summaryrefslogtreecommitdiffstats
path: root/src/3rdparty/assimp/code/FBXConverter.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/3rdparty/assimp/code/FBXConverter.cpp')
-rw-r--r--src/3rdparty/assimp/code/FBXConverter.cpp3356
1 files changed, 0 insertions, 3356 deletions
diff --git a/src/3rdparty/assimp/code/FBXConverter.cpp b/src/3rdparty/assimp/code/FBXConverter.cpp
deleted file mode 100644
index 24bdfdd11..000000000
--- a/src/3rdparty/assimp/code/FBXConverter.cpp
+++ /dev/null
@@ -1,3356 +0,0 @@
-/*
-Open Asset Import Library (assimp)
-----------------------------------------------------------------------
-
-Copyright (c) 2006-2017, assimp team
-
-All rights reserved.
-
-Redistribution and use of this software in source and binary forms,
-with or without modification, are permitted provided that the
-following conditions are met:
-
-* Redistributions of source code must retain the above
- copyright notice, this list of conditions and the
- following disclaimer.
-
-* Redistributions in binary form must reproduce the above
- copyright notice, this list of conditions and the
- following disclaimer in the documentation and/or other
- materials provided with the distribution.
-
-* Neither the name of the assimp team, nor the names of its
- contributors may be used to endorse or promote products
- derived from this software without specific prior
- written permission of the assimp team.
-
-THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
-OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
-SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
-LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
-DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
-THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
-(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
-OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-
-----------------------------------------------------------------------
-*/
-
-/** @file FBXConverter.cpp
- * @brief Implementation of the FBX DOM -> aiScene converter
- */
-
-#ifndef ASSIMP_BUILD_NO_FBX_IMPORTER
-
-#include "FBXConverter.h"
-#include "FBXParser.h"
-#include "FBXMeshGeometry.h"
-#include "FBXDocument.h"
-#include "FBXUtil.h"
-#include "FBXProperties.h"
-#include "FBXImporter.h"
-#include "StringComparison.h"
-
-#include <assimp/scene.h>
-
-#include <tuple>
-#include <memory>
-#include <iterator>
-#include <vector>
-
-namespace Assimp {
-namespace FBX {
-
-using namespace Util;
-
-
-#define MAGIC_NODE_TAG "_$AssimpFbx$"
-
-#define CONVERT_FBX_TIME(time) static_cast<double>(time) / 46186158000L
-
-// XXX vc9's debugger won't step into anonymous namespaces
-//namespace {
-
-/** Dummy class to encapsulate the conversion process */
-class Converter
-{
-public:
- /**
- * The different parts that make up the final local transformation of a fbx-node
- */
- enum TransformationComp
- {
- TransformationComp_Translation = 0,
- TransformationComp_RotationOffset,
- TransformationComp_RotationPivot,
- TransformationComp_PreRotation,
- TransformationComp_Rotation,
- TransformationComp_PostRotation,
- TransformationComp_RotationPivotInverse,
- TransformationComp_ScalingOffset,
- TransformationComp_ScalingPivot,
- TransformationComp_Scaling,
- TransformationComp_ScalingPivotInverse,
- TransformationComp_GeometricTranslation,
- TransformationComp_GeometricRotation,
- TransformationComp_GeometricScaling,
-
- TransformationComp_MAXIMUM
- };
-
-public:
- Converter( aiScene* out, const Document& doc );
- ~Converter();
-
-private:
- // ------------------------------------------------------------------------------------------------
- // find scene root and trigger recursive scene conversion
- void ConvertRootNode();
-
- // ------------------------------------------------------------------------------------------------
- // collect and assign child nodes
- void ConvertNodes( uint64_t id, aiNode& parent, const aiMatrix4x4& parent_transform = aiMatrix4x4() );
-
- // ------------------------------------------------------------------------------------------------
- void ConvertLights( const Model& model );
-
- // ------------------------------------------------------------------------------------------------
- void ConvertCameras( const Model& model );
-
- // ------------------------------------------------------------------------------------------------
- void ConvertLight( const Model& model, const Light& light );
-
- // ------------------------------------------------------------------------------------------------
- void ConvertCamera( const Model& model, const Camera& cam );
-
- // ------------------------------------------------------------------------------------------------
- // this returns unified names usable within assimp identifiers (i.e. no space characters -
- // while these would be allowed, they are a potential trouble spot so better not use them).
- const char* NameTransformationComp( TransformationComp comp );
-
- // ------------------------------------------------------------------------------------------------
- // note: this returns the REAL fbx property names
- const char* NameTransformationCompProperty( TransformationComp comp );
-
- // ------------------------------------------------------------------------------------------------
- aiVector3D TransformationCompDefaultValue( TransformationComp comp );
-
- // ------------------------------------------------------------------------------------------------
- void GetRotationMatrix( Model::RotOrder mode, const aiVector3D& rotation, aiMatrix4x4& out );
- // ------------------------------------------------------------------------------------------------
- /**
- * checks if a node has more than just scaling, rotation and translation components
- */
- bool NeedsComplexTransformationChain( const Model& model );
-
- // ------------------------------------------------------------------------------------------------
- // note: name must be a FixNodeName() result
- std::string NameTransformationChainNode( const std::string& name, TransformationComp comp );
-
- // ------------------------------------------------------------------------------------------------
- /**
- * note: memory for output_nodes will be managed by the caller
- */
- void GenerateTransformationNodeChain( const Model& model, std::vector<aiNode*>& output_nodes );
-
- // ------------------------------------------------------------------------------------------------
- void SetupNodeMetadata( const Model& model, aiNode& nd );
-
- // ------------------------------------------------------------------------------------------------
- void ConvertModel( const Model& model, aiNode& nd, const aiMatrix4x4& node_global_transform );
-
- // ------------------------------------------------------------------------------------------------
- // MeshGeometry -> aiMesh, return mesh index + 1 or 0 if the conversion failed
- std::vector<unsigned int> ConvertMesh( const MeshGeometry& mesh, const Model& model,
- const aiMatrix4x4& node_global_transform );
-
- // ------------------------------------------------------------------------------------------------
- aiMesh* SetupEmptyMesh( const MeshGeometry& mesh );
-
- // ------------------------------------------------------------------------------------------------
- unsigned int ConvertMeshSingleMaterial( const MeshGeometry& mesh, const Model& model,
- const aiMatrix4x4& node_global_transform );
-
- // ------------------------------------------------------------------------------------------------
- std::vector<unsigned int> ConvertMeshMultiMaterial( const MeshGeometry& mesh, const Model& model,
- const aiMatrix4x4& node_global_transform );
-
- // ------------------------------------------------------------------------------------------------
- unsigned int ConvertMeshMultiMaterial( const MeshGeometry& mesh, const Model& model,
- MatIndexArray::value_type index,
- const aiMatrix4x4& node_global_transform );
-
- // ------------------------------------------------------------------------------------------------
- static const unsigned int NO_MATERIAL_SEPARATION = /* std::numeric_limits<unsigned int>::max() */
- static_cast<unsigned int>(-1);
-
- // ------------------------------------------------------------------------------------------------
- /**
- * - if materialIndex == NO_MATERIAL_SEPARATION, materials are not taken into
- * account when determining which weights to include.
- * - outputVertStartIndices is only used when a material index is specified, it gives for
- * each output vertex the DOM index it maps to.
- */
- void ConvertWeights( aiMesh* out, const Model& model, const MeshGeometry& geo,
- const aiMatrix4x4& node_global_transform = aiMatrix4x4(),
- unsigned int materialIndex = NO_MATERIAL_SEPARATION,
- std::vector<unsigned int>* outputVertStartIndices = NULL );
-
- // ------------------------------------------------------------------------------------------------
- void ConvertCluster( std::vector<aiBone*>& bones, const Model& /*model*/, const Cluster& cl,
- std::vector<size_t>& out_indices,
- std::vector<size_t>& index_out_indices,
- std::vector<size_t>& count_out_indices,
- const aiMatrix4x4& node_global_transform );
-
- // ------------------------------------------------------------------------------------------------
- void ConvertMaterialForMesh( aiMesh* out, const Model& model, const MeshGeometry& geo,
- MatIndexArray::value_type materialIndex );
-
- // ------------------------------------------------------------------------------------------------
- unsigned int GetDefaultMaterial();
-
-
- // ------------------------------------------------------------------------------------------------
- // Material -> aiMaterial
- unsigned int ConvertMaterial( const Material& material, const MeshGeometry* const mesh );
-
- // ------------------------------------------------------------------------------------------------
- // Video -> aiTexture
- unsigned int ConvertVideo( const Video& video );
-
- // ------------------------------------------------------------------------------------------------
- void TrySetTextureProperties( aiMaterial* out_mat, const TextureMap& textures,
- const std::string& propName,
- aiTextureType target, const MeshGeometry* const mesh );
-
- // ------------------------------------------------------------------------------------------------
- void TrySetTextureProperties( aiMaterial* out_mat, const LayeredTextureMap& layeredTextures,
- const std::string& propName,
- aiTextureType target, const MeshGeometry* const mesh );
-
- // ------------------------------------------------------------------------------------------------
- void SetTextureProperties( aiMaterial* out_mat, const TextureMap& textures, const MeshGeometry* const mesh );
-
- // ------------------------------------------------------------------------------------------------
- void SetTextureProperties( aiMaterial* out_mat, const LayeredTextureMap& layeredTextures, const MeshGeometry* const mesh );
-
- // ------------------------------------------------------------------------------------------------
- aiColor3D GetColorPropertyFromMaterial( const PropertyTable& props, const std::string& baseName,
- bool& result );
-
- // ------------------------------------------------------------------------------------------------
- void SetShadingPropertiesCommon( aiMaterial* out_mat, const PropertyTable& props );
-
- // ------------------------------------------------------------------------------------------------
- // get the number of fps for a FrameRate enumerated value
- static double FrameRateToDouble( FileGlobalSettings::FrameRate fp, double customFPSVal = -1.0 );
-
- // ------------------------------------------------------------------------------------------------
- // convert animation data to aiAnimation et al
- void ConvertAnimations();
-
- // ------------------------------------------------------------------------------------------------
- // rename a node already partially converted. fixed_name is a string previously returned by
- // FixNodeName, new_name specifies the string FixNodeName should return on all further invocations
- // which would previously have returned the old value.
- //
- // this also updates names in node animations, cameras and light sources and is thus slow.
- //
- // NOTE: the caller is responsible for ensuring that the new name is unique and does
- // not collide with any other identifiers. The best way to ensure this is to only
- // append to the old name, which is guaranteed to match these requirements.
- void RenameNode( const std::string& fixed_name, const std::string& new_name );
-
- // ------------------------------------------------------------------------------------------------
- // takes a fbx node name and returns the identifier to be used in the assimp output scene.
- // the function is guaranteed to provide consistent results over multiple invocations
- // UNLESS RenameNode() is called for a particular node name.
- std::string FixNodeName( const std::string& name );
-
- typedef std::map<const AnimationCurveNode*, const AnimationLayer*> LayerMap;
-
- // XXX: better use multi_map ..
- typedef std::map<std::string, std::vector<const AnimationCurveNode*> > NodeMap;
-
-
- // ------------------------------------------------------------------------------------------------
- void ConvertAnimationStack( const AnimationStack& st );
-
- // ------------------------------------------------------------------------------------------------
- void GenerateNodeAnimations( std::vector<aiNodeAnim*>& node_anims,
- const std::string& fixed_name,
- const std::vector<const AnimationCurveNode*>& curves,
- const LayerMap& layer_map,
- int64_t start, int64_t stop,
- double& max_time,
- double& min_time );
-
- // ------------------------------------------------------------------------------------------------
- bool IsRedundantAnimationData( const Model& target,
- TransformationComp comp,
- const std::vector<const AnimationCurveNode*>& curves );
-
- // ------------------------------------------------------------------------------------------------
- aiNodeAnim* GenerateRotationNodeAnim( const std::string& name,
- const Model& target,
- const std::vector<const AnimationCurveNode*>& curves,
- const LayerMap& layer_map,
- int64_t start, int64_t stop,
- double& max_time,
- double& min_time );
-
- // ------------------------------------------------------------------------------------------------
- aiNodeAnim* GenerateScalingNodeAnim( const std::string& name,
- const Model& /*target*/,
- const std::vector<const AnimationCurveNode*>& curves,
- const LayerMap& layer_map,
- int64_t start, int64_t stop,
- double& max_time,
- double& min_time );
-
- // ------------------------------------------------------------------------------------------------
- aiNodeAnim* GenerateTranslationNodeAnim( const std::string& name,
- const Model& /*target*/,
- const std::vector<const AnimationCurveNode*>& curves,
- const LayerMap& layer_map,
- int64_t start, int64_t stop,
- double& max_time,
- double& min_time,
- bool inverse = false );
-
- // ------------------------------------------------------------------------------------------------
- // generate node anim, extracting only Rotation, Scaling and Translation from the given chain
- aiNodeAnim* GenerateSimpleNodeAnim( const std::string& name,
- const Model& target,
- NodeMap::const_iterator chain[ TransformationComp_MAXIMUM ],
- NodeMap::const_iterator iter_end,
- const LayerMap& layer_map,
- int64_t start, int64_t stop,
- double& max_time,
- double& min_time,
- bool reverse_order = false );
-
- // key (time), value, mapto (component index)
- typedef std::tuple<std::shared_ptr<KeyTimeList>, std::shared_ptr<KeyValueList>, unsigned int > KeyFrameList;
- typedef std::vector<KeyFrameList> KeyFrameListList;
-
- // ------------------------------------------------------------------------------------------------
- KeyFrameListList GetKeyframeList( const std::vector<const AnimationCurveNode*>& nodes, int64_t start, int64_t stop );
-
- // ------------------------------------------------------------------------------------------------
- KeyTimeList GetKeyTimeList( const KeyFrameListList& inputs );
-
- // ------------------------------------------------------------------------------------------------
- void InterpolateKeys( aiVectorKey* valOut, const KeyTimeList& keys, const KeyFrameListList& inputs,
- const aiVector3D& def_value,
- double& max_time,
- double& min_time );
-
- // ------------------------------------------------------------------------------------------------
- void InterpolateKeys( aiQuatKey* valOut, const KeyTimeList& keys, const KeyFrameListList& inputs,
- const aiVector3D& def_value,
- double& maxTime,
- double& minTime,
- Model::RotOrder order );
-
- // ------------------------------------------------------------------------------------------------
- void ConvertTransformOrder_TRStoSRT( aiQuatKey* out_quat, aiVectorKey* out_scale,
- aiVectorKey* out_translation,
- const KeyFrameListList& scaling,
- const KeyFrameListList& translation,
- const KeyFrameListList& rotation,
- const KeyTimeList& times,
- double& maxTime,
- double& minTime,
- Model::RotOrder order,
- const aiVector3D& def_scale,
- const aiVector3D& def_translate,
- const aiVector3D& def_rotation );
-
- // ------------------------------------------------------------------------------------------------
- // euler xyz -> quat
- aiQuaternion EulerToQuaternion( const aiVector3D& rot, Model::RotOrder order );
-
- // ------------------------------------------------------------------------------------------------
- void ConvertScaleKeys( aiNodeAnim* na, const std::vector<const AnimationCurveNode*>& nodes, const LayerMap& /*layers*/,
- int64_t start, int64_t stop,
- double& maxTime,
- double& minTime );
-
- // ------------------------------------------------------------------------------------------------
- void ConvertTranslationKeys( aiNodeAnim* na, const std::vector<const AnimationCurveNode*>& nodes,
- const LayerMap& /*layers*/,
- int64_t start, int64_t stop,
- double& maxTime,
- double& minTime );
-
- // ------------------------------------------------------------------------------------------------
- void ConvertRotationKeys( aiNodeAnim* na, const std::vector<const AnimationCurveNode*>& nodes,
- const LayerMap& /*layers*/,
- int64_t start, int64_t stop,
- double& maxTime,
- double& minTime,
- Model::RotOrder order );
-
- // ------------------------------------------------------------------------------------------------
- // copy generated meshes, animations, lights, cameras and textures to the output scene
- void TransferDataToScene();
-
-private:
-
- // 0: not assigned yet, others: index is value - 1
- unsigned int defaultMaterialIndex;
-
- std::vector<aiMesh*> meshes;
- std::vector<aiMaterial*> materials;
- std::vector<aiAnimation*> animations;
- std::vector<aiLight*> lights;
- std::vector<aiCamera*> cameras;
- std::vector<aiTexture*> textures;
-
- typedef std::map<const Material*, unsigned int> MaterialMap;
- MaterialMap materials_converted;
-
- typedef std::map<const Video*, unsigned int> VideoMap;
- VideoMap textures_converted;
-
- typedef std::map<const Geometry*, std::vector<unsigned int> > MeshMap;
- MeshMap meshes_converted;
-
- // fixed node name -> which trafo chain components have animations?
- typedef std::map<std::string, unsigned int> NodeAnimBitMap;
- NodeAnimBitMap node_anim_chain_bits;
-
- // name -> has had its prefix_stripped?
- typedef std::map<std::string, bool> NodeNameMap;
- NodeNameMap node_names;
-
- typedef std::map<std::string, std::string> NameNameMap;
- NameNameMap renamed_nodes;
-
- double anim_fps;
-
- aiScene* const out;
- const FBX::Document& doc;
-
- bool FindTextureIndexByFilename(const Video& video, unsigned int& index) {
- index = 0;
- const char* videoFileName = video.FileName().c_str();
- for (auto texture = textures_converted.begin(); texture != textures_converted.end(); ++texture) {
- if (!strcmp(texture->first->FileName().c_str(), videoFileName)) {
- index = texture->second;
- return true;
- }
- }
- return false;
- }
-};
-
-Converter::Converter( aiScene* out, const Document& doc )
- : defaultMaterialIndex()
- , out( out )
- , doc( doc )
-{
- // animations need to be converted first since this will
- // populate the node_anim_chain_bits map, which is needed
- // to determine which nodes need to be generated.
- ConvertAnimations();
- ConvertRootNode();
-
- if ( doc.Settings().readAllMaterials ) {
- // unfortunately this means we have to evaluate all objects
- for( const ObjectMap::value_type& v : doc.Objects() ) {
-
- const Object* ob = v.second->Get();
- if ( !ob ) {
- continue;
- }
-
- const Material* mat = dynamic_cast<const Material*>( ob );
- if ( mat ) {
-
- if ( materials_converted.find( mat ) == materials_converted.end() ) {
- ConvertMaterial( *mat, 0 );
- }
- }
- }
- }
-
- TransferDataToScene();
-
- // if we didn't read any meshes set the AI_SCENE_FLAGS_INCOMPLETE
- // to make sure the scene passes assimp's validation. FBX files
- // need not contain geometry (i.e. camera animations, raw armatures).
- if ( out->mNumMeshes == 0 ) {
- out->mFlags |= AI_SCENE_FLAGS_INCOMPLETE;
- }
-}
-
-
-Converter::~Converter()
-{
- std::for_each( meshes.begin(), meshes.end(), Util::delete_fun<aiMesh>() );
- std::for_each( materials.begin(), materials.end(), Util::delete_fun<aiMaterial>() );
- std::for_each( animations.begin(), animations.end(), Util::delete_fun<aiAnimation>() );
- std::for_each( lights.begin(), lights.end(), Util::delete_fun<aiLight>() );
- std::for_each( cameras.begin(), cameras.end(), Util::delete_fun<aiCamera>() );
- std::for_each( textures.begin(), textures.end(), Util::delete_fun<aiTexture>() );
-}
-
-void Converter::ConvertRootNode()
-{
- out->mRootNode = new aiNode();
- out->mRootNode->mName.Set( "RootNode" );
-
- // root has ID 0
- ConvertNodes( 0L, *out->mRootNode );
-}
-
-
-void Converter::ConvertNodes( uint64_t id, aiNode& parent, const aiMatrix4x4& parent_transform )
-{
- const std::vector<const Connection*>& conns = doc.GetConnectionsByDestinationSequenced( id, "Model" );
-
- std::vector<aiNode*> nodes;
- nodes.reserve( conns.size() );
-
- std::vector<aiNode*> nodes_chain;
-
- try {
- for( const Connection* con : conns ) {
-
- // ignore object-property links
- if ( con->PropertyName().length() ) {
- continue;
- }
-
- const Object* const object = con->SourceObject();
- if ( !object ) {
- FBXImporter::LogWarn( "failed to convert source object for Model link" );
- continue;
- }
-
- const Model* const model = dynamic_cast<const Model*>( object );
-
- if ( model ) {
- nodes_chain.clear();
-
- aiMatrix4x4 new_abs_transform = parent_transform;
-
- // even though there is only a single input node, the design of
- // assimp (or rather: the complicated transformation chain that
- // is employed by fbx) means that we may need multiple aiNode's
- // to represent a fbx node's transformation.
- GenerateTransformationNodeChain( *model, nodes_chain );
-
- ai_assert( nodes_chain.size() );
-
- const std::string& original_name = FixNodeName( model->Name() );
-
- // check if any of the nodes in the chain has the name the fbx node
- // is supposed to have. If there is none, add another node to
- // preserve the name - people might have scripts etc. that rely
- // on specific node names.
- aiNode* name_carrier = NULL;
- for( aiNode* prenode : nodes_chain ) {
- if ( !strcmp( prenode->mName.C_Str(), original_name.c_str() ) ) {
- name_carrier = prenode;
- break;
- }
- }
-
- if ( !name_carrier ) {
- nodes_chain.push_back( new aiNode( original_name ) );
- }
-
- //setup metadata on newest node
- SetupNodeMetadata( *model, *nodes_chain.back() );
-
- // link all nodes in a row
- aiNode* last_parent = &parent;
- for( aiNode* prenode : nodes_chain ) {
- ai_assert( prenode );
-
- if ( last_parent != &parent ) {
- last_parent->mNumChildren = 1;
- last_parent->mChildren = new aiNode*[ 1 ];
- last_parent->mChildren[ 0 ] = prenode;
- }
-
- prenode->mParent = last_parent;
- last_parent = prenode;
-
- new_abs_transform *= prenode->mTransformation;
- }
-
- // attach geometry
- ConvertModel( *model, *nodes_chain.back(), new_abs_transform );
-
- // attach sub-nodes
- ConvertNodes( model->ID(), *nodes_chain.back(), new_abs_transform );
-
- if ( doc.Settings().readLights ) {
- ConvertLights( *model );
- }
-
- if ( doc.Settings().readCameras ) {
- ConvertCameras( *model );
- }
-
- nodes.push_back( nodes_chain.front() );
- nodes_chain.clear();
- }
- }
-
- if ( nodes.size() ) {
- parent.mChildren = new aiNode*[ nodes.size() ]();
- parent.mNumChildren = static_cast<unsigned int>( nodes.size() );
-
- std::swap_ranges( nodes.begin(), nodes.end(), parent.mChildren );
- }
- }
- catch ( std::exception& ) {
- Util::delete_fun<aiNode> deleter;
- std::for_each( nodes.begin(), nodes.end(), deleter );
- std::for_each( nodes_chain.begin(), nodes_chain.end(), deleter );
- }
-}
-
-
-void Converter::ConvertLights( const Model& model )
-{
- const std::vector<const NodeAttribute*>& node_attrs = model.GetAttributes();
- for( const NodeAttribute* attr : node_attrs ) {
- const Light* const light = dynamic_cast<const Light*>( attr );
- if ( light ) {
- ConvertLight( model, *light );
- }
- }
-}
-
-void Converter::ConvertCameras( const Model& model )
-{
- const std::vector<const NodeAttribute*>& node_attrs = model.GetAttributes();
- for( const NodeAttribute* attr : node_attrs ) {
- const Camera* const cam = dynamic_cast<const Camera*>( attr );
- if ( cam ) {
- ConvertCamera( model, *cam );
- }
- }
-}
-
-void Converter::ConvertLight( const Model& model, const Light& light )
-{
- lights.push_back( new aiLight() );
- aiLight* const out_light = lights.back();
-
- out_light->mName.Set( FixNodeName( model.Name() ) );
-
- const float intensity = light.Intensity() / 100.0f;
- const aiVector3D& col = light.Color();
-
- out_light->mColorDiffuse = aiColor3D( col.x, col.y, col.z );
- out_light->mColorDiffuse.r *= intensity;
- out_light->mColorDiffuse.g *= intensity;
- out_light->mColorDiffuse.b *= intensity;
-
- out_light->mColorSpecular = out_light->mColorDiffuse;
-
- //lights are defined along negative y direction
- out_light->mPosition = aiVector3D(0.0f);
- out_light->mDirection = aiVector3D(0.0f, -1.0f, 0.0f);
- out_light->mUp = aiVector3D(0.0f, 0.0f, -1.0f);
-
- switch ( light.LightType() )
- {
- case Light::Type_Point:
- out_light->mType = aiLightSource_POINT;
- break;
-
- case Light::Type_Directional:
- out_light->mType = aiLightSource_DIRECTIONAL;
- break;
-
- case Light::Type_Spot:
- out_light->mType = aiLightSource_SPOT;
- out_light->mAngleOuterCone = AI_DEG_TO_RAD( light.OuterAngle() );
- out_light->mAngleInnerCone = AI_DEG_TO_RAD( light.InnerAngle() );
- break;
-
- case Light::Type_Area:
- FBXImporter::LogWarn( "cannot represent area light, set to UNDEFINED" );
- out_light->mType = aiLightSource_UNDEFINED;
- break;
-
- case Light::Type_Volume:
- FBXImporter::LogWarn( "cannot represent volume light, set to UNDEFINED" );
- out_light->mType = aiLightSource_UNDEFINED;
- break;
- default:
- ai_assert( false );
- }
-
- float decay = light.DecayStart();
- switch ( light.DecayType() )
- {
- case Light::Decay_None:
- out_light->mAttenuationConstant = decay;
- out_light->mAttenuationLinear = 0.0f;
- out_light->mAttenuationQuadratic = 0.0f;
- break;
- case Light::Decay_Linear:
- out_light->mAttenuationConstant = 0.0f;
- out_light->mAttenuationLinear = 2.0f / decay;
- out_light->mAttenuationQuadratic = 0.0f;
- break;
- case Light::Decay_Quadratic:
- out_light->mAttenuationConstant = 0.0f;
- out_light->mAttenuationLinear = 0.0f;
- out_light->mAttenuationQuadratic = 2.0f / (decay * decay);
- break;
- case Light::Decay_Cubic:
- FBXImporter::LogWarn( "cannot represent cubic attenuation, set to Quadratic" );
- out_light->mAttenuationQuadratic = 1.0f;
- break;
- default:
- ai_assert( false );
- }
-}
-
-void Converter::ConvertCamera( const Model& model, const Camera& cam )
-{
- cameras.push_back( new aiCamera() );
- aiCamera* const out_camera = cameras.back();
-
- out_camera->mName.Set( FixNodeName( model.Name() ) );
-
- out_camera->mAspect = cam.AspectWidth() / cam.AspectHeight();
- //cameras are defined along positive x direction
- out_camera->mPosition = aiVector3D(0.0f);
- out_camera->mLookAt = aiVector3D(1.0f, 0.0f, 0.0f);
- out_camera->mUp = aiVector3D(0.0f, 1.0f, 0.0f);
- out_camera->mHorizontalFOV = AI_DEG_TO_RAD( cam.FieldOfView() );
- out_camera->mClipPlaneNear = cam.NearPlane();
- out_camera->mClipPlaneFar = cam.FarPlane();
-}
-
-
-const char* Converter::NameTransformationComp( TransformationComp comp )
-{
- switch ( comp )
- {
- case TransformationComp_Translation:
- return "Translation";
- case TransformationComp_RotationOffset:
- return "RotationOffset";
- case TransformationComp_RotationPivot:
- return "RotationPivot";
- case TransformationComp_PreRotation:
- return "PreRotation";
- case TransformationComp_Rotation:
- return "Rotation";
- case TransformationComp_PostRotation:
- return "PostRotation";
- case TransformationComp_RotationPivotInverse:
- return "RotationPivotInverse";
- case TransformationComp_ScalingOffset:
- return "ScalingOffset";
- case TransformationComp_ScalingPivot:
- return "ScalingPivot";
- case TransformationComp_Scaling:
- return "Scaling";
- case TransformationComp_ScalingPivotInverse:
- return "ScalingPivotInverse";
- case TransformationComp_GeometricScaling:
- return "GeometricScaling";
- case TransformationComp_GeometricRotation:
- return "GeometricRotation";
- case TransformationComp_GeometricTranslation:
- return "GeometricTranslation";
- case TransformationComp_MAXIMUM: // this is to silence compiler warnings
- default:
- break;
- }
-
- ai_assert( false );
- return NULL;
-}
-
-const char* Converter::NameTransformationCompProperty( TransformationComp comp )
-{
- switch ( comp )
- {
- case TransformationComp_Translation:
- return "Lcl Translation";
- case TransformationComp_RotationOffset:
- return "RotationOffset";
- case TransformationComp_RotationPivot:
- return "RotationPivot";
- case TransformationComp_PreRotation:
- return "PreRotation";
- case TransformationComp_Rotation:
- return "Lcl Rotation";
- case TransformationComp_PostRotation:
- return "PostRotation";
- case TransformationComp_RotationPivotInverse:
- return "RotationPivotInverse";
- case TransformationComp_ScalingOffset:
- return "ScalingOffset";
- case TransformationComp_ScalingPivot:
- return "ScalingPivot";
- case TransformationComp_Scaling:
- return "Lcl Scaling";
- case TransformationComp_ScalingPivotInverse:
- return "ScalingPivotInverse";
- case TransformationComp_GeometricScaling:
- return "GeometricScaling";
- case TransformationComp_GeometricRotation:
- return "GeometricRotation";
- case TransformationComp_GeometricTranslation:
- return "GeometricTranslation";
- case TransformationComp_MAXIMUM: // this is to silence compiler warnings
- break;
- }
-
- ai_assert( false );
- return NULL;
-}
-
-aiVector3D Converter::TransformationCompDefaultValue( TransformationComp comp )
-{
- // XXX a neat way to solve the never-ending special cases for scaling
- // would be to do everything in log space!
- return comp == TransformationComp_Scaling ? aiVector3D( 1.f, 1.f, 1.f ) : aiVector3D();
-}
-
-void Converter::GetRotationMatrix( Model::RotOrder mode, const aiVector3D& rotation, aiMatrix4x4& out )
-{
- if ( mode == Model::RotOrder_SphericXYZ ) {
- FBXImporter::LogError( "Unsupported RotationMode: SphericXYZ" );
- out = aiMatrix4x4();
- return;
- }
-
- const float angle_epsilon = 1e-6f;
-
- out = aiMatrix4x4();
-
- bool is_id[ 3 ] = { true, true, true };
-
- aiMatrix4x4 temp[ 3 ];
- if ( std::fabs( rotation.z ) > angle_epsilon ) {
- aiMatrix4x4::RotationZ( AI_DEG_TO_RAD( rotation.z ), temp[ 2 ] );
- is_id[ 2 ] = false;
- }
- if ( std::fabs( rotation.y ) > angle_epsilon ) {
- aiMatrix4x4::RotationY( AI_DEG_TO_RAD( rotation.y ), temp[ 1 ] );
- is_id[ 1 ] = false;
- }
- if ( std::fabs( rotation.x ) > angle_epsilon ) {
- aiMatrix4x4::RotationX( AI_DEG_TO_RAD( rotation.x ), temp[ 0 ] );
- is_id[ 0 ] = false;
- }
-
- int order[ 3 ] = { -1, -1, -1 };
-
- // note: rotation order is inverted since we're left multiplying as is usual in assimp
- switch ( mode )
- {
- case Model::RotOrder_EulerXYZ:
- order[ 0 ] = 2;
- order[ 1 ] = 1;
- order[ 2 ] = 0;
- break;
-
- case Model::RotOrder_EulerXZY:
- order[ 0 ] = 1;
- order[ 1 ] = 2;
- order[ 2 ] = 0;
- break;
-
- case Model::RotOrder_EulerYZX:
- order[ 0 ] = 0;
- order[ 1 ] = 2;
- order[ 2 ] = 1;
- break;
-
- case Model::RotOrder_EulerYXZ:
- order[ 0 ] = 2;
- order[ 1 ] = 0;
- order[ 2 ] = 1;
- break;
-
- case Model::RotOrder_EulerZXY:
- order[ 0 ] = 1;
- order[ 1 ] = 0;
- order[ 2 ] = 2;
- break;
-
- case Model::RotOrder_EulerZYX:
- order[ 0 ] = 0;
- order[ 1 ] = 1;
- order[ 2 ] = 2;
- break;
-
- default:
- ai_assert( false );
- }
-
- ai_assert( ( order[ 0 ] >= 0 ) && ( order[ 0 ] <= 2 ) );
- ai_assert( ( order[ 1 ] >= 0 ) && ( order[ 1 ] <= 2 ) );
- ai_assert( ( order[ 2 ] >= 0 ) && ( order[ 2 ] <= 2 ) );
-
- if ( !is_id[ order[ 0 ] ] ) {
- out = temp[ order[ 0 ] ];
- }
-
- if ( !is_id[ order[ 1 ] ] ) {
- out = out * temp[ order[ 1 ] ];
- }
-
- if ( !is_id[ order[ 2 ] ] ) {
- out = out * temp[ order[ 2 ] ];
- }
-}
-
-bool Converter::NeedsComplexTransformationChain( const Model& model )
-{
- const PropertyTable& props = model.Props();
- bool ok;
-
- const float zero_epsilon = 1e-6f;
- for ( size_t i = 0; i < TransformationComp_MAXIMUM; ++i ) {
- const TransformationComp comp = static_cast< TransformationComp >( i );
-
- if ( comp == TransformationComp_Rotation || comp == TransformationComp_Scaling || comp == TransformationComp_Translation ||
- comp == TransformationComp_GeometricScaling || comp == TransformationComp_GeometricRotation || comp == TransformationComp_GeometricTranslation ) {
- continue;
- }
-
- const aiVector3D& v = PropertyGet<aiVector3D>( props, NameTransformationCompProperty( comp ), ok );
- if ( ok && v.SquareLength() > zero_epsilon ) {
- return true;
- }
- }
-
- return false;
-}
-
-std::string Converter::NameTransformationChainNode( const std::string& name, TransformationComp comp )
-{
- return name + std::string( MAGIC_NODE_TAG ) + "_" + NameTransformationComp( comp );
-}
-
-void Converter::GenerateTransformationNodeChain( const Model& model, std::vector<aiNode*>& output_nodes )
-{
- const PropertyTable& props = model.Props();
- const Model::RotOrder rot = model.RotationOrder();
-
- bool ok;
-
- aiMatrix4x4 chain[ TransformationComp_MAXIMUM ];
- std::fill_n( chain, static_cast<unsigned int>( TransformationComp_MAXIMUM ), aiMatrix4x4() );
-
- // generate transformation matrices for all the different transformation components
- const float zero_epsilon = 1e-6f;
- bool is_complex = false;
-
- const aiVector3D& PreRotation = PropertyGet<aiVector3D>( props, "PreRotation", ok );
- if ( ok && PreRotation.SquareLength() > zero_epsilon ) {
- is_complex = true;
-
- GetRotationMatrix( rot, PreRotation, chain[ TransformationComp_PreRotation ] );
- }
-
- const aiVector3D& PostRotation = PropertyGet<aiVector3D>( props, "PostRotation", ok );
- if ( ok && PostRotation.SquareLength() > zero_epsilon ) {
- is_complex = true;
-
- GetRotationMatrix( rot, PostRotation, chain[ TransformationComp_PostRotation ] );
- }
-
- const aiVector3D& RotationPivot = PropertyGet<aiVector3D>( props, "RotationPivot", ok );
- if ( ok && RotationPivot.SquareLength() > zero_epsilon ) {
- is_complex = true;
-
- aiMatrix4x4::Translation( RotationPivot, chain[ TransformationComp_RotationPivot ] );
- aiMatrix4x4::Translation( -RotationPivot, chain[ TransformationComp_RotationPivotInverse ] );
- }
-
- const aiVector3D& RotationOffset = PropertyGet<aiVector3D>( props, "RotationOffset", ok );
- if ( ok && RotationOffset.SquareLength() > zero_epsilon ) {
- is_complex = true;
-
- aiMatrix4x4::Translation( RotationOffset, chain[ TransformationComp_RotationOffset ] );
- }
-
- const aiVector3D& ScalingOffset = PropertyGet<aiVector3D>( props, "ScalingOffset", ok );
- if ( ok && ScalingOffset.SquareLength() > zero_epsilon ) {
- is_complex = true;
-
- aiMatrix4x4::Translation( ScalingOffset, chain[ TransformationComp_ScalingOffset ] );
- }
-
- const aiVector3D& ScalingPivot = PropertyGet<aiVector3D>( props, "ScalingPivot", ok );
- if ( ok && ScalingPivot.SquareLength() > zero_epsilon ) {
- is_complex = true;
-
- aiMatrix4x4::Translation( ScalingPivot, chain[ TransformationComp_ScalingPivot ] );
- aiMatrix4x4::Translation( -ScalingPivot, chain[ TransformationComp_ScalingPivotInverse ] );
- }
-
- const aiVector3D& Translation = PropertyGet<aiVector3D>( props, "Lcl Translation", ok );
- if ( ok && Translation.SquareLength() > zero_epsilon ) {
- aiMatrix4x4::Translation( Translation, chain[ TransformationComp_Translation ] );
- }
-
- const aiVector3D& Scaling = PropertyGet<aiVector3D>( props, "Lcl Scaling", ok );
- if ( ok && std::fabs( Scaling.SquareLength() - 1.0f ) > zero_epsilon ) {
- aiMatrix4x4::Scaling( Scaling, chain[ TransformationComp_Scaling ] );
- }
-
- const aiVector3D& Rotation = PropertyGet<aiVector3D>( props, "Lcl Rotation", ok );
- if ( ok && Rotation.SquareLength() > zero_epsilon ) {
- GetRotationMatrix( rot, Rotation, chain[ TransformationComp_Rotation ] );
- }
-
- const aiVector3D& GeometricScaling = PropertyGet<aiVector3D>( props, "GeometricScaling", ok );
- if ( ok && std::fabs( GeometricScaling.SquareLength() - 1.0f ) > zero_epsilon ) {
- aiMatrix4x4::Scaling( GeometricScaling, chain[ TransformationComp_GeometricScaling ] );
- }
-
- const aiVector3D& GeometricRotation = PropertyGet<aiVector3D>( props, "GeometricRotation", ok );
- if ( ok && GeometricRotation.SquareLength() > zero_epsilon ) {
- GetRotationMatrix( rot, GeometricRotation, chain[ TransformationComp_GeometricRotation ] );
- }
-
- const aiVector3D& GeometricTranslation = PropertyGet<aiVector3D>( props, "GeometricTranslation", ok );
- if ( ok && GeometricTranslation.SquareLength() > zero_epsilon ) {
- aiMatrix4x4::Translation( GeometricTranslation, chain[ TransformationComp_GeometricTranslation ] );
- }
-
- // is_complex needs to be consistent with NeedsComplexTransformationChain()
- // or the interplay between this code and the animation converter would
- // not be guaranteed.
- ai_assert( NeedsComplexTransformationChain( model ) == is_complex );
-
- const std::string& name = FixNodeName( model.Name() );
-
- // now, if we have more than just Translation, Scaling and Rotation,
- // we need to generate a full node chain to accommodate for assimp's
- // lack to express pivots and offsets.
- if ( is_complex && doc.Settings().preservePivots ) {
- FBXImporter::LogInfo( "generating full transformation chain for node: " + name );
-
- // query the anim_chain_bits dictionary to find out which chain elements
- // have associated node animation channels. These can not be dropped
- // even if they have identity transform in bind pose.
- NodeAnimBitMap::const_iterator it = node_anim_chain_bits.find( name );
- const unsigned int anim_chain_bitmask = ( it == node_anim_chain_bits.end() ? 0 : ( *it ).second );
-
- unsigned int bit = 0x1;
- for ( size_t i = 0; i < TransformationComp_MAXIMUM; ++i, bit <<= 1 ) {
- const TransformationComp comp = static_cast<TransformationComp>( i );
-
- if ( chain[ i ].IsIdentity() && ( anim_chain_bitmask & bit ) == 0 ) {
- continue;
- }
-
- if ( comp == TransformationComp_PostRotation ) {
- chain[ i ] = chain[ i ].Inverse();
- }
-
- aiNode* nd = new aiNode();
- output_nodes.push_back( nd );
-
- nd->mName.Set( NameTransformationChainNode( name, comp ) );
- nd->mTransformation = chain[ i ];
- }
-
- ai_assert( output_nodes.size() );
- return;
- }
-
- // else, we can just multiply the matrices together
- aiNode* nd = new aiNode();
- output_nodes.push_back( nd );
-
- nd->mName.Set( name );
-
- for (const auto &transform : chain) {
- nd->mTransformation = nd->mTransformation * transform;
- }
-}
-
-void Converter::SetupNodeMetadata( const Model& model, aiNode& nd )
-{
- const PropertyTable& props = model.Props();
- DirectPropertyMap unparsedProperties = props.GetUnparsedProperties();
-
- // create metadata on node
- const std::size_t numStaticMetaData = 2;
- aiMetadata* data = aiMetadata::Alloc( static_cast<unsigned int>(unparsedProperties.size() + numStaticMetaData) );
- nd.mMetaData = data;
- int index = 0;
-
- // find user defined properties (3ds Max)
- data->Set( index++, "UserProperties", aiString( PropertyGet<std::string>( props, "UDP3DSMAX", "" ) ) );
- // preserve the info that a node was marked as Null node in the original file.
- data->Set( index++, "IsNull", model.IsNull() ? true : false );
-
- // add unparsed properties to the node's metadata
- for( const DirectPropertyMap::value_type& prop : unparsedProperties ) {
- // Interpret the property as a concrete type
- if ( const TypedProperty<bool>* interpreted = prop.second->As<TypedProperty<bool> >() ) {
- data->Set( index++, prop.first, interpreted->Value() );
- } else if ( const TypedProperty<int>* interpreted = prop.second->As<TypedProperty<int> >() ) {
- data->Set( index++, prop.first, interpreted->Value() );
- } else if ( const TypedProperty<uint64_t>* interpreted = prop.second->As<TypedProperty<uint64_t> >() ) {
- data->Set( index++, prop.first, interpreted->Value() );
- } else if ( const TypedProperty<float>* interpreted = prop.second->As<TypedProperty<float> >() ) {
- data->Set( index++, prop.first, interpreted->Value() );
- } else if ( const TypedProperty<std::string>* interpreted = prop.second->As<TypedProperty<std::string> >() ) {
- data->Set( index++, prop.first, aiString( interpreted->Value() ) );
- } else if ( const TypedProperty<aiVector3D>* interpreted = prop.second->As<TypedProperty<aiVector3D> >() ) {
- data->Set( index++, prop.first, interpreted->Value() );
- } else {
- ai_assert( false );
- }
- }
-}
-
-void Converter::ConvertModel( const Model& model, aiNode& nd, const aiMatrix4x4& node_global_transform )
-{
- const std::vector<const Geometry*>& geos = model.GetGeometry();
-
- std::vector<unsigned int> meshes;
- meshes.reserve( geos.size() );
-
- for( const Geometry* geo : geos ) {
-
- const MeshGeometry* const mesh = dynamic_cast< const MeshGeometry* >( geo );
- if ( mesh ) {
- const std::vector<unsigned int>& indices = ConvertMesh( *mesh, model, node_global_transform );
- std::copy( indices.begin(), indices.end(), std::back_inserter( meshes ) );
- }
- else {
- FBXImporter::LogWarn( "ignoring unrecognized geometry: " + geo->Name() );
- }
- }
-
- if ( meshes.size() ) {
- nd.mMeshes = new unsigned int[ meshes.size() ]();
- nd.mNumMeshes = static_cast< unsigned int >( meshes.size() );
-
- std::swap_ranges( meshes.begin(), meshes.end(), nd.mMeshes );
- }
-}
-
-std::vector<unsigned int> Converter::ConvertMesh( const MeshGeometry& mesh, const Model& model,
- const aiMatrix4x4& node_global_transform )
-{
- std::vector<unsigned int> temp;
-
- MeshMap::const_iterator it = meshes_converted.find( &mesh );
- if ( it != meshes_converted.end() ) {
- std::copy( ( *it ).second.begin(), ( *it ).second.end(), std::back_inserter( temp ) );
- return temp;
- }
-
- const std::vector<aiVector3D>& vertices = mesh.GetVertices();
- const std::vector<unsigned int>& faces = mesh.GetFaceIndexCounts();
- if ( vertices.empty() || faces.empty() ) {
- FBXImporter::LogWarn( "ignoring empty geometry: " + mesh.Name() );
- return temp;
- }
-
- // one material per mesh maps easily to aiMesh. Multiple material
- // meshes need to be split.
- const MatIndexArray& mindices = mesh.GetMaterialIndices();
- if ( doc.Settings().readMaterials && !mindices.empty() ) {
- const MatIndexArray::value_type base = mindices[ 0 ];
- for( MatIndexArray::value_type index : mindices ) {
- if ( index != base ) {
- return ConvertMeshMultiMaterial( mesh, model, node_global_transform );
- }
- }
- }
-
- // faster code-path, just copy the data
- temp.push_back( ConvertMeshSingleMaterial( mesh, model, node_global_transform ) );
- return temp;
-}
-
-aiMesh* Converter::SetupEmptyMesh( const MeshGeometry& mesh )
-{
- aiMesh* const out_mesh = new aiMesh();
- meshes.push_back( out_mesh );
- meshes_converted[ &mesh ].push_back( static_cast<unsigned int>( meshes.size() - 1 ) );
-
- // set name
- std::string name = mesh.Name();
- if ( name.substr( 0, 10 ) == "Geometry::" ) {
- name = name.substr( 10 );
- }
-
- if ( name.length() ) {
- out_mesh->mName.Set( name );
- }
-
- return out_mesh;
-}
-
-unsigned int Converter::ConvertMeshSingleMaterial( const MeshGeometry& mesh, const Model& model,
- const aiMatrix4x4& node_global_transform )
-{
- const MatIndexArray& mindices = mesh.GetMaterialIndices();
- aiMesh* const out_mesh = SetupEmptyMesh( mesh );
-
- const std::vector<aiVector3D>& vertices = mesh.GetVertices();
- const std::vector<unsigned int>& faces = mesh.GetFaceIndexCounts();
-
- // copy vertices
- out_mesh->mNumVertices = static_cast<unsigned int>( vertices.size() );
- out_mesh->mVertices = new aiVector3D[ vertices.size() ];
- std::copy( vertices.begin(), vertices.end(), out_mesh->mVertices );
-
- // generate dummy faces
- out_mesh->mNumFaces = static_cast<unsigned int>( faces.size() );
- aiFace* fac = out_mesh->mFaces = new aiFace[ faces.size() ]();
-
- unsigned int cursor = 0;
- for( unsigned int pcount : faces ) {
- aiFace& f = *fac++;
- f.mNumIndices = pcount;
- f.mIndices = new unsigned int[ pcount ];
- switch ( pcount )
- {
- case 1:
- out_mesh->mPrimitiveTypes |= aiPrimitiveType_POINT;
- break;
- case 2:
- out_mesh->mPrimitiveTypes |= aiPrimitiveType_LINE;
- break;
- case 3:
- out_mesh->mPrimitiveTypes |= aiPrimitiveType_TRIANGLE;
- break;
- default:
- out_mesh->mPrimitiveTypes |= aiPrimitiveType_POLYGON;
- break;
- }
- for ( unsigned int i = 0; i < pcount; ++i ) {
- f.mIndices[ i ] = cursor++;
- }
- }
-
- // copy normals
- const std::vector<aiVector3D>& normals = mesh.GetNormals();
- if ( normals.size() ) {
- ai_assert( normals.size() == vertices.size() );
-
- out_mesh->mNormals = new aiVector3D[ vertices.size() ];
- std::copy( normals.begin(), normals.end(), out_mesh->mNormals );
- }
-
- // copy tangents - assimp requires both tangents and bitangents (binormals)
- // to be present, or neither of them. Compute binormals from normals
- // and tangents if needed.
- const std::vector<aiVector3D>& tangents = mesh.GetTangents();
- const std::vector<aiVector3D>* binormals = &mesh.GetBinormals();
-
- if ( tangents.size() ) {
- std::vector<aiVector3D> tempBinormals;
- if ( !binormals->size() ) {
- if ( normals.size() ) {
- tempBinormals.resize( normals.size() );
- for ( unsigned int i = 0; i < tangents.size(); ++i ) {
- tempBinormals[ i ] = normals[ i ] ^ tangents[ i ];
- }
-
- binormals = &tempBinormals;
- }
- else {
- binormals = NULL;
- }
- }
-
- if ( binormals ) {
- ai_assert( tangents.size() == vertices.size() );
- ai_assert( binormals->size() == vertices.size() );
-
- out_mesh->mTangents = new aiVector3D[ vertices.size() ];
- std::copy( tangents.begin(), tangents.end(), out_mesh->mTangents );
-
- out_mesh->mBitangents = new aiVector3D[ vertices.size() ];
- std::copy( binormals->begin(), binormals->end(), out_mesh->mBitangents );
- }
- }
-
- // copy texture coords
- for ( unsigned int i = 0; i < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++i ) {
- const std::vector<aiVector2D>& uvs = mesh.GetTextureCoords( i );
- if ( uvs.empty() ) {
- break;
- }
-
- aiVector3D* out_uv = out_mesh->mTextureCoords[ i ] = new aiVector3D[ vertices.size() ];
- for( const aiVector2D& v : uvs ) {
- *out_uv++ = aiVector3D( v.x, v.y, 0.0f );
- }
-
- out_mesh->mNumUVComponents[ i ] = 2;
- }
-
- // copy vertex colors
- for ( unsigned int i = 0; i < AI_MAX_NUMBER_OF_COLOR_SETS; ++i ) {
- const std::vector<aiColor4D>& colors = mesh.GetVertexColors( i );
- if ( colors.empty() ) {
- break;
- }
-
- out_mesh->mColors[ i ] = new aiColor4D[ vertices.size() ];
- std::copy( colors.begin(), colors.end(), out_mesh->mColors[ i ] );
- }
-
- if ( !doc.Settings().readMaterials || mindices.empty() ) {
- FBXImporter::LogError( "no material assigned to mesh, setting default material" );
- out_mesh->mMaterialIndex = GetDefaultMaterial();
- }
- else {
- ConvertMaterialForMesh( out_mesh, model, mesh, mindices[ 0 ] );
- }
-
- if ( doc.Settings().readWeights && mesh.DeformerSkin() != NULL ) {
- ConvertWeights( out_mesh, model, mesh, node_global_transform, NO_MATERIAL_SEPARATION );
- }
-
- return static_cast<unsigned int>( meshes.size() - 1 );
-}
-
-std::vector<unsigned int> Converter::ConvertMeshMultiMaterial( const MeshGeometry& mesh, const Model& model,
- const aiMatrix4x4& node_global_transform )
-{
- const MatIndexArray& mindices = mesh.GetMaterialIndices();
- ai_assert( mindices.size() );
-
- std::set<MatIndexArray::value_type> had;
- std::vector<unsigned int> indices;
-
- for( MatIndexArray::value_type index : mindices ) {
- if ( had.find( index ) == had.end() ) {
-
- indices.push_back( ConvertMeshMultiMaterial( mesh, model, index, node_global_transform ) );
- had.insert( index );
- }
- }
-
- return indices;
-}
-
-unsigned int Converter::ConvertMeshMultiMaterial( const MeshGeometry& mesh, const Model& model,
- MatIndexArray::value_type index,
- const aiMatrix4x4& node_global_transform )
-{
- aiMesh* const out_mesh = SetupEmptyMesh( mesh );
-
- const MatIndexArray& mindices = mesh.GetMaterialIndices();
- const std::vector<aiVector3D>& vertices = mesh.GetVertices();
- const std::vector<unsigned int>& faces = mesh.GetFaceIndexCounts();
-
- const bool process_weights = doc.Settings().readWeights && mesh.DeformerSkin() != NULL;
-
- unsigned int count_faces = 0;
- unsigned int count_vertices = 0;
-
- // count faces
- std::vector<unsigned int>::const_iterator itf = faces.begin();
- for ( MatIndexArray::const_iterator it = mindices.begin(),
- end = mindices.end(); it != end; ++it, ++itf )
- {
- if ( ( *it ) != index ) {
- continue;
- }
- ++count_faces;
- count_vertices += *itf;
- }
-
- ai_assert( count_faces );
- ai_assert( count_vertices );
-
- // mapping from output indices to DOM indexing, needed to resolve weights
- std::vector<unsigned int> reverseMapping;
-
- if ( process_weights ) {
- reverseMapping.resize( count_vertices );
- }
-
- // allocate output data arrays, but don't fill them yet
- out_mesh->mNumVertices = count_vertices;
- out_mesh->mVertices = new aiVector3D[ count_vertices ];
-
- out_mesh->mNumFaces = count_faces;
- aiFace* fac = out_mesh->mFaces = new aiFace[ count_faces ]();
-
-
- // allocate normals
- const std::vector<aiVector3D>& normals = mesh.GetNormals();
- if ( normals.size() ) {
- ai_assert( normals.size() == vertices.size() );
- out_mesh->mNormals = new aiVector3D[ vertices.size() ];
- }
-
- // allocate tangents, binormals.
- const std::vector<aiVector3D>& tangents = mesh.GetTangents();
- const std::vector<aiVector3D>* binormals = &mesh.GetBinormals();
- std::vector<aiVector3D> tempBinormals;
-
- if ( tangents.size() ) {
- if ( !binormals->size() ) {
- if ( normals.size() ) {
- // XXX this computes the binormals for the entire mesh, not only
- // the part for which we need them.
- tempBinormals.resize( normals.size() );
- for ( unsigned int i = 0; i < tangents.size(); ++i ) {
- tempBinormals[ i ] = normals[ i ] ^ tangents[ i ];
- }
-
- binormals = &tempBinormals;
- }
- else {
- binormals = NULL;
- }
- }
-
- if ( binormals ) {
- ai_assert( tangents.size() == vertices.size() && binormals->size() == vertices.size() );
-
- out_mesh->mTangents = new aiVector3D[ vertices.size() ];
- out_mesh->mBitangents = new aiVector3D[ vertices.size() ];
- }
- }
-
- // allocate texture coords
- unsigned int num_uvs = 0;
- for ( unsigned int i = 0; i < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++i, ++num_uvs ) {
- const std::vector<aiVector2D>& uvs = mesh.GetTextureCoords( i );
- if ( uvs.empty() ) {
- break;
- }
-
- out_mesh->mTextureCoords[ i ] = new aiVector3D[ vertices.size() ];
- out_mesh->mNumUVComponents[ i ] = 2;
- }
-
- // allocate vertex colors
- unsigned int num_vcs = 0;
- for ( unsigned int i = 0; i < AI_MAX_NUMBER_OF_COLOR_SETS; ++i, ++num_vcs ) {
- const std::vector<aiColor4D>& colors = mesh.GetVertexColors( i );
- if ( colors.empty() ) {
- break;
- }
-
- out_mesh->mColors[ i ] = new aiColor4D[ vertices.size() ];
- }
-
- unsigned int cursor = 0, in_cursor = 0;
-
- itf = faces.begin();
- for ( MatIndexArray::const_iterator it = mindices.begin(),
- end = mindices.end(); it != end; ++it, ++itf )
- {
- const unsigned int pcount = *itf;
- if ( ( *it ) != index ) {
- in_cursor += pcount;
- continue;
- }
-
- aiFace& f = *fac++;
-
- f.mNumIndices = pcount;
- f.mIndices = new unsigned int[ pcount ];
- switch ( pcount )
- {
- case 1:
- out_mesh->mPrimitiveTypes |= aiPrimitiveType_POINT;
- break;
- case 2:
- out_mesh->mPrimitiveTypes |= aiPrimitiveType_LINE;
- break;
- case 3:
- out_mesh->mPrimitiveTypes |= aiPrimitiveType_TRIANGLE;
- break;
- default:
- out_mesh->mPrimitiveTypes |= aiPrimitiveType_POLYGON;
- break;
- }
- for ( unsigned int i = 0; i < pcount; ++i, ++cursor, ++in_cursor ) {
- f.mIndices[ i ] = cursor;
-
- if ( reverseMapping.size() ) {
- reverseMapping[ cursor ] = in_cursor;
- }
-
- out_mesh->mVertices[ cursor ] = vertices[ in_cursor ];
-
- if ( out_mesh->mNormals ) {
- out_mesh->mNormals[ cursor ] = normals[ in_cursor ];
- }
-
- if ( out_mesh->mTangents ) {
- out_mesh->mTangents[ cursor ] = tangents[ in_cursor ];
- out_mesh->mBitangents[ cursor ] = ( *binormals )[ in_cursor ];
- }
-
- for ( unsigned int i = 0; i < num_uvs; ++i ) {
- const std::vector<aiVector2D>& uvs = mesh.GetTextureCoords( i );
- out_mesh->mTextureCoords[ i ][ cursor ] = aiVector3D( uvs[ in_cursor ].x, uvs[ in_cursor ].y, 0.0f );
- }
-
- for ( unsigned int i = 0; i < num_vcs; ++i ) {
- const std::vector<aiColor4D>& cols = mesh.GetVertexColors( i );
- out_mesh->mColors[ i ][ cursor ] = cols[ in_cursor ];
- }
- }
- }
-
- ConvertMaterialForMesh( out_mesh, model, mesh, index );
-
- if ( process_weights ) {
- ConvertWeights( out_mesh, model, mesh, node_global_transform, index, &reverseMapping );
- }
-
- return static_cast<unsigned int>( meshes.size() - 1 );
-}
-
-void Converter::ConvertWeights( aiMesh* out, const Model& model, const MeshGeometry& geo,
- const aiMatrix4x4& node_global_transform ,
- unsigned int materialIndex,
- std::vector<unsigned int>* outputVertStartIndices )
-{
- ai_assert( geo.DeformerSkin() );
-
- std::vector<size_t> out_indices;
- std::vector<size_t> index_out_indices;
- std::vector<size_t> count_out_indices;
-
- const Skin& sk = *geo.DeformerSkin();
-
- std::vector<aiBone*> bones;
- bones.reserve( sk.Clusters().size() );
-
- const bool no_mat_check = materialIndex == NO_MATERIAL_SEPARATION;
- ai_assert( no_mat_check || outputVertStartIndices );
-
- try {
-
- for( const Cluster* cluster : sk.Clusters() ) {
- ai_assert( cluster );
-
- const WeightIndexArray& indices = cluster->GetIndices();
-
- if ( indices.empty() ) {
- continue;
- }
-
- const MatIndexArray& mats = geo.GetMaterialIndices();
-
- bool ok = false;
-
- const size_t no_index_sentinel = std::numeric_limits<size_t>::max();
-
- count_out_indices.clear();
- index_out_indices.clear();
- out_indices.clear();
-
- // now check if *any* of these weights is contained in the output mesh,
- // taking notes so we don't need to do it twice.
- for( WeightIndexArray::value_type index : indices ) {
-
- unsigned int count = 0;
- const unsigned int* const out_idx = geo.ToOutputVertexIndex( index, count );
- // ToOutputVertexIndex only returns NULL if index is out of bounds
- // which should never happen
- ai_assert( out_idx != NULL );
-
- index_out_indices.push_back( no_index_sentinel );
- count_out_indices.push_back( 0 );
-
- for ( unsigned int i = 0; i < count; ++i ) {
- if ( no_mat_check || static_cast<size_t>( mats[ geo.FaceForVertexIndex( out_idx[ i ] ) ] ) == materialIndex ) {
-
- if ( index_out_indices.back() == no_index_sentinel ) {
- index_out_indices.back() = out_indices.size();
-
- }
-
- if ( no_mat_check ) {
- out_indices.push_back( out_idx[ i ] );
- }
- else {
- // this extra lookup is in O(logn), so the entire algorithm becomes O(nlogn)
- const std::vector<unsigned int>::iterator it = std::lower_bound(
- outputVertStartIndices->begin(),
- outputVertStartIndices->end(),
- out_idx[ i ]
- );
-
- out_indices.push_back( std::distance( outputVertStartIndices->begin(), it ) );
- }
-
- ++count_out_indices.back();
- ok = true;
- }
- }
- }
-
- // if we found at least one, generate the output bones
- // XXX this could be heavily simplified by collecting the bone
- // data in a single step.
- if ( ok ) {
- ConvertCluster( bones, model, *cluster, out_indices, index_out_indices,
- count_out_indices, node_global_transform );
- }
- }
- }
- catch ( std::exception& ) {
- std::for_each( bones.begin(), bones.end(), Util::delete_fun<aiBone>() );
- throw;
- }
-
- if ( bones.empty() ) {
- return;
- }
-
- out->mBones = new aiBone*[ bones.size() ]();
- out->mNumBones = static_cast<unsigned int>( bones.size() );
-
- std::swap_ranges( bones.begin(), bones.end(), out->mBones );
-}
-
-void Converter::ConvertCluster( std::vector<aiBone*>& bones, const Model& /*model*/, const Cluster& cl,
- std::vector<size_t>& out_indices,
- std::vector<size_t>& index_out_indices,
- std::vector<size_t>& count_out_indices,
- const aiMatrix4x4& node_global_transform )
-{
-
- aiBone* const bone = new aiBone();
- bones.push_back( bone );
-
- bone->mName = FixNodeName( cl.TargetNode()->Name() );
-
- bone->mOffsetMatrix = cl.TransformLink();
- bone->mOffsetMatrix.Inverse();
-
- bone->mOffsetMatrix = bone->mOffsetMatrix * node_global_transform;
-
- bone->mNumWeights = static_cast<unsigned int>( out_indices.size() );
- aiVertexWeight* cursor = bone->mWeights = new aiVertexWeight[ out_indices.size() ];
-
- const size_t no_index_sentinel = std::numeric_limits<size_t>::max();
- const WeightArray& weights = cl.GetWeights();
-
- const size_t c = index_out_indices.size();
- for ( size_t i = 0; i < c; ++i ) {
- const size_t index_index = index_out_indices[ i ];
-
- if ( index_index == no_index_sentinel ) {
- continue;
- }
-
- const size_t cc = count_out_indices[ i ];
- for ( size_t j = 0; j < cc; ++j ) {
- aiVertexWeight& out_weight = *cursor++;
-
- out_weight.mVertexId = static_cast<unsigned int>( out_indices[ index_index + j ] );
- out_weight.mWeight = weights[ i ];
- }
- }
-}
-
-void Converter::ConvertMaterialForMesh( aiMesh* out, const Model& model, const MeshGeometry& geo,
- MatIndexArray::value_type materialIndex )
-{
- // locate source materials for this mesh
- const std::vector<const Material*>& mats = model.GetMaterials();
- if ( static_cast<unsigned int>( materialIndex ) >= mats.size() || materialIndex < 0 ) {
- FBXImporter::LogError( "material index out of bounds, setting default material" );
- out->mMaterialIndex = GetDefaultMaterial();
- return;
- }
-
- const Material* const mat = mats[ materialIndex ];
- MaterialMap::const_iterator it = materials_converted.find( mat );
- if ( it != materials_converted.end() ) {
- out->mMaterialIndex = ( *it ).second;
- return;
- }
-
- out->mMaterialIndex = ConvertMaterial( *mat, &geo );
- materials_converted[ mat ] = out->mMaterialIndex;
-}
-
-unsigned int Converter::GetDefaultMaterial()
-{
- if ( defaultMaterialIndex ) {
- return defaultMaterialIndex - 1;
- }
-
- aiMaterial* out_mat = new aiMaterial();
- materials.push_back( out_mat );
-
- const aiColor3D diffuse = aiColor3D( 0.8f, 0.8f, 0.8f );
- out_mat->AddProperty( &diffuse, 1, AI_MATKEY_COLOR_DIFFUSE );
-
- aiString s;
- s.Set( AI_DEFAULT_MATERIAL_NAME );
-
- out_mat->AddProperty( &s, AI_MATKEY_NAME );
-
- defaultMaterialIndex = static_cast< unsigned int >( materials.size() );
- return defaultMaterialIndex - 1;
-}
-
-
-unsigned int Converter::ConvertMaterial( const Material& material, const MeshGeometry* const mesh )
-{
- const PropertyTable& props = material.Props();
-
- // generate empty output material
- aiMaterial* out_mat = new aiMaterial();
- materials_converted[ &material ] = static_cast<unsigned int>( materials.size() );
-
- materials.push_back( out_mat );
-
- aiString str;
-
- // stip Material:: prefix
- std::string name = material.Name();
- if ( name.substr( 0, 10 ) == "Material::" ) {
- name = name.substr( 10 );
- }
-
- // set material name if not empty - this could happen
- // and there should be no key for it in this case.
- if ( name.length() ) {
- str.Set( name );
- out_mat->AddProperty( &str, AI_MATKEY_NAME );
- }
-
- // shading stuff and colors
- SetShadingPropertiesCommon( out_mat, props );
-
- // texture assignments
- SetTextureProperties( out_mat, material.Textures(), mesh );
- SetTextureProperties( out_mat, material.LayeredTextures(), mesh );
-
- return static_cast<unsigned int>( materials.size() - 1 );
-}
-
-unsigned int Converter::ConvertVideo( const Video& video )
-{
- // generate empty output texture
- aiTexture* out_tex = new aiTexture();
- textures.push_back( out_tex );
-
- // assuming the texture is compressed
- out_tex->mWidth = static_cast<unsigned int>( video.ContentLength() ); // total data size
- out_tex->mHeight = 0; // fixed to 0
-
- // steal the data from the Video to avoid an additional copy
- out_tex->pcData = reinterpret_cast<aiTexel*>( const_cast<Video&>( video ).RelinquishContent() );
-
- // try to extract a hint from the file extension
- const std::string& filename = video.FileName().empty() ? video.RelativeFilename() : video.FileName();
- std::string ext = BaseImporter::GetExtension( filename );
-
- if ( ext == "jpeg" ) {
- ext = "jpg";
- }
-
- if ( ext.size() <= 3 ) {
- memcpy( out_tex->achFormatHint, ext.c_str(), ext.size() );
- }
-
- return static_cast<unsigned int>( textures.size() - 1 );
-}
-
-void Converter::TrySetTextureProperties( aiMaterial* out_mat, const TextureMap& textures,
- const std::string& propName,
- aiTextureType target, const MeshGeometry* const mesh )
-{
- TextureMap::const_iterator it = textures.find( propName );
- if ( it == textures.end() ) {
- return;
- }
-
- const Texture* const tex = ( *it ).second;
- if ( tex != 0 )
- {
- aiString path;
- path.Set( tex->RelativeFilename() );
-
- const Video* media = tex->Media();
- if (media != 0) {
- bool textureReady = false; //tells if our texture is ready (if it was loaded or if it was found)
- unsigned int index;
-
- VideoMap::const_iterator it = textures_converted.find(media);
- if (it != textures_converted.end()) {
- index = (*it).second;
- textureReady = true;
- }
- else {
- if (media->ContentLength() > 0) {
- index = ConvertVideo(*media);
- textures_converted[media] = index;
- textureReady = true;
- }
- else if (doc.Settings().searchEmbeddedTextures) { //try to find the texture on the already-loaded textures by the filename, if the flag is on
- textureReady = FindTextureIndexByFilename(*media, index);
- }
- }
-
- // setup texture reference string (copied from ColladaLoader::FindFilenameForEffectTexture), if the texture is ready
- if (textureReady) {
- path.data[0] = '*';
- path.length = 1 + ASSIMP_itoa10(path.data + 1, MAXLEN - 1, index);
- }
- }
-
- out_mat->AddProperty( &path, _AI_MATKEY_TEXTURE_BASE, target, 0 );
-
- aiUVTransform uvTrafo;
- // XXX handle all kinds of UV transformations
- uvTrafo.mScaling = tex->UVScaling();
- uvTrafo.mTranslation = tex->UVTranslation();
- out_mat->AddProperty( &uvTrafo, 1, _AI_MATKEY_UVTRANSFORM_BASE, target, 0 );
-
- const PropertyTable& props = tex->Props();
-
- int uvIndex = 0;
-
- bool ok;
- const std::string& uvSet = PropertyGet<std::string>( props, "UVSet", ok );
- if ( ok ) {
- // "default" is the name which usually appears in the FbxFileTexture template
- if ( uvSet != "default" && uvSet.length() ) {
- // this is a bit awkward - we need to find a mesh that uses this
- // material and scan its UV channels for the given UV name because
- // assimp references UV channels by index, not by name.
-
- // XXX: the case that UV channels may appear in different orders
- // in meshes is unhandled. A possible solution would be to sort
- // the UV channels alphabetically, but this would have the side
- // effect that the primary (first) UV channel would sometimes
- // be moved, causing trouble when users read only the first
- // UV channel and ignore UV channel assignments altogether.
-
- const unsigned int matIndex = static_cast<unsigned int>( std::distance( materials.begin(),
- std::find( materials.begin(), materials.end(), out_mat )
- ) );
-
-
- uvIndex = -1;
- if ( !mesh )
- {
- for( const MeshMap::value_type& v : meshes_converted ) {
- const MeshGeometry* const mesh = dynamic_cast<const MeshGeometry*> ( v.first );
- if ( !mesh ) {
- continue;
- }
-
- const MatIndexArray& mats = mesh->GetMaterialIndices();
- if ( std::find( mats.begin(), mats.end(), matIndex ) == mats.end() ) {
- continue;
- }
-
- int index = -1;
- for ( unsigned int i = 0; i < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++i ) {
- if ( mesh->GetTextureCoords( i ).empty() ) {
- break;
- }
- const std::string& name = mesh->GetTextureCoordChannelName( i );
- if ( name == uvSet ) {
- index = static_cast<int>( i );
- break;
- }
- }
- if ( index == -1 ) {
- FBXImporter::LogWarn( "did not find UV channel named " + uvSet + " in a mesh using this material" );
- continue;
- }
-
- if ( uvIndex == -1 ) {
- uvIndex = index;
- }
- else {
- FBXImporter::LogWarn( "the UV channel named " + uvSet +
- " appears at different positions in meshes, results will be wrong" );
- }
- }
- }
- else
- {
- int index = -1;
- for ( unsigned int i = 0; i < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++i ) {
- if ( mesh->GetTextureCoords( i ).empty() ) {
- break;
- }
- const std::string& name = mesh->GetTextureCoordChannelName( i );
- if ( name == uvSet ) {
- index = static_cast<int>( i );
- break;
- }
- }
- if ( index == -1 ) {
- FBXImporter::LogWarn( "did not find UV channel named " + uvSet + " in a mesh using this material" );
- }
-
- if ( uvIndex == -1 ) {
- uvIndex = index;
- }
- }
-
- if ( uvIndex == -1 ) {
- FBXImporter::LogWarn( "failed to resolve UV channel " + uvSet + ", using first UV channel" );
- uvIndex = 0;
- }
- }
- }
-
- out_mat->AddProperty( &uvIndex, 1, _AI_MATKEY_UVWSRC_BASE, target, 0 );
- }
-}
-
-void Converter::TrySetTextureProperties( aiMaterial* out_mat, const LayeredTextureMap& layeredTextures,
- const std::string& propName,
- aiTextureType target, const MeshGeometry* const mesh )
-{
- LayeredTextureMap::const_iterator it = layeredTextures.find( propName );
- if ( it == layeredTextures.end() ) {
- return;
- }
-
- int texCount = (*it).second->textureCount();
-
- // Set the blend mode for layered textures
- int blendmode= (*it).second->GetBlendMode();
- out_mat->AddProperty(&blendmode,1,_AI_MATKEY_TEXOP_BASE,target,0);
-
- for(int texIndex = 0; texIndex < texCount; texIndex++){
-
- const Texture* const tex = ( *it ).second->getTexture(texIndex);
-
- aiString path;
- path.Set( tex->RelativeFilename() );
-
- out_mat->AddProperty( &path, _AI_MATKEY_TEXTURE_BASE, target, texIndex );
-
- aiUVTransform uvTrafo;
- // XXX handle all kinds of UV transformations
- uvTrafo.mScaling = tex->UVScaling();
- uvTrafo.mTranslation = tex->UVTranslation();
- out_mat->AddProperty( &uvTrafo, 1, _AI_MATKEY_UVTRANSFORM_BASE, target, texIndex );
-
- const PropertyTable& props = tex->Props();
-
- int uvIndex = 0;
-
- bool ok;
- const std::string& uvSet = PropertyGet<std::string>( props, "UVSet", ok );
- if ( ok ) {
- // "default" is the name which usually appears in the FbxFileTexture template
- if ( uvSet != "default" && uvSet.length() ) {
- // this is a bit awkward - we need to find a mesh that uses this
- // material and scan its UV channels for the given UV name because
- // assimp references UV channels by index, not by name.
-
- // XXX: the case that UV channels may appear in different orders
- // in meshes is unhandled. A possible solution would be to sort
- // the UV channels alphabetically, but this would have the side
- // effect that the primary (first) UV channel would sometimes
- // be moved, causing trouble when users read only the first
- // UV channel and ignore UV channel assignments altogether.
-
- const unsigned int matIndex = static_cast<unsigned int>( std::distance( materials.begin(),
- std::find( materials.begin(), materials.end(), out_mat )
- ) );
-
- uvIndex = -1;
- if ( !mesh )
- {
- for( const MeshMap::value_type& v : meshes_converted ) {
- const MeshGeometry* const mesh = dynamic_cast<const MeshGeometry*> ( v.first );
- if ( !mesh ) {
- continue;
- }
-
- const MatIndexArray& mats = mesh->GetMaterialIndices();
- if ( std::find( mats.begin(), mats.end(), matIndex ) == mats.end() ) {
- continue;
- }
-
- int index = -1;
- for ( unsigned int i = 0; i < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++i ) {
- if ( mesh->GetTextureCoords( i ).empty() ) {
- break;
- }
- const std::string& name = mesh->GetTextureCoordChannelName( i );
- if ( name == uvSet ) {
- index = static_cast<int>( i );
- break;
- }
- }
- if ( index == -1 ) {
- FBXImporter::LogWarn( "did not find UV channel named " + uvSet + " in a mesh using this material" );
- continue;
- }
-
- if ( uvIndex == -1 ) {
- uvIndex = index;
- }
- else {
- FBXImporter::LogWarn( "the UV channel named " + uvSet +
- " appears at different positions in meshes, results will be wrong" );
- }
- }
- }
- else
- {
- int index = -1;
- for ( unsigned int i = 0; i < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++i ) {
- if ( mesh->GetTextureCoords( i ).empty() ) {
- break;
- }
- const std::string& name = mesh->GetTextureCoordChannelName( i );
- if ( name == uvSet ) {
- index = static_cast<int>( i );
- break;
- }
- }
- if ( index == -1 ) {
- FBXImporter::LogWarn( "did not find UV channel named " + uvSet + " in a mesh using this material" );
- }
-
- if ( uvIndex == -1 ) {
- uvIndex = index;
- }
- }
-
- if ( uvIndex == -1 ) {
- FBXImporter::LogWarn( "failed to resolve UV channel " + uvSet + ", using first UV channel" );
- uvIndex = 0;
- }
- }
- }
-
- out_mat->AddProperty( &uvIndex, 1, _AI_MATKEY_UVWSRC_BASE, target, texIndex );
- }
-}
-
-void Converter::SetTextureProperties( aiMaterial* out_mat, const TextureMap& textures, const MeshGeometry* const mesh )
-{
- TrySetTextureProperties( out_mat, textures, "DiffuseColor", aiTextureType_DIFFUSE, mesh );
- TrySetTextureProperties( out_mat, textures, "AmbientColor", aiTextureType_AMBIENT, mesh );
- TrySetTextureProperties( out_mat, textures, "EmissiveColor", aiTextureType_EMISSIVE, mesh );
- TrySetTextureProperties( out_mat, textures, "SpecularColor", aiTextureType_SPECULAR, mesh );
- TrySetTextureProperties( out_mat, textures, "SpecularFactor", aiTextureType_SPECULAR, mesh);
- TrySetTextureProperties( out_mat, textures, "TransparentColor", aiTextureType_OPACITY, mesh );
- TrySetTextureProperties( out_mat, textures, "ReflectionColor", aiTextureType_REFLECTION, mesh );
- TrySetTextureProperties( out_mat, textures, "DisplacementColor", aiTextureType_DISPLACEMENT, mesh );
- TrySetTextureProperties( out_mat, textures, "NormalMap", aiTextureType_NORMALS, mesh );
- TrySetTextureProperties( out_mat, textures, "Bump", aiTextureType_HEIGHT, mesh );
- TrySetTextureProperties( out_mat, textures, "ShininessExponent", aiTextureType_SHININESS, mesh );
-}
-
-void Converter::SetTextureProperties( aiMaterial* out_mat, const LayeredTextureMap& layeredTextures, const MeshGeometry* const mesh )
-{
- TrySetTextureProperties( out_mat, layeredTextures, "DiffuseColor", aiTextureType_DIFFUSE, mesh );
- TrySetTextureProperties( out_mat, layeredTextures, "AmbientColor", aiTextureType_AMBIENT, mesh );
- TrySetTextureProperties( out_mat, layeredTextures, "EmissiveColor", aiTextureType_EMISSIVE, mesh );
- TrySetTextureProperties( out_mat, layeredTextures, "SpecularColor", aiTextureType_SPECULAR, mesh );
- TrySetTextureProperties( out_mat, layeredTextures, "SpecularFactor", aiTextureType_SPECULAR, mesh);
- TrySetTextureProperties( out_mat, layeredTextures, "TransparentColor", aiTextureType_OPACITY, mesh );
- TrySetTextureProperties( out_mat, layeredTextures, "ReflectionColor", aiTextureType_REFLECTION, mesh );
- TrySetTextureProperties( out_mat, layeredTextures, "DisplacementColor", aiTextureType_DISPLACEMENT, mesh );
- TrySetTextureProperties( out_mat, layeredTextures, "NormalMap", aiTextureType_NORMALS, mesh );
- TrySetTextureProperties( out_mat, layeredTextures, "Bump", aiTextureType_HEIGHT, mesh );
- TrySetTextureProperties( out_mat, layeredTextures, "ShininessExponent", aiTextureType_SHININESS, mesh );
-}
-
-aiColor3D Converter::GetColorPropertyFromMaterial( const PropertyTable& props, const std::string& baseName,
- bool& result )
-{
- result = true;
-
- bool ok;
- const aiVector3D& Diffuse = PropertyGet<aiVector3D>( props, baseName, ok );
- if ( ok ) {
- return aiColor3D( Diffuse.x, Diffuse.y, Diffuse.z );
- }
- else {
- aiVector3D DiffuseColor = PropertyGet<aiVector3D>( props, baseName + "Color", ok );
- if ( ok ) {
- float DiffuseFactor = PropertyGet<float>( props, baseName + "Factor", ok );
- if ( ok ) {
- DiffuseColor *= DiffuseFactor;
- }
-
- return aiColor3D( DiffuseColor.x, DiffuseColor.y, DiffuseColor.z );
- }
- }
- result = false;
- return aiColor3D( 0.0f, 0.0f, 0.0f );
-}
-
-
-void Converter::SetShadingPropertiesCommon( aiMaterial* out_mat, const PropertyTable& props )
-{
- // set shading properties. There are various, redundant ways in which FBX materials
- // specify their shading settings (depending on shading models, prop
- // template etc.). No idea which one is right in a particular context.
- // Just try to make sense of it - there's no spec to verify this against,
- // so why should we.
- bool ok;
- const aiColor3D& Diffuse = GetColorPropertyFromMaterial( props, "Diffuse", ok );
- if ( ok ) {
- out_mat->AddProperty( &Diffuse, 1, AI_MATKEY_COLOR_DIFFUSE );
- }
-
- const aiColor3D& Emissive = GetColorPropertyFromMaterial( props, "Emissive", ok );
- if ( ok ) {
- out_mat->AddProperty( &Emissive, 1, AI_MATKEY_COLOR_EMISSIVE );
- }
-
- const aiColor3D& Ambient = GetColorPropertyFromMaterial( props, "Ambient", ok );
- if ( ok ) {
- out_mat->AddProperty( &Ambient, 1, AI_MATKEY_COLOR_AMBIENT );
- }
-
- const aiColor3D& Specular = GetColorPropertyFromMaterial( props, "Specular", ok );
- if ( ok ) {
- out_mat->AddProperty( &Specular, 1, AI_MATKEY_COLOR_SPECULAR );
- }
-
- const float Opacity = PropertyGet<float>( props, "Opacity", ok );
- if ( ok ) {
- out_mat->AddProperty( &Opacity, 1, AI_MATKEY_OPACITY );
- }
-
- const float Reflectivity = PropertyGet<float>( props, "Reflectivity", ok );
- if ( ok ) {
- out_mat->AddProperty( &Reflectivity, 1, AI_MATKEY_REFLECTIVITY );
- }
-
- const float Shininess = PropertyGet<float>( props, "Shininess", ok );
- if ( ok ) {
- out_mat->AddProperty( &Shininess, 1, AI_MATKEY_SHININESS_STRENGTH );
- }
-
- const float ShininessExponent = PropertyGet<float>( props, "ShininessExponent", ok );
- if ( ok ) {
- out_mat->AddProperty( &ShininessExponent, 1, AI_MATKEY_SHININESS );
- }
-
- const float BumpFactor = PropertyGet<float>(props, "BumpFactor", ok);
- if (ok) {
- out_mat->AddProperty(&BumpFactor, 1, AI_MATKEY_BUMPSCALING);
- }
-
- const float DispFactor = PropertyGet<float>(props, "DisplacementFactor", ok);
- if (ok) {
- out_mat->AddProperty(&DispFactor, 1, "$mat.displacementscaling", 0, 0);
- }
-}
-
-
-double Converter::FrameRateToDouble( FileGlobalSettings::FrameRate fp, double customFPSVal )
-{
- switch ( fp ) {
- case FileGlobalSettings::FrameRate_DEFAULT:
- return 1.0;
-
- case FileGlobalSettings::FrameRate_120:
- return 120.0;
-
- case FileGlobalSettings::FrameRate_100:
- return 100.0;
-
- case FileGlobalSettings::FrameRate_60:
- return 60.0;
-
- case FileGlobalSettings::FrameRate_50:
- return 50.0;
-
- case FileGlobalSettings::FrameRate_48:
- return 48.0;
-
- case FileGlobalSettings::FrameRate_30:
- case FileGlobalSettings::FrameRate_30_DROP:
- return 30.0;
-
- case FileGlobalSettings::FrameRate_NTSC_DROP_FRAME:
- case FileGlobalSettings::FrameRate_NTSC_FULL_FRAME:
- return 29.9700262;
-
- case FileGlobalSettings::FrameRate_PAL:
- return 25.0;
-
- case FileGlobalSettings::FrameRate_CINEMA:
- return 24.0;
-
- case FileGlobalSettings::FrameRate_1000:
- return 1000.0;
-
- case FileGlobalSettings::FrameRate_CINEMA_ND:
- return 23.976;
-
- case FileGlobalSettings::FrameRate_CUSTOM:
- return customFPSVal;
-
- case FileGlobalSettings::FrameRate_MAX: // this is to silence compiler warnings
- break;
- }
-
- ai_assert( false );
- return -1.0f;
-}
-
-
-void Converter::ConvertAnimations()
-{
- // first of all determine framerate
- const FileGlobalSettings::FrameRate fps = doc.GlobalSettings().TimeMode();
- const float custom = doc.GlobalSettings().CustomFrameRate();
- anim_fps = FrameRateToDouble( fps, custom );
-
- const std::vector<const AnimationStack*>& animations = doc.AnimationStacks();
- for( const AnimationStack* stack : animations ) {
- ConvertAnimationStack( *stack );
- }
-}
-
-void Converter::RenameNode( const std::string& fixed_name, const std::string& new_name ) {
- if ( node_names.find( fixed_name ) == node_names.end() ) {
- FBXImporter::LogError( "Cannot rename node " + fixed_name + ", not existing.");
- return;
- }
-
- if ( node_names.find( new_name ) != node_names.end() ) {
- FBXImporter::LogError( "Cannot rename node " + fixed_name + " to " + new_name +", name already existing." );
- return;
- }
-
- ai_assert( node_names.find( fixed_name ) != node_names.end() );
- ai_assert( node_names.find( new_name ) == node_names.end() );
-
- renamed_nodes[ fixed_name ] = new_name;
-
- const aiString fn( fixed_name );
-
- for( aiCamera* cam : cameras ) {
- if ( cam->mName == fn ) {
- cam->mName.Set( new_name );
- break;
- }
- }
-
- for( aiLight* light : lights ) {
- if ( light->mName == fn ) {
- light->mName.Set( new_name );
- break;
- }
- }
-
- for( aiAnimation* anim : animations ) {
- for ( unsigned int i = 0; i < anim->mNumChannels; ++i ) {
- aiNodeAnim* const na = anim->mChannels[ i ];
- if ( na->mNodeName == fn ) {
- na->mNodeName.Set( new_name );
- break;
- }
- }
- }
-}
-
-
-std::string Converter::FixNodeName( const std::string& name )
-{
- // strip Model:: prefix, avoiding ambiguities (i.e. don't strip if
- // this causes ambiguities, well possible between empty identifiers,
- // such as "Model::" and ""). Make sure the behaviour is consistent
- // across multiple calls to FixNodeName().
- if ( name.substr( 0, 7 ) == "Model::" ) {
- std::string temp = name.substr( 7 );
-
- const NodeNameMap::const_iterator it = node_names.find( temp );
- if ( it != node_names.end() ) {
- if ( !( *it ).second ) {
- return FixNodeName( name + "_" );
- }
- }
- node_names[ temp ] = true;
-
- const NameNameMap::const_iterator rit = renamed_nodes.find( temp );
- return rit == renamed_nodes.end() ? temp : ( *rit ).second;
- }
-
- const NodeNameMap::const_iterator it = node_names.find( name );
- if ( it != node_names.end() ) {
- if ( ( *it ).second ) {
- return FixNodeName( name + "_" );
- }
- }
- node_names[ name ] = false;
-
- const NameNameMap::const_iterator rit = renamed_nodes.find( name );
- return rit == renamed_nodes.end() ? name : ( *rit ).second;
-}
-
-void Converter::ConvertAnimationStack( const AnimationStack& st )
-{
- const AnimationLayerList& layers = st.Layers();
- if ( layers.empty() ) {
- return;
- }
-
- aiAnimation* const anim = new aiAnimation();
- animations.push_back( anim );
-
- // strip AnimationStack:: prefix
- std::string name = st.Name();
- if ( name.substr( 0, 16 ) == "AnimationStack::" ) {
- name = name.substr( 16 );
- }
- else if ( name.substr( 0, 11 ) == "AnimStack::" ) {
- name = name.substr( 11 );
- }
-
- anim->mName.Set( name );
-
- // need to find all nodes for which we need to generate node animations -
- // it may happen that we need to merge multiple layers, though.
- NodeMap node_map;
-
- // reverse mapping from curves to layers, much faster than querying
- // the FBX DOM for it.
- LayerMap layer_map;
-
- const char* prop_whitelist[] = {
- "Lcl Scaling",
- "Lcl Rotation",
- "Lcl Translation"
- };
-
- for( const AnimationLayer* layer : layers ) {
- ai_assert( layer );
-
- const AnimationCurveNodeList& nodes = layer->Nodes( prop_whitelist, 3 );
- for( const AnimationCurveNode* node : nodes ) {
- ai_assert( node );
-
- const Model* const model = dynamic_cast<const Model*>( node->Target() );
- // this can happen - it could also be a NodeAttribute (i.e. for camera animations)
- if ( !model ) {
- continue;
- }
-
- const std::string& name = FixNodeName( model->Name() );
- node_map[ name ].push_back( node );
-
- layer_map[ node ] = layer;
- }
- }
-
- // generate node animations
- std::vector<aiNodeAnim*> node_anims;
-
- double min_time = 1e10;
- double max_time = -1e10;
-
- int64_t start_time = st.LocalStart();
- int64_t stop_time = st.LocalStop();
- bool has_local_startstop = start_time != 0 || stop_time != 0;
- if ( !has_local_startstop ) {
- // no time range given, so accept every keyframe and use the actual min/max time
- // the numbers are INT64_MIN/MAX, the 20000 is for safety because GenerateNodeAnimations uses an epsilon of 10000
- start_time = -9223372036854775807ll + 20000;
- stop_time = 9223372036854775807ll - 20000;
- }
-
- try {
- for( const NodeMap::value_type& kv : node_map ) {
- GenerateNodeAnimations( node_anims,
- kv.first,
- kv.second,
- layer_map,
- start_time, stop_time,
- max_time,
- min_time );
- }
- }
- catch ( std::exception& ) {
- std::for_each( node_anims.begin(), node_anims.end(), Util::delete_fun<aiNodeAnim>() );
- throw;
- }
-
- if ( node_anims.size() ) {
- anim->mChannels = new aiNodeAnim*[ node_anims.size() ]();
- anim->mNumChannels = static_cast<unsigned int>( node_anims.size() );
-
- std::swap_ranges( node_anims.begin(), node_anims.end(), anim->mChannels );
- }
- else {
- // empty animations would fail validation, so drop them
- delete anim;
- animations.pop_back();
- FBXImporter::LogInfo( "ignoring empty AnimationStack (using IK?): " + name );
- return;
- }
-
- double start_time_fps = has_local_startstop ? (CONVERT_FBX_TIME(start_time) * anim_fps) : min_time;
- double stop_time_fps = has_local_startstop ? (CONVERT_FBX_TIME(stop_time) * anim_fps) : max_time;
-
- // adjust relative timing for animation
- for ( unsigned int c = 0; c < anim->mNumChannels; c++ ) {
- aiNodeAnim* channel = anim->mChannels[ c ];
- for ( uint32_t i = 0; i < channel->mNumPositionKeys; i++ )
- channel->mPositionKeys[ i ].mTime -= start_time_fps;
- for ( uint32_t i = 0; i < channel->mNumRotationKeys; i++ )
- channel->mRotationKeys[ i ].mTime -= start_time_fps;
- for ( uint32_t i = 0; i < channel->mNumScalingKeys; i++ )
- channel->mScalingKeys[ i ].mTime -= start_time_fps;
- }
-
- // for some mysterious reason, mDuration is simply the maximum key -- the
- // validator always assumes animations to start at zero.
- anim->mDuration = stop_time_fps - start_time_fps;
- anim->mTicksPerSecond = anim_fps;
-}
-
-#ifdef ASSIMP_BUILD_DEBUG
-// ------------------------------------------------------------------------------------------------
-// sanity check whether the input is ok
-static void validateAnimCurveNodes( const std::vector<const AnimationCurveNode*>& curves,
- bool strictMode ) {
- const Object* target( NULL );
- for( const AnimationCurveNode* node : curves ) {
- if ( !target ) {
- target = node->Target();
- }
- if ( node->Target() != target ) {
- FBXImporter::LogWarn( "Node target is nullptr type." );
- }
- if ( strictMode ) {
- ai_assert( node->Target() == target );
- }
- }
-}
-#endif // ASSIMP_BUILD_DEBUG
-
-// ------------------------------------------------------------------------------------------------
-void Converter::GenerateNodeAnimations( std::vector<aiNodeAnim*>& node_anims,
- const std::string& fixed_name,
- const std::vector<const AnimationCurveNode*>& curves,
- const LayerMap& layer_map,
- int64_t start, int64_t stop,
- double& max_time,
- double& min_time )
-{
-
- NodeMap node_property_map;
- ai_assert( curves.size() );
-
-#ifdef ASSIMP_BUILD_DEBUG
- validateAnimCurveNodes( curves, doc.Settings().strictMode );
-#endif
- const AnimationCurveNode* curve_node = NULL;
- for( const AnimationCurveNode* node : curves ) {
- ai_assert( node );
-
- if ( node->TargetProperty().empty() ) {
- FBXImporter::LogWarn( "target property for animation curve not set: " + node->Name() );
- continue;
- }
-
- curve_node = node;
- if ( node->Curves().empty() ) {
- FBXImporter::LogWarn( "no animation curves assigned to AnimationCurveNode: " + node->Name() );
- continue;
- }
-
- node_property_map[ node->TargetProperty() ].push_back( node );
- }
-
- ai_assert( curve_node );
- ai_assert( curve_node->TargetAsModel() );
-
- const Model& target = *curve_node->TargetAsModel();
-
- // check for all possible transformation components
- NodeMap::const_iterator chain[ TransformationComp_MAXIMUM ];
-
- bool has_any = false;
- bool has_complex = false;
-
- for ( size_t i = 0; i < TransformationComp_MAXIMUM; ++i ) {
- const TransformationComp comp = static_cast<TransformationComp>( i );
-
- // inverse pivots don't exist in the input, we just generate them
- if ( comp == TransformationComp_RotationPivotInverse || comp == TransformationComp_ScalingPivotInverse ) {
- chain[ i ] = node_property_map.end();
- continue;
- }
-
- chain[ i ] = node_property_map.find( NameTransformationCompProperty( comp ) );
- if ( chain[ i ] != node_property_map.end() ) {
-
- // check if this curves contains redundant information by looking
- // up the corresponding node's transformation chain.
- if ( doc.Settings().optimizeEmptyAnimationCurves &&
- IsRedundantAnimationData( target, comp, ( *chain[ i ] ).second ) ) {
-
- FBXImporter::LogDebug( "dropping redundant animation channel for node " + target.Name() );
- continue;
- }
-
- has_any = true;
-
- if ( comp != TransformationComp_Rotation && comp != TransformationComp_Scaling && comp != TransformationComp_Translation &&
- comp != TransformationComp_GeometricScaling && comp != TransformationComp_GeometricRotation && comp != TransformationComp_GeometricTranslation )
- {
- has_complex = true;
- }
- }
- }
-
- if ( !has_any ) {
- FBXImporter::LogWarn( "ignoring node animation, did not find any transformation key frames" );
- return;
- }
-
- // this needs to play nicely with GenerateTransformationNodeChain() which will
- // be invoked _later_ (animations come first). If this node has only rotation,
- // scaling and translation _and_ there are no animated other components either,
- // we can use a single node and also a single node animation channel.
- if ( !has_complex && !NeedsComplexTransformationChain( target ) ) {
-
- aiNodeAnim* const nd = GenerateSimpleNodeAnim( fixed_name, target, chain,
- node_property_map.end(),
- layer_map,
- start, stop,
- max_time,
- min_time,
- true // input is TRS order, assimp is SRT
- );
-
- ai_assert( nd );
- if ( nd->mNumPositionKeys == 0 && nd->mNumRotationKeys == 0 && nd->mNumScalingKeys == 0 ) {
- delete nd;
- }
- else {
- node_anims.push_back( nd );
- }
- return;
- }
-
- // otherwise, things get gruesome and we need separate animation channels
- // for each part of the transformation chain. Remember which channels
- // we generated and pass this information to the node conversion
- // code to avoid nodes that have identity transform, but non-identity
- // animations, being dropped.
- unsigned int flags = 0, bit = 0x1;
- for ( size_t i = 0; i < TransformationComp_MAXIMUM; ++i, bit <<= 1 ) {
- const TransformationComp comp = static_cast<TransformationComp>( i );
-
- if ( chain[ i ] != node_property_map.end() ) {
- flags |= bit;
-
- ai_assert( comp != TransformationComp_RotationPivotInverse );
- ai_assert( comp != TransformationComp_ScalingPivotInverse );
-
- const std::string& chain_name = NameTransformationChainNode( fixed_name, comp );
-
- aiNodeAnim* na = nullptr;
- switch ( comp )
- {
- case TransformationComp_Rotation:
- case TransformationComp_PreRotation:
- case TransformationComp_PostRotation:
- case TransformationComp_GeometricRotation:
- na = GenerateRotationNodeAnim( chain_name,
- target,
- ( *chain[ i ] ).second,
- layer_map,
- start, stop,
- max_time,
- min_time );
-
- break;
-
- case TransformationComp_RotationOffset:
- case TransformationComp_RotationPivot:
- case TransformationComp_ScalingOffset:
- case TransformationComp_ScalingPivot:
- case TransformationComp_Translation:
- case TransformationComp_GeometricTranslation:
- na = GenerateTranslationNodeAnim( chain_name,
- target,
- ( *chain[ i ] ).second,
- layer_map,
- start, stop,
- max_time,
- min_time );
-
- // pivoting requires us to generate an implicit inverse channel to undo the pivot translation
- if ( comp == TransformationComp_RotationPivot ) {
- const std::string& invName = NameTransformationChainNode( fixed_name,
- TransformationComp_RotationPivotInverse );
-
- aiNodeAnim* const inv = GenerateTranslationNodeAnim( invName,
- target,
- ( *chain[ i ] ).second,
- layer_map,
- start, stop,
- max_time,
- min_time,
- true );
-
- ai_assert( inv );
- if ( inv->mNumPositionKeys == 0 && inv->mNumRotationKeys == 0 && inv->mNumScalingKeys == 0 ) {
- delete inv;
- }
- else {
- node_anims.push_back( inv );
- }
-
- ai_assert( TransformationComp_RotationPivotInverse > i );
- flags |= bit << ( TransformationComp_RotationPivotInverse - i );
- }
- else if ( comp == TransformationComp_ScalingPivot ) {
- const std::string& invName = NameTransformationChainNode( fixed_name,
- TransformationComp_ScalingPivotInverse );
-
- aiNodeAnim* const inv = GenerateTranslationNodeAnim( invName,
- target,
- ( *chain[ i ] ).second,
- layer_map,
- start, stop,
- max_time,
- min_time,
- true );
-
- ai_assert( inv );
- if ( inv->mNumPositionKeys == 0 && inv->mNumRotationKeys == 0 && inv->mNumScalingKeys == 0 ) {
- delete inv;
- }
- else {
- node_anims.push_back( inv );
- }
-
- ai_assert( TransformationComp_RotationPivotInverse > i );
- flags |= bit << ( TransformationComp_RotationPivotInverse - i );
- }
-
- break;
-
- case TransformationComp_Scaling:
- case TransformationComp_GeometricScaling:
- na = GenerateScalingNodeAnim( chain_name,
- target,
- ( *chain[ i ] ).second,
- layer_map,
- start, stop,
- max_time,
- min_time );
-
- break;
-
- default:
- ai_assert( false );
- }
-
- ai_assert( na );
- if ( na->mNumPositionKeys == 0 && na->mNumRotationKeys == 0 && na->mNumScalingKeys == 0 ) {
- delete na;
- }
- else {
- node_anims.push_back( na );
- }
- continue;
- }
- }
-
- node_anim_chain_bits[ fixed_name ] = flags;
-}
-
-bool Converter::IsRedundantAnimationData( const Model& target,
- TransformationComp comp,
- const std::vector<const AnimationCurveNode*>& curves )
-{
- ai_assert( curves.size() );
-
- // look for animation nodes with
- // * sub channels for all relevant components set
- // * one key/value pair per component
- // * combined values match up the corresponding value in the bind pose node transformation
- // only such nodes are 'redundant' for this function.
-
- if ( curves.size() > 1 ) {
- return false;
- }
-
- const AnimationCurveNode& nd = *curves.front();
- const AnimationCurveMap& sub_curves = nd.Curves();
-
- const AnimationCurveMap::const_iterator dx = sub_curves.find( "d|X" );
- const AnimationCurveMap::const_iterator dy = sub_curves.find( "d|Y" );
- const AnimationCurveMap::const_iterator dz = sub_curves.find( "d|Z" );
-
- if ( dx == sub_curves.end() || dy == sub_curves.end() || dz == sub_curves.end() ) {
- return false;
- }
-
- const KeyValueList& vx = ( *dx ).second->GetValues();
- const KeyValueList& vy = ( *dy ).second->GetValues();
- const KeyValueList& vz = ( *dz ).second->GetValues();
-
- if ( vx.size() != 1 || vy.size() != 1 || vz.size() != 1 ) {
- return false;
- }
-
- const aiVector3D dyn_val = aiVector3D( vx[ 0 ], vy[ 0 ], vz[ 0 ] );
- const aiVector3D& static_val = PropertyGet<aiVector3D>( target.Props(),
- NameTransformationCompProperty( comp ),
- TransformationCompDefaultValue( comp )
- );
-
- const float epsilon = 1e-6f;
- return ( dyn_val - static_val ).SquareLength() < epsilon;
-}
-
-
-aiNodeAnim* Converter::GenerateRotationNodeAnim( const std::string& name,
- const Model& target,
- const std::vector<const AnimationCurveNode*>& curves,
- const LayerMap& layer_map,
- int64_t start, int64_t stop,
- double& max_time,
- double& min_time )
-{
- std::unique_ptr<aiNodeAnim> na( new aiNodeAnim() );
- na->mNodeName.Set( name );
-
- ConvertRotationKeys( na.get(), curves, layer_map, start, stop, max_time, min_time, target.RotationOrder() );
-
- // dummy scaling key
- na->mScalingKeys = new aiVectorKey[ 1 ];
- na->mNumScalingKeys = 1;
-
- na->mScalingKeys[ 0 ].mTime = 0.;
- na->mScalingKeys[ 0 ].mValue = aiVector3D( 1.0f, 1.0f, 1.0f );
-
- // dummy position key
- na->mPositionKeys = new aiVectorKey[ 1 ];
- na->mNumPositionKeys = 1;
-
- na->mPositionKeys[ 0 ].mTime = 0.;
- na->mPositionKeys[ 0 ].mValue = aiVector3D();
-
- return na.release();
-}
-
-aiNodeAnim* Converter::GenerateScalingNodeAnim( const std::string& name,
- const Model& /*target*/,
- const std::vector<const AnimationCurveNode*>& curves,
- const LayerMap& layer_map,
- int64_t start, int64_t stop,
- double& max_time,
- double& min_time )
-{
- std::unique_ptr<aiNodeAnim> na( new aiNodeAnim() );
- na->mNodeName.Set( name );
-
- ConvertScaleKeys( na.get(), curves, layer_map, start, stop, max_time, min_time );
-
- // dummy rotation key
- na->mRotationKeys = new aiQuatKey[ 1 ];
- na->mNumRotationKeys = 1;
-
- na->mRotationKeys[ 0 ].mTime = 0.;
- na->mRotationKeys[ 0 ].mValue = aiQuaternion();
-
- // dummy position key
- na->mPositionKeys = new aiVectorKey[ 1 ];
- na->mNumPositionKeys = 1;
-
- na->mPositionKeys[ 0 ].mTime = 0.;
- na->mPositionKeys[ 0 ].mValue = aiVector3D();
-
- return na.release();
-}
-
-
-aiNodeAnim* Converter::GenerateTranslationNodeAnim( const std::string& name,
- const Model& /*target*/,
- const std::vector<const AnimationCurveNode*>& curves,
- const LayerMap& layer_map,
- int64_t start, int64_t stop,
- double& max_time,
- double& min_time,
- bool inverse )
-{
- std::unique_ptr<aiNodeAnim> na( new aiNodeAnim() );
- na->mNodeName.Set( name );
-
- ConvertTranslationKeys( na.get(), curves, layer_map, start, stop, max_time, min_time );
-
- if ( inverse ) {
- for ( unsigned int i = 0; i < na->mNumPositionKeys; ++i ) {
- na->mPositionKeys[ i ].mValue *= -1.0f;
- }
- }
-
- // dummy scaling key
- na->mScalingKeys = new aiVectorKey[ 1 ];
- na->mNumScalingKeys = 1;
-
- na->mScalingKeys[ 0 ].mTime = 0.;
- na->mScalingKeys[ 0 ].mValue = aiVector3D( 1.0f, 1.0f, 1.0f );
-
- // dummy rotation key
- na->mRotationKeys = new aiQuatKey[ 1 ];
- na->mNumRotationKeys = 1;
-
- na->mRotationKeys[ 0 ].mTime = 0.;
- na->mRotationKeys[ 0 ].mValue = aiQuaternion();
-
- return na.release();
-}
-
-aiNodeAnim* Converter::GenerateSimpleNodeAnim( const std::string& name,
- const Model& target,
- NodeMap::const_iterator chain[ TransformationComp_MAXIMUM ],
- NodeMap::const_iterator iter_end,
- const LayerMap& layer_map,
- int64_t start, int64_t stop,
- double& max_time,
- double& min_time,
- bool reverse_order )
-
-{
- std::unique_ptr<aiNodeAnim> na( new aiNodeAnim() );
- na->mNodeName.Set( name );
-
- const PropertyTable& props = target.Props();
-
- // need to convert from TRS order to SRT?
- if ( reverse_order ) {
-
- aiVector3D def_scale = PropertyGet( props, "Lcl Scaling", aiVector3D( 1.f, 1.f, 1.f ) );
- aiVector3D def_translate = PropertyGet( props, "Lcl Translation", aiVector3D( 0.f, 0.f, 0.f ) );
- aiVector3D def_rot = PropertyGet( props, "Lcl Rotation", aiVector3D( 0.f, 0.f, 0.f ) );
-
- KeyFrameListList scaling;
- KeyFrameListList translation;
- KeyFrameListList rotation;
-
- if ( chain[ TransformationComp_Scaling ] != iter_end ) {
- scaling = GetKeyframeList( ( *chain[ TransformationComp_Scaling ] ).second, start, stop );
- }
-
- if ( chain[ TransformationComp_Translation ] != iter_end ) {
- translation = GetKeyframeList( ( *chain[ TransformationComp_Translation ] ).second, start, stop );
- }
-
- if ( chain[ TransformationComp_Rotation ] != iter_end ) {
- rotation = GetKeyframeList( ( *chain[ TransformationComp_Rotation ] ).second, start, stop );
- }
-
- KeyFrameListList joined;
- joined.insert( joined.end(), scaling.begin(), scaling.end() );
- joined.insert( joined.end(), translation.begin(), translation.end() );
- joined.insert( joined.end(), rotation.begin(), rotation.end() );
-
- const KeyTimeList& times = GetKeyTimeList( joined );
-
- aiQuatKey* out_quat = new aiQuatKey[ times.size() ];
- aiVectorKey* out_scale = new aiVectorKey[ times.size() ];
- aiVectorKey* out_translation = new aiVectorKey[ times.size() ];
-
- if ( times.size() )
- {
- ConvertTransformOrder_TRStoSRT( out_quat, out_scale, out_translation,
- scaling,
- translation,
- rotation,
- times,
- max_time,
- min_time,
- target.RotationOrder(),
- def_scale,
- def_translate,
- def_rot );
- }
-
- // XXX remove duplicates / redundant keys which this operation did
- // likely produce if not all three channels were equally dense.
-
- na->mNumScalingKeys = static_cast<unsigned int>( times.size() );
- na->mNumRotationKeys = na->mNumScalingKeys;
- na->mNumPositionKeys = na->mNumScalingKeys;
-
- na->mScalingKeys = out_scale;
- na->mRotationKeys = out_quat;
- na->mPositionKeys = out_translation;
- }
- else {
-
- // if a particular transformation is not given, grab it from
- // the corresponding node to meet the semantics of aiNodeAnim,
- // which requires all of rotation, scaling and translation
- // to be set.
- if ( chain[ TransformationComp_Scaling ] != iter_end ) {
- ConvertScaleKeys( na.get(), ( *chain[ TransformationComp_Scaling ] ).second,
- layer_map,
- start, stop,
- max_time,
- min_time );
- }
- else {
- na->mScalingKeys = new aiVectorKey[ 1 ];
- na->mNumScalingKeys = 1;
-
- na->mScalingKeys[ 0 ].mTime = 0.;
- na->mScalingKeys[ 0 ].mValue = PropertyGet( props, "Lcl Scaling",
- aiVector3D( 1.f, 1.f, 1.f ) );
- }
-
- if ( chain[ TransformationComp_Rotation ] != iter_end ) {
- ConvertRotationKeys( na.get(), ( *chain[ TransformationComp_Rotation ] ).second,
- layer_map,
- start, stop,
- max_time,
- min_time,
- target.RotationOrder() );
- }
- else {
- na->mRotationKeys = new aiQuatKey[ 1 ];
- na->mNumRotationKeys = 1;
-
- na->mRotationKeys[ 0 ].mTime = 0.;
- na->mRotationKeys[ 0 ].mValue = EulerToQuaternion(
- PropertyGet( props, "Lcl Rotation", aiVector3D( 0.f, 0.f, 0.f ) ),
- target.RotationOrder() );
- }
-
- if ( chain[ TransformationComp_Translation ] != iter_end ) {
- ConvertTranslationKeys( na.get(), ( *chain[ TransformationComp_Translation ] ).second,
- layer_map,
- start, stop,
- max_time,
- min_time );
- }
- else {
- na->mPositionKeys = new aiVectorKey[ 1 ];
- na->mNumPositionKeys = 1;
-
- na->mPositionKeys[ 0 ].mTime = 0.;
- na->mPositionKeys[ 0 ].mValue = PropertyGet( props, "Lcl Translation",
- aiVector3D( 0.f, 0.f, 0.f ) );
- }
-
- }
- return na.release();
-}
-
-Converter::KeyFrameListList Converter::GetKeyframeList( const std::vector<const AnimationCurveNode*>& nodes, int64_t start, int64_t stop )
-{
- KeyFrameListList inputs;
- inputs.reserve( nodes.size() * 3 );
-
- //give some breathing room for rounding errors
- int64_t adj_start = start - 10000;
- int64_t adj_stop = stop + 10000;
-
- for( const AnimationCurveNode* node : nodes ) {
- ai_assert( node );
-
- const AnimationCurveMap& curves = node->Curves();
- for( const AnimationCurveMap::value_type& kv : curves ) {
-
- unsigned int mapto;
- if ( kv.first == "d|X" ) {
- mapto = 0;
- }
- else if ( kv.first == "d|Y" ) {
- mapto = 1;
- }
- else if ( kv.first == "d|Z" ) {
- mapto = 2;
- }
- else {
- FBXImporter::LogWarn( "ignoring scale animation curve, did not recognize target component" );
- continue;
- }
-
- const AnimationCurve* const curve = kv.second;
- ai_assert( curve->GetKeys().size() == curve->GetValues().size() && curve->GetKeys().size() );
-
- //get values within the start/stop time window
- std::shared_ptr<KeyTimeList> Keys( new KeyTimeList() );
- std::shared_ptr<KeyValueList> Values( new KeyValueList() );
- const size_t count = curve->GetKeys().size();
- Keys->reserve( count );
- Values->reserve( count );
- for (size_t n = 0; n < count; n++ )
- {
- int64_t k = curve->GetKeys().at( n );
- if ( k >= adj_start && k <= adj_stop )
- {
- Keys->push_back( k );
- Values->push_back( curve->GetValues().at( n ) );
- }
- }
-
- inputs.push_back( std::make_tuple( Keys, Values, mapto ) );
- }
- }
- return inputs; // pray for NRVO :-)
-}
-
-
-KeyTimeList Converter::GetKeyTimeList( const KeyFrameListList& inputs )
-{
- ai_assert( inputs.size() );
-
- // reserve some space upfront - it is likely that the keyframe lists
- // have matching time values, so max(of all keyframe lists) should
- // be a good estimate.
- KeyTimeList keys;
-
- size_t estimate = 0;
- for( const KeyFrameList& kfl : inputs ) {
- estimate = std::max( estimate, std::get<0>(kfl)->size() );
- }
-
- keys.reserve( estimate );
-
- std::vector<unsigned int> next_pos;
- next_pos.resize( inputs.size(), 0 );
-
- const size_t count = inputs.size();
- while ( true ) {
-
- int64_t min_tick = std::numeric_limits<int64_t>::max();
- for ( size_t i = 0; i < count; ++i ) {
- const KeyFrameList& kfl = inputs[ i ];
-
- if ( std::get<0>(kfl)->size() > next_pos[ i ] && std::get<0>(kfl)->at( next_pos[ i ] ) < min_tick ) {
- min_tick = std::get<0>(kfl)->at( next_pos[ i ] );
- }
- }
-
- if ( min_tick == std::numeric_limits<int64_t>::max() ) {
- break;
- }
- keys.push_back( min_tick );
-
- for ( size_t i = 0; i < count; ++i ) {
- const KeyFrameList& kfl = inputs[ i ];
-
-
- while ( std::get<0>(kfl)->size() > next_pos[ i ] && std::get<0>(kfl)->at( next_pos[ i ] ) == min_tick ) {
- ++next_pos[ i ];
- }
- }
- }
-
- return keys;
-}
-
-void Converter::InterpolateKeys( aiVectorKey* valOut, const KeyTimeList& keys, const KeyFrameListList& inputs,
- const aiVector3D& def_value,
- double& max_time,
- double& min_time )
-
-{
- ai_assert( keys.size() );
- ai_assert( valOut );
-
- std::vector<unsigned int> next_pos;
- const size_t count = inputs.size();
-
- next_pos.resize( inputs.size(), 0 );
-
- for( KeyTimeList::value_type time : keys ) {
- ai_real result[ 3 ] = { def_value.x, def_value.y, def_value.z };
-
- for ( size_t i = 0; i < count; ++i ) {
- const KeyFrameList& kfl = inputs[ i ];
-
- const size_t ksize = std::get<0>(kfl)->size();
- if ( ksize > next_pos[ i ] && std::get<0>(kfl)->at( next_pos[ i ] ) == time ) {
- ++next_pos[ i ];
- }
-
- const size_t id0 = next_pos[ i ]>0 ? next_pos[ i ] - 1 : 0;
- const size_t id1 = next_pos[ i ] == ksize ? ksize - 1 : next_pos[ i ];
-
- // use lerp for interpolation
- const KeyValueList::value_type valueA = std::get<1>(kfl)->at( id0 );
- const KeyValueList::value_type valueB = std::get<1>(kfl)->at( id1 );
-
- const KeyTimeList::value_type timeA = std::get<0>(kfl)->at( id0 );
- const KeyTimeList::value_type timeB = std::get<0>(kfl)->at( id1 );
-
- const ai_real factor = timeB == timeA ? ai_real(0.) : static_cast<ai_real>( ( time - timeA ) ) / ( timeB - timeA );
- const ai_real interpValue = static_cast<ai_real>( valueA + ( valueB - valueA ) * factor );
-
- result[ std::get<2>(kfl) ] = interpValue;
- }
-
- // magic value to convert fbx times to seconds
- valOut->mTime = CONVERT_FBX_TIME( time ) * anim_fps;
-
- min_time = std::min( min_time, valOut->mTime );
- max_time = std::max( max_time, valOut->mTime );
-
- valOut->mValue.x = result[ 0 ];
- valOut->mValue.y = result[ 1 ];
- valOut->mValue.z = result[ 2 ];
-
- ++valOut;
- }
-}
-
-void Converter::InterpolateKeys( aiQuatKey* valOut, const KeyTimeList& keys, const KeyFrameListList& inputs,
- const aiVector3D& def_value,
- double& maxTime,
- double& minTime,
- Model::RotOrder order )
-{
- ai_assert( keys.size() );
- ai_assert( valOut );
-
- std::unique_ptr<aiVectorKey[]> temp( new aiVectorKey[ keys.size() ] );
- InterpolateKeys( temp.get(), keys, inputs, def_value, maxTime, minTime );
-
- aiMatrix4x4 m;
-
- aiQuaternion lastq;
-
- for ( size_t i = 0, c = keys.size(); i < c; ++i ) {
-
- valOut[ i ].mTime = temp[ i ].mTime;
-
- GetRotationMatrix( order, temp[ i ].mValue, m );
- aiQuaternion quat = aiQuaternion( aiMatrix3x3( m ) );
-
- // take shortest path by checking the inner product
- // http://www.3dkingdoms.com/weekly/weekly.php?a=36
- if ( quat.x * lastq.x + quat.y * lastq.y + quat.z * lastq.z + quat.w * lastq.w < 0 )
- {
- quat.x = -quat.x;
- quat.y = -quat.y;
- quat.z = -quat.z;
- quat.w = -quat.w;
- }
- lastq = quat;
-
- valOut[ i ].mValue = quat;
- }
-}
-
-void Converter::ConvertTransformOrder_TRStoSRT( aiQuatKey* out_quat, aiVectorKey* out_scale,
- aiVectorKey* out_translation,
- const KeyFrameListList& scaling,
- const KeyFrameListList& translation,
- const KeyFrameListList& rotation,
- const KeyTimeList& times,
- double& maxTime,
- double& minTime,
- Model::RotOrder order,
- const aiVector3D& def_scale,
- const aiVector3D& def_translate,
- const aiVector3D& def_rotation )
-{
- if ( rotation.size() ) {
- InterpolateKeys( out_quat, times, rotation, def_rotation, maxTime, minTime, order );
- }
- else {
- for ( size_t i = 0; i < times.size(); ++i ) {
- out_quat[ i ].mTime = CONVERT_FBX_TIME( times[ i ] ) * anim_fps;
- out_quat[ i ].mValue = EulerToQuaternion( def_rotation, order );
- }
- }
-
- if ( scaling.size() ) {
- InterpolateKeys( out_scale, times, scaling, def_scale, maxTime, minTime );
- }
- else {
- for ( size_t i = 0; i < times.size(); ++i ) {
- out_scale[ i ].mTime = CONVERT_FBX_TIME( times[ i ] ) * anim_fps;
- out_scale[ i ].mValue = def_scale;
- }
- }
-
- if ( translation.size() ) {
- InterpolateKeys( out_translation, times, translation, def_translate, maxTime, minTime );
- }
- else {
- for ( size_t i = 0; i < times.size(); ++i ) {
- out_translation[ i ].mTime = CONVERT_FBX_TIME( times[ i ] ) * anim_fps;
- out_translation[ i ].mValue = def_translate;
- }
- }
-
- const size_t count = times.size();
- for ( size_t i = 0; i < count; ++i ) {
- aiQuaternion& r = out_quat[ i ].mValue;
- aiVector3D& s = out_scale[ i ].mValue;
- aiVector3D& t = out_translation[ i ].mValue;
-
- aiMatrix4x4 mat, temp;
- aiMatrix4x4::Translation( t, mat );
- mat *= aiMatrix4x4( r.GetMatrix() );
- mat *= aiMatrix4x4::Scaling( s, temp );
-
- mat.Decompose( s, r, t );
- }
-}
-
-aiQuaternion Converter::EulerToQuaternion( const aiVector3D& rot, Model::RotOrder order )
-{
- aiMatrix4x4 m;
- GetRotationMatrix( order, rot, m );
-
- return aiQuaternion( aiMatrix3x3( m ) );
-}
-
-void Converter::ConvertScaleKeys( aiNodeAnim* na, const std::vector<const AnimationCurveNode*>& nodes, const LayerMap& /*layers*/,
- int64_t start, int64_t stop,
- double& maxTime,
- double& minTime )
-{
- ai_assert( nodes.size() );
-
- // XXX for now, assume scale should be blended geometrically (i.e. two
- // layers should be multiplied with each other). There is a FBX
- // property in the layer to specify the behaviour, though.
-
- const KeyFrameListList& inputs = GetKeyframeList( nodes, start, stop );
- const KeyTimeList& keys = GetKeyTimeList( inputs );
-
- na->mNumScalingKeys = static_cast<unsigned int>( keys.size() );
- na->mScalingKeys = new aiVectorKey[ keys.size() ];
- if ( keys.size() > 0 )
- InterpolateKeys( na->mScalingKeys, keys, inputs, aiVector3D( 1.0f, 1.0f, 1.0f ), maxTime, minTime );
-}
-
-void Converter::ConvertTranslationKeys( aiNodeAnim* na, const std::vector<const AnimationCurveNode*>& nodes,
- const LayerMap& /*layers*/,
- int64_t start, int64_t stop,
- double& maxTime,
- double& minTime )
-{
- ai_assert( nodes.size() );
-
- // XXX see notes in ConvertScaleKeys()
- const KeyFrameListList& inputs = GetKeyframeList( nodes, start, stop );
- const KeyTimeList& keys = GetKeyTimeList( inputs );
-
- na->mNumPositionKeys = static_cast<unsigned int>( keys.size() );
- na->mPositionKeys = new aiVectorKey[ keys.size() ];
- if ( keys.size() > 0 )
- InterpolateKeys( na->mPositionKeys, keys, inputs, aiVector3D( 0.0f, 0.0f, 0.0f ), maxTime, minTime );
-}
-
-void Converter::ConvertRotationKeys( aiNodeAnim* na, const std::vector<const AnimationCurveNode*>& nodes,
- const LayerMap& /*layers*/,
- int64_t start, int64_t stop,
- double& maxTime,
- double& minTime,
- Model::RotOrder order )
-{
- ai_assert( nodes.size() );
-
- // XXX see notes in ConvertScaleKeys()
- const std::vector< KeyFrameList >& inputs = GetKeyframeList( nodes, start, stop );
- const KeyTimeList& keys = GetKeyTimeList( inputs );
-
- na->mNumRotationKeys = static_cast<unsigned int>( keys.size() );
- na->mRotationKeys = new aiQuatKey[ keys.size() ];
- if ( keys.size() > 0 )
- InterpolateKeys( na->mRotationKeys, keys, inputs, aiVector3D( 0.0f, 0.0f, 0.0f ), maxTime, minTime, order );
-}
-
-void Converter::TransferDataToScene()
-{
- ai_assert( !out->mMeshes );
- ai_assert( !out->mNumMeshes );
-
- // note: the trailing () ensures initialization with NULL - not
- // many C++ users seem to know this, so pointing it out to avoid
- // confusion why this code works.
-
- if ( meshes.size() ) {
- out->mMeshes = new aiMesh*[ meshes.size() ]();
- out->mNumMeshes = static_cast<unsigned int>( meshes.size() );
-
- std::swap_ranges( meshes.begin(), meshes.end(), out->mMeshes );
- }
-
- if ( materials.size() ) {
- out->mMaterials = new aiMaterial*[ materials.size() ]();
- out->mNumMaterials = static_cast<unsigned int>( materials.size() );
-
- std::swap_ranges( materials.begin(), materials.end(), out->mMaterials );
- }
-
- if ( animations.size() ) {
- out->mAnimations = new aiAnimation*[ animations.size() ]();
- out->mNumAnimations = static_cast<unsigned int>( animations.size() );
-
- std::swap_ranges( animations.begin(), animations.end(), out->mAnimations );
- }
-
- if ( lights.size() ) {
- out->mLights = new aiLight*[ lights.size() ]();
- out->mNumLights = static_cast<unsigned int>( lights.size() );
-
- std::swap_ranges( lights.begin(), lights.end(), out->mLights );
- }
-
- if ( cameras.size() ) {
- out->mCameras = new aiCamera*[ cameras.size() ]();
- out->mNumCameras = static_cast<unsigned int>( cameras.size() );
-
- std::swap_ranges( cameras.begin(), cameras.end(), out->mCameras );
- }
-
- if ( textures.size() ) {
- out->mTextures = new aiTexture*[ textures.size() ]();
- out->mNumTextures = static_cast<unsigned int>( textures.size() );
-
- std::swap_ranges( textures.begin(), textures.end(), out->mTextures );
- }
-}
-
-//} // !anon
-
-// ------------------------------------------------------------------------------------------------
-void ConvertToAssimpScene(aiScene* out, const Document& doc)
-{
- Converter converter(out,doc);
-}
-
-} // !FBX
-} // !Assimp
-
-#endif