summaryrefslogtreecommitdiffstats
path: root/src/3rdparty/assimp/code/LWOAnimation.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/3rdparty/assimp/code/LWOAnimation.cpp')
-rw-r--r--src/3rdparty/assimp/code/LWOAnimation.cpp985
1 files changed, 497 insertions, 488 deletions
diff --git a/src/3rdparty/assimp/code/LWOAnimation.cpp b/src/3rdparty/assimp/code/LWOAnimation.cpp
index 68efa1735..9f23c13b2 100644
--- a/src/3rdparty/assimp/code/LWOAnimation.cpp
+++ b/src/3rdparty/assimp/code/LWOAnimation.cpp
@@ -2,11 +2,11 @@
Open Asset Import Library (assimp)
----------------------------------------------------------------------
-Copyright (c) 2006-2012, assimp team
+Copyright (c) 2006-2016, assimp team
All rights reserved.
-Redistribution and use of this software in source and binary forms,
-with or without modification, are permitted provided that the
+Redistribution and use of this software in source and binary forms,
+with or without modification, are permitted provided that the
following conditions are met:
* Redistributions of source code must retain the above
@@ -23,30 +23,30 @@ following conditions are met:
derived from this software without specific prior
written permission of the assimp team.
-THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
-SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
-DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
-THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
-(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
----------------------------------------------------------------------
*/
/** @file LWOAnimation.cpp
- * @brief LWOAnimationResolver utility class
+ * @brief LWOAnimationResolver utility class
*
* It's a very generic implementation of LightWave's system of
* componentwise-animated stuff. The one and only fully free
* implementation of LightWave envelopes of which I know.
*/
-#include "AssimpPCH.h"
+
#if (!defined ASSIMP_BUILD_NO_LWO_IMPORTER) && (!defined ASSIMP_BUILD_NO_LWS_IMPORTER)
#include <functional>
@@ -60,534 +60,543 @@ using namespace Assimp::LWO;
// ------------------------------------------------------------------------------------------------
// Construct an animation resolver from a given list of envelopes
AnimResolver::AnimResolver(std::list<Envelope>& _envelopes,double tick)
- : envelopes (_envelopes)
- , sample_rate (0.)
+ : envelopes (_envelopes)
+ , sample_rate (0.)
+ , envl_x(), envl_y(), envl_z()
+ , end_x(), end_y(), end_z()
+ , flags()
+ , sample_delta()
{
- trans_x = trans_y = trans_z = NULL;
- rotat_x = rotat_y = rotat_z = NULL;
- scale_x = scale_y = scale_z = NULL;
-
- first = last = 150392.;
-
- // find transformation envelopes
- for (std::list<LWO::Envelope>::iterator it = envelopes.begin(); it != envelopes.end(); ++it) {
-
- (*it).old_first = 0;
- (*it).old_last = (*it).keys.size()-1;
-
- if ((*it).keys.empty()) continue;
- switch ((*it).type) {
-
- // translation
- case LWO::EnvelopeType_Position_X:
- trans_x = &*it;break;
- case LWO::EnvelopeType_Position_Y:
- trans_y = &*it;break;
- case LWO::EnvelopeType_Position_Z:
- trans_z = &*it;break;
-
- // rotation
- case LWO::EnvelopeType_Rotation_Heading:
- rotat_x = &*it;break;
- case LWO::EnvelopeType_Rotation_Pitch:
- rotat_y = &*it;break;
- case LWO::EnvelopeType_Rotation_Bank:
- rotat_z = &*it;break;
-
- // scaling
- case LWO::EnvelopeType_Scaling_X:
- scale_x = &*it;break;
- case LWO::EnvelopeType_Scaling_Y:
- scale_y = &*it;break;
- case LWO::EnvelopeType_Scaling_Z:
- scale_z = &*it;break;
- default:
- continue;
- };
-
- // convert from seconds to ticks
- for (std::vector<LWO::Key>::iterator d = (*it).keys.begin(); d != (*it).keys.end(); ++d)
- (*d).time *= tick;
-
- // set default animation range (minimum and maximum time value for which we have a keyframe)
- first = std::min(first, (*it).keys.front().time );
- last = std::max(last, (*it).keys.back().time );
- }
-
- // deferred setup of animation range to increase performance.
- // typically the application will want to specify its own.
- need_to_setup = true;
+ trans_x = trans_y = trans_z = NULL;
+ rotat_x = rotat_y = rotat_z = NULL;
+ scale_x = scale_y = scale_z = NULL;
+
+ first = last = 150392.;
+
+ // find transformation envelopes
+ for (std::list<LWO::Envelope>::iterator it = envelopes.begin(); it != envelopes.end(); ++it) {
+
+ (*it).old_first = 0;
+ (*it).old_last = (*it).keys.size()-1;
+
+ if ((*it).keys.empty()) continue;
+ switch ((*it).type) {
+
+ // translation
+ case LWO::EnvelopeType_Position_X:
+ trans_x = &*it;break;
+ case LWO::EnvelopeType_Position_Y:
+ trans_y = &*it;break;
+ case LWO::EnvelopeType_Position_Z:
+ trans_z = &*it;break;
+
+ // rotation
+ case LWO::EnvelopeType_Rotation_Heading:
+ rotat_x = &*it;break;
+ case LWO::EnvelopeType_Rotation_Pitch:
+ rotat_y = &*it;break;
+ case LWO::EnvelopeType_Rotation_Bank:
+ rotat_z = &*it;break;
+
+ // scaling
+ case LWO::EnvelopeType_Scaling_X:
+ scale_x = &*it;break;
+ case LWO::EnvelopeType_Scaling_Y:
+ scale_y = &*it;break;
+ case LWO::EnvelopeType_Scaling_Z:
+ scale_z = &*it;break;
+ default:
+ continue;
+ };
+
+ // convert from seconds to ticks
+ for (std::vector<LWO::Key>::iterator d = (*it).keys.begin(); d != (*it).keys.end(); ++d)
+ (*d).time *= tick;
+
+ // set default animation range (minimum and maximum time value for which we have a keyframe)
+ first = std::min(first, (*it).keys.front().time );
+ last = std::max(last, (*it).keys.back().time );
+ }
+
+ // deferred setup of animation range to increase performance.
+ // typically the application will want to specify its own.
+ need_to_setup = true;
}
// ------------------------------------------------------------------------------------------------
// Reset all envelopes to their original contents
void AnimResolver::ClearAnimRangeSetup()
{
- for (std::list<LWO::Envelope>::iterator it = envelopes.begin(); it != envelopes.end(); ++it) {
-
- (*it).keys.erase((*it).keys.begin(),(*it).keys.begin()+(*it).old_first);
- (*it).keys.erase((*it).keys.begin()+(*it).old_last+1,(*it).keys.end());
- }
+ for (std::list<LWO::Envelope>::iterator it = envelopes.begin(); it != envelopes.end(); ++it) {
+
+ (*it).keys.erase((*it).keys.begin(),(*it).keys.begin()+(*it).old_first);
+ (*it).keys.erase((*it).keys.begin()+(*it).old_last+1,(*it).keys.end());
+ }
}
// ------------------------------------------------------------------------------------------------
// Insert additional keys to match LWO's pre& post behaviours.
void AnimResolver::UpdateAnimRangeSetup()
{
- // XXX doesn't work yet (hangs if more than one envelope channels needs to be interpolated)
-
- for (std::list<LWO::Envelope>::iterator it = envelopes.begin(); it != envelopes.end(); ++it) {
- if ((*it).keys.empty()) continue;
-
- const double my_first = (*it).keys.front().time;
- const double my_last = (*it).keys.back().time;
-
- const double delta = my_last-my_first;
- const size_t old_size = (*it).keys.size();
-
- const float value_delta = (*it).keys.back().value - (*it).keys.front().value;
-
- // NOTE: We won't handle reset, linear and constant here.
- // See DoInterpolation() for their implementation.
-
- // process pre behaviour
- switch ((*it).pre) {
- case LWO::PrePostBehaviour_OffsetRepeat:
- case LWO::PrePostBehaviour_Repeat:
- case LWO::PrePostBehaviour_Oscillate:
- {
- const double start_time = delta - std::fmod(my_first-first,delta);
- std::vector<LWO::Key>::iterator n = std::find_if((*it).keys.begin(),(*it).keys.end(),
- std::bind1st(std::greater<double>(),start_time)),m;
-
- size_t ofs = 0;
- if (n != (*it).keys.end()) {
- // copy from here - don't use iterators, insert() would invalidate them
- ofs = (*it).keys.end()-n;
- (*it).keys.insert((*it).keys.begin(),ofs,LWO::Key());
-
- std::copy((*it).keys.end()-ofs,(*it).keys.end(),(*it).keys.begin());
- }
-
- // do full copies. again, no iterators
- const unsigned int num = (unsigned int)((my_first-first) / delta);
- (*it).keys.resize((*it).keys.size() + num*old_size);
-
- n = (*it).keys.begin()+ofs;
- bool reverse = false;
- for (unsigned int i = 0; i < num; ++i) {
- m = n+old_size*(i+1);
- std::copy(n,n+old_size,m);
-
- if ((*it).pre == LWO::PrePostBehaviour_Oscillate && (reverse = !reverse))
- std::reverse(m,m+old_size-1);
- }
-
- // update time values
- n = (*it).keys.end() - (old_size+1);
- double cur_minus = delta;
- unsigned int tt = 1;
- for (const double tmp = delta*(num+1);cur_minus <= tmp;cur_minus += delta,++tt) {
- m = (delta == tmp ? (*it).keys.begin() : n - (old_size+1));
- for (;m != n; --n) {
- (*n).time -= cur_minus;
-
- // offset repeat? add delta offset to key value
- if ((*it).pre == LWO::PrePostBehaviour_OffsetRepeat) {
- (*n).value += tt * value_delta;
- }
- }
- }
- break;
- }
- default:
- // silence compiler warning
- break;
- }
-
- // process post behaviour
- switch ((*it).post) {
-
- case LWO::PrePostBehaviour_OffsetRepeat:
- case LWO::PrePostBehaviour_Repeat:
- case LWO::PrePostBehaviour_Oscillate:
-
- break;
-
- default:
- // silence compiler warning
- break;
- }
- }
+ // XXX doesn't work yet (hangs if more than one envelope channels needs to be interpolated)
+
+ for (std::list<LWO::Envelope>::iterator it = envelopes.begin(); it != envelopes.end(); ++it) {
+ if ((*it).keys.empty()) continue;
+
+ const double my_first = (*it).keys.front().time;
+ const double my_last = (*it).keys.back().time;
+
+ const double delta = my_last-my_first;
+ const size_t old_size = (*it).keys.size();
+
+ const float value_delta = (*it).keys.back().value - (*it).keys.front().value;
+
+ // NOTE: We won't handle reset, linear and constant here.
+ // See DoInterpolation() for their implementation.
+
+ // process pre behaviour
+ switch ((*it).pre) {
+ case LWO::PrePostBehaviour_OffsetRepeat:
+ case LWO::PrePostBehaviour_Repeat:
+ case LWO::PrePostBehaviour_Oscillate:
+ {
+ const double start_time = delta - fmod(my_first-first,delta);
+ std::vector<LWO::Key>::iterator n = std::find_if((*it).keys.begin(),(*it).keys.end(),
+ std::bind1st(std::greater<double>(),start_time)),m;
+
+ size_t ofs = 0;
+ if (n != (*it).keys.end()) {
+ // copy from here - don't use iterators, insert() would invalidate them
+ ofs = (*it).keys.end()-n;
+ (*it).keys.insert((*it).keys.begin(),ofs,LWO::Key());
+
+ std::copy((*it).keys.end()-ofs,(*it).keys.end(),(*it).keys.begin());
+ }
+
+ // do full copies. again, no iterators
+ const unsigned int num = (unsigned int)((my_first-first) / delta);
+ (*it).keys.resize((*it).keys.size() + num*old_size);
+
+ n = (*it).keys.begin()+ofs;
+ bool reverse = false;
+ for (unsigned int i = 0; i < num; ++i) {
+ m = n+old_size*(i+1);
+ std::copy(n,n+old_size,m);
+
+ if ((*it).pre == LWO::PrePostBehaviour_Oscillate && (reverse = !reverse))
+ std::reverse(m,m+old_size-1);
+ }
+
+ // update time values
+ n = (*it).keys.end() - (old_size+1);
+ double cur_minus = delta;
+ unsigned int tt = 1;
+ for (const double tmp = delta*(num+1);cur_minus <= tmp;cur_minus += delta,++tt) {
+ m = (delta == tmp ? (*it).keys.begin() : n - (old_size+1));
+ for (;m != n; --n) {
+ (*n).time -= cur_minus;
+
+ // offset repeat? add delta offset to key value
+ if ((*it).pre == LWO::PrePostBehaviour_OffsetRepeat) {
+ (*n).value += tt * value_delta;
+ }
+ }
+ }
+ break;
+ }
+ default:
+ // silence compiler warning
+ break;
+ }
+
+ // process post behaviour
+ switch ((*it).post) {
+
+ case LWO::PrePostBehaviour_OffsetRepeat:
+ case LWO::PrePostBehaviour_Repeat:
+ case LWO::PrePostBehaviour_Oscillate:
+
+ break;
+
+ default:
+ // silence compiler warning
+ break;
+ }
+ }
}
// ------------------------------------------------------------------------------------------------
// Extract bind pose matrix
void AnimResolver::ExtractBindPose(aiMatrix4x4& out)
{
- // If we have no envelopes, return identity
- if (envelopes.empty()) {
- out = aiMatrix4x4();
- return;
- }
- aiVector3D angles, scaling(1.f,1.f,1.f), translation;
-
- if (trans_x) translation.x = trans_x->keys[0].value;
- if (trans_y) translation.y = trans_y->keys[0].value;
- if (trans_z) translation.z = trans_z->keys[0].value;
-
- if (rotat_x) angles.x = rotat_x->keys[0].value;
- if (rotat_y) angles.y = rotat_y->keys[0].value;
- if (rotat_z) angles.z = rotat_z->keys[0].value;
-
- if (scale_x) scaling.x = scale_x->keys[0].value;
- if (scale_y) scaling.y = scale_y->keys[0].value;
- if (scale_z) scaling.z = scale_z->keys[0].value;
-
- // build the final matrix
- aiMatrix4x4 s,rx,ry,rz,t;
- aiMatrix4x4::RotationZ(angles.z, rz);
- aiMatrix4x4::RotationX(angles.y, rx);
- aiMatrix4x4::RotationY(angles.x, ry);
- aiMatrix4x4::Translation(translation,t);
- aiMatrix4x4::Scaling(scaling,s);
- out = t*ry*rx*rz*s;
+ // If we have no envelopes, return identity
+ if (envelopes.empty()) {
+ out = aiMatrix4x4();
+ return;
+ }
+ aiVector3D angles, scaling(1.f,1.f,1.f), translation;
+
+ if (trans_x) translation.x = trans_x->keys[0].value;
+ if (trans_y) translation.y = trans_y->keys[0].value;
+ if (trans_z) translation.z = trans_z->keys[0].value;
+
+ if (rotat_x) angles.x = rotat_x->keys[0].value;
+ if (rotat_y) angles.y = rotat_y->keys[0].value;
+ if (rotat_z) angles.z = rotat_z->keys[0].value;
+
+ if (scale_x) scaling.x = scale_x->keys[0].value;
+ if (scale_y) scaling.y = scale_y->keys[0].value;
+ if (scale_z) scaling.z = scale_z->keys[0].value;
+
+ // build the final matrix
+ aiMatrix4x4 s,rx,ry,rz,t;
+ aiMatrix4x4::RotationZ(angles.z, rz);
+ aiMatrix4x4::RotationX(angles.y, rx);
+ aiMatrix4x4::RotationY(angles.x, ry);
+ aiMatrix4x4::Translation(translation,t);
+ aiMatrix4x4::Scaling(scaling,s);
+ out = t*ry*rx*rz*s;
}
// ------------------------------------------------------------------------------------------------
-// Do a single interpolation on a channel
-void AnimResolver::DoInterpolation(std::vector<LWO::Key>::const_iterator cur,
- LWO::Envelope* envl,double time, float& fill)
+// Do a single interpolation on a channel
+void AnimResolver::DoInterpolation(std::vector<LWO::Key>::const_iterator cur,
+ LWO::Envelope* envl,double time, float& fill)
{
- if (envl->keys.size() == 1) {
- fill = envl->keys[0].value;
- return;
- }
-
- // check whether we're at the beginning of the animation track
- if (cur == envl->keys.begin()) {
-
- // ok ... this depends on pre behaviour now
- // we don't need to handle repeat&offset repeat&oszillate here, see UpdateAnimRangeSetup()
- switch (envl->pre)
- {
- case LWO::PrePostBehaviour_Linear:
- DoInterpolation2(cur,cur+1,time,fill);
- return;
-
- case LWO::PrePostBehaviour_Reset:
- fill = 0.f;
- return;
-
- default : //case LWO::PrePostBehaviour_Constant:
- fill = (*cur).value;
- return;
- }
- }
- // check whether we're at the end of the animation track
- else if (cur == envl->keys.end()-1 && time > envl->keys.rbegin()->time) {
- // ok ... this depends on post behaviour now
- switch (envl->post)
- {
- case LWO::PrePostBehaviour_Linear:
- DoInterpolation2(cur,cur-1,time,fill);
- return;
-
- case LWO::PrePostBehaviour_Reset:
- fill = 0.f;
- return;
-
- default : //case LWO::PrePostBehaviour_Constant:
- fill = (*cur).value;
- return;
- }
- }
-
- // Otherwise do a simple interpolation
- DoInterpolation2(cur-1,cur,time,fill);
+ if (envl->keys.size() == 1) {
+ fill = envl->keys[0].value;
+ return;
+ }
+
+ // check whether we're at the beginning of the animation track
+ if (cur == envl->keys.begin()) {
+
+ // ok ... this depends on pre behaviour now
+ // we don't need to handle repeat&offset repeat&oszillate here, see UpdateAnimRangeSetup()
+ switch (envl->pre)
+ {
+ case LWO::PrePostBehaviour_Linear:
+ DoInterpolation2(cur,cur+1,time,fill);
+ return;
+
+ case LWO::PrePostBehaviour_Reset:
+ fill = 0.f;
+ return;
+
+ default : //case LWO::PrePostBehaviour_Constant:
+ fill = (*cur).value;
+ return;
+ }
+ }
+ // check whether we're at the end of the animation track
+ else if (cur == envl->keys.end()-1 && time > envl->keys.rbegin()->time) {
+ // ok ... this depends on post behaviour now
+ switch (envl->post)
+ {
+ case LWO::PrePostBehaviour_Linear:
+ DoInterpolation2(cur,cur-1,time,fill);
+ return;
+
+ case LWO::PrePostBehaviour_Reset:
+ fill = 0.f;
+ return;
+
+ default : //case LWO::PrePostBehaviour_Constant:
+ fill = (*cur).value;
+ return;
+ }
+ }
+
+ // Otherwise do a simple interpolation
+ DoInterpolation2(cur-1,cur,time,fill);
}
// ------------------------------------------------------------------------------------------------
// Almost the same, except we won't handle pre/post conditions here
-void AnimResolver::DoInterpolation2(std::vector<LWO::Key>::const_iterator beg,
- std::vector<LWO::Key>::const_iterator end,double time, float& fill)
+void AnimResolver::DoInterpolation2(std::vector<LWO::Key>::const_iterator beg,
+ std::vector<LWO::Key>::const_iterator end,double time, float& fill)
{
- switch ((*end).inter) {
-
- case LWO::IT_STEP:
- // no interpolation at all - take the value of the last key
- fill = (*beg).value;
- return;
- default:
-
- // silence compiler warning
- break;
- }
- // linear interpolation - default
- fill = (*beg).value + ((*end).value - (*beg).value)*(float)(((time - (*beg).time) / ((*end).time - (*beg).time)));
+ switch ((*end).inter) {
+
+ case LWO::IT_STEP:
+ // no interpolation at all - take the value of the last key
+ fill = (*beg).value;
+ return;
+ default:
+
+ // silence compiler warning
+ break;
+ }
+ // linear interpolation - default
+ double duration = (*end).time - (*beg).time;
+ if (duration > 0.0) {
+ fill = (*beg).value + ((*end).value - (*beg).value)*(float)(((time - (*beg).time) / duration));
+ } else {
+ fill = (*beg).value;
+ }
}
// ------------------------------------------------------------------------------------------------
// Subsample animation track by given key values
void AnimResolver::SubsampleAnimTrack(std::vector<aiVectorKey>& /*out*/,
- double /*time*/ ,double /*sample_delta*/ )
+ double /*time*/ ,double /*sample_delta*/ )
{
- //ai_assert(out.empty() && sample_delta);
+ //ai_assert(out.empty() && sample_delta);
- //const double time_start = out.back().mTime;
-// for ()
+ //const double time_start = out.back().mTime;
+// for ()
}
// ------------------------------------------------------------------------------------------------
// Track interpolation
void AnimResolver::InterpolateTrack(std::vector<aiVectorKey>& out,aiVectorKey& fill,double time)
{
- // subsample animation track?
- if (flags & AI_LWO_ANIM_FLAG_SAMPLE_ANIMS) {
- SubsampleAnimTrack(out,time, sample_delta);
- }
-
- fill.mTime = time;
-
- // get x
- if ((*cur_x).time == time) {
- fill.mValue.x = (*cur_x).value;
-
- if (cur_x != envl_x->keys.end()-1) /* increment x */
- ++cur_x;
- else end_x = true;
- }
- else DoInterpolation(cur_x,envl_x,time,(float&)fill.mValue.x);
-
- // get y
- if ((*cur_y).time == time) {
- fill.mValue.y = (*cur_y).value;
-
- if (cur_y != envl_y->keys.end()-1) /* increment y */
- ++cur_y;
- else end_y = true;
- }
- else DoInterpolation(cur_y,envl_y,time,(float&)fill.mValue.y);
-
- // get z
- if ((*cur_z).time == time) {
- fill.mValue.z = (*cur_z).value;
-
- if (cur_z != envl_z->keys.end()-1) /* increment z */
- ++cur_z;
- else end_x = true;
- }
- else DoInterpolation(cur_z,envl_z,time,(float&)fill.mValue.z);
+ // subsample animation track?
+ if (flags & AI_LWO_ANIM_FLAG_SAMPLE_ANIMS) {
+ SubsampleAnimTrack(out,time, sample_delta);
+ }
+
+ fill.mTime = time;
+
+ // get x
+ if ((*cur_x).time == time) {
+ fill.mValue.x = (*cur_x).value;
+
+ if (cur_x != envl_x->keys.end()-1) /* increment x */
+ ++cur_x;
+ else end_x = true;
+ }
+ else DoInterpolation(cur_x,envl_x,time,(float&)fill.mValue.x);
+
+ // get y
+ if ((*cur_y).time == time) {
+ fill.mValue.y = (*cur_y).value;
+
+ if (cur_y != envl_y->keys.end()-1) /* increment y */
+ ++cur_y;
+ else end_y = true;
+ }
+ else DoInterpolation(cur_y,envl_y,time,(float&)fill.mValue.y);
+
+ // get z
+ if ((*cur_z).time == time) {
+ fill.mValue.z = (*cur_z).value;
+
+ if (cur_z != envl_z->keys.end()-1) /* increment z */
+ ++cur_z;
+ else end_x = true;
+ }
+ else DoInterpolation(cur_z,envl_z,time,(float&)fill.mValue.z);
}
// ------------------------------------------------------------------------------------------------
// Build linearly subsampled keys from three single envelopes, one for each component (x,y,z)
-void AnimResolver::GetKeys(std::vector<aiVectorKey>& out,
- LWO::Envelope* _envl_x,
- LWO::Envelope* _envl_y,
- LWO::Envelope* _envl_z,
- unsigned int _flags)
+void AnimResolver::GetKeys(std::vector<aiVectorKey>& out,
+ LWO::Envelope* _envl_x,
+ LWO::Envelope* _envl_y,
+ LWO::Envelope* _envl_z,
+ unsigned int _flags)
{
- envl_x = _envl_x;
- envl_y = _envl_y;
- envl_z = _envl_z;
- flags = _flags;
-
- // generate default channels if none are given
- LWO::Envelope def_x, def_y, def_z;
- LWO::Key key_dummy;
- key_dummy.time = 0.f;
- if ((envl_x && envl_x->type == LWO::EnvelopeType_Scaling_X) ||
- (envl_y && envl_y->type == LWO::EnvelopeType_Scaling_Y) ||
- (envl_z && envl_z->type == LWO::EnvelopeType_Scaling_Z)) {
- key_dummy.value = 1.f;
- }
- else key_dummy.value = 0.f;
-
- if (!envl_x) {
- envl_x = &def_x;
- envl_x->keys.push_back(key_dummy);
- }
- if (!envl_y) {
- envl_y = &def_y;
- envl_y->keys.push_back(key_dummy);
- }
- if (!envl_z) {
- envl_z = &def_z;
- envl_z->keys.push_back(key_dummy);
- }
-
- // guess how many keys we'll get
- size_t reserve;
- double sr = 1.;
- if (flags & AI_LWO_ANIM_FLAG_SAMPLE_ANIMS) {
- if (!sample_rate)
- sr = 100.f;
- else sr = sample_rate;
- sample_delta = 1.f / sr;
-
- reserve = (size_t)(
- std::max( envl_x->keys.rbegin()->time,
- std::max( envl_y->keys.rbegin()->time, envl_z->keys.rbegin()->time )) * sr);
- }
- else reserve = std::max(envl_x->keys.size(),std::max(envl_x->keys.size(),envl_z->keys.size()));
- out.reserve(reserve+(reserve>>1));
-
- // Iterate through all three arrays at once - it's tricky, but
- // rather interesting to implement.
- double lasttime = std::min(envl_x->keys[0].time,std::min(envl_y->keys[0].time,envl_z->keys[0].time));
-
- cur_x = envl_x->keys.begin();
- cur_y = envl_y->keys.begin();
- cur_z = envl_z->keys.begin();
-
- end_x = end_y = end_z = false;
- while (1) {
-
- aiVectorKey fill;
-
- if ((*cur_x).time == (*cur_y).time && (*cur_x).time == (*cur_z).time ) {
-
- // we have a keyframe for all of them defined .. this means
- // we don't need to interpolate here.
- fill.mTime = (*cur_x).time;
-
- fill.mValue.x = (*cur_x).value;
- fill.mValue.y = (*cur_y).value;
- fill.mValue.z = (*cur_z).value;
-
- // subsample animation track
- if (flags & AI_LWO_ANIM_FLAG_SAMPLE_ANIMS) {
- //SubsampleAnimTrack(out,cur_x, cur_y, cur_z, d, sample_delta);
- }
- }
-
- // Find key with lowest time value
- else if ((*cur_x).time <= (*cur_y).time && !end_x) {
-
- if ((*cur_z).time <= (*cur_x).time && !end_z) {
- InterpolateTrack(out,fill,(*cur_z).time);
- }
- else {
- InterpolateTrack(out,fill,(*cur_x).time);
- }
- }
- else if ((*cur_z).time <= (*cur_y).time && !end_y) {
- InterpolateTrack(out,fill,(*cur_y).time);
- }
- else if (!end_y) {
- // welcome on the server, y
- InterpolateTrack(out,fill,(*cur_y).time);
- }
- else {
- // we have reached the end of at least 2 channels,
- // only one is remaining. Extrapolate the 2.
- if (end_y) {
- InterpolateTrack(out,fill,(end_x ? (*cur_z) : (*cur_x)).time);
- }
- else if (end_x) {
- InterpolateTrack(out,fill,(end_z ? (*cur_y) : (*cur_z)).time);
- }
- else { // if (end_z)
- InterpolateTrack(out,fill,(end_y ? (*cur_x) : (*cur_y)).time);
- }
- }
- lasttime = fill.mTime;
- out.push_back(fill);
-
- if (lasttime >= (*cur_x).time) {
- if (cur_x != envl_x->keys.end()-1)
- ++cur_x;
- else end_x = true;
- }
- if (lasttime >= (*cur_y).time) {
- if (cur_y != envl_y->keys.end()-1)
- ++cur_y;
- else end_y = true;
- }
- if (lasttime >= (*cur_z).time) {
- if (cur_z != envl_z->keys.end()-1)
- ++cur_z;
- else end_z = true;
- }
-
- if( end_x && end_y && end_z ) /* finished? */
- break;
- }
-
- if (flags & AI_LWO_ANIM_FLAG_START_AT_ZERO) {
- for (std::vector<aiVectorKey>::iterator it = out.begin(); it != out.end(); ++it)
- (*it).mTime -= first;
- }
+ envl_x = _envl_x;
+ envl_y = _envl_y;
+ envl_z = _envl_z;
+ flags = _flags;
+
+ // generate default channels if none are given
+ LWO::Envelope def_x, def_y, def_z;
+ LWO::Key key_dummy;
+ key_dummy.time = 0.f;
+ if ((envl_x && envl_x->type == LWO::EnvelopeType_Scaling_X) ||
+ (envl_y && envl_y->type == LWO::EnvelopeType_Scaling_Y) ||
+ (envl_z && envl_z->type == LWO::EnvelopeType_Scaling_Z)) {
+ key_dummy.value = 1.f;
+ }
+ else key_dummy.value = 0.f;
+
+ if (!envl_x) {
+ envl_x = &def_x;
+ envl_x->keys.push_back(key_dummy);
+ }
+ if (!envl_y) {
+ envl_y = &def_y;
+ envl_y->keys.push_back(key_dummy);
+ }
+ if (!envl_z) {
+ envl_z = &def_z;
+ envl_z->keys.push_back(key_dummy);
+ }
+
+ // guess how many keys we'll get
+ size_t reserve;
+ double sr = 1.;
+ if (flags & AI_LWO_ANIM_FLAG_SAMPLE_ANIMS) {
+ if (!sample_rate)
+ sr = 100.f;
+ else sr = sample_rate;
+ sample_delta = 1.f / sr;
+
+ reserve = (size_t)(
+ std::max( envl_x->keys.rbegin()->time,
+ std::max( envl_y->keys.rbegin()->time, envl_z->keys.rbegin()->time )) * sr);
+ }
+ else reserve = std::max(envl_x->keys.size(),std::max(envl_x->keys.size(),envl_z->keys.size()));
+ out.reserve(reserve+(reserve>>1));
+
+ // Iterate through all three arrays at once - it's tricky, but
+ // rather interesting to implement.
+ double lasttime = std::min(envl_x->keys[0].time,std::min(envl_y->keys[0].time,envl_z->keys[0].time));
+
+ cur_x = envl_x->keys.begin();
+ cur_y = envl_y->keys.begin();
+ cur_z = envl_z->keys.begin();
+
+ end_x = end_y = end_z = false;
+ while (1) {
+
+ aiVectorKey fill;
+
+ if ((*cur_x).time == (*cur_y).time && (*cur_x).time == (*cur_z).time ) {
+
+ // we have a keyframe for all of them defined .. this means
+ // we don't need to interpolate here.
+ fill.mTime = (*cur_x).time;
+
+ fill.mValue.x = (*cur_x).value;
+ fill.mValue.y = (*cur_y).value;
+ fill.mValue.z = (*cur_z).value;
+
+ // subsample animation track
+ if (flags & AI_LWO_ANIM_FLAG_SAMPLE_ANIMS) {
+ //SubsampleAnimTrack(out,cur_x, cur_y, cur_z, d, sample_delta);
+ }
+ }
+
+ // Find key with lowest time value
+ else if ((*cur_x).time <= (*cur_y).time && !end_x) {
+
+ if ((*cur_z).time <= (*cur_x).time && !end_z) {
+ InterpolateTrack(out,fill,(*cur_z).time);
+ }
+ else {
+ InterpolateTrack(out,fill,(*cur_x).time);
+ }
+ }
+ else if ((*cur_z).time <= (*cur_y).time && !end_y) {
+ InterpolateTrack(out,fill,(*cur_y).time);
+ }
+ else if (!end_y) {
+ // welcome on the server, y
+ InterpolateTrack(out,fill,(*cur_y).time);
+ }
+ else {
+ // we have reached the end of at least 2 channels,
+ // only one is remaining. Extrapolate the 2.
+ if (end_y) {
+ InterpolateTrack(out,fill,(end_x ? (*cur_z) : (*cur_x)).time);
+ }
+ else if (end_x) {
+ InterpolateTrack(out,fill,(end_z ? (*cur_y) : (*cur_z)).time);
+ }
+ else { // if (end_z)
+ InterpolateTrack(out,fill,(end_y ? (*cur_x) : (*cur_y)).time);
+ }
+ }
+ lasttime = fill.mTime;
+ out.push_back(fill);
+
+ if (lasttime >= (*cur_x).time) {
+ if (cur_x != envl_x->keys.end()-1)
+ ++cur_x;
+ else end_x = true;
+ }
+ if (lasttime >= (*cur_y).time) {
+ if (cur_y != envl_y->keys.end()-1)
+ ++cur_y;
+ else end_y = true;
+ }
+ if (lasttime >= (*cur_z).time) {
+ if (cur_z != envl_z->keys.end()-1)
+ ++cur_z;
+ else end_z = true;
+ }
+
+ if( end_x && end_y && end_z ) /* finished? */
+ break;
+ }
+
+ if (flags & AI_LWO_ANIM_FLAG_START_AT_ZERO) {
+ for (std::vector<aiVectorKey>::iterator it = out.begin(); it != out.end(); ++it)
+ (*it).mTime -= first;
+ }
}
// ------------------------------------------------------------------------------------------------
// Extract animation channel
void AnimResolver::ExtractAnimChannel(aiNodeAnim** out, unsigned int flags /*= 0*/)
{
- *out = NULL;
-
-
- //FIXME: crashes if more than one component is animated at different timings, to be resolved.
-
- // If we have no envelopes, return NULL
- if (envelopes.empty()) {
- return;
- }
-
- // We won't spawn an animation channel if we don't have at least one envelope with more than one keyframe defined.
- const bool trans = ((trans_x && trans_x->keys.size() > 1) || (trans_y && trans_y->keys.size() > 1) || (trans_z && trans_z->keys.size() > 1));
- const bool rotat = ((rotat_x && rotat_x->keys.size() > 1) || (rotat_y && rotat_y->keys.size() > 1) || (rotat_z && rotat_z->keys.size() > 1));
- const bool scale = ((scale_x && scale_x->keys.size() > 1) || (scale_y && scale_y->keys.size() > 1) || (scale_z && scale_z->keys.size() > 1));
- if (!trans && !rotat && !scale)
- return;
-
- // Allocate the output animation
- aiNodeAnim* anim = *out = new aiNodeAnim();
-
- // Setup default animation setup if necessary
- if (need_to_setup) {
- UpdateAnimRangeSetup();
- need_to_setup = false;
- }
-
- // copy translation keys
- if (trans) {
- std::vector<aiVectorKey> keys;
- GetKeys(keys,trans_x,trans_y,trans_z,flags);
-
- anim->mPositionKeys = new aiVectorKey[ anim->mNumPositionKeys = keys.size() ];
- std::copy(keys.begin(),keys.end(),anim->mPositionKeys);
- }
-
- // copy rotation keys
- if (rotat) {
- std::vector<aiVectorKey> keys;
- GetKeys(keys,rotat_x,rotat_y,rotat_z,flags);
-
- anim->mRotationKeys = new aiQuatKey[ anim->mNumRotationKeys = keys.size() ];
-
- // convert heading, pitch, bank to quaternion
- // mValue.x=Heading=Rot(Y), mValue.y=Pitch=Rot(X), mValue.z=Bank=Rot(Z)
- // Lightwave's rotation order is ZXY
- aiVector3D X(1.0,0.0,0.0);
- aiVector3D Y(0.0,1.0,0.0);
- aiVector3D Z(0.0,0.0,1.0);
- for (unsigned int i = 0; i < anim->mNumRotationKeys; ++i) {
- aiQuatKey& qk = anim->mRotationKeys[i];
- qk.mTime = keys[i].mTime;
- qk.mValue = aiQuaternion(Y,keys[i].mValue.x)*aiQuaternion(X,keys[i].mValue.y)*aiQuaternion(Z,keys[i].mValue.z);
- }
- }
-
- // copy scaling keys
- if (scale) {
- std::vector<aiVectorKey> keys;
- GetKeys(keys,scale_x,scale_y,scale_z,flags);
-
- anim->mScalingKeys = new aiVectorKey[ anim->mNumScalingKeys = keys.size() ];
- std::copy(keys.begin(),keys.end(),anim->mScalingKeys);
- }
+ *out = NULL;
+
+
+ //FIXME: crashes if more than one component is animated at different timings, to be resolved.
+
+ // If we have no envelopes, return NULL
+ if (envelopes.empty()) {
+ return;
+ }
+
+ // We won't spawn an animation channel if we don't have at least one envelope with more than one keyframe defined.
+ const bool trans = ((trans_x && trans_x->keys.size() > 1) || (trans_y && trans_y->keys.size() > 1) || (trans_z && trans_z->keys.size() > 1));
+ const bool rotat = ((rotat_x && rotat_x->keys.size() > 1) || (rotat_y && rotat_y->keys.size() > 1) || (rotat_z && rotat_z->keys.size() > 1));
+ const bool scale = ((scale_x && scale_x->keys.size() > 1) || (scale_y && scale_y->keys.size() > 1) || (scale_z && scale_z->keys.size() > 1));
+ if (!trans && !rotat && !scale)
+ return;
+
+ // Allocate the output animation
+ aiNodeAnim* anim = *out = new aiNodeAnim();
+
+ // Setup default animation setup if necessary
+ if (need_to_setup) {
+ UpdateAnimRangeSetup();
+ need_to_setup = false;
+ }
+
+ // copy translation keys
+ if (trans) {
+ std::vector<aiVectorKey> keys;
+ GetKeys(keys,trans_x,trans_y,trans_z,flags);
+
+ anim->mPositionKeys = new aiVectorKey[ anim->mNumPositionKeys = keys.size() ];
+ std::copy(keys.begin(),keys.end(),anim->mPositionKeys);
+ }
+
+ // copy rotation keys
+ if (rotat) {
+ std::vector<aiVectorKey> keys;
+ GetKeys(keys,rotat_x,rotat_y,rotat_z,flags);
+
+ anim->mRotationKeys = new aiQuatKey[ anim->mNumRotationKeys = keys.size() ];
+
+ // convert heading, pitch, bank to quaternion
+ // mValue.x=Heading=Rot(Y), mValue.y=Pitch=Rot(X), mValue.z=Bank=Rot(Z)
+ // Lightwave's rotation order is ZXY
+ aiVector3D X(1.0,0.0,0.0);
+ aiVector3D Y(0.0,1.0,0.0);
+ aiVector3D Z(0.0,0.0,1.0);
+ for (unsigned int i = 0; i < anim->mNumRotationKeys; ++i) {
+ aiQuatKey& qk = anim->mRotationKeys[i];
+ qk.mTime = keys[i].mTime;
+ qk.mValue = aiQuaternion(Y,keys[i].mValue.x)*aiQuaternion(X,keys[i].mValue.y)*aiQuaternion(Z,keys[i].mValue.z);
+ }
+ }
+
+ // copy scaling keys
+ if (scale) {
+ std::vector<aiVectorKey> keys;
+ GetKeys(keys,scale_x,scale_y,scale_z,flags);
+
+ anim->mScalingKeys = new aiVectorKey[ anim->mNumScalingKeys = keys.size() ];
+ std::copy(keys.begin(),keys.end(),anim->mScalingKeys);
+ }
}