summaryrefslogtreecommitdiffstats
path: root/src/3rdparty/assimp/code/IFCGeometry.cpp
diff options
context:
space:
mode:
authorPaul Lemire <paul.lemire@kdab.com>2014-05-26 10:35:32 +0200
committerThe Qt Project <gerrit-noreply@qt-project.org>2014-06-04 10:09:11 +0200
commit1cb807d440cc0d434bfd02fd0c699447b788b8ba (patch)
treef28f64fba6ebb30449c3301a75bba2b233b1f34e /src/3rdparty/assimp/code/IFCGeometry.cpp
parenta45b8308ada361872502a678a12f08cff1760c64 (diff)
Upgrade to Assimp 3.1
https://github.com/assimp/assimp/releases/tag/v3.1 This commit imports assimp 3.1, including CHANGES, CREDITS, LICENSE, README, Readme.md, revision.h and code, contrib, include directories. contrib/zlib was excluded. assimp.pri was also updated. Uses zlib from system or qt instead of contrib/zlib. Task-number: QTBUG-39251 Change-Id: Ia0b446dcd9bc867d65897b9e2b157f6544ccaeac Reviewed-by: Liang Qi <liang.qi@digia.com> Reviewed-by: Sean Harmer <sean.harmer@kdab.com> Reviewed-by: Lars Knoll <lars.knoll@digia.com>
Diffstat (limited to 'src/3rdparty/assimp/code/IFCGeometry.cpp')
-rw-r--r--src/3rdparty/assimp/code/IFCGeometry.cpp1591
1 files changed, 312 insertions, 1279 deletions
diff --git a/src/3rdparty/assimp/code/IFCGeometry.cpp b/src/3rdparty/assimp/code/IFCGeometry.cpp
index bbf03203b..a3c6711d8 100644
--- a/src/3rdparty/assimp/code/IFCGeometry.cpp
+++ b/src/3rdparty/assimp/code/IFCGeometry.cpp
@@ -57,14 +57,6 @@ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
namespace Assimp {
namespace IFC {
- using ClipperLib::ulong64;
- // XXX use full -+ range ...
- const ClipperLib::long64 max_ulong64 = 1518500249; // clipper.cpp / hiRange var
-
- //#define to_int64(p) (static_cast<ulong64>( std::max( 0., std::min( static_cast<IfcFloat>((p)), 1.) ) * max_ulong64 ))
-#define to_int64(p) (static_cast<ulong64>(static_cast<IfcFloat>((p) ) * max_ulong64 ))
-#define from_int64(p) (static_cast<IfcFloat>((p)) / max_ulong64)
-
// ------------------------------------------------------------------------------------------------
bool ProcessPolyloop(const IfcPolyLoop& loop, TempMesh& meshout, ConversionData& /*conv*/)
{
@@ -92,338 +84,123 @@ bool ProcessPolyloop(const IfcPolyLoop& loop, TempMesh& meshout, ConversionData&
}
// ------------------------------------------------------------------------------------------------
-void ComputePolygonNormals(const TempMesh& meshout, std::vector<IfcVector3>& normals, bool normalize = true, size_t ofs = 0)
-{
- size_t max_vcount = 0;
- std::vector<unsigned int>::const_iterator begin=meshout.vertcnt.begin()+ofs, end=meshout.vertcnt.end(), iit;
- for(iit = begin; iit != end; ++iit) {
- max_vcount = std::max(max_vcount,static_cast<size_t>(*iit));
- }
-
- std::vector<IfcFloat> temp((max_vcount+2)*4);
- normals.reserve( normals.size() + meshout.vertcnt.size()-ofs );
-
- // `NewellNormal()` currently has a relatively strange interface and need to
- // re-structure things a bit to meet them.
- size_t vidx = std::accumulate(meshout.vertcnt.begin(),begin,0);
- for(iit = begin; iit != end; vidx += *iit++) {
- if (!*iit) {
- normals.push_back(IfcVector3());
- continue;
- }
- for(size_t vofs = 0, cnt = 0; vofs < *iit; ++vofs) {
- const IfcVector3& v = meshout.verts[vidx+vofs];
- temp[cnt++] = v.x;
- temp[cnt++] = v.y;
- temp[cnt++] = v.z;
-#ifdef _DEBUG
- temp[cnt] = std::numeric_limits<IfcFloat>::quiet_NaN();
-#endif
- ++cnt;
- }
-
- normals.push_back(IfcVector3());
- NewellNormal<4,4,4>(normals.back(),*iit,&temp[0],&temp[1],&temp[2]);
- }
-
- if(normalize) {
- BOOST_FOREACH(IfcVector3& n, normals) {
- n.Normalize();
- }
- }
-}
-
-// ------------------------------------------------------------------------------------------------
-// Compute the normal of the last polygon in the given mesh
-IfcVector3 ComputePolygonNormal(const TempMesh& inmesh, bool normalize = true)
-{
- size_t total = inmesh.vertcnt.back(), vidx = inmesh.verts.size() - total;
- std::vector<IfcFloat> temp((total+2)*3);
- for(size_t vofs = 0, cnt = 0; vofs < total; ++vofs) {
- const IfcVector3& v = inmesh.verts[vidx+vofs];
- temp[cnt++] = v.x;
- temp[cnt++] = v.y;
- temp[cnt++] = v.z;
- }
- IfcVector3 nor;
- NewellNormal<3,3,3>(nor,total,&temp[0],&temp[1],&temp[2]);
- return normalize ? nor.Normalize() : nor;
-}
-
-// ------------------------------------------------------------------------------------------------
-void FixupFaceOrientation(TempMesh& result)
+void ProcessPolygonBoundaries(TempMesh& result, const TempMesh& inmesh, size_t master_bounds = (size_t)-1)
{
- const IfcVector3 vavg = result.Center();
-
- std::vector<IfcVector3> normals;
- ComputePolygonNormals(result,normals);
-
- size_t c = 0, ofs = 0;
- BOOST_FOREACH(unsigned int cnt, result.vertcnt) {
- if (cnt>2){
- const IfcVector3& thisvert = result.verts[c];
- if (normals[ofs]*(thisvert-vavg) < 0) {
- std::reverse(result.verts.begin()+c,result.verts.begin()+cnt+c);
- }
- }
- c += cnt;
- ++ofs;
- }
-}
-
-// ------------------------------------------------------------------------------------------------
-void RecursiveMergeBoundaries(TempMesh& final_result, const TempMesh& in, const TempMesh& boundary, std::vector<IfcVector3>& normals, const IfcVector3& nor_boundary)
-{
- ai_assert(in.vertcnt.size() >= 1);
- ai_assert(boundary.vertcnt.size() == 1);
- std::vector<unsigned int>::const_iterator end = in.vertcnt.end(), begin=in.vertcnt.begin(), iit, best_iit;
-
- TempMesh out;
-
- // iterate through all other bounds and find the one for which the shortest connection
- // to the outer boundary is actually the shortest possible.
- size_t vidx = 0, best_vidx_start = 0;
- size_t best_ofs, best_outer = boundary.verts.size();
- IfcFloat best_dist = 1e10;
- for(std::vector<unsigned int>::const_iterator iit = begin; iit != end; vidx += *iit++) {
-
- for(size_t vofs = 0; vofs < *iit; ++vofs) {
- const IfcVector3& v = in.verts[vidx+vofs];
-
- for(size_t outer = 0; outer < boundary.verts.size(); ++outer) {
- const IfcVector3& o = boundary.verts[outer];
- const IfcFloat d = (o-v).SquareLength();
-
- if (d < best_dist) {
- best_dist = d;
- best_ofs = vofs;
- best_outer = outer;
- best_iit = iit;
- best_vidx_start = vidx;
- }
- }
- }
- }
-
- ai_assert(best_outer != boundary.verts.size());
-
-
- // now that we collected all vertex connections to be added, build the output polygon
- const size_t cnt = boundary.verts.size() + *best_iit+2;
- out.verts.reserve(cnt);
-
- for(size_t outer = 0; outer < boundary.verts.size(); ++outer) {
- const IfcVector3& o = boundary.verts[outer];
- out.verts.push_back(o);
-
- if (outer == best_outer) {
- for(size_t i = best_ofs; i < *best_iit; ++i) {
- out.verts.push_back(in.verts[best_vidx_start + i]);
- }
-
- // we need the first vertex of the inner polygon twice as we return to the
- // outer loop through the very same connection through which we got there.
- for(size_t i = 0; i <= best_ofs; ++i) {
- out.verts.push_back(in.verts[best_vidx_start + i]);
- }
-
- // reverse face winding if the normal of the sub-polygon points in the
- // same direction as the normal of the outer polygonal boundary
- if (normals[std::distance(begin,best_iit)] * nor_boundary > 0) {
- std::reverse(out.verts.rbegin(),out.verts.rbegin()+*best_iit+1);
- }
-
- // also append a copy of the initial insertion point to be able to continue the outer polygon
- out.verts.push_back(o);
- }
- }
- out.vertcnt.push_back(cnt);
- ai_assert(out.verts.size() == cnt);
-
- if (in.vertcnt.size()-std::count(begin,end,0) > 1) {
- // Recursively apply the same algorithm if there are more boundaries to merge. The
- // current implementation is relatively inefficient, though.
-
- TempMesh temp;
-
- // drop the boundary that we just processed
- const size_t dist = std::distance(begin, best_iit);
- TempMesh remaining = in;
- remaining.vertcnt.erase(remaining.vertcnt.begin() + dist);
- remaining.verts.erase(remaining.verts.begin()+best_vidx_start,remaining.verts.begin()+best_vidx_start+*best_iit);
-
- normals.erase(normals.begin() + dist);
- RecursiveMergeBoundaries(temp,remaining,out,normals,nor_boundary);
-
- final_result.Append(temp);
+ // handle all trivial cases
+ if(inmesh.vertcnt.empty()) {
+ return;
}
- else final_result.Append(out);
-}
-
-// ------------------------------------------------------------------------------------------------
-void MergePolygonBoundaries(TempMesh& result, const TempMesh& inmesh, size_t master_bounds = -1)
-{
- // standard case - only one boundary, just copy it to the result vector
- if (inmesh.vertcnt.size() <= 1) {
+ if(inmesh.vertcnt.size() == 1) {
result.Append(inmesh);
return;
}
- result.vertcnt.reserve(inmesh.vertcnt.size()+result.vertcnt.size());
+ ai_assert(std::count(inmesh.vertcnt.begin(), inmesh.vertcnt.end(), 0) == 0);
- // XXX get rid of the extra copy if possible
- TempMesh meshout = inmesh;
+ typedef std::vector<unsigned int>::const_iterator face_iter;
- // handle polygons with holes. Our built in triangulation won't handle them as is, but
- // the ear cutting algorithm is solid enough to deal with them if we join the inner
- // holes with the outer boundaries by dummy connections.
- IFCImporter::LogDebug("fixing polygon with holes for triangulation via ear-cutting");
- std::vector<unsigned int>::iterator outer_polygon = meshout.vertcnt.end(), begin=meshout.vertcnt.begin(), end=outer_polygon, iit;
+ face_iter begin = inmesh.vertcnt.begin(), end = inmesh.vertcnt.end(), iit;
+ std::vector<unsigned int>::const_iterator outer_polygon_it = end;
- // each hole results in two extra vertices
- result.verts.reserve(meshout.verts.size()+meshout.vertcnt.size()*2+result.verts.size());
- size_t outer_polygon_start = 0;
+ // major task here: given a list of nested polygon boundaries (one of which
+ // is the outer contour), reduce the triangulation task arising here to
+ // one that can be solved using the "quadrulation" algorithm which we use
+ // for pouring windows out of walls. The algorithm does not handle all
+ // cases but at least it is numerically stable and gives "nice" triangles.
+ // first compute normals for all polygons using Newell's algorithm
// do not normalize 'normals', we need the original length for computing the polygon area
std::vector<IfcVector3> normals;
- ComputePolygonNormals(meshout,normals,false);
+ inmesh.ComputePolygonNormals(normals,false);
- // see if one of the polygons is a IfcFaceOuterBound (in which case `master_bounds` is its index).
- // sadly we can't rely on it, the docs say 'At most one of the bounds shall be of the type IfcFaceOuterBound'
+ // One of the polygons might be a IfcFaceOuterBound (in which case `master_bounds`
+ // is its index). Sadly we can't rely on it, the docs say 'At most one of the bounds
+ // shall be of the type IfcFaceOuterBound'
IfcFloat area_outer_polygon = 1e-10f;
if (master_bounds != (size_t)-1) {
- outer_polygon = begin + master_bounds;
- outer_polygon_start = std::accumulate(begin,outer_polygon,0);
- area_outer_polygon = normals[master_bounds].SquareLength();
+ ai_assert(master_bounds < inmesh.vertcnt.size());
+ outer_polygon_it = begin + master_bounds;
}
else {
- size_t vidx = 0;
- for(iit = begin; iit != meshout.vertcnt.end(); vidx += *iit++) {
- // find the polygon with the largest area, it must be the outer bound.
+ for(iit = begin; iit != end; iit++) {
+ // find the polygon with the largest area and take it as the outer bound.
IfcVector3& n = normals[std::distance(begin,iit)];
const IfcFloat area = n.SquareLength();
if (area > area_outer_polygon) {
area_outer_polygon = area;
- outer_polygon = iit;
- outer_polygon_start = vidx;
+ outer_polygon_it = iit;
}
}
}
- ai_assert(outer_polygon != meshout.vertcnt.end());
- std::vector<IfcVector3>& in = meshout.verts;
+ ai_assert(outer_polygon_it != end);
- // skip over extremely small boundaries - this is a workaround to fix cases
- // in which the number of holes is so extremely large that the
- // triangulation code fails.
-#define IFC_VERTICAL_HOLE_SIZE_THRESHOLD 0.000001f
- size_t vidx = 0, removed = 0, index = 0;
- const IfcFloat threshold = area_outer_polygon * IFC_VERTICAL_HOLE_SIZE_THRESHOLD;
- for(iit = begin; iit != end ;++index) {
- const IfcFloat sqlen = normals[index].SquareLength();
- if (sqlen < threshold) {
- std::vector<IfcVector3>::iterator inbase = in.begin()+vidx;
- in.erase(inbase,inbase+*iit);
-
- outer_polygon_start -= outer_polygon_start>vidx ? *iit : 0;
- *iit++ = 0;
- ++removed;
+ const size_t outer_polygon_size = *outer_polygon_it;
+ const IfcVector3& master_normal = normals[std::distance(begin, outer_polygon_it)];
- IFCImporter::LogDebug("skip small hole below threshold");
- }
- else {
- normals[index] /= sqrt(sqlen);
- vidx += *iit++;
- }
- }
+ // Generate fake openings to meet the interface for the quadrulate
+ // algorithm. It boils down to generating small boxes given the
+ // inner polygon and the surface normal of the outer contour.
+ // It is important that we use the outer contour's normal because
+ // this is the plane onto which the quadrulate algorithm will
+ // project the entire mesh.
+ std::vector<TempOpening> fake_openings;
+ fake_openings.reserve(inmesh.vertcnt.size()-1);
- // see if one or more of the hole has a face that lies directly on an outer bound.
- // this happens for doors, for example.
- vidx = 0;
- for(iit = begin; ; vidx += *iit++) {
-next_loop:
- if (iit == end) {
- break;
- }
- if (iit == outer_polygon) {
+ std::vector<IfcVector3>::const_iterator vit = inmesh.verts.begin(), outer_vit;
+
+ for(iit = begin; iit != end; vit += *iit++) {
+ if (iit == outer_polygon_it) {
+ outer_vit = vit;
continue;
}
- for(size_t vofs = 0; vofs < *iit; ++vofs) {
- if (!*iit) {
- continue;
- }
- const size_t next = (vofs+1)%*iit;
- const IfcVector3& v = in[vidx+vofs], &vnext = in[vidx+next],&vd = (vnext-v).Normalize();
-
- for(size_t outer = 0; outer < *outer_polygon; ++outer) {
- const IfcVector3& o = in[outer_polygon_start+outer], &onext = in[outer_polygon_start+(outer+1)%*outer_polygon], &od = (onext-o).Normalize();
-
- if (fabs(vd * od) > 1.f-1e-6f && (onext-v).Normalize() * vd > 1.f-1e-6f && (onext-v)*(o-v) < 0) {
- IFCImporter::LogDebug("got an inner hole that lies partly on the outer polygonal boundary, merging them to a single contour");
-
- // in between outer and outer+1 insert all vertices of this loop, then drop the original altogether.
- std::vector<IfcVector3> tmp(*iit);
-
- const size_t start = (v-o).SquareLength() > (vnext-o).SquareLength() ? vofs : next;
- std::vector<IfcVector3>::iterator inbase = in.begin()+vidx, it = std::copy(inbase+start, inbase+*iit,tmp.begin());
- std::copy(inbase, inbase+start,it);
- std::reverse(tmp.begin(),tmp.end());
+ // Filter degenerate polygons to keep them from causing trouble later on
+ IfcVector3& n = normals[std::distance(begin,iit)];
+ const IfcFloat area = n.SquareLength();
+ if (area < 1e-5f) {
+ IFCImporter::LogWarn("skipping degenerate polygon (ProcessPolygonBoundaries)");
+ continue;
+ }
- in.insert(in.begin()+outer_polygon_start+(outer+1)%*outer_polygon,tmp.begin(),tmp.end());
- vidx += outer_polygon_start<vidx ? *iit : 0;
+ fake_openings.push_back(TempOpening());
+ TempOpening& opening = fake_openings.back();
- inbase = in.begin()+vidx;
- in.erase(inbase,inbase+*iit);
+ opening.extrusionDir = master_normal;
+ opening.solid = NULL;
- outer_polygon_start -= outer_polygon_start>vidx ? *iit : 0;
-
- *outer_polygon += tmp.size();
- *iit++ = 0;
- ++removed;
- goto next_loop;
- }
- }
- }
- }
+ opening.profileMesh = boost::make_shared<TempMesh>();
+ opening.profileMesh->verts.reserve(*iit);
+ opening.profileMesh->vertcnt.push_back(*iit);
- if ( meshout.vertcnt.size() - removed <= 1) {
- result.Append(meshout);
- return;
+ std::copy(vit, vit + *iit, std::back_inserter(opening.profileMesh->verts));
}
- // extract the outer boundary and move it to a separate mesh
- TempMesh boundary;
- boundary.vertcnt.resize(1,*outer_polygon);
- boundary.verts.resize(*outer_polygon);
-
- std::vector<IfcVector3>::iterator b = in.begin()+outer_polygon_start;
- std::copy(b,b+*outer_polygon,boundary.verts.begin());
- in.erase(b,b+*outer_polygon);
-
- std::vector<IfcVector3>::iterator norit = normals.begin()+std::distance(meshout.vertcnt.begin(),outer_polygon);
- const IfcVector3 nor_boundary = *norit;
- normals.erase(norit);
- meshout.vertcnt.erase(outer_polygon);
+ // fill a mesh with ONLY the main polygon
+ TempMesh temp;
+ temp.verts.reserve(outer_polygon_size);
+ temp.vertcnt.push_back(outer_polygon_size);
+ std::copy(outer_vit, outer_vit+outer_polygon_size,
+ std::back_inserter(temp.verts));
- // keep merging the closest inner boundary with the outer boundary until no more boundaries are left
- RecursiveMergeBoundaries(result,meshout,boundary,normals,nor_boundary);
+ GenerateOpenings(fake_openings, normals, temp, false, false);
+ result.Append(temp);
}
-
// ------------------------------------------------------------------------------------------------
void ProcessConnectedFaceSet(const IfcConnectedFaceSet& fset, TempMesh& result, ConversionData& conv)
{
BOOST_FOREACH(const IfcFace& face, fset.CfsFaces) {
-
// size_t ob = -1, cnt = 0;
TempMesh meshout;
BOOST_FOREACH(const IfcFaceBound& bound, face.Bounds) {
- // XXX implement proper merging for polygonal loops
if(const IfcPolyLoop* const polyloop = bound.Bound->ToPtr<IfcPolyLoop>()) {
if(ProcessPolyloop(*polyloop, meshout,conv)) {
+ // The outer boundary is better determined by checking which
+ // polygon covers the largest area.
+
//if(bound.ToPtr<IfcFaceOuterBound>()) {
// ob = cnt;
//}
@@ -436,6 +213,9 @@ void ProcessConnectedFaceSet(const IfcConnectedFaceSet& fset, TempMesh& result,
continue;
}
+ // And this, even though it is sometimes TRUE and sometimes FALSE,
+ // does not really improve results.
+
/*if(!IsTrue(bound.Orientation)) {
size_t c = 0;
BOOST_FOREACH(unsigned int& c, meshout.vertcnt) {
@@ -443,15 +223,11 @@ void ProcessConnectedFaceSet(const IfcConnectedFaceSet& fset, TempMesh& result,
cnt += c;
}
}*/
-
}
- MergePolygonBoundaries(result,meshout);
+ ProcessPolygonBoundaries(result, meshout);
}
}
-
-
-
// ------------------------------------------------------------------------------------------------
void ProcessRevolvedAreaSolid(const IfcRevolvedAreaSolid& solid, TempMesh& result, ConversionData& conv)
{
@@ -539,865 +315,217 @@ void ProcessRevolvedAreaSolid(const IfcRevolvedAreaSolid& solid, TempMesh& resul
IFCImporter::LogDebug("generate mesh procedurally by radial extrusion (IfcRevolvedAreaSolid)");
}
-// ------------------------------------------------------------------------------------------------
-IfcMatrix3 DerivePlaneCoordinateSpace(const TempMesh& curmesh) {
-
- const std::vector<IfcVector3>& out = curmesh.verts;
- IfcMatrix3 m;
-
- const size_t s = out.size();
- assert(curmesh.vertcnt.size() == 1 && curmesh.vertcnt.back() == s);
-
- const IfcVector3 any_point = out[s-1];
- IfcVector3 nor;
-
- // The input polygon is arbitrarily shaped, so we might need some tries
- // until we find a suitable normal (and it does not even need to be
- // right in all cases, Newell's algorithm would be the correct one ... ).
- size_t base = s-curmesh.vertcnt.back(), i, j;
- for (i = base; i < s-1; ++i) {
- for (j = i+1; j < s; ++j) {
- nor = -((out[i]-any_point)^(out[j]-any_point));
- if(fabs(nor.Length()) > 1e-8f) {
- goto out;
- }
- }
- }
-
- assert(0);
-
-out:
-
- nor.Normalize();
-
- IfcVector3 r = (out[i]-any_point);
- r.Normalize();
-
- // reconstruct orthonormal basis
- IfcVector3 u = r ^ nor;
- u.Normalize();
-
- m.a1 = r.x;
- m.a2 = r.y;
- m.a3 = r.z;
-
- m.b1 = u.x;
- m.b2 = u.y;
- m.b3 = u.z;
-
- m.c1 = nor.x;
- m.c2 = nor.y;
- m.c3 = nor.z;
- return m;
-}
// ------------------------------------------------------------------------------------------------
-bool TryAddOpenings_Poly2Tri(const std::vector<TempOpening>& openings,const std::vector<IfcVector3>& nors, TempMesh& curmesh)
+void ProcessSweptDiskSolid(const IfcSweptDiskSolid solid, TempMesh& result, ConversionData& conv)
{
- std::vector<IfcVector3>& out = curmesh.verts;
-
- bool result = false;
-
- // Try to derive a solid base plane within the current surface for use as
- // working coordinate system.
- const IfcMatrix3& m = DerivePlaneCoordinateSpace(curmesh);
- const IfcMatrix3 minv = IfcMatrix3(m).Inverse();
- const IfcVector3& nor = IfcVector3(m.c1, m.c2, m.c3);
-
- IfcFloat coord = -1;
-
- std::vector<IfcVector2> contour_flat;
- contour_flat.reserve(out.size());
-
- IfcVector2 vmin, vmax;
- MinMaxChooser<IfcVector2>()(vmin, vmax);
+ const Curve* const curve = Curve::Convert(*solid.Directrix, conv);
+ if(!curve) {
+ IFCImporter::LogError("failed to convert Directrix curve (IfcSweptDiskSolid)");
+ return;
+ }
- // Move all points into the new coordinate system, collecting min/max verts on the way
- BOOST_FOREACH(IfcVector3& x, out) {
- const IfcVector3 vv = m * x;
-
- // keep Z offset in the plane coordinate system. Ignoring precision issues
- // (which are present, of course), this should be the same value for
- // all polygon vertices (assuming the polygon is planar).
+ const unsigned int cnt_segments = 16;
+ const IfcFloat deltaAngle = AI_MATH_TWO_PI/cnt_segments;
+ const size_t samples = curve->EstimateSampleCount(solid.StartParam,solid.EndParam);
- // XXX this should be guarded, but we somehow need to pick a suitable
- // epsilon
- // if(coord != -1.0f) {
- // assert(fabs(coord - vv.z) < 1e-3f);
- // }
+ result.verts.reserve(cnt_segments * samples * 4);
+ result.vertcnt.reserve((cnt_segments - 1) * samples);
- coord = vv.z;
+ std::vector<IfcVector3> points;
+ points.reserve(cnt_segments * samples);
- vmin = std::min(IfcVector2(vv.x, vv.y), vmin);
- vmax = std::max(IfcVector2(vv.x, vv.y), vmax);
+ TempMesh temp;
+ curve->SampleDiscrete(temp,solid.StartParam,solid.EndParam);
+ const std::vector<IfcVector3>& curve_points = temp.verts;
- contour_flat.push_back(IfcVector2(vv.x,vv.y));
+ if(curve_points.empty()) {
+ IFCImporter::LogWarn("curve evaluation yielded no points (IfcSweptDiskSolid)");
+ return;
}
-
- // With the current code in DerivePlaneCoordinateSpace,
- // vmin,vmax should always be the 0...1 rectangle (+- numeric inaccuracies)
- // but here we won't rely on this.
-
- vmax -= vmin;
-
- // If this happens then the projection must have been wrong.
- assert(vmax.Length());
-
- ClipperLib::ExPolygons clipped;
- ClipperLib::Polygons holes_union;
-
-
- IfcVector3 wall_extrusion;
- bool do_connections = false, first = true;
-
- try {
-
- ClipperLib::Clipper clipper_holes;
- size_t c = 0;
-
- BOOST_FOREACH(const TempOpening& t,openings) {
- const IfcVector3& outernor = nors[c++];
- const IfcFloat dot = nor * outernor;
- if (fabs(dot)<1.f-1e-6f) {
- continue;
- }
-
- const std::vector<IfcVector3>& va = t.profileMesh->verts;
- if(va.size() <= 2) {
- continue;
- }
-
- std::vector<IfcVector2> contour;
-
- BOOST_FOREACH(const IfcVector3& xx, t.profileMesh->verts) {
- IfcVector3 vv = m * xx, vv_extr = m * (xx + t.extrusionDir);
-
- const bool is_extruded_side = fabs(vv.z - coord) > fabs(vv_extr.z - coord);
- if (first) {
- first = false;
- if (dot > 0.f) {
- do_connections = true;
- wall_extrusion = t.extrusionDir;
- if (is_extruded_side) {
- wall_extrusion = - wall_extrusion;
- }
- }
- }
-
- // XXX should not be necessary - but it is. Why? For precision reasons?
- vv = is_extruded_side ? vv_extr : vv;
- contour.push_back(IfcVector2(vv.x,vv.y));
- }
-
- ClipperLib::Polygon hole;
- BOOST_FOREACH(IfcVector2& pip, contour) {
- pip.x = (pip.x - vmin.x) / vmax.x;
- pip.y = (pip.y - vmin.y) / vmax.y;
-
- hole.push_back(ClipperLib::IntPoint( to_int64(pip.x), to_int64(pip.y) ));
- }
-
- if (!ClipperLib::Orientation(hole)) {
- std::reverse(hole.begin(), hole.end());
- // assert(ClipperLib::Orientation(hole));
- }
-
- /*ClipperLib::Polygons pol_temp(1), pol_temp2(1);
- pol_temp[0] = hole;
-
- ClipperLib::OffsetPolygons(pol_temp,pol_temp2,5.0);
- hole = pol_temp2[0];*/
-
- clipper_holes.AddPolygon(hole,ClipperLib::ptSubject);
- }
-
- clipper_holes.Execute(ClipperLib::ctUnion,holes_union,
- ClipperLib::pftNonZero,
- ClipperLib::pftNonZero);
- if (holes_union.empty()) {
- return false;
- }
+ IfcVector3 current = curve_points[0];
+ IfcVector3 previous = current;
+ IfcVector3 next;
- // Now that we have the big union of all holes, subtract it from the outer contour
- // to obtain the final polygon to feed into the triangulator.
- {
- ClipperLib::Polygon poly;
- BOOST_FOREACH(IfcVector2& pip, contour_flat) {
- pip.x = (pip.x - vmin.x) / vmax.x;
- pip.y = (pip.y - vmin.y) / vmax.y;
+ IfcVector3 startvec;
+ startvec.x = 1.0f;
+ startvec.y = 1.0f;
+ startvec.z = 1.0f;
- poly.push_back(ClipperLib::IntPoint( to_int64(pip.x), to_int64(pip.y) ));
- }
+ unsigned int last_dir = 0;
- if (ClipperLib::Orientation(poly)) {
- std::reverse(poly.begin(), poly.end());
- }
- clipper_holes.Clear();
- clipper_holes.AddPolygon(poly,ClipperLib::ptSubject);
+ // generate circles at the sweep positions
+ for(size_t i = 0; i < samples; ++i) {
- clipper_holes.AddPolygons(holes_union,ClipperLib::ptClip);
- clipper_holes.Execute(ClipperLib::ctDifference,clipped,
- ClipperLib::pftNonZero,
- ClipperLib::pftNonZero);
+ if(i != samples - 1) {
+ next = curve_points[i + 1];
}
- }
- catch (const char* sx) {
- IFCImporter::LogError("Ifc: error during polygon clipping, skipping openings for this face: (Clipper: "
- + std::string(sx) + ")");
-
- return false;
- }
-
- std::vector<IfcVector3> old_verts;
- std::vector<unsigned int> old_vertcnt;
-
- old_verts.swap(curmesh.verts);
- old_vertcnt.swap(curmesh.vertcnt);
-
-
- // add connection geometry to close the adjacent 'holes' for the openings
- // this should only be done from one side of the wall or the polygons
- // would be emitted twice.
- if (false && do_connections) {
-
- std::vector<IfcVector3> tmpvec;
- BOOST_FOREACH(ClipperLib::Polygon& opening, holes_union) {
-
- assert(ClipperLib::Orientation(opening));
-
- tmpvec.clear();
-
- BOOST_FOREACH(ClipperLib::IntPoint& point, opening) {
-
- tmpvec.push_back( minv * IfcVector3(
- vmin.x + from_int64(point.X) * vmax.x,
- vmin.y + from_int64(point.Y) * vmax.y,
- coord));
- }
-
- for(size_t i = 0, size = tmpvec.size(); i < size; ++i) {
- const size_t next = (i+1)%size;
-
- curmesh.vertcnt.push_back(4);
-
- const IfcVector3& in_world = tmpvec[i];
- const IfcVector3& next_world = tmpvec[next];
-
- // Assumptions: no 'partial' openings, wall thickness roughly the same across the wall
- curmesh.verts.push_back(in_world);
- curmesh.verts.push_back(in_world+wall_extrusion);
- curmesh.verts.push_back(next_world+wall_extrusion);
- curmesh.verts.push_back(next_world);
- }
- }
- }
+ // get a direction vector reflecting the approximate curvature (i.e. tangent)
+ IfcVector3 d = (current-previous) + (next-previous);
- std::vector< std::vector<p2t::Point*> > contours;
- BOOST_FOREACH(ClipperLib::ExPolygon& clip, clipped) {
-
- contours.clear();
-
- // Build the outer polygon contour line for feeding into poly2tri
- std::vector<p2t::Point*> contour_points;
- BOOST_FOREACH(ClipperLib::IntPoint& point, clip.outer) {
- contour_points.push_back( new p2t::Point(from_int64(point.X), from_int64(point.Y)) );
- }
-
- p2t::CDT* cdt ;
- try {
- // Note: this relies on custom modifications in poly2tri to raise runtime_error's
- // instead if assertions. These failures are not debug only, they can actually
- // happen in production use if the input data is broken. An assertion would be
- // inappropriate.
- cdt = new p2t::CDT(contour_points);
- }
- catch(const std::exception& e) {
- IFCImporter::LogError("Ifc: error during polygon triangulation, skipping some openings: (poly2tri: "
- + std::string(e.what()) + ")");
- continue;
- }
-
-
- // Build the poly2tri inner contours for all holes we got from ClipperLib
- BOOST_FOREACH(ClipperLib::Polygon& opening, clip.holes) {
-
- contours.push_back(std::vector<p2t::Point*>());
- std::vector<p2t::Point*>& contour = contours.back();
-
- BOOST_FOREACH(ClipperLib::IntPoint& point, opening) {
- contour.push_back( new p2t::Point(from_int64(point.X), from_int64(point.Y)) );
+ d.Normalize();
+
+ // figure out an arbitrary point q so that (p-q) * d = 0,
+ // try to maximize ||(p-q)|| * ||(p_last-q_last)||
+ IfcVector3 q;
+ bool take_any = false;
+
+ for (unsigned int i = 0; i < 2; ++i, take_any = true) {
+ if ((last_dir == 0 || take_any) && abs(d.x) > 1e-6) {
+ q.y = startvec.y;
+ q.z = startvec.z;
+ q.x = -(d.y * q.y + d.z * q.z) / d.x;
+ last_dir = 0;
+ break;
}
-
- cdt->AddHole(contour);
- }
-
- try {
- // Note: See above
- cdt->Triangulate();
- }
- catch(const std::exception& e) {
- IFCImporter::LogError("Ifc: error during polygon triangulation, skipping some openings: (poly2tri: "
- + std::string(e.what()) + ")");
- continue;
- }
-
- const std::vector<p2t::Triangle*>& tris = cdt->GetTriangles();
-
- // Collect the triangles we just produced
- BOOST_FOREACH(p2t::Triangle* tri, tris) {
- for(int i = 0; i < 3; ++i) {
-
- const IfcVector2& v = IfcVector2(
- static_cast<IfcFloat>( tri->GetPoint(i)->x ),
- static_cast<IfcFloat>( tri->GetPoint(i)->y )
- );
-
- assert(v.x <= 1.0 && v.x >= 0.0 && v.y <= 1.0 && v.y >= 0.0);
- const IfcVector3 v3 = minv * IfcVector3(vmin.x + v.x * vmax.x, vmin.y + v.y * vmax.y,coord) ;
-
- curmesh.verts.push_back(v3);
+ else if ((last_dir == 1 || take_any) && abs(d.y) > 1e-6) {
+ q.x = startvec.x;
+ q.z = startvec.z;
+ q.y = -(d.x * q.x + d.z * q.z) / d.y;
+ last_dir = 1;
+ break;
+ }
+ else if ((last_dir == 2 && abs(d.z) > 1e-6) || take_any) {
+ q.y = startvec.y;
+ q.x = startvec.x;
+ q.z = -(d.y * q.y + d.x * q.x) / d.z;
+ last_dir = 2;
+ break;
}
- curmesh.vertcnt.push_back(3);
- }
-
- result = true;
- }
-
- if (!result) {
- // revert -- it's a shame, but better than nothing
- curmesh.verts.insert(curmesh.verts.end(),old_verts.begin(), old_verts.end());
- curmesh.vertcnt.insert(curmesh.vertcnt.end(),old_vertcnt.begin(), old_vertcnt.end());
-
- IFCImporter::LogError("Ifc: revert, could not generate openings for this wall");
- }
-
- return result;
-}
-
-// ------------------------------------------------------------------------------------------------
-struct DistanceSorter {
-
- DistanceSorter(const IfcVector3& base) : base(base) {}
-
- bool operator () (const TempOpening& a, const TempOpening& b) const {
- return (a.profileMesh->Center()-base).SquareLength() < (b.profileMesh->Center()-base).SquareLength();
- }
-
- IfcVector3 base;
-};
-
-// ------------------------------------------------------------------------------------------------
-struct XYSorter {
-
- // sort first by X coordinates, then by Y coordinates
- bool operator () (const IfcVector2&a, const IfcVector2& b) const {
- if (a.x == b.x) {
- return a.y < b.y;
}
- return a.x < b.x;
- }
-};
-
-typedef std::pair< IfcVector2, IfcVector2 > BoundingBox;
-typedef std::map<IfcVector2,size_t,XYSorter> XYSortedField;
+ q *= solid.Radius / q.Length();
+ startvec = q;
-// ------------------------------------------------------------------------------------------------
-void QuadrifyPart(const IfcVector2& pmin, const IfcVector2& pmax, XYSortedField& field, const std::vector< BoundingBox >& bbs,
- std::vector<IfcVector2>& out)
-{
- if (!(pmin.x-pmax.x) || !(pmin.y-pmax.y)) {
- return;
- }
+ // generate a rotation matrix to rotate q around d
+ IfcMatrix4 rot;
+ IfcMatrix4::Rotation(deltaAngle,d,rot);
- IfcFloat xs = 1e10, xe = 1e10;
- bool found = false;
-
- // Search along the x-axis until we find an opening
- XYSortedField::iterator start = field.begin();
- for(; start != field.end(); ++start) {
- const BoundingBox& bb = bbs[(*start).second];
- if(bb.first.x >= pmax.x) {
- break;
- }
-
- if (bb.second.x > pmin.x && bb.second.y > pmin.y && bb.first.y < pmax.y) {
- xs = bb.first.x;
- xe = bb.second.x;
- found = true;
- break;
+ for (unsigned int seg = 0; seg < cnt_segments; ++seg, q *= rot ) {
+ points.push_back(q + current);
}
- }
- if (!found) {
- // the rectangle [pmin,pend] is opaque, fill it
- out.push_back(pmin);
- out.push_back(IfcVector2(pmin.x,pmax.y));
- out.push_back(pmax);
- out.push_back(IfcVector2(pmax.x,pmin.y));
- return;
+ previous = current;
+ current = next;
}
- xs = std::max(pmin.x,xs);
- xe = std::min(pmax.x,xe);
-
- // see if there's an offset to fill at the top of our quad
- if (xs - pmin.x) {
- out.push_back(pmin);
- out.push_back(IfcVector2(pmin.x,pmax.y));
- out.push_back(IfcVector2(xs,pmax.y));
- out.push_back(IfcVector2(xs,pmin.y));
- }
+ // make quads
+ for(size_t i = 0; i < samples - 1; ++i) {
- // search along the y-axis for all openings that overlap xs and our quad
- IfcFloat ylast = pmin.y;
- found = false;
- for(; start != field.end(); ++start) {
- const BoundingBox& bb = bbs[(*start).second];
- if (bb.first.x > xs || bb.first.y >= pmax.y) {
- break;
- }
+ const aiVector3D& this_start = points[ i * cnt_segments ];
- if (bb.second.y > ylast) {
+ // locate corresponding point on next sample ring
+ unsigned int best_pair_offset = 0;
+ float best_distance_squared = 1e10f;
+ for (unsigned int seg = 0; seg < cnt_segments; ++seg) {
+ const aiVector3D& p = points[ (i+1) * cnt_segments + seg];
+ const float l = (p-this_start).SquareLength();
- found = true;
- const IfcFloat ys = std::max(bb.first.y,pmin.y), ye = std::min(bb.second.y,pmax.y);
- if (ys - ylast) {
- QuadrifyPart( IfcVector2(xs,ylast), IfcVector2(xe,ys) ,field,bbs,out);
- }
-
- // the following are the window vertices
-
- /*wnd.push_back(IfcVector2(xs,ys));
- wnd.push_back(IfcVector2(xs,ye));
- wnd.push_back(IfcVector2(xe,ye));
- wnd.push_back(IfcVector2(xe,ys));*/
- ylast = ye;
- }
- }
- if (!found) {
- // the rectangle [pmin,pend] is opaque, fill it
- out.push_back(IfcVector2(xs,pmin.y));
- out.push_back(IfcVector2(xs,pmax.y));
- out.push_back(IfcVector2(xe,pmax.y));
- out.push_back(IfcVector2(xe,pmin.y));
- return;
- }
- if (ylast < pmax.y) {
- QuadrifyPart( IfcVector2(xs,ylast), IfcVector2(xe,pmax.y) ,field,bbs,out);
- }
-
- // now for the whole rest
- if (pmax.x-xe) {
- QuadrifyPart(IfcVector2(xe,pmin.y), pmax ,field,bbs,out);
- }
-}
-
-// ------------------------------------------------------------------------------------------------
-void InsertWindowContours(const std::vector< BoundingBox >& bbs,
- const std::vector< std::vector<IfcVector2> >& contours,
- const std::vector<TempOpening>& /*openings*/,
- const std::vector<IfcVector3>& /*nors*/,
- const IfcMatrix3& minv,
- const IfcVector2& scale,
- const IfcVector2& offset,
- IfcFloat coord,
- TempMesh& curmesh)
-{
- ai_assert(contours.size() == bbs.size());
-
- // fix windows - we need to insert the real, polygonal shapes into the quadratic holes that we have now
- for(size_t i = 0; i < contours.size();++i) {
- const BoundingBox& bb = bbs[i];
- const std::vector<IfcVector2>& contour = contours[i];
-
- // check if we need to do it at all - many windows just fit perfectly into their quadratic holes,
- // i.e. their contours *are* already their bounding boxes.
- if (contour.size() == 4) {
- std::set<IfcVector2,XYSorter> verts;
- for(size_t n = 0; n < 4; ++n) {
- verts.insert(contour[n]);
- }
- const std::set<IfcVector2,XYSorter>::const_iterator end = verts.end();
- if (verts.find(bb.first)!=end && verts.find(bb.second)!=end
- && verts.find(IfcVector2(bb.first.x,bb.second.y))!=end
- && verts.find(IfcVector2(bb.second.x,bb.first.y))!=end
- ) {
- continue;
+ if(l < best_distance_squared) {
+ best_pair_offset = seg;
+ best_distance_squared = l;
}
}
- const IfcFloat diag = (bb.first-bb.second).Length();
- const IfcFloat epsilon = diag/1000.f;
+ for (unsigned int seg = 0; seg < cnt_segments; ++seg) {
- // walk through all contour points and find those that lie on the BB corner
- size_t last_hit = -1, very_first_hit = -1;
- IfcVector2 edge;
- for(size_t n = 0, e=0, size = contour.size();; n=(n+1)%size, ++e) {
+ result.verts.push_back(points[ i * cnt_segments + (seg % cnt_segments)]);
+ result.verts.push_back(points[ i * cnt_segments + (seg + 1) % cnt_segments]);
+ result.verts.push_back(points[ (i+1) * cnt_segments + ((seg + 1 + best_pair_offset) % cnt_segments)]);
+ result.verts.push_back(points[ (i+1) * cnt_segments + ((seg + best_pair_offset) % cnt_segments)]);
- // sanity checking
- if (e == size*2) {
- IFCImporter::LogError("encountered unexpected topology while generating window contour");
- break;
- }
+ IfcVector3& v1 = *(result.verts.end()-1);
+ IfcVector3& v2 = *(result.verts.end()-2);
+ IfcVector3& v3 = *(result.verts.end()-3);
+ IfcVector3& v4 = *(result.verts.end()-4);
- const IfcVector2& v = contour[n];
+ if (((v4-v3) ^ (v4-v1)) * (v4 - curve_points[i]) < 0.0f) {
+ std::swap(v4, v1);
+ std::swap(v3, v2);
+ }
- bool hit = false;
- if (fabs(v.x-bb.first.x)<epsilon) {
- edge.x = bb.first.x;
- hit = true;
- }
- else if (fabs(v.x-bb.second.x)<epsilon) {
- edge.x = bb.second.x;
- hit = true;
- }
-
- if (fabs(v.y-bb.first.y)<epsilon) {
- edge.y = bb.first.y;
- hit = true;
- }
- else if (fabs(v.y-bb.second.y)<epsilon) {
- edge.y = bb.second.y;
- hit = true;
- }
-
- if (hit) {
- if (last_hit != (size_t)-1) {
-
- const size_t old = curmesh.verts.size();
- size_t cnt = last_hit > n ? size-(last_hit-n) : n-last_hit;
- for(size_t a = last_hit, e = 0; e <= cnt; a=(a+1)%size, ++e) {
- // hack: this is to fix cases where opening contours are self-intersecting.
- // Clipper doesn't produce such polygons, but as soon as we're back in
- // our brave new floating-point world, very small distances are consumed
- // by the maximum available precision, leading to self-intersecting
- // polygons. This fix makes concave windows fail even worse, but
- // anyway, fail is fail.
- if ((contour[a] - edge).SquareLength() > diag*diag*0.7) {
- continue;
- }
- const IfcVector3 v3 = minv * IfcVector3(offset.x + contour[a].x * scale.x, offset.y + contour[a].y * scale.y,coord);
- curmesh.verts.push_back(v3);
- }
-
- if (edge != contour[last_hit]) {
-
- IfcVector2 corner = edge;
-
- if (fabs(contour[last_hit].x-bb.first.x)<epsilon) {
- corner.x = bb.first.x;
- }
- else if (fabs(contour[last_hit].x-bb.second.x)<epsilon) {
- corner.x = bb.second.x;
- }
-
- if (fabs(contour[last_hit].y-bb.first.y)<epsilon) {
- corner.y = bb.first.y;
- }
- else if (fabs(contour[last_hit].y-bb.second.y)<epsilon) {
- corner.y = bb.second.y;
- }
-
- const IfcVector3 v3 = minv * IfcVector3(offset.x + corner.x * scale.x, offset.y + corner.y * scale.y,coord);
- curmesh.verts.push_back(v3);
- }
- else if (cnt == 1) {
- // avoid degenerate polygons (also known as lines or points)
- curmesh.verts.erase(curmesh.verts.begin()+old,curmesh.verts.end());
- }
-
- if (const size_t d = curmesh.verts.size()-old) {
- curmesh.vertcnt.push_back(d);
- std::reverse(curmesh.verts.rbegin(),curmesh.verts.rbegin()+d);
- }
- if (n == very_first_hit) {
- break;
- }
- }
- else {
- very_first_hit = n;
- }
-
- last_hit = n;
- }
+ result.vertcnt.push_back(4);
}
}
-}
-
-// ------------------------------------------------------------------------------------------------
-void MergeContours (const std::vector<IfcVector2>& a, const std::vector<IfcVector2>& b, ClipperLib::ExPolygons& out)
-{
- ClipperLib::Clipper clipper;
- ClipperLib::Polygon clip;
-
- BOOST_FOREACH(const IfcVector2& pip, a) {
- clip.push_back(ClipperLib::IntPoint( to_int64(pip.x), to_int64(pip.y) ));
- }
-
- if (ClipperLib::Orientation(clip)) {
- std::reverse(clip.begin(), clip.end());
- }
-
- clipper.AddPolygon(clip, ClipperLib::ptSubject);
- clip.clear();
-
- BOOST_FOREACH(const IfcVector2& pip, b) {
- clip.push_back(ClipperLib::IntPoint( to_int64(pip.x), to_int64(pip.y) ));
- }
- if (ClipperLib::Orientation(clip)) {
- std::reverse(clip.begin(), clip.end());
- }
-
- clipper.AddPolygon(clip, ClipperLib::ptSubject);
- clipper.Execute(ClipperLib::ctUnion, out,ClipperLib::pftNonZero,ClipperLib::pftNonZero);
+ IFCImporter::LogDebug("generate mesh procedurally by sweeping a disk along a curve (IfcSweptDiskSolid)");
}
// ------------------------------------------------------------------------------------------------
-bool TryAddOpenings_Quadrulate(const std::vector<TempOpening>& openings,const std::vector<IfcVector3>& nors, TempMesh& curmesh)
+IfcMatrix3 DerivePlaneCoordinateSpace(const TempMesh& curmesh, bool& ok, IfcVector3& norOut)
{
- std::vector<IfcVector3>& out = curmesh.verts;
-
- // Try to derive a solid base plane within the current surface for use as
- // working coordinate system.
- const IfcMatrix3& m = DerivePlaneCoordinateSpace(curmesh);
- const IfcMatrix3 minv = IfcMatrix3(m).Inverse();
- const IfcVector3& nor = IfcVector3(m.c1, m.c2, m.c3);
-
- IfcFloat coord = -1;
-
- std::vector<IfcVector2> contour_flat;
- contour_flat.reserve(out.size());
-
- IfcVector2 vmin, vmax;
- MinMaxChooser<IfcVector2>()(vmin, vmax);
-
- // Move all points into the new coordinate system, collecting min/max verts on the way
- BOOST_FOREACH(IfcVector3& x, out) {
- const IfcVector3 vv = m * x;
-
- // keep Z offset in the plane coordinate system. Ignoring precision issues
- // (which are present, of course), this should be the same value for
- // all polygon vertices (assuming the polygon is planar).
-
-
- // XXX this should be guarded, but we somehow need to pick a suitable
- // epsilon
- // if(coord != -1.0f) {
- // assert(fabs(coord - vv.z) < 1e-3f);
- // }
-
- coord = vv.z;
- vmin = std::min(IfcVector2(vv.x, vv.y), vmin);
- vmax = std::max(IfcVector2(vv.x, vv.y), vmax);
-
- contour_flat.push_back(IfcVector2(vv.x,vv.y));
- }
-
- // With the current code in DerivePlaneCoordinateSpace,
- // vmin,vmax should always be the 0...1 rectangle (+- numeric inaccuracies)
- // but here we won't rely on this.
-
- vmax -= vmin;
- BOOST_FOREACH(IfcVector2& vv, contour_flat) {
- vv.x = (vv.x - vmin.x) / vmax.x;
- vv.y = (vv.y - vmin.y) / vmax.y;
- }
-
- // project all points into the coordinate system defined by the p+sv*tu plane
- // and compute bounding boxes for them
- std::vector< BoundingBox > bbs;
- std::vector< std::vector<IfcVector2> > contours;
-
- size_t c = 0;
- BOOST_FOREACH(const TempOpening& t,openings) {
- const IfcVector3& outernor = nors[c++];
- const IfcFloat dot = nor * outernor;
- if (fabs(dot)<1.f-1e-6f) {
- continue;
- }
-
- const std::vector<IfcVector3>& va = t.profileMesh->verts;
- if(va.size() <= 2) {
- continue;
- }
-
- IfcVector2 vpmin,vpmax;
- MinMaxChooser<IfcVector2>()(vpmin,vpmax);
-
- std::vector<IfcVector2> contour;
-
- BOOST_FOREACH(const IfcVector3& x, t.profileMesh->verts) {
- const IfcVector3 v = m * x;
-
- IfcVector2 vv(v.x, v.y);
-
- // rescale
- vv.x = (vv.x - vmin.x) / vmax.x;
- vv.y = (vv.y - vmin.y) / vmax.y;
-
- vpmin = std::min(vpmin,vv);
- vpmax = std::max(vpmax,vv);
-
- contour.push_back(vv);
- }
-
- BoundingBox bb = BoundingBox(vpmin,vpmax);
-
- // see if this BB intersects any other, in which case we could not use the Quadrify()
- // algorithm and would revert to Poly2Tri only.
- for (std::vector<BoundingBox>::iterator it = bbs.begin(); it != bbs.end();) {
- const BoundingBox& ibb = *it;
-
- if (ibb.first.x < bb.second.x && ibb.second.x > bb.first.x &&
- ibb.first.y < bb.second.y && ibb.second.y > bb.second.x) {
-
- // take these two contours and try to merge them. If they overlap (which
- // should not happen, but in fact happens-in-the-real-world [tm] ),
- // resume using a single contour and a single bounding box.
- const std::vector<IfcVector2>& other = contours[std::distance(bbs.begin(),it)];
+ const std::vector<IfcVector3>& out = curmesh.verts;
+ IfcMatrix3 m;
- ClipperLib::ExPolygons poly;
- MergeContours(contour, other, poly);
+ ok = true;
- if (poly.size() > 1) {
- IFCImporter::LogWarn("cannot use quadrify algorithm to generate wall openings due to "
- "bounding box overlaps, using poly2tri fallback");
- return TryAddOpenings_Poly2Tri(openings, nors, curmesh);
- }
- else if (poly.size() == 0) {
- IFCImporter::LogWarn("ignoring duplicate opening");
- contour.clear();
- break;
- }
- else {
- IFCImporter::LogDebug("merging oberlapping openings, this should not happen");
-
- contour.clear();
- BOOST_FOREACH(const ClipperLib::IntPoint& point, poly[0].outer) {
- contour.push_back( IfcVector2( from_int64(point.X), from_int64(point.Y)));
- }
+ // The input "mesh" must be a single polygon
+ const size_t s = out.size();
+ assert(curmesh.vertcnt.size() == 1 && curmesh.vertcnt.back() == s);
- bb.first = std::min(bb.first, ibb.first);
- bb.second = std::max(bb.second, ibb.second);
+ const IfcVector3 any_point = out[s-1];
+ IfcVector3 nor;
- contours.erase(contours.begin() + std::distance(bbs.begin(),it));
- it = bbs.erase(it);
- continue;
- }
+ // The input polygon is arbitrarily shaped, therefore we might need some tries
+ // until we find a suitable normal. Note that Newell's algorithm would give
+ // a more robust result, but this variant also gives us a suitable first
+ // axis for the 2D coordinate space on the polygon plane, exploiting the
+ // fact that the input polygon is nearly always a quad.
+ bool done = false;
+ size_t i, j;
+ for (i = 0; !done && i < s-2; done || ++i) {
+ for (j = i+1; j < s-1; ++j) {
+ nor = -((out[i]-any_point)^(out[j]-any_point));
+ if(fabs(nor.Length()) > 1e-8f) {
+ done = true;
+ break;
}
- ++it;
- }
-
- if(contour.size()) {
- contours.push_back(contour);
- bbs.push_back(bb);
}
}
- if (bbs.empty()) {
- return false;
- }
-
- XYSortedField field;
- for (std::vector<BoundingBox>::iterator it = bbs.begin(); it != bbs.end(); ++it) {
- if (field.find((*it).first) != field.end()) {
- IFCImporter::LogWarn("constraint failure during generation of wall openings, results may be faulty");
- }
- field[(*it).first] = std::distance(bbs.begin(),it);
+ if(!done) {
+ ok = false;
+ return m;
}
- std::vector<IfcVector2> outflat;
- outflat.reserve(openings.size()*4);
- QuadrifyPart(IfcVector2(0.f,0.f),IfcVector2(1.f,1.f),field,bbs,outflat);
- ai_assert(!(outflat.size() % 4));
-
- std::vector<IfcVector3> vold;
- std::vector<unsigned int> iold;
-
- vold.reserve(outflat.size());
- iold.reserve(outflat.size() / 4);
-
- // Fix the outer contour using polyclipper
- try {
-
- ClipperLib::Polygon subject;
- ClipperLib::Clipper clipper;
- ClipperLib::ExPolygons clipped;
-
- ClipperLib::Polygon clip;
- clip.reserve(contour_flat.size());
- BOOST_FOREACH(const IfcVector2& pip, contour_flat) {
- clip.push_back(ClipperLib::IntPoint( to_int64(pip.x), to_int64(pip.y) ));
- }
-
- if (!ClipperLib::Orientation(clip)) {
- std::reverse(clip.begin(), clip.end());
- }
+ nor.Normalize();
+ norOut = nor;
- // We need to run polyclipper on every single quad -- we can't run it one all
- // of them at once or it would merge them all together which would undo all
- // previous steps
- subject.reserve(4);
- size_t cnt = 0;
- BOOST_FOREACH(const IfcVector2& pip, outflat) {
- subject.push_back(ClipperLib::IntPoint( to_int64(pip.x), to_int64(pip.y) ));
- if (!(++cnt % 4)) {
- if (!ClipperLib::Orientation(subject)) {
- std::reverse(subject.begin(), subject.end());
- }
-
- clipper.AddPolygon(subject,ClipperLib::ptSubject);
- clipper.AddPolygon(clip,ClipperLib::ptClip);
-
- clipper.Execute(ClipperLib::ctIntersection,clipped,ClipperLib::pftNonZero,ClipperLib::pftNonZero);
-
- BOOST_FOREACH(const ClipperLib::ExPolygon& ex, clipped) {
- iold.push_back(ex.outer.size());
- BOOST_FOREACH(const ClipperLib::IntPoint& point, ex.outer) {
- vold.push_back( minv * IfcVector3(
- vmin.x + from_int64(point.X) * vmax.x,
- vmin.y + from_int64(point.Y) * vmax.y,
- coord));
- }
- }
+ IfcVector3 r = (out[i]-any_point);
+ r.Normalize();
- subject.clear();
- clipped.clear();
- clipper.Clear();
- }
- }
+ //if(d) {
+ // *d = -any_point * nor;
+ //}
- assert(!(cnt % 4));
- }
- catch (const char* sx) {
- IFCImporter::LogError("Ifc: error during polygon clipping, contour line may be wrong: (Clipper: "
- + std::string(sx) + ")");
+ // Reconstruct orthonormal basis
+ // XXX use Gram Schmidt for increased robustness
+ IfcVector3 u = r ^ nor;
+ u.Normalize();
- iold.resize(outflat.size()/4,4);
+ m.a1 = r.x;
+ m.a2 = r.y;
+ m.a3 = r.z;
- BOOST_FOREACH(const IfcVector2& vproj, outflat) {
- const IfcVector3 v3 = minv * IfcVector3(vmin.x + vproj.x * vmax.x, vmin.y + vproj.y * vmax.y,coord);
- vold.push_back(v3);
- }
- }
+ m.b1 = u.x;
+ m.b2 = u.y;
+ m.b3 = u.z;
- // undo the projection, generate output quads
- std::swap(vold,curmesh.verts);
- std::swap(iold,curmesh.vertcnt);
+ m.c1 = -nor.x;
+ m.c2 = -nor.y;
+ m.c3 = -nor.z;
- InsertWindowContours(bbs,contours,openings, nors,minv,vmax, vmin, coord, curmesh);
- return true;
+ return m;
}
// ------------------------------------------------------------------------------------------------
-void ProcessExtrudedAreaSolid(const IfcExtrudedAreaSolid& solid, TempMesh& result, ConversionData& conv)
+void ProcessExtrudedAreaSolid(const IfcExtrudedAreaSolid& solid, TempMesh& result,
+ ConversionData& conv, bool collect_openings)
{
TempMesh meshout;
@@ -1409,7 +537,10 @@ void ProcessExtrudedAreaSolid(const IfcExtrudedAreaSolid& solid, TempMesh& resul
IfcVector3 dir;
ConvertDirection(dir,solid.ExtrudedDirection);
- dir *= solid.Depth;
+ dir *= solid.Depth; /*
+ if(conv.collect_openings && !conv.apply_openings) {
+ dir *= 1000.0;
+ } */
// Outline: assuming that `meshout.verts` is now a list of vertex points forming
// the underlying profile, extrude along the given axis, forming new
@@ -1419,9 +550,9 @@ void ProcessExtrudedAreaSolid(const IfcExtrudedAreaSolid& solid, TempMesh& resul
const size_t size=in.size();
const bool has_area = solid.SweptArea->ProfileType == "AREA" && size>2;
- if(solid.Depth < 1e-3) {
+ if(solid.Depth < 1e-6) {
if(has_area) {
- meshout = result;
+ result = meshout;
}
return;
}
@@ -1432,9 +563,18 @@ void ProcessExtrudedAreaSolid(const IfcExtrudedAreaSolid& solid, TempMesh& resul
// First step: transform all vertices into the target coordinate space
IfcMatrix4 trafo;
ConvertAxisPlacement(trafo, solid.Position);
+
+ IfcVector3 vmin, vmax;
+ MinMaxChooser<IfcVector3>()(vmin, vmax);
BOOST_FOREACH(IfcVector3& v,in) {
v *= trafo;
+
+ vmin = std::min(vmin, v);
+ vmax = std::max(vmax, v);
}
+
+ vmax -= vmin;
+ const IfcFloat diag = vmax.Length();
IfcVector3 min = in[0];
dir *= IfcMatrix3(trafo);
@@ -1444,6 +584,7 @@ void ProcessExtrudedAreaSolid(const IfcExtrudedAreaSolid& solid, TempMesh& resul
// Compute the normal vectors for all opening polygons as a prerequisite
// to TryAddOpenings_Poly2Tri()
+ // XXX this belongs into the aforementioned function
if (openings) {
if (!conv.settings.useCustomTriangulation) {
@@ -1451,7 +592,7 @@ void ProcessExtrudedAreaSolid(const IfcExtrudedAreaSolid& solid, TempMesh& resul
// doesn't matter, but we would screw up if we started with e.g. a door in between
// two windows.
std::sort(conv.apply_openings->begin(),conv.apply_openings->end(),
- DistanceSorter(min));
+ TempOpening::DistanceSorter(min));
}
nors.reserve(conv.apply_openings->size());
@@ -1483,7 +624,7 @@ void ProcessExtrudedAreaSolid(const IfcExtrudedAreaSolid& solid, TempMesh& resul
out.push_back(in[next]);
if(openings) {
- if(TryAddOpenings_Quadrulate(*conv.apply_openings,nors,temp)) {
+ if((in[i]-in[next]).Length() > diag * 0.1 && GenerateOpenings(*conv.apply_openings,nors,temp,true, true, dir)) {
++sides_with_openings;
}
@@ -1491,6 +632,15 @@ void ProcessExtrudedAreaSolid(const IfcExtrudedAreaSolid& solid, TempMesh& resul
temp.Clear();
}
}
+
+ if(openings) {
+ BOOST_FOREACH(TempOpening& opening, *conv.apply_openings) {
+ if (!opening.wallPoints.empty()) {
+ IFCImporter::LogError("failed to generate all window caps");
+ }
+ opening.wallPoints.clear();
+ }
+ }
size_t sides_with_v_openings = 0;
if(has_area) {
@@ -1502,7 +652,7 @@ void ProcessExtrudedAreaSolid(const IfcExtrudedAreaSolid& solid, TempMesh& resul
curmesh.vertcnt.push_back(size);
if(openings && size > 2) {
- if(TryAddOpenings_Quadrulate(*conv.apply_openings,nors,temp)) {
+ if(GenerateOpenings(*conv.apply_openings,nors,temp,true, true, dir)) {
++sides_with_v_openings;
}
@@ -1512,37 +662,33 @@ void ProcessExtrudedAreaSolid(const IfcExtrudedAreaSolid& solid, TempMesh& resul
}
}
-
- if(openings && ((sides_with_openings != 2 && sides_with_openings) || (sides_with_v_openings != 2 && sides_with_v_openings))) {
+ if(openings && ((sides_with_openings == 1 && sides_with_openings) || (sides_with_v_openings == 2 && sides_with_v_openings))) {
IFCImporter::LogWarn("failed to resolve all openings, presumably their topology is not supported by Assimp");
}
IFCImporter::LogDebug("generate mesh procedurally by extrusion (IfcExtrudedAreaSolid)");
-}
+ // If this is an opening element, store both the extruded mesh and the 2D profile mesh
+ // it was created from. Return an empty mesh to the caller.
+ if(collect_openings && !result.IsEmpty()) {
+ ai_assert(conv.collect_openings);
+ boost::shared_ptr<TempMesh> profile = boost::shared_ptr<TempMesh>(new TempMesh());
+ profile->Swap(result);
+ boost::shared_ptr<TempMesh> profile2D = boost::shared_ptr<TempMesh>(new TempMesh());
+ profile2D->Swap(meshout);
+ conv.collect_openings->push_back(TempOpening(&solid,dir,profile, profile2D));
+
+ ai_assert(result.IsEmpty());
+ }
+}
// ------------------------------------------------------------------------------------------------
-void ProcessSweptAreaSolid(const IfcSweptAreaSolid& swept, TempMesh& meshout, ConversionData& conv)
+void ProcessSweptAreaSolid(const IfcSweptAreaSolid& swept, TempMesh& meshout,
+ ConversionData& conv)
{
if(const IfcExtrudedAreaSolid* const solid = swept.ToPtr<IfcExtrudedAreaSolid>()) {
- // Do we just collect openings for a parent element (i.e. a wall)?
- // In this case we don't extrude the surface yet, just keep the profile and transform it correctly
- if(conv.collect_openings) {
- boost::shared_ptr<TempMesh> meshtmp(new TempMesh());
- ProcessProfile(swept.SweptArea,*meshtmp,conv);
-
- IfcMatrix4 m;
- ConvertAxisPlacement(m,solid->Position);
- meshtmp->Transform(m);
-
- IfcVector3 dir;
- ConvertDirection(dir,solid->ExtrudedDirection);
- conv.collect_openings->push_back(TempOpening(solid, IfcMatrix3(m) * (dir*static_cast<IfcFloat>(solid->Depth)),meshtmp));
- return;
- }
-
- ProcessExtrudedAreaSolid(*solid,meshout,conv);
+ ProcessExtrudedAreaSolid(*solid,meshout,conv, !!conv.collect_openings);
}
else if(const IfcRevolvedAreaSolid* const rev = swept.ToPtr<IfcRevolvedAreaSolid>()) {
ProcessRevolvedAreaSolid(*rev,meshout,conv);
@@ -1552,165 +698,19 @@ void ProcessSweptAreaSolid(const IfcSweptAreaSolid& swept, TempMesh& meshout, Co
}
}
-
-// ------------------------------------------------------------------------------------------------
-enum Intersect {
- Intersect_No,
- Intersect_LiesOnPlane,
- Intersect_Yes
-};
-
// ------------------------------------------------------------------------------------------------
-Intersect IntersectSegmentPlane(const IfcVector3& p,const IfcVector3& n, const IfcVector3& e0, const IfcVector3& e1, IfcVector3& out)
+bool ProcessGeometricItem(const IfcRepresentationItem& geo, std::vector<unsigned int>& mesh_indices,
+ ConversionData& conv)
{
- const IfcVector3 pdelta = e0 - p, seg = e1-e0;
- const IfcFloat dotOne = n*seg, dotTwo = -(n*pdelta);
-
- if (fabs(dotOne) < 1e-6) {
- return fabs(dotTwo) < 1e-6f ? Intersect_LiesOnPlane : Intersect_No;
- }
-
- const IfcFloat t = dotTwo/dotOne;
- // t must be in [0..1] if the intersection point is within the given segment
- if (t > 1.f || t < 0.f) {
- return Intersect_No;
- }
- out = e0+t*seg;
- return Intersect_Yes;
-}
-
-// ------------------------------------------------------------------------------------------------
-void ProcessBoolean(const IfcBooleanResult& boolean, TempMesh& result, ConversionData& conv)
-{
- if(const IfcBooleanResult* const clip = boolean.ToPtr<IfcBooleanResult>()) {
- if(clip->Operator != "DIFFERENCE") {
- IFCImporter::LogWarn("encountered unsupported boolean operator: " + (std::string)clip->Operator);
- return;
- }
-
- TempMesh meshout;
- const IfcHalfSpaceSolid* const hs = clip->SecondOperand->ResolveSelectPtr<IfcHalfSpaceSolid>(conv.db);
- if(!hs) {
- IFCImporter::LogError("expected IfcHalfSpaceSolid as second clipping operand");
- return;
- }
-
- const IfcPlane* const plane = hs->BaseSurface->ToPtr<IfcPlane>();
- if(!plane) {
- IFCImporter::LogError("expected IfcPlane as base surface for the IfcHalfSpaceSolid");
- return;
- }
-
- if(const IfcBooleanResult* const op0 = clip->FirstOperand->ResolveSelectPtr<IfcBooleanResult>(conv.db)) {
- ProcessBoolean(*op0,meshout,conv);
- }
- else if (const IfcSweptAreaSolid* const swept = clip->FirstOperand->ResolveSelectPtr<IfcSweptAreaSolid>(conv.db)) {
- ProcessSweptAreaSolid(*swept,meshout,conv);
- }
- else {
- IFCImporter::LogError("expected IfcSweptAreaSolid or IfcBooleanResult as first clipping operand");
- return;
- }
-
- // extract plane base position vector and normal vector
- IfcVector3 p,n(0.f,0.f,1.f);
- if (plane->Position->Axis) {
- ConvertDirection(n,plane->Position->Axis.Get());
- }
- ConvertCartesianPoint(p,plane->Position->Location);
-
- if(!IsTrue(hs->AgreementFlag)) {
- n *= -1.f;
- }
-
- // clip the current contents of `meshout` against the plane we obtained from the second operand
- const std::vector<IfcVector3>& in = meshout.verts;
- std::vector<IfcVector3>& outvert = result.verts;
- std::vector<unsigned int>::const_iterator begin=meshout.vertcnt.begin(), end=meshout.vertcnt.end(), iit;
-
- outvert.reserve(in.size());
- result.vertcnt.reserve(meshout.vertcnt.size());
-
- unsigned int vidx = 0;
- for(iit = begin; iit != end; vidx += *iit++) {
-
- unsigned int newcount = 0;
- for(unsigned int i = 0; i < *iit; ++i) {
- const IfcVector3& e0 = in[vidx+i], e1 = in[vidx+(i+1)%*iit];
-
- // does the next segment intersect the plane?
- IfcVector3 isectpos;
- const Intersect isect = IntersectSegmentPlane(p,n,e0,e1,isectpos);
- if (isect == Intersect_No || isect == Intersect_LiesOnPlane) {
- if ( (e0-p).Normalize()*n > 0 ) {
- outvert.push_back(e0);
- ++newcount;
- }
- }
- else if (isect == Intersect_Yes) {
- if ( (e0-p).Normalize()*n > 0 ) {
- // e0 is on the right side, so keep it
- outvert.push_back(e0);
- outvert.push_back(isectpos);
- newcount += 2;
- }
- else {
- // e0 is on the wrong side, so drop it and keep e1 instead
- outvert.push_back(isectpos);
- ++newcount;
- }
- }
- }
-
- if (!newcount) {
- continue;
- }
-
- IfcVector3 vmin,vmax;
- ArrayBounds(&*(outvert.end()-newcount),newcount,vmin,vmax);
-
- // filter our IfcFloat points - those may happen if a point lies
- // directly on the intersection line. However, due to IfcFloat
- // precision a bitwise comparison is not feasible to detect
- // this case.
- const IfcFloat epsilon = (vmax-vmin).SquareLength() / 1e6f;
- FuzzyVectorCompare fz(epsilon);
-
- std::vector<IfcVector3>::iterator e = std::unique( outvert.end()-newcount, outvert.end(), fz );
- if (e != outvert.end()) {
- newcount -= static_cast<unsigned int>(std::distance(e,outvert.end()));
- outvert.erase(e,outvert.end());
- }
- if (fz(*( outvert.end()-newcount),outvert.back())) {
- outvert.pop_back();
- --newcount;
- }
- if(newcount > 2) {
- result.vertcnt.push_back(newcount);
- }
- else while(newcount-->0)result.verts.pop_back();
-
- }
- IFCImporter::LogDebug("generating CSG geometry by plane clipping (IfcBooleanClippingResult)");
- }
- else {
- IFCImporter::LogWarn("skipping unknown IfcBooleanResult entity, type is " + boolean.GetClassName());
- }
-}
-
-
-
-// ------------------------------------------------------------------------------------------------
-bool ProcessGeometricItem(const IfcRepresentationItem& geo, std::vector<unsigned int>& mesh_indices, ConversionData& conv)
-{
- TempMesh meshtmp;
+ bool fix_orientation = true;
+ boost::shared_ptr< TempMesh > meshtmp = boost::make_shared<TempMesh>();
if(const IfcShellBasedSurfaceModel* shellmod = geo.ToPtr<IfcShellBasedSurfaceModel>()) {
BOOST_FOREACH(boost::shared_ptr<const IfcShell> shell,shellmod->SbsmBoundary) {
try {
const EXPRESS::ENTITY& e = shell->To<ENTITY>();
const IfcConnectedFaceSet& fs = conv.db.MustGetObject(e).To<IfcConnectedFaceSet>();
- ProcessConnectedFaceSet(fs,meshtmp,conv);
+ ProcessConnectedFaceSet(fs,*meshtmp.get(),conv);
}
catch(std::bad_cast&) {
IFCImporter::LogWarn("unexpected type error, IfcShell ought to inherit from IfcConnectedFaceSet");
@@ -1718,21 +718,25 @@ bool ProcessGeometricItem(const IfcRepresentationItem& geo, std::vector<unsigned
}
}
else if(const IfcConnectedFaceSet* fset = geo.ToPtr<IfcConnectedFaceSet>()) {
- ProcessConnectedFaceSet(*fset,meshtmp,conv);
+ ProcessConnectedFaceSet(*fset,*meshtmp.get(),conv);
}
else if(const IfcSweptAreaSolid* swept = geo.ToPtr<IfcSweptAreaSolid>()) {
- ProcessSweptAreaSolid(*swept,meshtmp,conv);
+ ProcessSweptAreaSolid(*swept,*meshtmp.get(),conv);
+ }
+ else if(const IfcSweptDiskSolid* disk = geo.ToPtr<IfcSweptDiskSolid>()) {
+ ProcessSweptDiskSolid(*disk,*meshtmp.get(),conv);
+ fix_orientation = false;
}
else if(const IfcManifoldSolidBrep* brep = geo.ToPtr<IfcManifoldSolidBrep>()) {
- ProcessConnectedFaceSet(brep->Outer,meshtmp,conv);
+ ProcessConnectedFaceSet(brep->Outer,*meshtmp.get(),conv);
}
else if(const IfcFaceBasedSurfaceModel* surf = geo.ToPtr<IfcFaceBasedSurfaceModel>()) {
BOOST_FOREACH(const IfcConnectedFaceSet& fc, surf->FbsmFaces) {
- ProcessConnectedFaceSet(fc,meshtmp,conv);
+ ProcessConnectedFaceSet(fc,*meshtmp.get(),conv);
}
}
else if(const IfcBooleanResult* boolean = geo.ToPtr<IfcBooleanResult>()) {
- ProcessBoolean(*boolean,meshtmp,conv);
+ ProcessBoolean(*boolean,*meshtmp.get(),conv);
}
else if(geo.ToPtr<IfcBoundingBox>()) {
// silently skip over bounding boxes
@@ -1743,10 +747,35 @@ bool ProcessGeometricItem(const IfcRepresentationItem& geo, std::vector<unsigned
return false;
}
- meshtmp.RemoveAdjacentDuplicates();
- FixupFaceOrientation(meshtmp);
+ // Do we just collect openings for a parent element (i.e. a wall)?
+ // In such a case, we generate the polygonal mesh as usual,
+ // but attach it to a TempOpening instance which will later be applied
+ // to the wall it pertains to.
+
+ // Note: swep area solids are added in ProcessExtrudedAreaSolid(),
+ // which returns an empty mesh.
+ if(conv.collect_openings) {
+ if (!meshtmp->IsEmpty()) {
+ conv.collect_openings->push_back(TempOpening(geo.ToPtr<IfcSolidModel>(),
+ IfcVector3(0,0,0),
+ meshtmp,
+ boost::shared_ptr<TempMesh>()));
+ }
+ return true;
+ }
+
+ if (meshtmp->IsEmpty()) {
+ return false;
+ }
+
+ meshtmp->RemoveAdjacentDuplicates();
+ meshtmp->RemoveDegenerates();
+
+ if(fix_orientation) {
+ meshtmp->FixupFaceOrientation();
+ }
- aiMesh* const mesh = meshtmp.ToMesh();
+ aiMesh* const mesh = meshtmp->ToMesh();
if(mesh) {
mesh->mMaterialIndex = ProcessMaterials(geo,conv);
mesh_indices.push_back(conv.meshes.size());
@@ -1757,7 +786,8 @@ bool ProcessGeometricItem(const IfcRepresentationItem& geo, std::vector<unsigned
}
// ------------------------------------------------------------------------------------------------
-void AssignAddedMeshes(std::vector<unsigned int>& mesh_indices,aiNode* nd,ConversionData& /*conv*/)
+void AssignAddedMeshes(std::vector<unsigned int>& mesh_indices,aiNode* nd,
+ ConversionData& /*conv*/)
{
if (!mesh_indices.empty()) {
@@ -1776,7 +806,9 @@ void AssignAddedMeshes(std::vector<unsigned int>& mesh_indices,aiNode* nd,Conver
}
// ------------------------------------------------------------------------------------------------
-bool TryQueryMeshCache(const IfcRepresentationItem& item, std::vector<unsigned int>& mesh_indices, ConversionData& conv)
+bool TryQueryMeshCache(const IfcRepresentationItem& item,
+ std::vector<unsigned int>& mesh_indices,
+ ConversionData& conv)
{
ConversionData::MeshCache::const_iterator it = conv.cached_meshes.find(&item);
if (it != conv.cached_meshes.end()) {
@@ -1787,13 +819,17 @@ bool TryQueryMeshCache(const IfcRepresentationItem& item, std::vector<unsigned i
}
// ------------------------------------------------------------------------------------------------
-void PopulateMeshCache(const IfcRepresentationItem& item, const std::vector<unsigned int>& mesh_indices, ConversionData& conv)
+void PopulateMeshCache(const IfcRepresentationItem& item,
+ const std::vector<unsigned int>& mesh_indices,
+ ConversionData& conv)
{
conv.cached_meshes[&item] = mesh_indices;
}
// ------------------------------------------------------------------------------------------------
-bool ProcessRepresentationItem(const IfcRepresentationItem& item, std::vector<unsigned int>& mesh_indices, ConversionData& conv)
+bool ProcessRepresentationItem(const IfcRepresentationItem& item,
+ std::vector<unsigned int>& mesh_indices,
+ ConversionData& conv)
{
if (!TryQueryMeshCache(item,mesh_indices,conv)) {
if(ProcessGeometricItem(item,mesh_indices,conv)) {
@@ -1806,9 +842,6 @@ bool ProcessRepresentationItem(const IfcRepresentationItem& item, std::vector<un
return true;
}
-#undef to_int64
-#undef from_int64
-#undef from_int64_f
} // ! IFC
} // ! Assimp