summaryrefslogtreecommitdiffstats
path: root/src/3rdparty/assimp/code/AMFImporter_Postprocess.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/3rdparty/assimp/code/AMFImporter_Postprocess.cpp')
-rw-r--r--src/3rdparty/assimp/code/AMFImporter_Postprocess.cpp976
1 files changed, 976 insertions, 0 deletions
diff --git a/src/3rdparty/assimp/code/AMFImporter_Postprocess.cpp b/src/3rdparty/assimp/code/AMFImporter_Postprocess.cpp
new file mode 100644
index 000000000..991eb97e7
--- /dev/null
+++ b/src/3rdparty/assimp/code/AMFImporter_Postprocess.cpp
@@ -0,0 +1,976 @@
+/*
+---------------------------------------------------------------------------
+Open Asset Import Library (assimp)
+---------------------------------------------------------------------------
+
+Copyright (c) 2006-2017, assimp team
+
+
+All rights reserved.
+
+Redistribution and use of this software in source and binary forms,
+with or without modification, are permitted provided that the following
+conditions are met:
+
+* Redistributions of source code must retain the above
+copyright notice, this list of conditions and the
+following disclaimer.
+
+* Redistributions in binary form must reproduce the above
+copyright notice, this list of conditions and the
+following disclaimer in the documentation and/or other
+materials provided with the distribution.
+
+* Neither the name of the assimp team, nor the names of its
+contributors may be used to endorse or promote products
+derived from this software without specific prior
+written permission of the assimp team.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+---------------------------------------------------------------------------
+*/
+
+/// \file AMFImporter_Postprocess.cpp
+/// \brief Convert built scenegraph and objects to Assimp scenegraph.
+/// \date 2016
+/// \author smal.root@gmail.com
+
+#ifndef ASSIMP_BUILD_NO_AMF_IMPORTER
+
+#include "AMFImporter.hpp"
+
+// Header files, Assimp.
+#include <assimp/SceneCombiner.h>
+#include "StandardShapes.h"
+#include "StringUtils.h"
+
+// Header files, stdlib.
+#include <iterator>
+
+namespace Assimp
+{
+
+aiColor4D AMFImporter::SPP_Material::GetColor(const float /*pX*/, const float /*pY*/, const float /*pZ*/) const
+{
+ aiColor4D tcol;
+
+ // Check if stored data are supported.
+ if(Composition.size() != 0)
+ {
+ throw DeadlyImportError("IME. GetColor for composition");
+ }
+ else if(Color->Composed)
+ {
+ throw DeadlyImportError("IME. GetColor, composed color");
+ }
+ else
+ {
+ tcol = Color->Color;
+ }
+
+ // Check if default color must be used
+ if((tcol.r == 0) && (tcol.g == 0) && (tcol.b == 0) && (tcol.a == 0))
+ {
+ tcol.r = 0.5f;
+ tcol.g = 0.5f;
+ tcol.b = 0.5f;
+ tcol.a = 1;
+ }
+
+ return tcol;
+}
+
+void AMFImporter::PostprocessHelper_CreateMeshDataArray(const CAMFImporter_NodeElement_Mesh& pNodeElement, std::vector<aiVector3D>& pVertexCoordinateArray,
+ std::vector<CAMFImporter_NodeElement_Color*>& pVertexColorArray) const
+{
+ CAMFImporter_NodeElement_Vertices* vn = nullptr;
+ size_t col_idx;
+
+ // All data stored in "vertices", search for it.
+ for(CAMFImporter_NodeElement* ne_child: pNodeElement.Child)
+ {
+ if(ne_child->Type == CAMFImporter_NodeElement::ENET_Vertices) vn = (CAMFImporter_NodeElement_Vertices*)ne_child;
+ }
+
+ // If "vertices" not found then no work for us.
+ if(vn == nullptr) return;
+
+ pVertexCoordinateArray.reserve(vn->Child.size());// all coordinates stored as child and we need to reserve space for future push_back's.
+ pVertexColorArray.resize(vn->Child.size());// colors count equal vertices count.
+ col_idx = 0;
+ // Inside vertices collect all data and place to arrays
+ for(CAMFImporter_NodeElement* vn_child: vn->Child)
+ {
+ // vertices, colors
+ if(vn_child->Type == CAMFImporter_NodeElement::ENET_Vertex)
+ {
+ // by default clear color for current vertex
+ pVertexColorArray[col_idx] = nullptr;
+
+ for(CAMFImporter_NodeElement* vtx: vn_child->Child)
+ {
+ if(vtx->Type == CAMFImporter_NodeElement::ENET_Coordinates)
+ {
+ pVertexCoordinateArray.push_back(((CAMFImporter_NodeElement_Coordinates*)vtx)->Coordinate);
+
+ continue;
+ }
+
+ if(vtx->Type == CAMFImporter_NodeElement::ENET_Color)
+ {
+ pVertexColorArray[col_idx] = (CAMFImporter_NodeElement_Color*)vtx;
+
+ continue;
+ }
+ }// for(CAMFImporter_NodeElement* vtx: vn_child->Child)
+
+ col_idx++;
+ }// if(vn_child->Type == CAMFImporter_NodeElement::ENET_Vertex)
+ }// for(CAMFImporter_NodeElement* vn_child: vn->Child)
+}
+
+size_t AMFImporter::PostprocessHelper_GetTextureID_Or_Create(const std::string& pID_R, const std::string& pID_G, const std::string& pID_B,
+ const std::string& pID_A)
+{
+ size_t TextureConverted_Index;
+ std::string TextureConverted_ID;
+
+ // check input data
+ if(pID_R.empty() && pID_G.empty() && pID_B.empty() && pID_A.empty())
+ throw DeadlyImportError("PostprocessHelper_GetTextureID_Or_Create. At least one texture ID must be defined.");
+
+ // Create ID
+ TextureConverted_ID = pID_R + "_" + pID_G + "_" + pID_B + "_" + pID_A;
+ // Check if texture specified by set of IDs is converted already.
+ TextureConverted_Index = 0;
+ for(const SPP_Texture& tex_convd: mTexture_Converted)
+ {
+ if(tex_convd.ID == TextureConverted_ID)
+ return TextureConverted_Index;
+ else
+ TextureConverted_Index++;
+ }
+
+ //
+ // Converted texture not found, create it.
+ //
+ CAMFImporter_NodeElement_Texture* src_texture[4]{nullptr};
+ std::vector<CAMFImporter_NodeElement_Texture*> src_texture_4check;
+ SPP_Texture converted_texture;
+
+ {// find all specified source textures
+ CAMFImporter_NodeElement* t_tex;
+
+ // R
+ if(!pID_R.empty())
+ {
+ if(!Find_NodeElement(pID_R, CAMFImporter_NodeElement::ENET_Texture, &t_tex)) Throw_ID_NotFound(pID_R);
+
+ src_texture[0] = (CAMFImporter_NodeElement_Texture*)t_tex;
+ src_texture_4check.push_back((CAMFImporter_NodeElement_Texture*)t_tex);
+ }
+ else
+ {
+ src_texture[0] = nullptr;
+ }
+
+ // G
+ if(!pID_G.empty())
+ {
+ if(!Find_NodeElement(pID_G, CAMFImporter_NodeElement::ENET_Texture, &t_tex)) Throw_ID_NotFound(pID_G);
+
+ src_texture[1] = (CAMFImporter_NodeElement_Texture*)t_tex;
+ src_texture_4check.push_back((CAMFImporter_NodeElement_Texture*)t_tex);
+ }
+ else
+ {
+ src_texture[1] = nullptr;
+ }
+
+ // B
+ if(!pID_B.empty())
+ {
+ if(!Find_NodeElement(pID_B, CAMFImporter_NodeElement::ENET_Texture, &t_tex)) Throw_ID_NotFound(pID_B);
+
+ src_texture[2] = (CAMFImporter_NodeElement_Texture*)t_tex;
+ src_texture_4check.push_back((CAMFImporter_NodeElement_Texture*)t_tex);
+ }
+ else
+ {
+ src_texture[2] = nullptr;
+ }
+
+ // A
+ if(!pID_A.empty())
+ {
+ if(!Find_NodeElement(pID_A, CAMFImporter_NodeElement::ENET_Texture, &t_tex)) Throw_ID_NotFound(pID_A);
+
+ src_texture[3] = (CAMFImporter_NodeElement_Texture*)t_tex;
+ src_texture_4check.push_back((CAMFImporter_NodeElement_Texture*)t_tex);
+ }
+ else
+ {
+ src_texture[3] = nullptr;
+ }
+ }// END: find all specified source textures
+
+ // check that all textures has same size
+ if(src_texture_4check.size() > 1)
+ {
+ for (size_t i = 0, i_e = (src_texture_4check.size() - 1); i < i_e; i++)
+ {
+ if((src_texture_4check[i]->Width != src_texture_4check[i + 1]->Width) || (src_texture_4check[i]->Height != src_texture_4check[i + 1]->Height) ||
+ (src_texture_4check[i]->Depth != src_texture_4check[i + 1]->Depth))
+ {
+ throw DeadlyImportError("PostprocessHelper_GetTextureID_Or_Create. Source texture must has the same size.");
+ }
+ }
+ }// if(src_texture_4check.size() > 1)
+
+ // set texture attributes
+ converted_texture.Width = src_texture_4check[0]->Width;
+ converted_texture.Height = src_texture_4check[0]->Height;
+ converted_texture.Depth = src_texture_4check[0]->Depth;
+ // if one of source texture is tiled then converted texture is tiled too.
+ converted_texture.Tiled = false;
+ for(uint8_t i = 0; i < src_texture_4check.size(); i++) converted_texture.Tiled |= src_texture_4check[i]->Tiled;
+
+ // Create format hint.
+ strcpy(converted_texture.FormatHint, "rgba0000");// copy initial string.
+ if(!pID_R.empty()) converted_texture.FormatHint[4] = '8';
+ if(!pID_G.empty()) converted_texture.FormatHint[5] = '8';
+ if(!pID_B.empty()) converted_texture.FormatHint[6] = '8';
+ if(!pID_A.empty()) converted_texture.FormatHint[7] = '8';
+
+ //
+ // Сopy data of textures.
+ //
+ size_t tex_size = 0;
+ size_t step = 0;
+ size_t off_g = 0;
+ size_t off_b = 0;
+
+ // Calculate size of the target array and rule how data will be copied.
+ if(!pID_R.empty() && nullptr != src_texture[ 0 ] ) {
+ tex_size += src_texture[0]->Data.size(); step++, off_g++, off_b++;
+ }
+ if(!pID_G.empty() && nullptr != src_texture[ 1 ] ) {
+ tex_size += src_texture[1]->Data.size(); step++, off_b++;
+ }
+ if(!pID_B.empty() && nullptr != src_texture[ 2 ] ) {
+ tex_size += src_texture[2]->Data.size(); step++;
+ }
+ if(!pID_A.empty() && nullptr != src_texture[ 3 ] ) {
+ tex_size += src_texture[3]->Data.size(); step++;
+ }
+
+ // Create target array.
+ converted_texture.Data = new uint8_t[tex_size];
+ // And copy data
+ auto CopyTextureData = [&](const std::string& pID, const size_t pOffset, const size_t pStep, const uint8_t pSrcTexNum) -> void
+ {
+ if(!pID.empty())
+ {
+ for(size_t idx_target = pOffset, idx_src = 0; idx_target < tex_size; idx_target += pStep, idx_src++) {
+ CAMFImporter_NodeElement_Texture* tex = src_texture[pSrcTexNum];
+ ai_assert(tex);
+ converted_texture.Data[idx_target] = tex->Data.at(idx_src);
+ }
+ }
+ };// auto CopyTextureData = [&](const size_t pOffset, const size_t pStep, const uint8_t pSrcTexNum) -> void
+
+ CopyTextureData(pID_R, 0, step, 0);
+ CopyTextureData(pID_G, off_g, step, 1);
+ CopyTextureData(pID_B, off_b, step, 2);
+ CopyTextureData(pID_A, step - 1, step, 3);
+
+ // Store new converted texture ID
+ converted_texture.ID = TextureConverted_ID;
+ // Store new converted texture
+ mTexture_Converted.push_back(converted_texture);
+
+ return TextureConverted_Index;
+}
+
+void AMFImporter::PostprocessHelper_SplitFacesByTextureID(std::list<SComplexFace>& pInputList, std::list<std::list<SComplexFace> >& pOutputList_Separated)
+{
+ auto texmap_is_equal = [](const CAMFImporter_NodeElement_TexMap* pTexMap1, const CAMFImporter_NodeElement_TexMap* pTexMap2) -> bool
+ {
+ if((pTexMap1 == nullptr) && (pTexMap2 == nullptr)) return true;
+ if(pTexMap1 == nullptr) return false;
+ if(pTexMap2 == nullptr) return false;
+
+ if(pTexMap1->TextureID_R != pTexMap2->TextureID_R) return false;
+ if(pTexMap1->TextureID_G != pTexMap2->TextureID_G) return false;
+ if(pTexMap1->TextureID_B != pTexMap2->TextureID_B) return false;
+ if(pTexMap1->TextureID_A != pTexMap2->TextureID_A) return false;
+
+ return true;
+ };
+
+ pOutputList_Separated.clear();
+ if(pInputList.size() == 0) return;
+
+ do
+ {
+ SComplexFace face_start = pInputList.front();
+ std::list<SComplexFace> face_list_cur;
+
+ for(std::list<SComplexFace>::iterator it = pInputList.begin(), it_end = pInputList.end(); it != it_end;)
+ {
+ if(texmap_is_equal(face_start.TexMap, it->TexMap))
+ {
+ auto it_old = it;
+
+ it++;
+ face_list_cur.push_back(*it_old);
+ pInputList.erase(it_old);
+ }
+ else
+ {
+ it++;
+ }
+ }
+
+ if(face_list_cur.size() > 0) pOutputList_Separated.push_back(face_list_cur);
+
+ } while(pInputList.size() > 0);
+}
+
+void AMFImporter::Postprocess_AddMetadata(const std::list<CAMFImporter_NodeElement_Metadata*>& metadataList, aiNode& sceneNode) const
+{
+ if ( !metadataList.empty() )
+ {
+ if(sceneNode.mMetaData != nullptr) throw DeadlyImportError("Postprocess. MetaData member in node are not nullptr. Something went wrong.");
+
+ // copy collected metadata to output node.
+ sceneNode.mMetaData = aiMetadata::Alloc( static_cast<unsigned int>(metadataList.size()) );
+ size_t meta_idx( 0 );
+
+ for(const CAMFImporter_NodeElement_Metadata& metadata: metadataList)
+ {
+ sceneNode.mMetaData->Set(static_cast<unsigned int>(meta_idx++), metadata.Type, aiString(metadata.Value));
+ }
+ }// if(!metadataList.empty())
+}
+
+void AMFImporter::Postprocess_BuildNodeAndObject(const CAMFImporter_NodeElement_Object& pNodeElement, std::list<aiMesh*>& pMeshList, aiNode** pSceneNode)
+{
+CAMFImporter_NodeElement_Color* object_color = nullptr;
+
+ // create new aiNode and set name as <object> has.
+ *pSceneNode = new aiNode;
+ (*pSceneNode)->mName = pNodeElement.ID;
+ // read mesh and color
+ for(const CAMFImporter_NodeElement* ne_child: pNodeElement.Child)
+ {
+ std::vector<aiVector3D> vertex_arr;
+ std::vector<CAMFImporter_NodeElement_Color*> color_arr;
+
+ // color for object
+ if(ne_child->Type == CAMFImporter_NodeElement::ENET_Color) object_color = (CAMFImporter_NodeElement_Color*)ne_child;
+
+ if(ne_child->Type == CAMFImporter_NodeElement::ENET_Mesh)
+ {
+ // Create arrays from children of mesh: vertices.
+ PostprocessHelper_CreateMeshDataArray(*((CAMFImporter_NodeElement_Mesh*)ne_child), vertex_arr, color_arr);
+ // Use this arrays as a source when creating every aiMesh
+ Postprocess_BuildMeshSet(*((CAMFImporter_NodeElement_Mesh*)ne_child), vertex_arr, color_arr, object_color, pMeshList, **pSceneNode);
+ }
+ }// for(const CAMFImporter_NodeElement* ne_child: pNodeElement)
+}
+
+void AMFImporter::Postprocess_BuildMeshSet(const CAMFImporter_NodeElement_Mesh& pNodeElement, const std::vector<aiVector3D>& pVertexCoordinateArray,
+ const std::vector<CAMFImporter_NodeElement_Color*>& pVertexColorArray,
+ const CAMFImporter_NodeElement_Color* pObjectColor, std::list<aiMesh*>& pMeshList, aiNode& pSceneNode)
+{
+std::list<unsigned int> mesh_idx;
+
+ // all data stored in "volume", search for it.
+ for(const CAMFImporter_NodeElement* ne_child: pNodeElement.Child)
+ {
+ const CAMFImporter_NodeElement_Color* ne_volume_color = nullptr;
+ const SPP_Material* cur_mat = nullptr;
+
+ if(ne_child->Type == CAMFImporter_NodeElement::ENET_Volume)
+ {
+ /******************* Get faces *******************/
+ const CAMFImporter_NodeElement_Volume* ne_volume = reinterpret_cast<const CAMFImporter_NodeElement_Volume*>(ne_child);
+
+ std::list<SComplexFace> complex_faces_list;// List of the faces of the volume.
+ std::list<std::list<SComplexFace> > complex_faces_toplist;// List of the face list for every mesh.
+
+ // check if volume use material
+ if(!ne_volume->MaterialID.empty())
+ {
+ if(!Find_ConvertedMaterial(ne_volume->MaterialID, &cur_mat)) Throw_ID_NotFound(ne_volume->MaterialID);
+ }
+
+ // inside "volume" collect all data and place to arrays or create new objects
+ for(const CAMFImporter_NodeElement* ne_volume_child: ne_volume->Child)
+ {
+ // color for volume
+ if(ne_volume_child->Type == CAMFImporter_NodeElement::ENET_Color)
+ {
+ ne_volume_color = reinterpret_cast<const CAMFImporter_NodeElement_Color*>(ne_volume_child);
+ }
+ else if(ne_volume_child->Type == CAMFImporter_NodeElement::ENET_Triangle)// triangles, triangles colors
+ {
+ const CAMFImporter_NodeElement_Triangle& tri_al = *reinterpret_cast<const CAMFImporter_NodeElement_Triangle*>(ne_volume_child);
+
+ SComplexFace complex_face;
+
+ // initialize pointers
+ complex_face.Color = nullptr;
+ complex_face.TexMap = nullptr;
+ // get data from triangle children: color, texture coordinates.
+ if(tri_al.Child.size())
+ {
+ for(const CAMFImporter_NodeElement* ne_triangle_child: tri_al.Child)
+ {
+ if(ne_triangle_child->Type == CAMFImporter_NodeElement::ENET_Color)
+ complex_face.Color = reinterpret_cast<const CAMFImporter_NodeElement_Color*>(ne_triangle_child);
+ else if(ne_triangle_child->Type == CAMFImporter_NodeElement::ENET_TexMap)
+ complex_face.TexMap = reinterpret_cast<const CAMFImporter_NodeElement_TexMap*>(ne_triangle_child);
+ }
+ }// if(tri_al.Child.size())
+
+ // create new face and store it.
+ complex_face.Face.mNumIndices = 3;
+ complex_face.Face.mIndices = new unsigned int[3];
+ complex_face.Face.mIndices[0] = static_cast<unsigned int>(tri_al.V[0]);
+ complex_face.Face.mIndices[1] = static_cast<unsigned int>(tri_al.V[1]);
+ complex_face.Face.mIndices[2] = static_cast<unsigned int>(tri_al.V[2]);
+ complex_faces_list.push_back(complex_face);
+ }
+ }// for(const CAMFImporter_NodeElement* ne_volume_child: ne_volume->Child)
+
+ /**** Split faces list: one list per mesh ****/
+ PostprocessHelper_SplitFacesByTextureID(complex_faces_list, complex_faces_toplist);
+
+ /***** Create mesh for every faces list ******/
+ for(std::list<SComplexFace>& face_list_cur: complex_faces_toplist)
+ {
+ auto VertexIndex_GetMinimal = [](const std::list<SComplexFace>& pFaceList, const size_t* pBiggerThan) -> size_t
+ {
+ size_t rv;
+
+ if(pBiggerThan != nullptr)
+ {
+ bool found = false;
+
+ for(const SComplexFace& face: pFaceList)
+ {
+ for(size_t idx_vert = 0; idx_vert < face.Face.mNumIndices; idx_vert++)
+ {
+ if(face.Face.mIndices[idx_vert] > *pBiggerThan)
+ {
+ rv = face.Face.mIndices[idx_vert];
+ found = true;
+
+ break;
+ }
+ }
+
+ if(found) break;
+ }
+
+ if(!found) return *pBiggerThan;
+ }
+ else
+ {
+ rv = pFaceList.front().Face.mIndices[0];
+ }// if(pBiggerThan != nullptr) else
+
+ for(const SComplexFace& face: pFaceList)
+ {
+ for(size_t vi = 0; vi < face.Face.mNumIndices; vi++)
+ {
+ if(face.Face.mIndices[vi] < rv)
+ {
+ if(pBiggerThan != nullptr)
+ {
+ if(face.Face.mIndices[vi] > *pBiggerThan) rv = face.Face.mIndices[vi];
+ }
+ else
+ {
+ rv = face.Face.mIndices[vi];
+ }
+ }
+ }
+ }// for(const SComplexFace& face: pFaceList)
+
+ return rv;
+ };// auto VertexIndex_GetMinimal = [](const std::list<SComplexFace>& pFaceList, const size_t* pBiggerThan) -> size_t
+
+ auto VertexIndex_Replace = [](std::list<SComplexFace>& pFaceList, const size_t pIdx_From, const size_t pIdx_To) -> void
+ {
+ for(const SComplexFace& face: pFaceList)
+ {
+ for(size_t vi = 0; vi < face.Face.mNumIndices; vi++)
+ {
+ if(face.Face.mIndices[vi] == pIdx_From) face.Face.mIndices[vi] = static_cast<unsigned int>(pIdx_To);
+ }
+ }
+ };// auto VertexIndex_Replace = [](std::list<SComplexFace>& pFaceList, const size_t pIdx_From, const size_t pIdx_To) -> void
+
+ auto Vertex_CalculateColor = [&](const size_t pIdx) -> aiColor4D
+ {
+ // Color priorities(In descending order):
+ // 1. triangle color;
+ // 2. vertex color;
+ // 3. volume color;
+ // 4. object color;
+ // 5. material;
+ // 6. default - invisible coat.
+ //
+ // Fill vertices colors in color priority list above that's points from 1 to 6.
+ if((pIdx < pVertexColorArray.size()) && (pVertexColorArray[pIdx] != nullptr))// check for vertex color
+ {
+ if(pVertexColorArray[pIdx]->Composed)
+ throw DeadlyImportError("IME: vertex color composed");
+ else
+ return pVertexColorArray[pIdx]->Color;
+ }
+ else if(ne_volume_color != nullptr)// check for volume color
+ {
+ if(ne_volume_color->Composed)
+ throw DeadlyImportError("IME: volume color composed");
+ else
+ return ne_volume_color->Color;
+ }
+ else if(pObjectColor != nullptr)// check for object color
+ {
+ if(pObjectColor->Composed)
+ throw DeadlyImportError("IME: object color composed");
+ else
+ return pObjectColor->Color;
+ }
+ else if(cur_mat != nullptr)// check for material
+ {
+ return cur_mat->GetColor(pVertexCoordinateArray.at(pIdx).x, pVertexCoordinateArray.at(pIdx).y, pVertexCoordinateArray.at(pIdx).z);
+ }
+ else// set default color.
+ {
+ return {0, 0, 0, 0};
+ }// if((vi < pVertexColorArray.size()) && (pVertexColorArray[vi] != nullptr)) else
+
+ };// auto Vertex_CalculateColor = [&](const size_t pIdx) -> aiColor4D
+
+ aiMesh* tmesh = new aiMesh;
+
+ tmesh->mPrimitiveTypes = aiPrimitiveType_TRIANGLE;// Only triangles is supported by AMF.
+ //
+ // set geometry and colors (vertices)
+ //
+ // copy faces/triangles
+ tmesh->mNumFaces = static_cast<unsigned int>(face_list_cur.size());
+ tmesh->mFaces = new aiFace[tmesh->mNumFaces];
+
+ // Create vertices list and optimize indices. Optimisation mean following.In AMF all volumes use one big list of vertices. And one volume
+ // can use only part of vertices list, for example: vertices list contain few thousands of vertices and volume use vertices 1, 3, 10.
+ // Do you need all this thousands of garbage? Of course no. So, optimisation step transformate sparse indices set to continuous.
+ size_t VertexCount_Max = tmesh->mNumFaces * 3;// 3 - triangles.
+ std::vector<aiVector3D> vert_arr, texcoord_arr;
+ std::vector<aiColor4D> col_arr;
+
+ vert_arr.reserve(VertexCount_Max * 2);// "* 2" - see below TODO.
+ col_arr.reserve(VertexCount_Max * 2);
+
+ {// fill arrays
+ size_t vert_idx_from, vert_idx_to;
+
+ // first iteration.
+ vert_idx_to = 0;
+ vert_idx_from = VertexIndex_GetMinimal(face_list_cur, nullptr);
+ vert_arr.push_back(pVertexCoordinateArray.at(vert_idx_from));
+ col_arr.push_back(Vertex_CalculateColor(vert_idx_from));
+ if(vert_idx_from != vert_idx_to) VertexIndex_Replace(face_list_cur, vert_idx_from, vert_idx_to);
+
+ // rest iterations
+ do
+ {
+ vert_idx_from = VertexIndex_GetMinimal(face_list_cur, &vert_idx_to);
+ if(vert_idx_from == vert_idx_to) break;// all indices are transferred,
+
+ vert_arr.push_back(pVertexCoordinateArray.at(vert_idx_from));
+ col_arr.push_back(Vertex_CalculateColor(vert_idx_from));
+ vert_idx_to++;
+ if(vert_idx_from != vert_idx_to) VertexIndex_Replace(face_list_cur, vert_idx_from, vert_idx_to);
+
+ } while(true);
+ }// fill arrays. END.
+
+ //
+ // check if triangle colors are used and create additional faces if needed.
+ //
+ for(const SComplexFace& face_cur: face_list_cur)
+ {
+ if(face_cur.Color != nullptr)
+ {
+ aiColor4D face_color;
+ size_t vert_idx_new = vert_arr.size();
+
+ if(face_cur.Color->Composed)
+ throw DeadlyImportError("IME: face color composed");
+ else
+ face_color = face_cur.Color->Color;
+
+ for(size_t idx_ind = 0; idx_ind < face_cur.Face.mNumIndices; idx_ind++)
+ {
+ vert_arr.push_back(vert_arr.at(face_cur.Face.mIndices[idx_ind]));
+ col_arr.push_back(face_color);
+ face_cur.Face.mIndices[idx_ind] = static_cast<unsigned int>(vert_idx_new++);
+ }
+ }// if(face_cur.Color != nullptr)
+ }// for(const SComplexFace& face_cur: face_list_cur)
+
+ //
+ // if texture is used then copy texture coordinates too.
+ //
+ if(face_list_cur.front().TexMap != nullptr)
+ {
+ size_t idx_vert_new = vert_arr.size();
+ ///TODO: clean unused vertices. "* 2": in certain cases - mesh full of triangle colors - vert_arr will contain duplicated vertices for
+ /// colored triangles and initial vertices (for colored vertices) which in real became unused. This part need more thinking about
+ /// optimisation.
+ bool* idx_vert_used;
+
+ idx_vert_used = new bool[VertexCount_Max * 2];
+ for(size_t i = 0, i_e = VertexCount_Max * 2; i < i_e; i++) idx_vert_used[i] = false;
+
+ // This ID's will be used when set materials ID in scene.
+ tmesh->mMaterialIndex = static_cast<unsigned int>(PostprocessHelper_GetTextureID_Or_Create(face_list_cur.front().TexMap->TextureID_R,
+ face_list_cur.front().TexMap->TextureID_G,
+ face_list_cur.front().TexMap->TextureID_B,
+ face_list_cur.front().TexMap->TextureID_A));
+ texcoord_arr.resize(VertexCount_Max * 2);
+ for(const SComplexFace& face_cur: face_list_cur)
+ {
+ for(size_t idx_ind = 0; idx_ind < face_cur.Face.mNumIndices; idx_ind++)
+ {
+ const size_t idx_vert = face_cur.Face.mIndices[idx_ind];
+
+ if(!idx_vert_used[idx_vert])
+ {
+ texcoord_arr.at(idx_vert) = face_cur.TexMap->TextureCoordinate[idx_ind];
+ idx_vert_used[idx_vert] = true;
+ }
+ else if(texcoord_arr.at(idx_vert) != face_cur.TexMap->TextureCoordinate[idx_ind])
+ {
+ // in that case one vertex is shared with many texture coordinates. We need to duplicate vertex with another texture
+ // coordinates.
+ vert_arr.push_back(vert_arr.at(idx_vert));
+ col_arr.push_back(col_arr.at(idx_vert));
+ texcoord_arr.at(idx_vert_new) = face_cur.TexMap->TextureCoordinate[idx_ind];
+ face_cur.Face.mIndices[idx_ind] = static_cast<unsigned int>(idx_vert_new++);
+ }
+ }// for(size_t idx_ind = 0; idx_ind < face_cur.Face.mNumIndices; idx_ind++)
+ }// for(const SComplexFace& face_cur: face_list_cur)
+
+ delete [] idx_vert_used;
+ // shrink array
+ texcoord_arr.resize(idx_vert_new);
+ }// if(face_list_cur.front().TexMap != nullptr)
+
+ //
+ // copy collected data to mesh
+ //
+ tmesh->mNumVertices = static_cast<unsigned int>(vert_arr.size());
+ tmesh->mVertices = new aiVector3D[tmesh->mNumVertices];
+ tmesh->mColors[0] = new aiColor4D[tmesh->mNumVertices];
+
+ memcpy(tmesh->mVertices, vert_arr.data(), tmesh->mNumVertices * sizeof(aiVector3D));
+ memcpy(tmesh->mColors[0], col_arr.data(), tmesh->mNumVertices * sizeof(aiColor4D));
+ if(texcoord_arr.size() > 0)
+ {
+ tmesh->mTextureCoords[0] = new aiVector3D[tmesh->mNumVertices];
+ memcpy(tmesh->mTextureCoords[0], texcoord_arr.data(), tmesh->mNumVertices * sizeof(aiVector3D));
+ tmesh->mNumUVComponents[0] = 2;// U and V stored in "x", "y" of aiVector3D.
+ }
+
+ size_t idx_face = 0;
+ for(const SComplexFace& face_cur: face_list_cur) tmesh->mFaces[idx_face++] = face_cur.Face;
+
+ // store new aiMesh
+ mesh_idx.push_back(static_cast<unsigned int>(pMeshList.size()));
+ pMeshList.push_back(tmesh);
+ }// for(const std::list<SComplexFace>& face_list_cur: complex_faces_toplist)
+ }// if(ne_child->Type == CAMFImporter_NodeElement::ENET_Volume)
+ }// for(const CAMFImporter_NodeElement* ne_child: pNodeElement.Child)
+
+ // if meshes was created then assign new indices with current aiNode
+ if(mesh_idx.size() > 0)
+ {
+ std::list<unsigned int>::const_iterator mit = mesh_idx.begin();
+
+ pSceneNode.mNumMeshes = static_cast<unsigned int>(mesh_idx.size());
+ pSceneNode.mMeshes = new unsigned int[pSceneNode.mNumMeshes];
+ for(size_t i = 0; i < pSceneNode.mNumMeshes; i++) pSceneNode.mMeshes[i] = *mit++;
+ }// if(mesh_idx.size() > 0)
+}
+
+void AMFImporter::Postprocess_BuildMaterial(const CAMFImporter_NodeElement_Material& pMaterial)
+{
+SPP_Material new_mat;
+
+ new_mat.ID = pMaterial.ID;
+ for(const CAMFImporter_NodeElement* mat_child: pMaterial.Child)
+ {
+ if(mat_child->Type == CAMFImporter_NodeElement::ENET_Color)
+ {
+ new_mat.Color = (CAMFImporter_NodeElement_Color*)mat_child;
+ }
+ else if(mat_child->Type == CAMFImporter_NodeElement::ENET_Metadata)
+ {
+ new_mat.Metadata.push_back((CAMFImporter_NodeElement_Metadata*)mat_child);
+ }
+ }// for(const CAMFImporter_NodeElement* mat_child; pMaterial.Child)
+
+ // place converted material to special list
+ mMaterial_Converted.push_back(new_mat);
+}
+
+void AMFImporter::Postprocess_BuildConstellation(CAMFImporter_NodeElement_Constellation& pConstellation, std::list<aiNode*>& pNodeList) const
+{
+aiNode* con_node;
+std::list<aiNode*> ch_node;
+
+ // We will build next hierarchy:
+ // aiNode as parent (<constellation>) for set of nodes as a children
+ // |- aiNode for transformation (<instance> -> <delta...>, <r...>) - aiNode for pointing to object ("objectid")
+ // ...
+ // \_ aiNode for transformation (<instance> -> <delta...>, <r...>) - aiNode for pointing to object ("objectid")
+ con_node = new aiNode;
+ con_node->mName = pConstellation.ID;
+ // Walk through children and search for instances of another objects, constellations.
+ for(const CAMFImporter_NodeElement* ne: pConstellation.Child)
+ {
+ aiMatrix4x4 tmat;
+ aiNode* t_node;
+ aiNode* found_node;
+
+ if(ne->Type == CAMFImporter_NodeElement::ENET_Metadata) continue;
+ if(ne->Type != CAMFImporter_NodeElement::ENET_Instance) throw DeadlyImportError("Only <instance> nodes can be in <constellation>.");
+
+ // create alias for conveniance
+ CAMFImporter_NodeElement_Instance& als = *((CAMFImporter_NodeElement_Instance*)ne);
+ // find referenced object
+ if(!Find_ConvertedNode(als.ObjectID, pNodeList, &found_node)) Throw_ID_NotFound(als.ObjectID);
+
+ // create node for apllying transformation
+ t_node = new aiNode;
+ t_node->mParent = con_node;
+ // apply transformation
+ aiMatrix4x4::Translation(als.Delta, tmat), t_node->mTransformation *= tmat;
+ aiMatrix4x4::RotationX(als.Rotation.x, tmat), t_node->mTransformation *= tmat;
+ aiMatrix4x4::RotationY(als.Rotation.y, tmat), t_node->mTransformation *= tmat;
+ aiMatrix4x4::RotationZ(als.Rotation.z, tmat), t_node->mTransformation *= tmat;
+ // create array for one child node
+ t_node->mNumChildren = 1;
+ t_node->mChildren = new aiNode*[t_node->mNumChildren];
+ SceneCombiner::Copy(&t_node->mChildren[0], found_node);
+ t_node->mChildren[0]->mParent = t_node;
+ ch_node.push_back(t_node);
+ }// for(const CAMFImporter_NodeElement* ne: pConstellation.Child)
+
+ // copy found aiNode's as children
+ if(ch_node.size() == 0) throw DeadlyImportError("<constellation> must have at least one <instance>.");
+
+ size_t ch_idx = 0;
+
+ con_node->mNumChildren = static_cast<unsigned int>(ch_node.size());
+ con_node->mChildren = new aiNode*[con_node->mNumChildren];
+ for(aiNode* node: ch_node) con_node->mChildren[ch_idx++] = node;
+
+ // and place "root" of <constellation> node to node list
+ pNodeList.push_back(con_node);
+}
+
+void AMFImporter::Postprocess_BuildScene(aiScene* pScene)
+{
+std::list<aiNode*> node_list;
+std::list<aiMesh*> mesh_list;
+std::list<CAMFImporter_NodeElement_Metadata*> meta_list;
+
+ //
+ // Because for AMF "material" is just complex colors mixing so aiMaterial will not be used.
+ // For building aiScene we are must to do few steps:
+ // at first creating root node for aiScene.
+ pScene->mRootNode = new aiNode;
+ pScene->mRootNode->mParent = nullptr;
+ pScene->mFlags |= AI_SCENE_FLAGS_ALLOW_SHARED;
+ // search for root(<amf>) element
+ CAMFImporter_NodeElement* root_el = nullptr;
+
+ for(CAMFImporter_NodeElement* ne: mNodeElement_List)
+ {
+ if(ne->Type != CAMFImporter_NodeElement::ENET_Root) continue;
+
+ root_el = ne;
+
+ break;
+ }// for(const CAMFImporter_NodeElement* ne: mNodeElement_List)
+
+ // Check if root element are found.
+ if(root_el == nullptr) throw DeadlyImportError("Root(<amf>) element not found.");
+
+ // after that walk through children of root and collect data. Five types of nodes can be placed at top level - in <amf>: <object>, <material>, <texture>,
+ // <constellation> and <metadata>. But at first we must read <material> and <texture> because they will be used in <object>. <metadata> can be read
+ // at any moment.
+ //
+ // 1. <material>
+ // 2. <texture> will be converted later when processing triangles list. \sa Postprocess_BuildMeshSet
+ for(const CAMFImporter_NodeElement* root_child: root_el->Child)
+ {
+ if(root_child->Type == CAMFImporter_NodeElement::ENET_Material) Postprocess_BuildMaterial(*((CAMFImporter_NodeElement_Material*)root_child));
+ }
+
+ // After "appearance" nodes we must read <object> because it will be used in <constellation> -> <instance>.
+ //
+ // 3. <object>
+ for(const CAMFImporter_NodeElement* root_child: root_el->Child)
+ {
+ if(root_child->Type == CAMFImporter_NodeElement::ENET_Object)
+ {
+ aiNode* tnode = nullptr;
+
+ // for <object> mesh and node must be built: object ID assigned to aiNode name and will be used in future for <instance>
+ Postprocess_BuildNodeAndObject(*((CAMFImporter_NodeElement_Object*)root_child), mesh_list, &tnode);
+ if(tnode != nullptr) node_list.push_back(tnode);
+
+ }
+ }// for(const CAMFImporter_NodeElement* root_child: root_el->Child)
+
+ // And finally read rest of nodes.
+ //
+ for(const CAMFImporter_NodeElement* root_child: root_el->Child)
+ {
+ // 4. <constellation>
+ if(root_child->Type == CAMFImporter_NodeElement::ENET_Constellation)
+ {
+ // <object> and <constellation> at top of self abstraction use aiNode. So we can use only aiNode list for creating new aiNode's.
+ Postprocess_BuildConstellation(*((CAMFImporter_NodeElement_Constellation*)root_child), node_list);
+ }
+
+ // 5, <metadata>
+ if(root_child->Type == CAMFImporter_NodeElement::ENET_Metadata) meta_list.push_back((CAMFImporter_NodeElement_Metadata*)root_child);
+ }// for(const CAMFImporter_NodeElement* root_child: root_el->Child)
+
+ // at now we can add collected metadata to root node
+ Postprocess_AddMetadata(meta_list, *pScene->mRootNode);
+ //
+ // Check constellation children
+ //
+ // As said in specification:
+ // "When multiple objects and constellations are defined in a single file, only the top level objects and constellations are available for printing."
+ // What that means? For example: if some object is used in constellation then you must show only constellation but not original object.
+ // And at this step we are checking that relations.
+nl_clean_loop:
+
+ if(node_list.size() > 1)
+ {
+ // walk through all nodes
+ for(std::list<aiNode*>::iterator nl_it = node_list.begin(); nl_it != node_list.end(); nl_it++)
+ {
+ // and try to find them in another top nodes.
+ std::list<aiNode*>::const_iterator next_it = nl_it;
+
+ next_it++;
+ for(; next_it != node_list.end(); next_it++)
+ {
+ if((*next_it)->FindNode((*nl_it)->mName) != nullptr)
+ {
+ // if current top node(nl_it) found in another top node then erase it from node_list and restart search loop.
+ node_list.erase(nl_it);
+
+ goto nl_clean_loop;
+ }
+ }// for(; next_it != node_list.end(); next_it++)
+ }// for(std::list<aiNode*>::const_iterator nl_it = node_list.begin(); nl_it != node_list.end(); nl_it++)
+ }
+
+ //
+ // move created objects to aiScene
+ //
+ //
+ // Nodes
+ if(node_list.size() > 0)
+ {
+ std::list<aiNode*>::const_iterator nl_it = node_list.begin();
+
+ pScene->mRootNode->mNumChildren = static_cast<unsigned int>(node_list.size());
+ pScene->mRootNode->mChildren = new aiNode*[pScene->mRootNode->mNumChildren];
+ for(size_t i = 0; i < pScene->mRootNode->mNumChildren; i++)
+ {
+ // Objects and constellation that must be showed placed at top of hierarchy in <amf> node. So all aiNode's in node_list must have
+ // mRootNode only as parent.
+ (*nl_it)->mParent = pScene->mRootNode;
+ pScene->mRootNode->mChildren[i] = *nl_it++;
+ }
+ }// if(node_list.size() > 0)
+
+ //
+ // Meshes
+ if(mesh_list.size() > 0)
+ {
+ std::list<aiMesh*>::const_iterator ml_it = mesh_list.begin();
+
+ pScene->mNumMeshes = static_cast<unsigned int>(mesh_list.size());
+ pScene->mMeshes = new aiMesh*[pScene->mNumMeshes];
+ for(size_t i = 0; i < pScene->mNumMeshes; i++) pScene->mMeshes[i] = *ml_it++;
+ }// if(mesh_list.size() > 0)
+
+ //
+ // Textures
+ pScene->mNumTextures = static_cast<unsigned int>(mTexture_Converted.size());
+ if(pScene->mNumTextures > 0)
+ {
+ size_t idx;
+
+ idx = 0;
+ pScene->mTextures = new aiTexture*[pScene->mNumTextures];
+ for(const SPP_Texture& tex_convd: mTexture_Converted)
+ {
+ pScene->mTextures[idx] = new aiTexture;
+ pScene->mTextures[idx]->mWidth = static_cast<unsigned int>(tex_convd.Width);
+ pScene->mTextures[idx]->mHeight = static_cast<unsigned int>(tex_convd.Height);
+ pScene->mTextures[idx]->pcData = (aiTexel*)tex_convd.Data;
+ // texture format description.
+ strcpy(pScene->mTextures[idx]->achFormatHint, tex_convd.FormatHint);
+ idx++;
+ }// for(const SPP_Texture& tex_convd: mTexture_Converted)
+
+ // Create materials for embedded textures.
+ idx = 0;
+ pScene->mNumMaterials = static_cast<unsigned int>(mTexture_Converted.size());
+ pScene->mMaterials = new aiMaterial*[pScene->mNumMaterials];
+ for(const SPP_Texture& tex_convd: mTexture_Converted)
+ {
+ const aiString texture_id(AI_EMBEDDED_TEXNAME_PREFIX + to_string(idx));
+ const int mode = aiTextureOp_Multiply;
+ const int repeat = tex_convd.Tiled ? 1 : 0;
+
+ pScene->mMaterials[idx] = new aiMaterial;
+ pScene->mMaterials[idx]->AddProperty(&texture_id, AI_MATKEY_TEXTURE_DIFFUSE(0));
+ pScene->mMaterials[idx]->AddProperty(&mode, 1, AI_MATKEY_TEXOP_DIFFUSE(0));
+ pScene->mMaterials[idx]->AddProperty(&repeat, 1, AI_MATKEY_MAPPINGMODE_U_DIFFUSE(0));
+ pScene->mMaterials[idx]->AddProperty(&repeat, 1, AI_MATKEY_MAPPINGMODE_V_DIFFUSE(0));
+ idx++;
+ }
+ }// if(pScene->mNumTextures > 0)
+}// END: after that walk through children of root and collect data
+
+}// namespace Assimp
+
+#endif // !ASSIMP_BUILD_NO_AMF_IMPORTER