aboutsummaryrefslogtreecommitdiffstats
path: root/ext/sparsehash/google/sparsehash/densehashtable.h
blob: 33b191ec8c93b8e93f4470a3beabf9d8ee2b078d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
// Copyright (c) 2005, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
//     * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

// ---
// Author: Craig Silverstein
//
// A dense hashtable is a particular implementation of
// a hashtable: one that is meant to minimize memory allocation.
// It does this by using an array to store all the data.  We
// steal a value from the key space to indicate "empty" array
// elements (ie indices where no item lives) and another to indicate
// "deleted" elements.
//
// (Note it is possible to change the value of the delete key
// on the fly; you can even remove it, though after that point
// the hashtable is insert_only until you set it again.  The empty
// value however can't be changed.)
//
// To minimize allocation and pointer overhead, we use internal
// probing, in which the hashtable is a single table, and collisions
// are resolved by trying to insert again in another bucket.  The
// most cache-efficient internal probing schemes are linear probing
// (which suffers, alas, from clumping) and quadratic probing, which
// is what we implement by default.
//
// Type requirements: value_type is required to be Copy Constructible
// and Default Constructible. It is not required to be (and commonly
// isn't) Assignable.
//
// You probably shouldn't use this code directly.  Use
// <google/dense_hash_map> or <google/dense_hash_set> instead.

// You can change the following below:
// HT_OCCUPANCY_FLT      -- how full before we double size
// HT_EMPTY_FLT          -- how empty before we halve size
// HT_MIN_BUCKETS        -- default smallest bucket size
//
// You can also change enlarge_resize_percent (which defaults to
// HT_OCCUPANCY_FLT), and shrink_resize_percent (which defaults to
// HT_EMPTY_FLT) with set_resizing_parameters().
//
// How to decide what values to use?
// shrink_resize_percent's default of .4 * OCCUPANCY_FLT, is probably good.
// HT_MIN_BUCKETS is probably unnecessary since you can specify
// (indirectly) the starting number of buckets at construct-time.
// For enlarge_resize_percent, you can use this chart to try to trade-off
// expected lookup time to the space taken up.  By default, this
// code uses quadratic probing, though you can change it to linear
// via _JUMP below if you really want to.
//
// From http://www.augustana.ca/~mohrj/courses/1999.fall/csc210/lecture_notes/hashing.html
// NUMBER OF PROBES / LOOKUP       Successful            Unsuccessful
// Quadratic collision resolution   1 - ln(1-L) - L/2    1/(1-L) - L - ln(1-L)
// Linear collision resolution     [1+1/(1-L)]/2         [1+1/(1-L)2]/2
//
// -- enlarge_resize_percent --         0.10  0.50  0.60  0.75  0.80  0.90  0.99
// QUADRATIC COLLISION RES.
//    probes/successful lookup    1.05  1.44  1.62  2.01  2.21  2.85  5.11
//    probes/unsuccessful lookup  1.11  2.19  2.82  4.64  5.81  11.4  103.6
// LINEAR COLLISION RES.
//    probes/successful lookup    1.06  1.5   1.75  2.5   3.0   5.5   50.5
//    probes/unsuccessful lookup  1.12  2.5   3.6   8.5   13.0  50.0  5000.0

#ifndef _DENSEHASHTABLE_H_
#define _DENSEHASHTABLE_H_

// The probing method
// Linear probing
// #define JUMP_(key, num_probes)    ( 1 )
// Quadratic-ish probing
#define JUMP_(key, num_probes)    ( num_probes )


#include "google/sparsehash/sparseconfig.h"
#include <assert.h>
#include <stdio.h>
#include <stdlib.h>             // for abort()
#include <algorithm>            // For swap(), eg
#include <iostream>             // For cerr
#include <memory>               // For uninitialized_fill, uninitialized_copy
#include <utility>              // for pair<>
#include <iterator>             // for facts about iterator tags
#include "google/type_traits.h" // for true_type, integral_constant, etc.

_START_GOOGLE_NAMESPACE_

using STL_NAMESPACE::pair;

// Hashtable class, used to implement the hashed associative containers
// hash_set and hash_map.

// Value: what is stored in the table (each bucket is a Value).
// Key: something in a 1-to-1 correspondence to a Value, that can be used
//      to search for a Value in the table (find() takes a Key).
// HashFcn: Takes a Key and returns an integer, the more unique the better.
// ExtractKey: given a Value, returns the unique Key associated with it.
// SetKey: given a Value* and a Key, modifies the value such that
//         ExtractKey(value) == key.  We guarantee this is only called
//         with key == deleted_key or key == empty_key.
// EqualKey: Given two Keys, says whether they are the same (that is,
//           if they are both associated with the same Value).
// Alloc: STL allocator to use to allocate memory.  Currently ignored.

template <class Value, class Key, class HashFcn,
          class ExtractKey, class SetKey, class EqualKey, class Alloc>
class dense_hashtable;

template <class V, class K, class HF, class ExK, class SetK, class EqK, class A>
struct dense_hashtable_iterator;

template <class V, class K, class HF, class ExK, class SetK, class EqK, class A>
struct dense_hashtable_const_iterator;

// We're just an array, but we need to skip over empty and deleted elements
template <class V, class K, class HF, class ExK, class SetK, class EqK, class A>
struct dense_hashtable_iterator {
 public:
  typedef dense_hashtable_iterator<V,K,HF,ExK,SetK,EqK,A>       iterator;
  typedef dense_hashtable_const_iterator<V,K,HF,ExK,SetK,EqK,A> const_iterator;

  typedef STL_NAMESPACE::forward_iterator_tag iterator_category;
  typedef V value_type;
  typedef STL_NAMESPACE::ptrdiff_t difference_type;
  typedef size_t size_type;
  typedef V& reference;                // Value
  typedef V* pointer;

  // "Real" constructor and default constructor
  dense_hashtable_iterator(const dense_hashtable<V,K,HF,ExK,SetK,EqK,A> *h,
                           pointer it, pointer it_end, bool advance)
    : ht(h), pos(it), end(it_end)   {
    if (advance)  advance_past_empty_and_deleted();
  }
  dense_hashtable_iterator() { }
  // The default destructor is fine; we don't define one
  // The default operator= is fine; we don't define one

  // Happy dereferencer
  reference operator*() const { return *pos; }
  pointer operator->() const { return &(operator*()); }

  // Arithmetic.  The only hard part is making sure that
  // we're not on an empty or marked-deleted array element
  void advance_past_empty_and_deleted() {
    while ( pos != end && (ht->test_empty(*this) || ht->test_deleted(*this)) )
      ++pos;
  }
  iterator& operator++()   {
    assert(pos != end); ++pos; advance_past_empty_and_deleted(); return *this;
  }
  iterator operator++(int) { iterator tmp(*this); ++*this; return tmp; }

  // Comparison.
  bool operator==(const iterator& it) const { return pos == it.pos; }
  bool operator!=(const iterator& it) const { return pos != it.pos; }


  // The actual data
  const dense_hashtable<V,K,HF,ExK,SetK,EqK,A> *ht;
  pointer pos, end;
};


// Now do it all again, but with const-ness!
template <class V, class K, class HF, class ExK, class SetK, class EqK, class A>
struct dense_hashtable_const_iterator {
 public:
  typedef dense_hashtable_iterator<V,K,HF,ExK,SetK,EqK,A>       iterator;
  typedef dense_hashtable_const_iterator<V,K,HF,ExK,SetK,EqK,A> const_iterator;

  typedef STL_NAMESPACE::forward_iterator_tag iterator_category;
  typedef V value_type;
  typedef STL_NAMESPACE::ptrdiff_t difference_type;
  typedef size_t size_type;
  typedef const V& reference;                // Value
  typedef const V* pointer;

  // "Real" constructor and default constructor
  dense_hashtable_const_iterator(
      const dense_hashtable<V,K,HF,ExK,SetK,EqK,A> *h,
      pointer it, pointer it_end, bool advance)
    : ht(h), pos(it), end(it_end)   {
    if (advance)  advance_past_empty_and_deleted();
  }
  dense_hashtable_const_iterator() { }
  // This lets us convert regular iterators to const iterators
  dense_hashtable_const_iterator(const iterator &it)
    : ht(it.ht), pos(it.pos), end(it.end) { }
  // The default destructor is fine; we don't define one
  // The default operator= is fine; we don't define one

  // Happy dereferencer
  reference operator*() const { return *pos; }
  pointer operator->() const { return &(operator*()); }

  // Arithmetic.  The only hard part is making sure that
  // we're not on an empty or marked-deleted array element
  void advance_past_empty_and_deleted() {
    while ( pos != end && (ht->test_empty(*this) || ht->test_deleted(*this)) )
      ++pos;
  }
  const_iterator& operator++()   {
    assert(pos != end); ++pos; advance_past_empty_and_deleted(); return *this;
  }
  const_iterator operator++(int) { const_iterator tmp(*this); ++*this; return tmp; }

  // Comparison.
  bool operator==(const const_iterator& it) const { return pos == it.pos; }
  bool operator!=(const const_iterator& it) const { return pos != it.pos; }


  // The actual data
  const dense_hashtable<V,K,HF,ExK,SetK,EqK,A> *ht;
  pointer pos, end;
};

template <class Value, class Key, class HashFcn,
          class ExtractKey, class SetKey, class EqualKey, class Alloc>
class dense_hashtable {
 public:
  typedef Key key_type;
  typedef Value value_type;
  typedef HashFcn hasher;
  typedef EqualKey key_equal;

  typedef size_t            size_type;
  typedef STL_NAMESPACE::ptrdiff_t         difference_type;
  typedef value_type*       pointer;
  typedef const value_type* const_pointer;
  typedef value_type&       reference;
  typedef const value_type& const_reference;
  typedef dense_hashtable_iterator<Value, Key, HashFcn,
                                   ExtractKey, SetKey, EqualKey, Alloc>
  iterator;

  typedef dense_hashtable_const_iterator<Value, Key, HashFcn,
                                         ExtractKey, SetKey, EqualKey, Alloc>
  const_iterator;

  // These come from tr1.  For us they're the same as regular iterators.
  typedef iterator local_iterator;
  typedef const_iterator const_local_iterator;

  // How full we let the table get before we resize, by default.
  // Knuth says .8 is good -- higher causes us to probe too much,
  // though it saves memory.
  static const float HT_OCCUPANCY_FLT; // = 0.5;

  // How empty we let the table get before we resize lower, by default.
  // (0.0 means never resize lower.)
  // It should be less than OCCUPANCY_FLT / 2 or we thrash resizing
  static const float HT_EMPTY_FLT; // = 0.4 * HT_OCCUPANCY_FLT

  // Minimum size we're willing to let hashtables be.
  // Must be a power of two, and at least 4.
  // Note, however, that for a given hashtable, the initial size is a
  // function of the first constructor arg, and may be >HT_MIN_BUCKETS.
  static const size_t HT_MIN_BUCKETS = 4;

  // By default, if you don't specify a hashtable size at
  // construction-time, we use this size.  Must be a power of two, and
  // at least HT_MIN_BUCKETS.
  static const size_t HT_DEFAULT_STARTING_BUCKETS = 32;


  // ITERATOR FUNCTIONS
  iterator begin()             { return iterator(this, table,
                                                 table + num_buckets, true); }
  iterator end()               { return iterator(this, table + num_buckets,
                                                 table + num_buckets, true); }
  const_iterator begin() const { return const_iterator(this, table,
                                                       table+num_buckets,true);}
  const_iterator end() const   { return const_iterator(this, table + num_buckets,
                                                       table+num_buckets,true);}

  // These come from tr1 unordered_map.  They iterate over 'bucket' n.
  // For sparsehashtable, we could consider each 'group' to be a bucket,
  // I guess, but I don't really see the point.  We'll just consider
  // bucket n to be the n-th element of the sparsetable, if it's occupied,
  // or some empty element, otherwise.
  local_iterator begin(size_type i) {
    return local_iterator(this, table + i, table + i+1, false);
  }
  local_iterator end(size_type i) {
    local_iterator it = begin(i);
    if (!test_empty(i) && !test_deleted(i))
      ++it;
    return it;
  }
  const_local_iterator begin(size_type i) const {
    return const_local_iterator(this, table + i, table + i+1, false);
  }
  const_local_iterator end(size_type i) const {
    const_local_iterator it = begin(i);
    if (!test_empty(i) && !test_deleted(i))
      ++it;
    return it;
  }

  // ACCESSOR FUNCTIONS for the things we templatize on, basically
  hasher hash_funct() const { return hash; }
  key_equal key_eq() const  { return equals; }

 private:
  // Annoyingly, we can't copy values around, because they might have
  // const components (they're probably pair<const X, Y>).  We use
  // explicit destructor invocation and placement new to get around
  // this.  Arg.
  void set_value(value_type* dst, const value_type& src) {
    dst->~value_type();
    new(dst) value_type(src);
  }

  void destroy_buckets(size_type first, size_type last) {
    for ( ; first != last; ++first)
      table[first].~value_type();
  }

  // DELETE HELPER FUNCTIONS
  // This lets the user describe a key that will indicate deleted
  // table entries.  This key should be an "impossible" entry --
  // if you try to insert it for real, you won't be able to retrieve it!
  // (NB: while you pass in an entire value, only the key part is looked
  // at.  This is just because I don't know how to assign just a key.)
 private:
  void squash_deleted() {           // gets rid of any deleted entries we have
    if ( num_deleted ) {            // get rid of deleted before writing
      dense_hashtable tmp(*this);   // copying will get rid of deleted
      swap(tmp);                    // now we are tmp
    }
    assert(num_deleted == 0);
  }

 public:
  void set_deleted_key(const key_type &key) {
    // the empty indicator (if specified) and the deleted indicator
    // must be different
    assert(!use_empty || !equals(key, get_key(emptyval)));
    // It's only safe to change what "deleted" means if we purge deleted guys
    squash_deleted();
    use_deleted = true;
    delkey = key;
  }
  void clear_deleted_key() {
    squash_deleted();
    use_deleted = false;
  }

  // These are public so the iterators can use them
  // True if the item at position bucknum is "deleted" marker
  bool test_deleted(size_type bucknum) const {
    // The num_deleted test is crucial for read(): after read(), the ht values
    // are garbage, and we don't want to think some of them are deleted.
    return (use_deleted && num_deleted > 0 &&
            equals(delkey, get_key(table[bucknum])));
  }
  bool test_deleted(const iterator &it) const {
    return (use_deleted && num_deleted > 0 &&
            equals(delkey, get_key(*it)));
  }
  bool test_deleted(const const_iterator &it) const {
    return (use_deleted && num_deleted > 0 &&
            equals(delkey, get_key(*it)));
  }
  // Set it so test_deleted is true.  true if object didn't used to be deleted
  // See below (at erase()) to explain why we allow const_iterators
  bool set_deleted(const_iterator &it) {
    assert(use_deleted);             // bad if set_deleted_key() wasn't called
    bool retval = !test_deleted(it);
    // &* converts from iterator to value-type
    set_key(const_cast<value_type*>(&(*it)), delkey);
    return retval;
  }
  // Set it so test_deleted is false.  true if object used to be deleted
  bool clear_deleted(const_iterator &it) {
    assert(use_deleted);             // bad if set_deleted_key() wasn't called
    // happens automatically when we assign something else in its place
    return test_deleted(it);
  }

  // EMPTY HELPER FUNCTIONS
  // This lets the user describe a key that will indicate empty (unused)
  // table entries.  This key should be an "impossible" entry --
  // if you try to insert it for real, you won't be able to retrieve it!
  // (NB: while you pass in an entire value, only the key part is looked
  // at.  This is just because I don't know how to assign just a key.)
 public:
  // These are public so the iterators can use them
  // True if the item at position bucknum is "empty" marker
  bool test_empty(size_type bucknum) const {
    assert(use_empty);              // we always need to know what's empty!
    return equals(get_key(emptyval), get_key(table[bucknum]));
  }
  bool test_empty(const iterator &it) const {
    assert(use_empty);              // we always need to know what's empty!
    return equals(get_key(emptyval), get_key(*it));
  }
  bool test_empty(const const_iterator &it) const {
    assert(use_empty);              // we always need to know what's empty!
    return equals(get_key(emptyval), get_key(*it));
  }

 private:
  // You can either set a range empty or an individual element
  void set_empty(size_type bucknum) {
    assert(use_empty);
    set_value(&table[bucknum], emptyval);
  }
  void fill_range_with_empty(value_type* table_start, value_type* table_end) {
    // Like set_empty(range), but doesn't destroy previous contents
    STL_NAMESPACE::uninitialized_fill(table_start, table_end, emptyval);
  }
  void set_empty(size_type buckstart, size_type buckend) {
    assert(use_empty);
    destroy_buckets(buckstart, buckend);
    fill_range_with_empty(table + buckstart, table + buckend);
  }

 public:
  // TODO(csilvers): change all callers of this to pass in a key instead,
  //                 and take a const key_type instead of const value_type.
  void set_empty_key(const value_type &val) {
    // Once you set the empty key, you can't change it
    assert(!use_empty);
    // The deleted indicator (if specified) and the empty indicator
    // must be different.
    assert(!use_deleted || !equals(get_key(val), delkey));
    use_empty = true;
    set_value(&emptyval, val);

    assert(!table);                  // must set before first use
    // num_buckets was set in constructor even though table was NULL
    table = (value_type *) malloc(num_buckets * sizeof(*table));
    assert(table);
    fill_range_with_empty(table, table + num_buckets);
  }

  // FUNCTIONS CONCERNING SIZE
 public:
  size_type size() const      { return num_elements - num_deleted; }
  // Buckets are always a power of 2
  size_type max_size() const  { return (size_type(-1) >> 1U) + 1; }
  bool empty() const          { return size() == 0; }
  size_type bucket_count() const      { return num_buckets; }
  size_type max_bucket_count() const  { return max_size(); }
  size_type nonempty_bucket_count() const { return num_elements; }
  // These are tr1 methods.  Their idea of 'bucket' doesn't map well to
  // what we do.  We just say every bucket has 0 or 1 items in it.
  size_type bucket_size(size_type i) const {
    return begin(i) == end(i) ? 0 : 1;
  }



 private:
  // Because of the above, size_type(-1) is never legal; use it for errors
  static const size_type ILLEGAL_BUCKET = size_type(-1);

 private:
  // This is the smallest size a hashtable can be without being too crowded
  // If you like, you can give a min #buckets as well as a min #elts
  size_type min_size(size_type num_elts, size_type min_buckets_wanted) {
    size_type sz = HT_MIN_BUCKETS;             // min buckets allowed
    while ( sz < min_buckets_wanted || num_elts >= sz * enlarge_resize_percent )
      sz *= 2;
    return sz;
  }

  // Used after a string of deletes
  void maybe_shrink() {
    assert(num_elements >= num_deleted);
    assert((bucket_count() & (bucket_count()-1)) == 0); // is a power of two
    assert(bucket_count() >= HT_MIN_BUCKETS);

    // If you construct a hashtable with < HT_DEFAULT_STARTING_BUCKETS,
    // we'll never shrink until you get relatively big, and we'll never
    // shrink below HT_DEFAULT_STARTING_BUCKETS.  Otherwise, something
    // like "dense_hash_set<int> x; x.insert(4); x.erase(4);" will
    // shrink us down to HT_MIN_BUCKETS buckets, which is too small.
    if (shrink_threshold > 0 &&
        (num_elements-num_deleted) < shrink_threshold &&
        bucket_count() > HT_DEFAULT_STARTING_BUCKETS ) {
      size_type sz = bucket_count() / 2;    // find how much we should shrink
      while ( sz > HT_DEFAULT_STARTING_BUCKETS &&
              (num_elements - num_deleted) < sz * shrink_resize_percent )
        sz /= 2;                            // stay a power of 2
      dense_hashtable tmp(*this, sz);       // Do the actual resizing
      swap(tmp);                            // now we are tmp
    }
    consider_shrink = false;                // because we just considered it
  }

  // We'll let you resize a hashtable -- though this makes us copy all!
  // When you resize, you say, "make it big enough for this many more elements"
  void resize_delta(size_type delta) {
    if ( consider_shrink )                   // see if lots of deletes happened
      maybe_shrink();
    if ( bucket_count() > HT_MIN_BUCKETS &&
         (num_elements + delta) <= enlarge_threshold )
      return;                                // we're ok as we are

    // Sometimes, we need to resize just to get rid of all the
    // "deleted" buckets that are clogging up the hashtable.  So when
    // deciding whether to resize, count the deleted buckets (which
    // are currently taking up room).  But later, when we decide what
    // size to resize to, *don't* count deleted buckets, since they
    // get discarded during the resize.
    const size_type needed_size = min_size(num_elements + delta, 0);
    if ( needed_size > bucket_count() ) {      // we don't have enough buckets
      const size_type resize_to = min_size(num_elements - num_deleted + delta,
                                           0);
      dense_hashtable tmp(*this, resize_to);
      swap(tmp);                             // now we are tmp
    }
  }

  // Increase number of buckets, assuming value_type has trivial copy
  // constructor and destructor.  (Really, we want it to have "trivial
  // move", because that's what realloc does.  But there's no way to
  // capture that using type_traits, so we pretend that move(x, y) is
  // equivalent to "x.~T(); new(x) T(y);" which is pretty much
  // correct, if a bit conservative.)
  void expand_array(size_t resize_to, true_type) {
    table = (value_type *) realloc(table, resize_to * sizeof(value_type));
    assert(table);
    fill_range_with_empty(table + num_buckets, table + resize_to);
  }

  // Increase number of buckets, without special assumptions about value_type.
  // TODO(austern): make this exception safe. Handle exceptions from
  // value_type's copy constructor.
  void expand_array(size_t resize_to, false_type) {
    value_type* new_table =
      (value_type *) malloc(resize_to * sizeof(value_type));
    assert(new_table);
    STL_NAMESPACE::uninitialized_copy(table, table + num_buckets, new_table);
    fill_range_with_empty(new_table + num_buckets, new_table + resize_to);
    destroy_buckets(0, num_buckets);
    free(table);
    table = new_table;
  }

  // Used to actually do the rehashing when we grow/shrink a hashtable
  void copy_from(const dense_hashtable &ht, size_type min_buckets_wanted) {
    clear();            // clear table, set num_deleted to 0

    // If we need to change the size of our table, do it now
    const size_type resize_to = min_size(ht.size(), min_buckets_wanted);
    if ( resize_to > bucket_count() ) { // we don't have enough buckets
      typedef integral_constant<bool,
          (has_trivial_copy<value_type>::value &&
           has_trivial_destructor<value_type>::value)>
          realloc_ok; // we pretend mv(x,y) == "x.~T(); new(x) T(y)"
      expand_array(resize_to, realloc_ok());
      num_buckets = resize_to;
      reset_thresholds();
    }

    // We use a normal iterator to get non-deleted bcks from ht
    // We could use insert() here, but since we know there are
    // no duplicates and no deleted items, we can be more efficient
    assert((bucket_count() & (bucket_count()-1)) == 0);      // a power of two
    for ( const_iterator it = ht.begin(); it != ht.end(); ++it ) {
      size_type num_probes = 0;              // how many times we've probed
      size_type bucknum;
      const size_type bucket_count_minus_one = bucket_count() - 1;
      for (bucknum = hash(get_key(*it)) & bucket_count_minus_one;
           !test_empty(bucknum);                               // not empty
           bucknum = (bucknum + JUMP_(key, num_probes)) & bucket_count_minus_one) {
        ++num_probes;
        assert(num_probes < bucket_count()); // or else the hashtable is full
      }
      set_value(&table[bucknum], *it);       // copies the value to here
      num_elements++;
    }
  }

  // Required by the spec for hashed associative container
 public:
  // Though the docs say this should be num_buckets, I think it's much
  // more useful as req_elements.  As a special feature, calling with
  // req_elements==0 will cause us to shrink if we can, saving space.
  void resize(size_type req_elements) {       // resize to this or larger
    if ( consider_shrink || req_elements == 0 )
      maybe_shrink();
    if ( req_elements > num_elements )
      return resize_delta(req_elements - num_elements);
  }

  // Get and change the value of shrink_resize_percent and
  // enlarge_resize_percent.  The description at the beginning of this
  // file explains how to choose the values.  Setting the shrink
  // parameter to 0.0 ensures that the table never shrinks.
  void get_resizing_parameters(float* shrink, float* grow) const {
    *shrink = shrink_resize_percent;
    *grow = enlarge_resize_percent;
  }
  void set_resizing_parameters(float shrink, float grow) {
    assert(shrink >= 0.0);
    assert(grow <= 1.0);
    if (shrink > grow/2.0f)
      shrink = grow / 2.0f;     // otherwise we thrash hashtable size
    shrink_resize_percent = shrink;
    enlarge_resize_percent = grow;
    reset_thresholds();
  }

  // CONSTRUCTORS -- as required by the specs, we take a size,
  // but also let you specify a hashfunction, key comparator,
  // and key extractor.  We also define a copy constructor and =.
  // DESTRUCTOR -- needs to free the table
  explicit dense_hashtable(size_type expected_max_items_in_table = 0,
                           const HashFcn& hf = HashFcn(),
                           const EqualKey& eql = EqualKey(),
                           const ExtractKey& ext = ExtractKey(),
                           const SetKey& set = SetKey())
    : hash(hf), equals(eql), get_key(ext), set_key(set), num_deleted(0),
      use_deleted(false), use_empty(false),
      delkey(), emptyval(), enlarge_resize_percent(HT_OCCUPANCY_FLT),
      shrink_resize_percent(HT_EMPTY_FLT), table(NULL),
      num_buckets(expected_max_items_in_table == 0
                  ? HT_DEFAULT_STARTING_BUCKETS
                  : min_size(expected_max_items_in_table, 0)),
      num_elements(0) {
    // table is NULL until emptyval is set.  However, we set num_buckets
    // here so we know how much space to allocate once emptyval is set
    reset_thresholds();
  }

  // As a convenience for resize(), we allow an optional second argument
  // which lets you make this new hashtable a different size than ht
  dense_hashtable(const dense_hashtable& ht,
                  size_type min_buckets_wanted = HT_DEFAULT_STARTING_BUCKETS)
    : hash(ht.hash), equals(ht.equals),
      get_key(ht.get_key), set_key(ht.set_key), num_deleted(0),
      use_deleted(ht.use_deleted), use_empty(ht.use_empty),
      delkey(ht.delkey), emptyval(ht.emptyval),
      enlarge_resize_percent(ht.enlarge_resize_percent),
      shrink_resize_percent(ht.shrink_resize_percent), table(NULL),
      num_buckets(0), num_elements(0) {
    reset_thresholds();
    copy_from(ht, min_buckets_wanted);   // copy_from() ignores deleted entries
  }

  dense_hashtable& operator= (const dense_hashtable& ht) {
    if (&ht == this)  return *this;        // don't copy onto ourselves
    clear();
    hash = ht.hash;
    equals = ht.equals;
    get_key = ht.get_key;
    set_key = ht.set_key;
    use_deleted = ht.use_deleted;
    use_empty = ht.use_empty;
    delkey = ht.delkey;
    set_value(&emptyval, ht.emptyval);
    enlarge_resize_percent = ht.enlarge_resize_percent;
    shrink_resize_percent = ht.shrink_resize_percent;
    copy_from(ht, HT_MIN_BUCKETS);         // sets num_deleted to 0 too
    return *this;
  }

  ~dense_hashtable() {
    if (table) {
      destroy_buckets(0, num_buckets);
      free(table);
    }
  }

  // Many STL algorithms use swap instead of copy constructors
  void swap(dense_hashtable& ht) {
    STL_NAMESPACE::swap(hash, ht.hash);
    STL_NAMESPACE::swap(equals, ht.equals);
    STL_NAMESPACE::swap(get_key, ht.get_key);
    STL_NAMESPACE::swap(set_key, ht.set_key);
    STL_NAMESPACE::swap(num_deleted, ht.num_deleted);
    STL_NAMESPACE::swap(use_deleted, ht.use_deleted);
    STL_NAMESPACE::swap(use_empty, ht.use_empty);
    STL_NAMESPACE::swap(enlarge_resize_percent, ht.enlarge_resize_percent);
    STL_NAMESPACE::swap(shrink_resize_percent, ht.shrink_resize_percent);
    STL_NAMESPACE::swap(delkey, ht.delkey);
    { value_type tmp;     // for annoying reasons, swap() doesn't work
      set_value(&tmp, emptyval);
      set_value(&emptyval, ht.emptyval);
      set_value(&ht.emptyval, tmp);
    }
    STL_NAMESPACE::swap(table, ht.table);
    STL_NAMESPACE::swap(num_buckets, ht.num_buckets);
    STL_NAMESPACE::swap(num_elements, ht.num_elements);
    reset_thresholds();
    ht.reset_thresholds();
  }

  // It's always nice to be able to clear a table without deallocating it
  void clear() {
    if (table)
      destroy_buckets(0, num_buckets);
    num_buckets = min_size(0,0);          // our new size
    reset_thresholds();
    table = (value_type *) realloc(table, num_buckets * sizeof(*table));
    assert(table);
    fill_range_with_empty(table, table + num_buckets);
    num_elements = 0;
    num_deleted = 0;
  }

  // Clear the table without resizing it.
  // Mimicks the stl_hashtable's behaviour when clear()-ing in that it
  // does not modify the bucket count
  void clear_no_resize() {
    if (table) {
      set_empty(0, num_buckets);
    }
    // don't consider to shrink before another erase()
    reset_thresholds();
    num_elements = 0;
    num_deleted = 0;
  }

  // LOOKUP ROUTINES
 private:
  // Returns a pair of positions: 1st where the object is, 2nd where
  // it would go if you wanted to insert it.  1st is ILLEGAL_BUCKET
  // if object is not found; 2nd is ILLEGAL_BUCKET if it is.
  // Note: because of deletions where-to-insert is not trivial: it's the
  // first deleted bucket we see, as long as we don't find the key later
  pair<size_type, size_type> find_position(const key_type &key) const {
    size_type num_probes = 0;              // how many times we've probed
    const size_type bucket_count_minus_one = bucket_count() - 1;
    size_type bucknum = hash(key) & bucket_count_minus_one;
    size_type insert_pos = ILLEGAL_BUCKET; // where we would insert
    while ( 1 ) {                          // probe until something happens
      if ( test_empty(bucknum) ) {         // bucket is empty
        if ( insert_pos == ILLEGAL_BUCKET )   // found no prior place to insert
          return pair<size_type,size_type>(ILLEGAL_BUCKET, bucknum);
        else
          return pair<size_type,size_type>(ILLEGAL_BUCKET, insert_pos);

      } else if ( test_deleted(bucknum) ) {// keep searching, but mark to insert
        if ( insert_pos == ILLEGAL_BUCKET )
          insert_pos = bucknum;

      } else if ( equals(key, get_key(table[bucknum])) ) {
        return pair<size_type,size_type>(bucknum, ILLEGAL_BUCKET);
      }
      ++num_probes;                        // we're doing another probe
      bucknum = (bucknum + JUMP_(key, num_probes)) & bucket_count_minus_one;
      assert(num_probes < bucket_count()); // don't probe too many times!
    }
  }

 public:
  iterator find(const key_type& key) {
    if ( size() == 0 ) return end();
    pair<size_type, size_type> pos = find_position(key);
    if ( pos.first == ILLEGAL_BUCKET )     // alas, not there
      return end();
    else
      return iterator(this, table + pos.first, table + num_buckets, false);
  }

  const_iterator find(const key_type& key) const {
    if ( size() == 0 ) return end();
    pair<size_type, size_type> pos = find_position(key);
    if ( pos.first == ILLEGAL_BUCKET )     // alas, not there
      return end();
    else
      return const_iterator(this, table + pos.first, table+num_buckets, false);
  }

  // This is a tr1 method: the bucket a given key is in, or what bucket
  // it would be put in, if it were to be inserted.  Shrug.
  size_type bucket(const key_type& key) const {
    pair<size_type, size_type> pos = find_position(key);
    return pos.first == ILLEGAL_BUCKET ? pos.second : pos.first;
  }

  // Counts how many elements have key key.  For maps, it's either 0 or 1.
  size_type count(const key_type &key) const {
    pair<size_type, size_type> pos = find_position(key);
    return pos.first == ILLEGAL_BUCKET ? 0 : 1;
  }

  // Likewise, equal_range doesn't really make sense for us.  Oh well.
  pair<iterator,iterator> equal_range(const key_type& key) {
    iterator pos = find(key);      // either an iterator or end
    if (pos == end()) {
      return pair<iterator,iterator>(pos, pos);
    } else {
      const iterator startpos = pos++;
      return pair<iterator,iterator>(startpos, pos);
    }
  }
  pair<const_iterator,const_iterator> equal_range(const key_type& key) const {
    const_iterator pos = find(key);      // either an iterator or end
    if (pos == end()) {
      return pair<const_iterator,const_iterator>(pos, pos);
    } else {
      const const_iterator startpos = pos++;
      return pair<const_iterator,const_iterator>(startpos, pos);
    }
  }


  // INSERTION ROUTINES
 private:
  // If you know *this is big enough to hold obj, use this routine
  pair<iterator, bool> insert_noresize(const value_type& obj) {
    // First, double-check we're not inserting delkey or emptyval
    assert(!use_empty || !equals(get_key(obj), get_key(emptyval)));
    assert(!use_deleted || !equals(get_key(obj), delkey));
    const pair<size_type,size_type> pos = find_position(get_key(obj));
    if ( pos.first != ILLEGAL_BUCKET) {      // object was already there
      return pair<iterator,bool>(iterator(this, table + pos.first,
                                          table + num_buckets, false),
                                 false);          // false: we didn't insert
    } else {                                 // pos.second says where to put it
      if ( test_deleted(pos.second) ) {      // just replace if it's been del.
        const_iterator delpos(this, table + pos.second,              // shrug:
                              table + num_buckets, false);// shouldn't need const
        clear_deleted(delpos);
        assert( num_deleted > 0);
        --num_deleted;                       // used to be, now it isn't
      } else {
        ++num_elements;                      // replacing an empty bucket
      }
      set_value(&table[pos.second], obj);
      return pair<iterator,bool>(iterator(this, table + pos.second,
                                          table + num_buckets, false),
                                 true);           // true: we did insert
    }
  }

 public:
  // This is the normal insert routine, used by the outside world
  pair<iterator, bool> insert(const value_type& obj) {
    resize_delta(1);                      // adding an object, grow if need be
    return insert_noresize(obj);
  }

  // When inserting a lot at a time, we specialize on the type of iterator
  template <class InputIterator>
  void insert(InputIterator f, InputIterator l) {
    // specializes on iterator type
    insert(f, l, typename STL_NAMESPACE::iterator_traits<InputIterator>::iterator_category());
  }

  // Iterator supports operator-, resize before inserting
  template <class ForwardIterator>
  void insert(ForwardIterator f, ForwardIterator l,
              STL_NAMESPACE::forward_iterator_tag) {
    size_type n = STL_NAMESPACE::distance(f, l);   // TODO(csilvers): standard?
    resize_delta(n);
    for ( ; n > 0; --n, ++f)
      insert_noresize(*f);
  }

  // Arbitrary iterator, can't tell how much to resize
  template <class InputIterator>
  void insert(InputIterator f, InputIterator l,
              STL_NAMESPACE::input_iterator_tag) {
    for ( ; f != l; ++f)
      insert(*f);
  }


  // DELETION ROUTINES
  size_type erase(const key_type& key) {
    // First, double-check we're not trying to erase delkey or emptyval
    assert(!use_empty || !equals(key, get_key(emptyval)));
    assert(!use_deleted || !equals(key, delkey));
    const_iterator pos = find(key);   // shrug: shouldn't need to be const
    if ( pos != end() ) {
      assert(!test_deleted(pos));  // or find() shouldn't have returned it
      set_deleted(pos);
      ++num_deleted;
      consider_shrink = true;      // will think about shrink after next insert
      return 1;                    // because we deleted one thing
    } else {
      return 0;                    // because we deleted nothing
    }
  }

  // This is really evil: really it should be iterator, not const_iterator.
  // But...the only reason keys are const is to allow lookup.
  // Since that's a moot issue for deleted keys, we allow const_iterators
  void erase(const_iterator pos) {
    if ( pos == end() ) return;    // sanity check
    if ( set_deleted(pos) ) {      // true if object has been newly deleted
      ++num_deleted;
      consider_shrink = true;      // will think about shrink after next insert
    }
  }

  void erase(const_iterator f, const_iterator l) {
    for ( ; f != l; ++f) {
      if ( set_deleted(f)  )       // should always be true
        ++num_deleted;
    }
    consider_shrink = true;        // will think about shrink after next insert
  }


  // COMPARISON
  bool operator==(const dense_hashtable& ht) const {
    if (size() != ht.size()) {
      return false;
    } else if (this == &ht) {
      return true;
    } else {
      // Iterate through the elements in "this" and see if the
      // corresponding element is in ht
      for ( const_iterator it = begin(); it != end(); ++it ) {
        const_iterator it2 = ht.find(get_key(*it));
        if ((it2 == ht.end()) || (*it != *it2)) {
          return false;
        }
      }
      return true;
    }
  }
  bool operator!=(const dense_hashtable& ht) const {
    return !(*this == ht);
  }


  // I/O
  // We support reading and writing hashtables to disk.  Alas, since
  // I don't know how to write a hasher or key_equal, you have to make
  // sure everything but the table is the same.  We compact before writing
  //
  // NOTE: These functions are currently TODO.  They've not been implemented.
  bool write_metadata(FILE *fp) {
    squash_deleted();           // so we don't have to worry about delkey
    return false;               // TODO
  }

  bool read_metadata(FILE *fp) {
    num_deleted = 0;            // since we got rid before writing
    assert(use_empty);          // have to set this before calling us
    if (table)  free(table);    // we'll make our own
    // TODO: read magic number
    // TODO: read num_buckets
    reset_thresholds();
    table = (value_type *) malloc(num_buckets * sizeof(*table));
    assert(table);
    fill_range_with_empty(table, table + num_buckets);
    // TODO: read num_elements
    for ( size_type i = 0; i < num_elements; ++i ) {
      // TODO: read bucket_num
      // TODO: set with non-empty, non-deleted value
    }
    return false;               // TODO
  }

  // If your keys and values are simple enough, we can write them to
  // disk for you.  "simple enough" means value_type is a POD type
  // that contains no pointers.  However, we don't try to normalize
  // endianness
  bool write_nopointer_data(FILE *fp) const {
    for ( const_iterator it = begin(); it != end(); ++it ) {
      // TODO: skip empty/deleted values
      if ( !fwrite(&*it, sizeof(*it), 1, fp) )  return false;
    }
    return false;
  }

  // When reading, we have to override the potential const-ness of *it
  bool read_nopointer_data(FILE *fp) {
    for ( iterator it = begin(); it != end(); ++it ) {
      // TODO: skip empty/deleted values
      if ( !fread(reinterpret_cast<void*>(&(*it)), sizeof(*it), 1, fp) )
        return false;
    }
    return false;
  }

 private:
  // The actual data
  hasher hash;                      // required by hashed_associative_container
  key_equal equals;
  ExtractKey get_key;
  SetKey set_key;
  size_type num_deleted;        // how many occupied buckets are marked deleted
  bool use_deleted;                          // false until delkey has been set
  bool use_empty;                          // you must do this before you start
  // TODO(csilvers): make a pointer, and get rid of use_deleted (benchmark!)
  key_type delkey;                           // which key marks deleted entries
  value_type emptyval;                        // which key marks unused entries
  float enlarge_resize_percent;                       // how full before resize
  float shrink_resize_percent;                       // how empty before resize
  size_type shrink_threshold;            // num_buckets * shrink_resize_percent
  size_type enlarge_threshold;          // num_buckets * enlarge_resize_percent
  value_type *table;
  size_type num_buckets;
  size_type num_elements;
  bool consider_shrink;   // true if we should try to shrink before next insert

  void reset_thresholds() {
    enlarge_threshold = static_cast<size_type>(num_buckets
                                               * enlarge_resize_percent);
    shrink_threshold = static_cast<size_type>(num_buckets
                                              * shrink_resize_percent);
    consider_shrink = false;   // whatever caused us to reset already considered
  }
};

// We need a global swap as well
template <class V, class K, class HF, class ExK, class SetK, class EqK, class A>
inline void swap(dense_hashtable<V,K,HF,ExK,SetK,EqK,A> &x,
                 dense_hashtable<V,K,HF,ExK,SetK,EqK,A> &y) {
  x.swap(y);
}

#undef JUMP_

template <class V, class K, class HF, class ExK, class SetK, class EqK, class A>
const typename dense_hashtable<V,K,HF,ExK,SetK,EqK,A>::size_type
dense_hashtable<V,K,HF,ExK,SetK,EqK,A>::ILLEGAL_BUCKET;

// How full we let the table get before we resize.  Knuth says .8 is
// good -- higher causes us to probe too much, though saves memory.
// However, we go with .5, getting better performance at the cost of
// more space (a trade-off densehashtable explicitly chooses to make).
// Feel free to play around with different values, though.
template <class V, class K, class HF, class ExK, class SetK, class EqK, class A>
const float dense_hashtable<V,K,HF,ExK,SetK,EqK,A>::HT_OCCUPANCY_FLT = 0.5f;

// How empty we let the table get before we resize lower.
// It should be less than OCCUPANCY_FLT / 2 or we thrash resizing
template <class V, class K, class HF, class ExK, class SetK, class EqK, class A>
const float dense_hashtable<V,K,HF,ExK,SetK,EqK,A>::HT_EMPTY_FLT
    = 0.4f * dense_hashtable<V,K,HF,ExK,SetK,EqK,A>::HT_OCCUPANCY_FLT;

_END_GOOGLE_NAMESPACE_

#endif /* _DENSEHASHTABLE_H_ */