// Copyright (c) 2013-2014 Sandstorm Development Group, Inc. and contributors // Licensed under the MIT License: // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to deal // in the Software without restriction, including without limitation the rights // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN // THE SOFTWARE. #include "calculator.capnp.h" #include #include #include #include class PowerFunction final: public Calculator::Function::Server { // An implementation of the Function interface wrapping pow(). Note that // we're implementing this on the client side and will pass a reference to // the server. The server will then be able to make calls back to the client. public: kj::Promise call(CallContext context) { auto params = context.getParams().getParams(); KJ_REQUIRE(params.size() == 2, "Wrong number of parameters."); context.getResults().setValue(pow(params[0], params[1])); return kj::READY_NOW; } }; int main(int argc, const char* argv[]) { if (argc != 2) { std::cerr << "usage: " << argv[0] << " HOST:PORT\n" "Connects to the Calculator server at the given address and " "does some RPCs." << std::endl; return 1; } capnp::EzRpcClient client(argv[1]); Calculator::Client calculator = client.getMain(); // Keep an eye on `waitScope`. Whenever you see it used is a place where we // stop and wait for the server to respond. If a line of code does not use // `waitScope`, then it does not block! auto& waitScope = client.getWaitScope(); { // Make a request that just evaluates the literal value 123. // // What's interesting here is that evaluate() returns a "Value", which is // another interface and therefore points back to an object living on the // server. We then have to call read() on that object to read it. // However, even though we are making two RPC's, this block executes in // *one* network round trip because of promise pipelining: we do not wait // for the first call to complete before we send the second call to the // server. std::cout << "Evaluating a literal... "; std::cout.flush(); // Set up the request. auto request = calculator.evaluateRequest(); request.getExpression().setLiteral(123); // Send it, which returns a promise for the result (without blocking). auto evalPromise = request.send(); // Using the promise, create a pipelined request to call read() on the // returned object, and then send that. auto readPromise = evalPromise.getValue().readRequest().send(); // Now that we've sent all the requests, wait for the response. Until this // point, we haven't waited at all! auto response = readPromise.wait(waitScope); KJ_ASSERT(response.getValue() == 123); std::cout << "PASS" << std::endl; } { // Make a request to evaluate 123 + 45 - 67. // // The Calculator interface requires that we first call getOperator() to // get the addition and subtraction functions, then call evaluate() to use // them. But, once again, we can get both functions, call evaluate(), and // then read() the result -- four RPCs -- in the time of *one* network // round trip, because of promise pipelining. std::cout << "Using add and subtract... "; std::cout.flush(); Calculator::Function::Client add = nullptr; Calculator::Function::Client subtract = nullptr; { // Get the "add" function from the server. auto request = calculator.getOperatorRequest(); request.setOp(Calculator::Operator::ADD); add = request.send().getFunc(); } { // Get the "subtract" function from the server. auto request = calculator.getOperatorRequest(); request.setOp(Calculator::Operator::SUBTRACT); subtract = request.send().getFunc(); } // Build the request to evaluate 123 + 45 - 67. auto request = calculator.evaluateRequest(); auto subtractCall = request.getExpression().initCall(); subtractCall.setFunction(subtract); auto subtractParams = subtractCall.initParams(2); subtractParams[1].setLiteral(67); auto addCall = subtractParams[0].initCall(); addCall.setFunction(add); auto addParams = addCall.initParams(2); addParams[0].setLiteral(123); addParams[1].setLiteral(45); // Send the evaluate() request, read() the result, and wait for read() to // finish. auto evalPromise = request.send(); auto readPromise = evalPromise.getValue().readRequest().send(); auto response = readPromise.wait(waitScope); KJ_ASSERT(response.getValue() == 101); std::cout << "PASS" << std::endl; } { // Make a request to evaluate 4 * 6, then use the result in two more // requests that add 3 and 5. // // Since evaluate() returns its result wrapped in a `Value`, we can pass // that `Value` back to the server in subsequent requests before the first // `evaluate()` has actually returned. Thus, this example again does only // one network round trip. std::cout << "Pipelining eval() calls... "; std::cout.flush(); Calculator::Function::Client add = nullptr; Calculator::Function::Client multiply = nullptr; { // Get the "add" function from the server. auto request = calculator.getOperatorRequest(); request.setOp(Calculator::Operator::ADD); add = request.send().getFunc(); } { // Get the "multiply" function from the server. auto request = calculator.getOperatorRequest(); request.setOp(Calculator::Operator::MULTIPLY); multiply = request.send().getFunc(); } // Build the request to evaluate 4 * 6 auto request = calculator.evaluateRequest(); auto multiplyCall = request.getExpression().initCall(); multiplyCall.setFunction(multiply); auto multiplyParams = multiplyCall.initParams(2); multiplyParams[0].setLiteral(4); multiplyParams[1].setLiteral(6); auto multiplyResult = request.send().getValue(); // Use the result in two calls that add 3 and add 5. auto add3Request = calculator.evaluateRequest(); auto add3Call = add3Request.getExpression().initCall(); add3Call.setFunction(add); auto add3Params = add3Call.initParams(2); add3Params[0].setPreviousResult(multiplyResult); add3Params[1].setLiteral(3); auto add3Promise = add3Request.send().getValue().readRequest().send(); auto add5Request = calculator.evaluateRequest(); auto add5Call = add5Request.getExpression().initCall(); add5Call.setFunction(add); auto add5Params = add5Call.initParams(2); add5Params[0].setPreviousResult(multiplyResult); add5Params[1].setLiteral(5); auto add5Promise = add5Request.send().getValue().readRequest().send(); // Now wait for the results. KJ_ASSERT(add3Promise.wait(waitScope).getValue() == 27); KJ_ASSERT(add5Promise.wait(waitScope).getValue() == 29); std::cout << "PASS" << std::endl; } { // Our calculator interface supports defining functions. Here we use it // to define two functions and then make calls to them as follows: // // f(x, y) = x * 100 + y // g(x) = f(x, x + 1) * 2; // f(12, 34) // g(21) // // Once again, the whole thing takes only one network round trip. std::cout << "Defining functions... "; std::cout.flush(); Calculator::Function::Client add = nullptr; Calculator::Function::Client multiply = nullptr; Calculator::Function::Client f = nullptr; Calculator::Function::Client g = nullptr; { // Get the "add" function from the server. auto request = calculator.getOperatorRequest(); request.setOp(Calculator::Operator::ADD); add = request.send().getFunc(); } { // Get the "multiply" function from the server. auto request = calculator.getOperatorRequest(); request.setOp(Calculator::Operator::MULTIPLY); multiply = request.send().getFunc(); } { // Define f. auto request = calculator.defFunctionRequest(); request.setParamCount(2); { // Build the function body. auto addCall = request.getBody().initCall(); addCall.setFunction(add); auto addParams = addCall.initParams(2); addParams[1].setParameter(1); // y auto multiplyCall = addParams[0].initCall(); multiplyCall.setFunction(multiply); auto multiplyParams = multiplyCall.initParams(2); multiplyParams[0].setParameter(0); // x multiplyParams[1].setLiteral(100); } f = request.send().getFunc(); } { // Define g. auto request = calculator.defFunctionRequest(); request.setParamCount(1); { // Build the function body. auto multiplyCall = request.getBody().initCall(); multiplyCall.setFunction(multiply); auto multiplyParams = multiplyCall.initParams(2); multiplyParams[1].setLiteral(2); auto fCall = multiplyParams[0].initCall(); fCall.setFunction(f); auto fParams = fCall.initParams(2); fParams[0].setParameter(0); auto addCall = fParams[1].initCall(); addCall.setFunction(add); auto addParams = addCall.initParams(2); addParams[0].setParameter(0); addParams[1].setLiteral(1); } g = request.send().getFunc(); } // OK, we've defined all our functions. Now create our eval requests. // f(12, 34) auto fEvalRequest = calculator.evaluateRequest(); auto fCall = fEvalRequest.initExpression().initCall(); fCall.setFunction(f); auto fParams = fCall.initParams(2); fParams[0].setLiteral(12); fParams[1].setLiteral(34); auto fEvalPromise = fEvalRequest.send().getValue().readRequest().send(); // g(21) auto gEvalRequest = calculator.evaluateRequest(); auto gCall = gEvalRequest.initExpression().initCall(); gCall.setFunction(g); gCall.initParams(1)[0].setLiteral(21); auto gEvalPromise = gEvalRequest.send().getValue().readRequest().send(); // Wait for the results. KJ_ASSERT(fEvalPromise.wait(waitScope).getValue() == 1234); KJ_ASSERT(gEvalPromise.wait(waitScope).getValue() == 4244); std::cout << "PASS" << std::endl; } { // Make a request that will call back to a function defined locally. // // Specifically, we will compute 2^(4 + 5). However, exponent is not // defined by the Calculator server. So, we'll implement the Function // interface locally and pass it to the server for it to use when // evaluating the expression. // // This example requires two network round trips to complete, because the // server calls back to the client once before finishing. In this // particular case, this could potentially be optimized by using a tail // call on the server side -- see CallContext::tailCall(). However, to // keep the example simpler, we haven't implemented this optimization in // the sample server. std::cout << "Using a callback... "; std::cout.flush(); Calculator::Function::Client add = nullptr; { // Get the "add" function from the server. auto request = calculator.getOperatorRequest(); request.setOp(Calculator::Operator::ADD); add = request.send().getFunc(); } // Build the eval request for 2^(4+5). auto request = calculator.evaluateRequest(); auto powCall = request.getExpression().initCall(); powCall.setFunction(kj::heap()); auto powParams = powCall.initParams(2); powParams[0].setLiteral(2); auto addCall = powParams[1].initCall(); addCall.setFunction(add); auto addParams = addCall.initParams(2); addParams[0].setLiteral(4); addParams[1].setLiteral(5); // Send the request and wait. auto response = request.send().getValue().readRequest() .send().wait(waitScope); KJ_ASSERT(response.getValue() == 512); std::cout << "PASS" << std::endl; } return 0; }