByteArrayLiteral("QString"); if (objType == &PyInt_Type) return QByteArrayLiteral("int"); if (objType == &PyLong_Type) return QByteArrayLiteral("long"); if (objType == &PyFloat_Type) return QByteArrayLiteral("double"); if (objType == &PyBool_Type) return QByteArrayLiteral("bool"); if (Py_TYPE(objType) == SbkEnumType_TypeF()) return Shiboken::Enum::getCppName(objType); return QByteArrayLiteral("PyObject"); } if (type == Py_None) // Must be checked before as Shiboken::String::check accepts Py_None return voidType(); if (Shiboken::String::check(type)) { QByteArray result = Shiboken::String::toCString(type); if (result == "qreal") result = sizeof(qreal) == sizeof(double) ? "double" : "float"; return result; } return QByteArray(); } QByteArray buildSignature(const QByteArray &name, const QByteArray &signature) { return QMetaObject::normalizedSignature(name + '(' + signature + ')'); } QByteArray parseSignature(PyObject *args) { if (args && (Shiboken::String::check(args) || !PySequence_Check(args))) return getTypeName(args); QByteArray signature; for (Py_ssize_t i = 0, i_max = PySequence_Size(args); i < i_max; i++) { Shiboken::AutoDecRef arg(PySequence_GetItem(args, i)); const auto typeName = getTypeName(arg); if (!typeName.isEmpty()) { if (!signature.isEmpty()) signature += ','; signature += typeName; } } return signature; } void appendSignature(PySideSignal *self, const SignalSignature &signature) { self->data->signatures.append({signature.m_parameterTypes, signature.m_attributes}); } PySideSignalInstance *initialize(PySideSignal *self, PyObject *name, PyObject *object) { PySideSignalInstance *instance = PyObject_New(PySideSignalInstance, PySideSignalInstanceTypeF()); auto sbkObj = reinterpret_cast(object); if (!Shiboken::Object::wasCreatedByPython(sbkObj)) Py_INCREF(object); // PYSIDE-79: this flag was crucial for a wrapper call. instanceInitialize(instance, name, self, object, 0); return instance; } void instanceInitialize(PySideSignalInstance *self, PyObject *name, PySideSignal *data, PyObject *source, int index) { self->d = new PySideSignalInstancePrivate; PySideSignalInstancePrivate *selfPvt = self->d; selfPvt->next = nullptr; if (data->data->signalName.isEmpty()) data->data->signalName = Shiboken::String::toCString(name); selfPvt->signalName = data->data->signalName; selfPvt->source = source; const auto &signature = data->data->signatures.at(index); selfPvt->signature = buildSignature(self->d->signalName, signature.signature); selfPvt->attributes = signature.attributes; selfPvt->homonymousMethod = 0; if (data->homonymousMethod) { selfPvt->homonymousMethod = data->homonymousMethod; Py_INCREF(selfPvt->homonymousMethod); } index++; if (index < data->data->signatures.size()) { selfPvt->next = PyObject_New(PySideSignalInstance, PySideSignalInstanceTypeF()); instanceInitialize(selfPvt->next, name, data, source, index); } } bool connect(PyObject *source, const char *signal, PyObject *callback) { Shiboken::AutoDecRef pyMethod(PyObject_GetAttrString(source, "connect")); if (pyMethod.isNull()) return false; Shiboken::AutoDecRef pySignature(Shiboken::String::fromCString(signal)); Shiboken::AutoDecRef pyArgs(PyTuple_Pack(3, source, pySignature.object(), callback)); PyObject *result = PyObject_CallObject(pyMethod, pyArgs); if (result == Py_False) { PyErr_Format(PyExc_RuntimeError, "Failed to connect signal %s, to python callable object.", signal); Py_DECREF(result); result = 0; } return result; } PySideSignalInstance *newObjectFromMethod(PyObject *source, const QList& methodList) { PySideSignalInstance *root = nullptr; PySideSignalInstance *previous = nullptr; for (const QMetaMethod &m : methodList) { PySideSignalInstance *item = PyObject_New(PySideSignalInstance, PySideSignalInstanceTypeF()); if (!root) root = item; if (previous) previous->d->next = item; item->d = new PySideSignalInstancePrivate; PySideSignalInstancePrivate *selfPvt = item->d; selfPvt->source = source; Py_INCREF(selfPvt->source); // PYSIDE-79: an INCREF is missing. QByteArray cppName(m.methodSignature()); cppName.truncate(cppName.indexOf('(')); // separe SignalName selfPvt->signalName = cppName; selfPvt->signature = m.methodSignature(); selfPvt->attributes = m.attributes(); selfPvt->homonymousMethod = 0; selfPvt->next = 0; } return root; } PySideSignal *newObject(const char *name, ...) { va_list listSignatures; char *sig = nullptr; PySideSignal *self = PyObject_New(PySideSignal, PySideSignalTypeF()); self->data = new PySideSignalData; self->data->signalName = name; self->homonymousMethod = 0; va_start(listSignatures, name); sig = va_arg(listSignatures, char *); while (sig != NULL) { if (strcmp(sig, "void") == 0) appendSignature(self, SignalSignature("")); else appendSignature(self, SignalSignature(sig)); sig = va_arg(listSignatures, char *); } va_end(listSignatures); return self; } template static typename T::value_type join(T t, const char *sep) { typename T::value_type res; if (t.isEmpty()) return res; typename T::const_iterator it = t.begin(); typename T::const_iterator end = t.end(); res += *it; ++it; while (it != end) { res += sep; res += *it; ++it; } return res; } static void _addSignalToWrapper(SbkObjectType *wrapperType, const char *signalName, PySideSignal *signal) { auto typeDict = reinterpret_cast(wrapperType)->tp_dict; PyObject *homonymousMethod; if ((homonymousMethod = PyDict_GetItemString(typeDict, signalName))) { Py_INCREF(homonymousMethod); signal->homonymousMethod = homonymousMethod; } PyDict_SetItemString(typeDict, signalName, reinterpret_cast(signal)); } // This function is used by qStableSort to promote empty signatures static bool compareSignals(const SignalSignature &sig1, const SignalSignature &) { return sig1.m_parameterTypes.isEmpty(); } void registerSignals(SbkObjectType *pyObj, const QMetaObject *metaObject) { typedef QHash > SignalSigMap; SignalSigMap signalsFound; for (int i = metaObject->methodOffset(), max = metaObject->methodCount(); i < max; ++i) { QMetaMethod method = metaObject->method(i); if (method.methodType() == QMetaMethod::Signal) { QByteArray methodName(method.methodSignature()); methodName.chop(methodName.size() - methodName.indexOf('(')); SignalSignature signature; signature.m_parameterTypes = join(method.parameterTypes(), ","); if (method.attributes() & QMetaMethod::Cloned) signature.m_attributes = QMetaMethod::Cloned; signalsFound[methodName] << signature; } } SignalSigMap::Iterator it = signalsFound.begin(); SignalSigMap::Iterator end = signalsFound.end(); for (; it != end; ++it) { PySideSignal *self = PyObject_New(PySideSignal, PySideSignalTypeF()); self->data = new PySideSignalData; self->data->signalName = it.key(); self->homonymousMethod = 0; // Empty signatures comes first! So they will be the default signal signature std::stable_sort(it.value().begin(), it.value().end(), &compareSignals); SignalSigMap::mapped_type::const_iterator j = it.value().begin(); SignalSigMap::mapped_type::const_iterator endJ = it.value().end(); for (; j != endJ; ++j) { const SignalSignature &sig = *j; appendSignature(self, sig); } _addSignalToWrapper(pyObj, it.key(), self); Py_DECREF(reinterpret_cast(self)); } } PyObject *buildQtCompatible(const QByteArray &signature) { const auto ba = QT_SIGNAL_SENTINEL + signature; return Shiboken::String::fromStringAndSize(ba, ba.size()); } void addSignalToWrapper(SbkObjectType *wrapperType, const char *signalName, PySideSignal *signal) { _addSignalToWrapper(wrapperType, signalName, signal); } PyObject *getObject(PySideSignalInstance *signal) { return signal->d->source; } const char *getSignature(PySideSignalInstance *signal) { return signal->d->signature; } QStringList getArgsFromSignature(const char *signature, bool *isShortCircuit) { const QString qsignature = QLatin1String(signature); QStringList result; QRegExp splitRegex(QLatin1String("\\s*,\\s*")); if (isShortCircuit) *isShortCircuit = !qsignature.contains(QLatin1Char('(')); if (qsignature.contains(QLatin1String("()")) || qsignature.contains(QLatin1String("(void)"))) return result; if (qsignature.contains(QLatin1Char('('))) { static QRegExp regex(QLatin1String(".+\\((.*)\\)")); //get args types QString types = qsignature; types.replace(regex, QLatin1String("\\1")); result = types.split(splitRegex); } return result; } QString getCallbackSignature(const char *signal, QObject *receiver, PyObject *callback, bool encodeName) { QByteArray functionName; int numArgs = -1; bool useSelf = false; bool isMethod = PyMethod_Check(callback); bool isFunction = PyFunction_Check(callback); if (isMethod || isFunction) { PyObject *function = isMethod ? PyMethod_GET_FUNCTION(callback) : callback; auto objCode = reinterpret_cast(PyFunction_GET_CODE(function)); functionName = Shiboken::String::toCString(PepFunction_GetName(function)); useSelf = isMethod; numArgs = PepCode_GET_FLAGS(objCode) & CO_VARARGS ? -1 : PepCode_GET_ARGCOUNT(objCode); } else if (PyCFunction_Check(callback)) { const PyCFunctionObject *funcObj = reinterpret_cast(callback); functionName = PepCFunction_GET_NAMESTR(funcObj); useSelf = PyCFunction_GET_SELF(funcObj); const int flags = PyCFunction_GET_FLAGS(funcObj); if (receiver) { //Search for signature on metaobject const QMetaObject *mo = receiver->metaObject(); QByteArray prefix(functionName); prefix += '('; for (int i = 0; i < mo->methodCount(); i++) { QMetaMethod me = mo->method(i); if ((strncmp(me.methodSignature(), prefix, prefix.size()) == 0) && QMetaObject::checkConnectArgs(signal, me.methodSignature())) { numArgs = me.parameterTypes().size() + useSelf; break; } } } if (numArgs == -1) { if (flags & METH_VARARGS) numArgs = -1; else if (flags & METH_NOARGS) numArgs = 0; } } else if (PyCallable_Check(callback)) { functionName = "__callback" + QByteArray::number((qlonglong)callback); } Q_ASSERT(!functionName.isEmpty()); bool isShortCircuit = false; const QString functionNameS = QLatin1String(functionName); QString signature = encodeName ? codeCallbackName(callback, functionNameS) : functionNameS; QStringList args = getArgsFromSignature(signal, &isShortCircuit); if (!isShortCircuit) { signature.append(QLatin1Char('(')); if (numArgs == -1) numArgs = std::numeric_limits::max(); while (args.count() && (args.count() > (numArgs - useSelf))) { args.removeLast(); } signature.append(args.join(QLatin1Char(','))); signature.append(QLatin1Char(')')); } return signature; } bool isQtSignal(const char *signal) { return (signal && signal[0] == QT_SIGNAL_SENTINEL); } bool checkQtSignal(const char *signal) { if (!isQtSignal(signal)) { PyErr_SetString(PyExc_TypeError, "Use the function PySide2.QtCore.SIGNAL on signals"); return false; } return true; } QString codeCallbackName(PyObject *callback, const QString &funcName) { if (PyMethod_Check(callback)) { PyObject *self = PyMethod_GET_SELF(callback); PyObject *func = PyMethod_GET_FUNCTION(callback); return funcName + QString::number(quint64(self), 16) + QString::number(quint64(func), 16); } return funcName + QString::number(quint64(callback), 16); } QByteArray voidType() { return QByteArrayLiteral("void"); } } //namespace Signal } //namespace PySide