aboutsummaryrefslogtreecommitdiffstats
path: root/sources/shiboken2/libshiboken/pep384impl.cpp
blob: f0e8f3457b2563af57c5b824cc389395d3342c09 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
/****************************************************************************
**
** Copyright (C) 2018 The Qt Company Ltd.
** Contact: https://www.qt.io/licensing/
**
** This file is part of Qt for Python.
**
** $QT_BEGIN_LICENSE:LGPL$
** Commercial License Usage
** Licensees holding valid commercial Qt licenses may use this file in
** accordance with the commercial license agreement provided with the
** Software or, alternatively, in accordance with the terms contained in
** a written agreement between you and The Qt Company. For licensing terms
** and conditions see https://www.qt.io/terms-conditions. For further
** information use the contact form at https://www.qt.io/contact-us.
**
** GNU Lesser General Public License Usage
** Alternatively, this file may be used under the terms of the GNU Lesser
** General Public License version 3 as published by the Free Software
** Foundation and appearing in the file LICENSE.LGPL3 included in the
** packaging of this file. Please review the following information to
** ensure the GNU Lesser General Public License version 3 requirements
** will be met: https://www.gnu.org/licenses/lgpl-3.0.html.
**
** GNU General Public License Usage
** Alternatively, this file may be used under the terms of the GNU
** General Public License version 2.0 or (at your option) the GNU General
** Public license version 3 or any later version approved by the KDE Free
** Qt Foundation. The licenses are as published by the Free Software
** Foundation and appearing in the file LICENSE.GPL2 and LICENSE.GPL3
** included in the packaging of this file. Please review the following
** information to ensure the GNU General Public License requirements will
** be met: https://www.gnu.org/licenses/gpl-2.0.html and
** https://www.gnu.org/licenses/gpl-3.0.html.
**
** $QT_END_LICENSE$
**
****************************************************************************/

#include "pep384impl.h"

extern "C"
{

/**********************************************************************
 **********************************************************************


    The New Type API
    ================

    After converting everything but the "object.h" file, we could not
    believe our eyes: it suddenly was clear that we would have no more
    access to type objects, and even more scary that all types which we
    use have to be heap types, only!

    For PySide with it's intense use of heap type extensions in various
    flavors, it seemed to be quite unsolvable. In the end, it was
    nicely solved, but it took almost 3.5 months to get that right.

    Before we see how this is done, we will explain the differences
    between the APIs and their consequences.


    The Interface
    -------------

    The old type API of Python knows static types and heap types.
    Static types are written down as a declaration of a PyTypeObject
    structure with all its fields filled in. Here is for example
    the definition of the Python type "object":

        PyTypeObject PyBaseObject_Type = {
            PyVarObject_HEAD_INIT(&PyType_Type, 0)
            "object",                                   |* tp_name *|
            sizeof(PyObject),                           |* tp_basicsize *|
            0,                                          |* tp_itemsize *|
            object_dealloc,                             |* tp_dealloc *|
            0,                                          |* tp_print *|
            0,                                          |* tp_getattr *|
            0,                                          |* tp_setattr *|
            0,                                          |* tp_reserved *|
            object_repr,                                |* tp_repr *|
            0,                                          |* tp_as_number *|
            0,                                          |* tp_as_sequence *|
            0,                                          |* tp_as_mapping *|
            (hashfunc)_Py_HashPointer,                  |* tp_hash *|
            0,                                          |* tp_call *|
            object_str,                                 |* tp_str *|
            PyObject_GenericGetAttr,                    |* tp_getattro *|
            PyObject_GenericSetAttr,                    |* tp_setattro *|
            0,                                          |* tp_as_buffer *|
            Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE,   |* tp_flags *|
            PyDoc_STR("object()\n--\n\nThe most base type"),  |* tp_doc *|
            0,                                          |* tp_traverse *|
            0,                                          |* tp_clear *|
            object_richcompare,                         |* tp_richcompare *|
            0,                                          |* tp_weaklistoffset *|
            0,                                          |* tp_iter *|
            0,                                          |* tp_iternext *|
            object_methods,                             |* tp_methods *|
            0,                                          |* tp_members *|
            object_getsets,                             |* tp_getset *|
            0,                                          |* tp_base *|
            0,                                          |* tp_dict *|
            0,                                          |* tp_descr_get *|
            0,                                          |* tp_descr_set *|
            0,                                          |* tp_dictoffset *|
            object_init,                                |* tp_init *|
            PyType_GenericAlloc,                        |* tp_alloc *|
            object_new,                                 |* tp_new *|
            PyObject_Del,                               |* tp_free *|
        };

    We can write the same structure in form of a PyType_Spec structure,
    and there is even a tool that does this for us, but I had to fix a
    few things because there is little support for this.

    The tool is XXX go home and continue.....




    The Transition To Simpler Types
    ===============================

    After all code has been converted to the limited API, there is the
    PyHeapTypeObject remaining as a problem.

    Why a problem? Well, all the type structures in shiboken use
    special extra fields at the end of the heap type object. This
    currently enforces knowledge at compile time about how large the
    heap type object is. In a clean implementation, we would only use
    the PyTypeObject itself and access the fields "behind" the type
    by a pointer that is computed at runtime.


    Excursion: PepTypeObject
    ------------------------

    Before we are going into details, let us motivate the existence of
    the PepTypeObject, an alias to PyTypeObject:

    Originally, we wanted to use PyTypeObject as an opaque type and
    restrict ourselves to only use the access function PyType_GetSlot.
    This function allows access to all fields which are supported by
    the limited API.

    But this is a restriction, because we get no access to tp_dict,
    which we need to support the signature extension. But we can work
    around that.

    The real restriction is that PyType_GetSlot only works for heap
    types. This makes the function quite useless, because we have
    no access to PyType_Type, which is the most important type "type"
    in Python. We need that for instance to compute the size of
    PyHeapTypeObject dynamically.

    With much effort, it is possible to clone PyType_Type as a heap
    type. But due to a bug in the Pep 384 support, we need
    access to the nb_index field of a normal type. Cloning does not
    help because PyNumberMethods fields are not inherited.

    After I realized this dead end, I changed the concept and did not
    use PyType_GetSlot at all (except in function copyNumberMethods),
    but created PepTypeObject as a remake of PyTypeObject with only
    those fields defined that are needed in PySide.

    Is this breakage of the limited API? I don't think so. A special
    function runs on program startup that checks the correct position
    of the fields of PepHeapType, although a change in those fields is
    more than unlikely.
    The really crucial thing is to no longer use PyHeapTypeObject
    explicitly because that _does_ change its layout over time.


    Diversification
    ---------------

    There are multiple SbkXXX structures which all use a "d" field
    for their private data. This makes it not easy to find the right
    fields when switching between types and objects.

        struct LIBSHIBOKEN_API SbkObjectType
        {
            PyHeapTypeObject super;
            SbkObjectTypePrivate *d;
        };

        struct LIBSHIBOKEN_API SbkObject
        {
            PyObject_HEAD
            PyObject* ob_dict;
            PyObject* weakreflist;
            SbkObjectPrivate* d;
        };

    The first step was to rename the SbkObjectTypePrivate from "d" to
    "sotp". It was chosen to be short but easy to remember.


    Abstraction
    -----------

    After renaming the type extension pointers to "sotp", I replaced
    them by function-like macros which did the special access "behind"
    the types, instead of those explicit fields. For instance, the
    expression

        type->sotp->converter

    became

        PepType_SOTP(type)->converter

    The macro expression can be seen here:

    #define _genericTypeExtender(etype) \
        (reinterpret_cast<char*>(etype) + \
            (reinterpret_cast<PepTypeObject*>(&PyType_Type))->tp_basicsize)

    #define PepType_SOTP(etype) \
        (*reinterpret_cast<SbkObjectTypePrivate**>(_genericTypeExtender(etype)))

    It looks complicated, but in the end there is only a single new
    indirection via PyType_Type, which happens at runtime. This is the
    key to fulfil what Pep 384 wants: No version-dependent fields.


    Simplification
    --------------

    After all type extension fields were replaced by macro calls, we
    could remove the version dependent definition

        typedef struct _pepheaptypeobject {
            union {
                PepTypeObject ht_type;
                void *opaque[PY_HEAPTYPE_SIZE];
            };
        } PepHeapTypeObject;

    and the version dependent structure

        struct LIBSHIBOKEN_API SbkObjectType
        {
            PepHeapTypeObject super;
            SbkObjectTypePrivate *sotp;
        };

    could be replaced by the simplified

        struct LIBSHIBOKEN_API SbkObjectType
        {
            PepTypeObject type;
        };

    which is no longer version-dependent.


    Verification Of PepTypeObject
    =============================

    We have introduced PepTypeObject as a new alias for PyTypeObject,
    and now we need to prove that we are allowed to do so.

    When using the limited API as intended, then types are completely
    opaque, and access is only through PyType_FromSpec and (from
    version 3.5 upwards) through PyType_GetSlot.

    Python then uses all the slot definitions in the type description
    and produces a regular type object.


    Unused Information
    ------------------

    But we know many things about types that are not explicitly said,
    but they are inherently clear:

     a) The basic structure of a type is always the same, regardless
        if it is a static type or a heap type.

     b) types are evolving very slowly, and a field is never replaced
        by another field with different semantics.

    Inherent rule a) gives us the following information: If we calculate
    the offsets of the fields, then this info is also usable for non-
    -heap types.

    The validation checks if rule b) is still valid.


    How it Works
    ------------

    The basic idea of the validation is to produce a new type using
    PyType_FromSpec and to see where in the type structure these fields
    show up. So we build a PyType_Slot structure with all the fields we
    are using and make sure that these values are all unique in the
    type.

    Most fields are not investigated by PyType_FromSpec, and so we
    simply used some numeric value. Some fields are interpreted, like
    tp_members. This field must really be a PyMemberDef. And there are
    tp_base and tp_bases which have to be type objects and lists
    thereof. It was easiest to not produce these fields from scratch
    but use them from the "type" object PyType_Type.

    Then one would think to write a function that searches the known
    values in the opaque type structure.

    But we can do better and use optimistically the observation (b):
    We simply use the PepTypeObject structure and assume that every
    field lands exactly where we are awaiting it.

    And that is the whole proof: If we find all the disjoint values at
    the places where we expect them, thenthis is q.e.d. :)


    About tp_dict
    -------------

    One word about the tp_dict field: This field is a bit special in
    the proof, since it does not appear in the spec and cannot easily
    be checked by "type.__dict__" because that creates a dictproxy
    object. So how do we proove that is really the right dict?

    We have to create that PyMethodDef structure anyway, and instead of
    leaving it empty, we insert a dummy function. Then we ask the
    tp_dict field if it has that object in it, and that's q.e.d.


 *********/


/*****************************************************************************
 *
 * Support for object.h
 *
 */

/*
 * Here is the verification code for PepTypeObject.
 * We create a type object and check if its fields
 * appear at the right offsets.
 */

#define make_dummy_int(x)   (x * sizeof(void*))
#define make_dummy(x)       (reinterpret_cast<void*>(make_dummy_int(x)))

#ifdef Py_LIMITED_API
datetime_struc *PyDateTimeAPI = NULL;
#endif

static PyObject *
dummy_func(PyObject *self, PyObject *args)
{
    Py_RETURN_NONE;
}

static struct PyMethodDef probe_methoddef[] = {
    {"dummy", dummy_func, METH_NOARGS},
    {0}
};

#define probe_tp_call       make_dummy(1)
#define probe_tp_str        make_dummy(2)
#define probe_tp_traverse   make_dummy(3)
#define probe_tp_clear      make_dummy(4)
#define probe_tp_methods    probe_methoddef
#define probe_tp_descr_get  make_dummy(6)
#define probe_tp_init       make_dummy(7)
#define probe_tp_alloc      make_dummy(8)
#define probe_tp_new        make_dummy(9)
#define probe_tp_free       make_dummy(10)
#define probe_tp_is_gc      make_dummy(11)

#define probe_tp_name       "type.probe"
#define probe_tp_basicsize  make_dummy_int(42)

static PyType_Slot typeprobe_slots[] = {
    {Py_tp_call,        probe_tp_call},
    {Py_tp_str,         probe_tp_str},
    {Py_tp_traverse,    probe_tp_traverse},
    {Py_tp_clear,       probe_tp_clear},
    {Py_tp_methods,     probe_tp_methods},
    {Py_tp_descr_get,   probe_tp_descr_get},
    {Py_tp_init,        probe_tp_init},
    {Py_tp_alloc,       probe_tp_alloc},
    {Py_tp_new,         probe_tp_new},
    {Py_tp_free,        probe_tp_free},
    {Py_tp_is_gc,       probe_tp_is_gc},
    {0, 0}
};
static PyType_Spec typeprobe_spec = {
    probe_tp_name,
    probe_tp_basicsize,
    0,
    Py_TPFLAGS_DEFAULT,
    typeprobe_slots,
};

static void
check_PepTypeObject_valid(void)
{
    PyObject *obtype = reinterpret_cast<PyObject*>(&PyType_Type);
    PyTypeObject *probe_tp_base = reinterpret_cast<PyTypeObject*>(
        PyObject_GetAttrString(obtype, "__base__"));
    PyObject *probe_tp_bases = PyObject_GetAttrString(obtype, "__bases__");
    PepTypeObject *check = reinterpret_cast<PepTypeObject*>(
        PyType_FromSpecWithBases(&typeprobe_spec, probe_tp_bases));
    PepTypeObject *typetype = reinterpret_cast<PepTypeObject*>(obtype);
    PyObject *w = PyObject_GetAttrString(obtype, "__weakrefoffset__");
    long probe_tp_weakrefoffset = PyLong_AsLong(w);
    PyObject *d = PyObject_GetAttrString(obtype, "__dictoffset__");
    long probe_tp_dictoffset = PyLong_AsLong(d);
    PyObject *probe_tp_mro = PyObject_GetAttrString(obtype, "__mro__");
    if (false
        || probe_tp_name            != check->tp_name
        || probe_tp_basicsize       != check->tp_basicsize
        || probe_tp_call            != check->tp_call
        || probe_tp_str             != check->tp_str
        || probe_tp_traverse        != check->tp_traverse
        || probe_tp_clear           != check->tp_clear
        || probe_tp_weakrefoffset   != typetype->tp_weaklistoffset
        || probe_tp_methods         != check->tp_methods
        || probe_tp_base            != typetype->tp_base
        || !PyDict_Check(check->tp_dict)
        || !PyDict_GetItemString(check->tp_dict, "dummy")
        || probe_tp_descr_get       != check->tp_descr_get
        || probe_tp_dictoffset      != typetype->tp_dictoffset
        || probe_tp_init            != check->tp_init
        || probe_tp_alloc           != check->tp_alloc
        || probe_tp_new             != check->tp_new
        || probe_tp_free            != check->tp_free
        || probe_tp_is_gc           != check->tp_is_gc
        || probe_tp_bases           != typetype->tp_bases
        || probe_tp_mro             != typetype->tp_mro)
        Py_FatalError("The structure of type objects has changed!");
    Py_DECREF(check);
    Py_DECREF(probe_tp_base);
    Py_DECREF(w);
    Py_DECREF(d);
    Py_DECREF(probe_tp_bases);
    Py_DECREF(probe_tp_mro);
}


#ifdef Py_LIMITED_API

#if PY_VERSION_HEX < PY_ISSUE33738_SOLVED
#include "pep384_issue33738.cpp"
#endif

/*****************************************************************************
 *
 * Support for unicodeobject.h
 *
 */

char *
_PepUnicode_AsString(PyObject *str)
{
    /*
     * We need to keep the string alive but cannot borrow the Python object.
     * Ugly easy way out: We re-code as an interned bytes string. This
     * produces a pseudo-leak as long there are new strings.
     * Typically, this function is used for name strings, and the dict size
     * will not grow so much.
     */
#define STRINGIFY(x) #x
#define TOSTRING(x) STRINGIFY(x)
#define AT __FILE__ ":" TOSTRING(__LINE__)

    static PyObject *cstring_dict = NULL;
    if (cstring_dict == NULL) {
        cstring_dict = PyDict_New();
        if (cstring_dict == NULL)
            Py_FatalError("Error in " AT);
    }
    PyObject *bytesStr = PyUnicode_AsEncodedString(str, "utf8", NULL);
    PyObject *entry = PyDict_GetItem(cstring_dict, bytesStr);
    if (entry == NULL) {
        int e = PyDict_SetItem(cstring_dict, bytesStr, bytesStr);
        if (e != 0)
            Py_FatalError("Error in " AT);
        entry = bytesStr;
    }
    else
        Py_DECREF(bytesStr);
    return PyBytes_AsString(entry);
}

/*****************************************************************************
 *
 * Support for longobject.h
 *
 */

/*
 * This is the original Python function _PyLong_AsInt() from longobject.c .
 * We define it here because we are not allowed to use the function
 * from Python with an underscore.
 */

/* Get a C int from an int object or any object that has an __int__
   method.  Return -1 and set an error if overflow occurs. */

int
_PepLong_AsInt(PyObject *obj)
{
    int overflow;
    long result = PyLong_AsLongAndOverflow(obj, &overflow);
    if (overflow || result > INT_MAX || result < INT_MIN) {
        /* XXX: could be cute and give a different
           message for overflow == -1 */
        PyErr_SetString(PyExc_OverflowError,
                        "Python int too large to convert to C int");
        return -1;
    }
    return (int)result;
}

/*****************************************************************************
 *
 * Support for pydebug.h
 *
 */
static PyObject *sys_flags = NULL;

int
Pep_GetFlag(const char *name)
{
    static int initialized = 0;
    int ret = -1;

    if (!initialized) {
        sys_flags = PySys_GetObject("flags");
        // func gives no error if NULL is returned and does not incref.
        Py_XINCREF(sys_flags);
        initialized = 1;
    }
    if (sys_flags != NULL) {
        PyObject *ob_ret = PyObject_GetAttrString(sys_flags, name);
        if (ob_ret != NULL) {
            long long_ret = PyLong_AsLong(ob_ret);
            Py_DECREF(ob_ret);
            ret = (int) long_ret;
        }
    }
    return ret;
}

int
Pep_GetVerboseFlag()
{
    static int initialized = 0;
    static int verbose_flag = -1;

    if (!initialized) {
        verbose_flag = Pep_GetFlag("verbose");
        if (verbose_flag != -1)
            initialized = 1;
    }
    return verbose_flag;
}

/*****************************************************************************
 *
 * Support for code.h
 *
 */

int
PepCode_Get(PyCodeObject *co, const char *name)
{
    PyObject *ob = (PyObject *)co;
    PyObject *ob_ret;
    int ret = -1;

    ob_ret = PyObject_GetAttrString(ob, name);
    if (ob_ret != NULL) {
        long long_ret = PyLong_AsLong(ob_ret);
        Py_DECREF(ob_ret);
        ret = (int) long_ret;
    }
    return ret;
}

/*****************************************************************************
 *
 * Support for datetime.h
 *
 */

static PyTypeObject *dt_getCheck(const char *name)
{
    PyObject *op = PyObject_GetAttrString(PyDateTimeAPI->module, name);
    if (op == NULL) {
        fprintf(stderr, "datetime.%s not found\n", name);
        Py_FatalError("aborting");
    }
    return (PyTypeObject *)op;
}

// init_DateTime is called earlier than our module init.
// We use the provided PyDateTime_IMPORT machinery.
datetime_struc *
init_DateTime(void)
{
    static int initialized = 0;
    if (!initialized) {
        PyDateTimeAPI = (datetime_struc *)malloc(sizeof(datetime_struc));
        if (PyDateTimeAPI == NULL)
            Py_FatalError("PyDateTimeAPI malloc error, aborting");
        PyDateTimeAPI->module = PyImport_ImportModule("datetime");
        if (PyDateTimeAPI->module == NULL)
            Py_FatalError("datetime module not found, aborting");
        PyDateTimeAPI->DateType     = dt_getCheck("date");
        PyDateTimeAPI->DateTimeType = dt_getCheck("datetime");
        PyDateTimeAPI->TimeType     = dt_getCheck("time");
        PyDateTimeAPI->DeltaType    = dt_getCheck("timedelta");
        PyDateTimeAPI->TZInfoType   = dt_getCheck("tzinfo");
        initialized = 1;
    }
    return PyDateTimeAPI;
}

int
PyDateTime_Get(PyObject *ob, const char *name)
{
    PyObject *ob_ret;
    int ret = -1;

    ob_ret = PyObject_GetAttrString(ob, name);
    if (ob_ret != NULL) {
        long long_ret = PyLong_AsLong(ob_ret);
        Py_DECREF(ob_ret);
        ret = (int) long_ret;
    }
    return ret;
}

PyObject *
PyDate_FromDate(int year, int month, int day)
{
    return PyObject_CallFunction((PyObject *)PyDateTimeAPI->DateType,
                                 (char *)"(iii)", year, month, day);
}

PyObject *
PyDateTime_FromDateAndTime(int year, int month, int day,
                           int hour, int min, int sec, int usec)
{
    return PyObject_CallFunction((PyObject *)PyDateTimeAPI->DateTimeType,
                                 (char *)"(iiiiiii)", year, month, day,
                                  hour, min, sec, usec);
}

PyObject *
PyTime_FromTime(int hour, int min, int sec, int usec)
{
    return PyObject_CallFunction((PyObject *)PyDateTimeAPI->TimeType,
                                 (char *)"(iiii)", hour, min, sec, usec);
}

/*****************************************************************************
 *
 * Support for pythonrun.h
 *
 */

// Flags are ignored in these simple helpers.
PyObject *
PyRun_String(const char *str, int start, PyObject *globals, PyObject *locals)
{
    PyObject* code = Py_CompileString(str, "pyscript", start);
    PyObject* ret = NULL;

    if (code != NULL) {
        ret = PyEval_EvalCode(code, globals, locals);
    }
    Py_XDECREF(code);
    return ret;
}

// This is only a simple local helper that returns a computed variable.
static PyObject *
PepRun_GetResult(const char *command, const char *resvar)
{
    PyObject *d, *v, *res;

    d = PyDict_New();
    if (d == NULL || PyDict_SetItemString(d, "__builtins__",
                                          PyEval_GetBuiltins()) < 0)
        return NULL;
    v = PyRun_String(command, Py_file_input, d, d);
    res = v ? PyDict_GetItemString(d, resvar) : NULL;
    Py_XDECREF(v);
    Py_DECREF(d);
    return res;
}

/*****************************************************************************
 *
 * Support for classobject.h
 *
 */

PyTypeObject *PepMethod_TypePtr = NULL;

static PyTypeObject *getMethodType(void)
{
    static const char prog[] =
        "class _C:\n"
        "    def _m(self): pass\n"
        "MethodType = type(_C()._m)\n";
    return (PyTypeObject *) PepRun_GetResult(prog, "MethodType");
}

// We have no access to PyMethod_New and must call types.MethodType, instead.
PyObject *
PyMethod_New(PyObject *func, PyObject *self)
{
    return PyObject_CallFunction((PyObject *)PepMethod_TypePtr,
                                 (char *)"(OO)", func, self);
}

PyObject *
PyMethod_Function(PyObject *im)
{
    PyObject *ret = PyObject_GetAttrString(im, "__func__");

    // We have to return a borrowed reference.
    Py_DECREF(ret);
    return ret;
}

PyObject *
PyMethod_Self(PyObject *im)
{
    PyObject *ret = PyObject_GetAttrString(im, "__self__");

    // We have to return a borrowed reference.
    // If we don't obey that here, then we get a test error!
    Py_DECREF(ret);
    return ret;
}

/*****************************************************************************
 *
 * Support for funcobject.h
 *
 */

PyObject *
PepFunction_Get(PyObject *ob, const char *name)
{
    PyObject *ret;

    // We have to return a borrowed reference.
    ret = PyObject_GetAttrString(ob, name);
    Py_XDECREF(ret);
    return ret;
}

/*****************************************************************************
 *
 * Support for funcobject.h
 *
 */

// this became necessary after Windows was activated.

PyTypeObject *PepFunction_TypePtr = NULL;

static PyTypeObject *getFunctionType(void)
{
    static const char prog[] =
        "from types import FunctionType\n";
    return (PyTypeObject *) PepRun_GetResult(prog, "FunctionType");
}

/*****************************************************************************
 *
 * Extra support for signature.cpp
 *
 */

PyTypeObject *PepStaticMethod_TypePtr = NULL;

static PyTypeObject *getStaticMethodType(void)
{
    static const char prog[] =
        "StaticMethodType = type(str.__dict__['maketrans'])\n";
    return (PyTypeObject *) PepRun_GetResult(prog, "StaticMethodType");
}

#endif // Py_LIMITED_API

/*****************************************************************************
 *
 * Common newly needed functions
 *
 */

// The introduction of heaptypes converted many type names to the
// dotted form, since PyType_FromSpec uses it to compute the module
// name. This function reverts this effect.
const char *
PepType_GetNameStr(PyTypeObject *type)
{
    const char *ret = PepType(type)->tp_name;
    const char *nodots = strrchr(ret, '.');
    if (nodots)
        ret = nodots + 1;
    return ret;
}

/*****************************************************************************
 *
 * Module Initialization
 *
 */

void
Pep384_Init()
{
    check_PepTypeObject_valid();
#ifdef Py_LIMITED_API
    Pep_GetVerboseFlag();
    PepMethod_TypePtr = getMethodType();
    PepFunction_TypePtr = getFunctionType();
    PepStaticMethod_TypePtr = getStaticMethodType();
#endif
}

} // extern "C"