summaryrefslogtreecommitdiffstats
path: root/src/3rdparty/assimp/code/SIBImporter.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/3rdparty/assimp/code/SIBImporter.cpp')
-rw-r--r--src/3rdparty/assimp/code/SIBImporter.cpp926
1 files changed, 926 insertions, 0 deletions
diff --git a/src/3rdparty/assimp/code/SIBImporter.cpp b/src/3rdparty/assimp/code/SIBImporter.cpp
new file mode 100644
index 000000000..b972f28d6
--- /dev/null
+++ b/src/3rdparty/assimp/code/SIBImporter.cpp
@@ -0,0 +1,926 @@
+/*
+---------------------------------------------------------------------------
+Open Asset Import Library (assimp)
+---------------------------------------------------------------------------
+
+Copyright (c) 2006-2016, assimp team
+
+All rights reserved.
+
+Redistribution and use of this software in source and binary forms,
+with or without modification, are permitted provided that the following
+conditions are met:
+
+* Redistributions of source code must retain the above
+ copyright notice, this list of conditions and the
+ following disclaimer.
+
+* Redistributions in binary form must reproduce the above
+ copyright notice, this list of conditions and the
+ following disclaimer in the documentation and/or other
+ materials provided with the distribution.
+
+* Neither the name of the assimp team, nor the names of its
+ contributors may be used to endorse or promote products
+ derived from this software without specific prior
+ written permission of the assimp team.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+---------------------------------------------------------------------------
+*/
+
+/** @file SIBImporter.cpp
+ * @brief Implementation of the SIB importer class.
+ *
+ * The Nevercenter Silo SIB format is undocumented.
+ * All details here have been reverse engineered from
+ * studying the binary files output by Silo.
+ *
+ * Nevertheless, this implementation is reasonably complete.
+ */
+
+
+#ifndef ASSIMP_BUILD_NO_SIB_IMPORTER
+
+// internal headers
+#include "SIBImporter.h"
+#include "ByteSwapper.h"
+#include "StreamReader.h"
+#include "TinyFormatter.h"
+#include "../contrib/ConvertUTF/ConvertUTF.h"
+#include <assimp/IOSystem.hpp>
+#include <assimp/DefaultLogger.hpp>
+#include <assimp/scene.h>
+
+
+using namespace Assimp;
+
+static const aiImporterDesc desc = {
+ "Silo SIB Importer",
+ "Richard Mitton (http://www.codersnotes.com/about)",
+ "",
+ "Does not apply subdivision.",
+ aiImporterFlags_SupportBinaryFlavour,
+ 0, 0,
+ 0, 0,
+ "sib"
+};
+
+struct SIBChunk
+{
+ uint32_t Tag;
+ uint32_t Size;
+} PACK_STRUCT;
+
+enum { POS, NRM, UV, N };
+
+typedef std::pair<uint32_t, uint32_t> SIBPair;
+static SIBPair makePair(uint32_t a, uint32_t b) { return (a<b) ? SIBPair(a, b) : SIBPair(b, a); }
+
+struct SIBEdge
+{
+ uint32_t faceA, faceB;
+ bool creased;
+};
+
+struct SIBMesh
+{
+ aiMatrix4x4 axis;
+ uint32_t numPts;
+ std::vector<aiVector3D> pos, nrm, uv;
+ std::vector<uint32_t> idx;
+ std::vector<uint32_t> faceStart;
+ std::vector<uint32_t> mtls;
+ std::vector<SIBEdge> edges;
+ std::map<SIBPair, uint32_t> edgeMap;
+};
+
+struct SIBObject
+{
+ aiString name;
+ aiMatrix4x4 axis;
+ size_t meshIdx, meshCount;
+};
+
+struct SIB
+{
+ std::vector<aiMaterial*> mtls;
+ std::vector<aiMesh*> meshes;
+ std::vector<aiLight*> lights;
+ std::vector<SIBObject> objs, insts;
+};
+
+// ------------------------------------------------------------------------------------------------
+static SIBEdge& GetEdge(SIBMesh* mesh, uint32_t posA, uint32_t posB)
+{
+ SIBPair pair = (posA < posB) ? SIBPair(posA, posB) : SIBPair(posB, posA);
+ std::map<SIBPair, uint32_t>::iterator it = mesh->edgeMap.find(pair);
+ if (it != mesh->edgeMap.end())
+ return mesh->edges[it->second];
+
+ SIBEdge edge;
+ edge.creased = false;
+ edge.faceA = edge.faceB = 0xffffffff;
+ mesh->edgeMap[pair] = mesh->edges.size();
+ mesh->edges.push_back(edge);
+ return mesh->edges.back();
+}
+
+// ------------------------------------------------------------------------------------------------
+// Helpers for reading chunked data.
+
+#define TAG(A,B,C,D) ((A << 24) | (B << 16) | (C << 8) | D)
+
+static SIBChunk ReadChunk(StreamReaderLE* stream)
+{
+ SIBChunk chunk;
+ chunk.Tag = stream->GetU4();
+ chunk.Size = stream->GetU4();
+ if (chunk.Size > stream->GetRemainingSizeToLimit())
+ DefaultLogger::get()->error("SIB: Chunk overflow");
+ ByteSwap::Swap4(&chunk.Tag);
+ return chunk;
+}
+
+static aiColor3D ReadColor(StreamReaderLE* stream)
+{
+ float r = stream->GetF4();
+ float g = stream->GetF4();
+ float b = stream->GetF4();
+ stream->GetU4(); // Colors have an unused(?) 4th component.
+ return aiColor3D(r, g, b);
+}
+
+static void UnknownChunk(StreamReaderLE* stream, const SIBChunk& chunk)
+{
+ char temp[5] = {
+ static_cast<char>(( chunk.Tag>>24 ) & 0xff),
+ static_cast<char>(( chunk.Tag>>16 ) & 0xff),
+ static_cast<char>(( chunk.Tag>>8 ) & 0xff),
+ static_cast<char>(chunk.Tag & 0xff), '\0'
+ };
+
+ DefaultLogger::get()->warn((Formatter::format(), "SIB: Skipping unknown '",temp,"' chunk."));
+}
+
+// Reads a UTF-16LE string and returns it at UTF-8.
+static aiString ReadString(StreamReaderLE* stream, uint32_t numWChars)
+{
+ // Allocate buffers (max expansion is 1 byte -> 4 bytes for UTF-8)
+ UTF16* temp = new UTF16[numWChars];
+ UTF8* str = new UTF8[numWChars * 4 + 1];
+ for (uint32_t n=0;n<numWChars;n++)
+ temp[n] = stream->GetU2();
+
+ // Convert it and NUL-terminate.
+ const UTF16 *start = temp, *end = temp + numWChars;
+ UTF8 *dest = str, *limit = str + numWChars*4;
+ ConvertUTF16toUTF8(&start, end, &dest, limit, lenientConversion);
+ *dest = '\0';
+
+ // Return the final string.
+ aiString result = aiString((const char *)str);
+ delete[] str;
+ delete[] temp;
+ return result;
+}
+
+// ------------------------------------------------------------------------------------------------
+// Constructor to be privately used by Importer
+SIBImporter::SIBImporter()
+{}
+
+// ------------------------------------------------------------------------------------------------
+// Destructor, private as well
+SIBImporter::~SIBImporter()
+{}
+
+// ------------------------------------------------------------------------------------------------
+// Returns whether the class can handle the format of the given file.
+bool SIBImporter::CanRead( const std::string& pFile, IOSystem* /*pIOHandler*/, bool /*checkSig*/) const
+{
+ return SimpleExtensionCheck(pFile, "sib");
+}
+
+// ------------------------------------------------------------------------------------------------
+const aiImporterDesc* SIBImporter::GetInfo () const
+{
+ return &desc;
+}
+
+// ------------------------------------------------------------------------------------------------
+static void ReadVerts(SIBMesh* mesh, StreamReaderLE* stream, uint32_t count)
+{
+ mesh->pos.resize(count);
+
+ for (uint32_t n=0;n<count;n++) {
+ mesh->pos[n].x = stream->GetF4();
+ mesh->pos[n].y = stream->GetF4();
+ mesh->pos[n].z = stream->GetF4();
+ }
+}
+
+// ------------------------------------------------------------------------------------------------
+static void ReadFaces(SIBMesh* mesh, StreamReaderLE* stream)
+{
+ uint32_t ptIdx = 0;
+ while (stream->GetRemainingSizeToLimit() > 0)
+ {
+ uint32_t numPoints = stream->GetU4();
+
+ // Store room for the N index channels, plus the point count.
+ size_t pos = mesh->idx.size() + 1;
+ mesh->idx.resize(pos + numPoints*N);
+ mesh->idx[pos-1] = numPoints;
+ uint32_t *idx = &mesh->idx[pos];
+
+ mesh->faceStart.push_back(pos-1);
+ mesh->mtls.push_back(0);
+
+ // Read all the position data.
+ // UV/normals will be supplied later.
+ // Positions are supplied indexed already, so we preserve that
+ // mapping. UVs are supplied uniquely, so we allocate unique indices.
+ for (uint32_t n=0;n<numPoints;n++,idx+=N,ptIdx++)
+ {
+ uint32_t p = stream->GetU4();
+ if (p >= mesh->pos.size())
+ throw DeadlyImportError("Vertex index is out of range.");
+ idx[POS] = p;
+ idx[NRM] = ptIdx;
+ idx[UV] = ptIdx;
+ }
+ }
+
+ // Allocate data channels for normals/UVs.
+ mesh->nrm.resize(ptIdx, aiVector3D(0,0,0));
+ mesh->uv.resize(ptIdx, aiVector3D(0,0,0));
+
+ mesh->numPts = ptIdx;
+}
+
+// ------------------------------------------------------------------------------------------------
+static void ReadUVs(SIBMesh* mesh, StreamReaderLE* stream)
+{
+ while (stream->GetRemainingSizeToLimit() > 0)
+ {
+ uint32_t faceIdx = stream->GetU4();
+ uint32_t numPoints = stream->GetU4();
+
+ if (faceIdx >= mesh->faceStart.size())
+ throw DeadlyImportError("Invalid face index.");
+
+ uint32_t pos = mesh->faceStart[faceIdx];
+ uint32_t *idx = &mesh->idx[pos + 1];
+
+ for (uint32_t n=0;n<numPoints;n++,idx+=N)
+ {
+ uint32_t id = idx[UV];
+ mesh->uv[id].x = stream->GetF4();
+ mesh->uv[id].y = stream->GetF4();
+ }
+ }
+}
+
+// ------------------------------------------------------------------------------------------------
+static void ReadMtls(SIBMesh* mesh, StreamReaderLE* stream)
+{
+ // Material assignments are stored run-length encoded.
+ // Also, we add 1 to each material so that we can use mtl #0
+ // as the default material.
+ uint32_t prevFace = stream->GetU4();
+ uint32_t prevMtl = stream->GetU4() + 1;
+ while (stream->GetRemainingSizeToLimit() > 0)
+ {
+ uint32_t face = stream->GetU4();
+ uint32_t mtl = stream->GetU4() + 1;
+ while (prevFace < face)
+ {
+ if (prevFace >= mesh->mtls.size())
+ throw DeadlyImportError("Invalid face index.");
+ mesh->mtls[prevFace++] = prevMtl;
+ }
+
+ prevFace = face;
+ prevMtl = mtl;
+ }
+
+ while (prevFace < mesh->mtls.size())
+ mesh->mtls[prevFace++] = prevMtl;
+}
+
+// ------------------------------------------------------------------------------------------------
+static void ReadAxis(aiMatrix4x4& axis, StreamReaderLE* stream)
+{
+ axis.a4 = stream->GetF4();
+ axis.b4 = stream->GetF4();
+ axis.c4 = stream->GetF4();
+ axis.d4 = 1;
+ axis.a1 = stream->GetF4();
+ axis.b1 = stream->GetF4();
+ axis.c1 = stream->GetF4();
+ axis.d1 = 0;
+ axis.a2 = stream->GetF4();
+ axis.b2 = stream->GetF4();
+ axis.c2 = stream->GetF4();
+ axis.d2 = 0;
+ axis.a3 = stream->GetF4();
+ axis.b3 = stream->GetF4();
+ axis.c3 = stream->GetF4();
+ axis.d3 = 0;
+}
+
+// ------------------------------------------------------------------------------------------------
+static void ReadEdges(SIBMesh* mesh, StreamReaderLE* stream)
+{
+ while (stream->GetRemainingSizeToLimit() > 0)
+ {
+ uint32_t posA = stream->GetU4();
+ uint32_t posB = stream->GetU4();
+ GetEdge(mesh, posA, posB);
+ }
+}
+
+// ------------------------------------------------------------------------------------------------
+static void ReadCreases(SIBMesh* mesh, StreamReaderLE* stream)
+{
+ while (stream->GetRemainingSizeToLimit() > 0)
+ {
+ uint32_t edge = stream->GetU4();
+ if (edge >= mesh->edges.size())
+ throw DeadlyImportError("SIB: Invalid edge index.");
+ mesh->edges[edge].creased = true;
+ }
+}
+
+// ------------------------------------------------------------------------------------------------
+static void ConnectFaces(SIBMesh* mesh)
+{
+ // Find faces connected to each edge.
+ size_t numFaces = mesh->faceStart.size();
+ for (size_t faceIdx=0;faceIdx<numFaces;faceIdx++)
+ {
+ uint32_t *idx = &mesh->idx[mesh->faceStart[faceIdx]];
+ uint32_t numPoints = *idx++;
+ uint32_t prev = idx[(numPoints-1)*N+POS];
+
+ for (uint32_t i=0;i<numPoints;i++,idx+=N)
+ {
+ uint32_t next = idx[POS];
+
+ // Find this edge.
+ SIBEdge& edge = GetEdge(mesh, prev, next);
+
+ // Link this face onto it.
+ // This gives potentially undesirable normals when used
+ // with non-2-manifold surfaces, but then so does Silo to begin with.
+ if (edge.faceA == 0xffffffff)
+ edge.faceA = faceIdx;
+ else
+ edge.faceB = faceIdx;
+
+ prev = next;
+ }
+ }
+}
+
+// ------------------------------------------------------------------------------------------------
+static aiVector3D CalculateVertexNormal(SIBMesh* mesh, uint32_t faceIdx, uint32_t pos,
+ const std::vector<aiVector3D>& faceNormals)
+{
+ // Creased edges complicate this. We need to find the start/end range of the
+ // ring of faces that touch this position.
+ // We do this in two passes. The first pass is to find the end of the range,
+ // the second is to work backwards to the start and calculate the final normal.
+ aiVector3D vtxNormal;
+ for (int pass=0;pass<2;pass++)
+ {
+ vtxNormal = aiVector3D(0, 0, 0);
+ uint32_t startFaceIdx = faceIdx;
+ uint32_t prevFaceIdx = faceIdx;
+
+ // Process each connected face.
+ while (true)
+ {
+ // Accumulate the face normal.
+ vtxNormal += faceNormals[faceIdx];
+
+ uint32_t nextFaceIdx = 0xffffffff;
+
+ // Move to the next edge sharing this position.
+ uint32_t* idx = &mesh->idx[mesh->faceStart[faceIdx]];
+ uint32_t numPoints = *idx++;
+ uint32_t posA = idx[(numPoints-1)*N+POS];
+ for (uint32_t n=0;n<numPoints;n++,idx+=N)
+ {
+ uint32_t posB = idx[POS];
+
+ // Test if this edge shares our target position.
+ if (posA == pos || posB == pos)
+ {
+ SIBEdge& edge = GetEdge(mesh, posA, posB);
+
+ // Move to whichever side we didn't just come from.
+ if (!edge.creased) {
+ if (edge.faceA != prevFaceIdx && edge.faceA != faceIdx)
+ nextFaceIdx = edge.faceA;
+ else if (edge.faceB != prevFaceIdx && edge.faceB != faceIdx)
+ nextFaceIdx = edge.faceB;
+ }
+ }
+
+ posA = posB;
+ }
+
+ // Stop once we hit either an creased/unconnected edge, or we
+ // wrapped around and hit our start point.
+ if (nextFaceIdx == 0xffffffff || nextFaceIdx == startFaceIdx)
+ break;
+
+ prevFaceIdx = faceIdx;
+ faceIdx = nextFaceIdx;
+ }
+ }
+
+ // Normalize it.
+ float len = vtxNormal.Length();
+ if (len > 0.000000001f)
+ vtxNormal /= len;
+ return vtxNormal;
+}
+
+// ------------------------------------------------------------------------------------------------
+static void CalculateNormals(SIBMesh* mesh)
+{
+ size_t numFaces = mesh->faceStart.size();
+
+ // Calculate face normals.
+ std::vector<aiVector3D> faceNormals(numFaces);
+ for (size_t faceIdx=0;faceIdx<numFaces;faceIdx++)
+ {
+ uint32_t* idx = &mesh->idx[mesh->faceStart[faceIdx]];
+ uint32_t numPoints = *idx++;
+
+ aiVector3D faceNormal(0, 0, 0);
+
+ uint32_t *prev = &idx[(numPoints-1)*N];
+
+ for (uint32_t i=0;i<numPoints;i++)
+ {
+ uint32_t *next = &idx[i*N];
+
+ faceNormal += mesh->pos[prev[POS]] ^ mesh->pos[next[POS]];
+ prev = next;
+ }
+
+ faceNormals[faceIdx] = faceNormal;
+ }
+
+ // Calculate vertex normals.
+ for (size_t faceIdx=0;faceIdx<numFaces;faceIdx++)
+ {
+ uint32_t* idx = &mesh->idx[mesh->faceStart[faceIdx]];
+ uint32_t numPoints = *idx++;
+
+ for (uint32_t i=0;i<numPoints;i++)
+ {
+ uint32_t pos = idx[i*N+POS];
+ uint32_t nrm = idx[i*N+NRM];
+ aiVector3D vtxNorm = CalculateVertexNormal(mesh, faceIdx, pos, faceNormals);
+ mesh->nrm[nrm] = vtxNorm;
+ }
+ }
+}
+
+// ------------------------------------------------------------------------------------------------
+struct TempMesh
+{
+ std::vector<aiVector3D> vtx;
+ std::vector<aiVector3D> nrm;
+ std::vector<aiVector3D> uv;
+ std::vector<aiFace> faces;
+};
+
+static void ReadShape(SIB* sib, StreamReaderLE* stream)
+{
+ SIBMesh smesh;
+ aiString name;
+
+ while (stream->GetRemainingSizeToLimit() >= sizeof(SIBChunk))
+ {
+ SIBChunk chunk = ReadChunk(stream);
+ unsigned oldLimit = stream->SetReadLimit(stream->GetCurrentPos() + chunk.Size);
+
+ switch (chunk.Tag)
+ {
+ case TAG('M','I','R','P'): break; // mirror plane maybe?
+ case TAG('I','M','R','P'): break; // instance mirror? (not supported here yet)
+ case TAG('D','I','N','F'): break; // display info, not needed
+ case TAG('P','I','N','F'): break; // ?
+ case TAG('V','M','I','R'): break; // ?
+ case TAG('F','M','I','R'): break; // ?
+ case TAG('T','X','S','M'): break; // ?
+ case TAG('F','A','H','S'): break; // ?
+ case TAG('V','R','T','S'): ReadVerts(&smesh, stream, chunk.Size/12); break;
+ case TAG('F','A','C','S'): ReadFaces(&smesh, stream); break;
+ case TAG('F','T','V','S'): ReadUVs(&smesh, stream); break;
+ case TAG('S','N','A','M'): name = ReadString(stream, chunk.Size/2); break;
+ case TAG('F','A','M','A'): ReadMtls(&smesh, stream); break;
+ case TAG('A','X','I','S'): ReadAxis(smesh.axis, stream); break;
+ case TAG('E','D','G','S'): ReadEdges(&smesh, stream); break;
+ case TAG('E','C','R','S'): ReadCreases(&smesh, stream); break;
+ default: UnknownChunk(stream, chunk); break;
+ }
+
+ stream->SetCurrentPos(stream->GetReadLimit());
+ stream->SetReadLimit(oldLimit);
+ }
+
+ assert(smesh.faceStart.size() == smesh.mtls.size()); // sanity check
+
+ // Silo doesn't store any normals in the file - we need to compute
+ // them ourselves. We can't let AssImp handle it as AssImp doesn't
+ // know about our creased edges.
+ ConnectFaces(&smesh);
+ CalculateNormals(&smesh);
+
+ // Construct the transforms.
+ aiMatrix4x4 worldToLocal = smesh.axis;
+ worldToLocal.Inverse();
+ aiMatrix4x4 worldToLocalN = worldToLocal;
+ worldToLocalN.a4 = worldToLocalN.b4 = worldToLocalN.c4 = 0.0f;
+ worldToLocalN.Inverse().Transpose();
+
+ // Allocate final mesh data.
+ // We'll allocate one mesh for each material. (we'll strip unused ones after)
+ std::vector<TempMesh> meshes(sib->mtls.size());
+
+ // Un-index the source data and apply to each vertex.
+ for (unsigned fi=0;fi<smesh.faceStart.size();fi++)
+ {
+ uint32_t start = smesh.faceStart[fi];
+ uint32_t mtl = smesh.mtls[fi];
+ uint32_t *idx = &smesh.idx[start];
+
+ if (mtl >= meshes.size())
+ {
+ DefaultLogger::get()->error("SIB: Face material index is invalid.");
+ mtl = 0;
+ }
+
+ TempMesh& dest = meshes[mtl];
+
+ aiFace face;
+ face.mNumIndices = *idx++;
+ face.mIndices = new unsigned[face.mNumIndices];
+ for (unsigned pt=0;pt<face.mNumIndices;pt++,idx+=N)
+ {
+ size_t vtxIdx = dest.vtx.size();
+ face.mIndices[pt] = vtxIdx;
+
+ // De-index it. We don't need to validate here as
+ // we did it when creating the data.
+ aiVector3D pos = smesh.pos[idx[POS]];
+ aiVector3D nrm = smesh.nrm[idx[NRM]];
+ aiVector3D uv = smesh.uv[idx[UV]];
+
+ // The verts are supplied in world-space, so let's
+ // transform them back into the local space of this mesh:
+ pos = worldToLocal * pos;
+ nrm = worldToLocalN * nrm;
+
+ dest.vtx.push_back(pos);
+ dest.nrm.push_back(nrm);
+ dest.uv.push_back(uv);
+ }
+ dest.faces.push_back(face);
+ }
+
+ SIBObject obj;
+ obj.name = name;
+ obj.axis = smesh.axis;
+ obj.meshIdx = sib->meshes.size();
+
+ // Now that we know the size of everything,
+ // we can build the final one-material-per-mesh data.
+ for (size_t n=0;n<meshes.size();n++)
+ {
+ TempMesh& src = meshes[n];
+ if (src.faces.empty())
+ continue;
+
+ aiMesh* mesh = new aiMesh;
+ mesh->mName = name;
+ mesh->mNumFaces = src.faces.size();
+ mesh->mFaces = new aiFace[mesh->mNumFaces];
+ mesh->mNumVertices = src.vtx.size();
+ mesh->mVertices = new aiVector3D[mesh->mNumVertices];
+ mesh->mNormals = new aiVector3D[mesh->mNumVertices];
+ mesh->mTextureCoords[0] = new aiVector3D[mesh->mNumVertices];
+ mesh->mNumUVComponents[0] = 2;
+ mesh->mMaterialIndex = n;
+
+ for (unsigned i=0;i<mesh->mNumVertices;i++)
+ {
+ mesh->mVertices[i] = src.vtx[i];
+ mesh->mNormals[i] = src.nrm[i];
+ mesh->mTextureCoords[0][i] = src.uv[i];
+ }
+ for (unsigned i=0;i<mesh->mNumFaces;i++)
+ {
+ mesh->mFaces[i] = src.faces[i];
+ }
+
+ sib->meshes.push_back(mesh);
+ }
+
+ obj.meshCount = sib->meshes.size() - obj.meshIdx;
+ sib->objs.push_back(obj);
+}
+
+// ------------------------------------------------------------------------------------------------
+static void ReadMaterial(SIB* sib, StreamReaderLE* stream)
+{
+ aiColor3D diff = ReadColor(stream);
+ aiColor3D ambi = ReadColor(stream);
+ aiColor3D spec = ReadColor(stream);
+ aiColor3D emis = ReadColor(stream);
+ float shiny = (float)stream->GetU4();
+
+ uint32_t nameLen = stream->GetU4();
+ aiString name = ReadString(stream, nameLen/2);
+ uint32_t texLen = stream->GetU4();
+ aiString tex = ReadString(stream, texLen/2);
+
+ aiMaterial* mtl = new aiMaterial();
+ mtl->AddProperty(&diff, 1, AI_MATKEY_COLOR_DIFFUSE);
+ mtl->AddProperty(&ambi, 1, AI_MATKEY_COLOR_AMBIENT);
+ mtl->AddProperty(&spec, 1, AI_MATKEY_COLOR_SPECULAR);
+ mtl->AddProperty(&emis, 1, AI_MATKEY_COLOR_EMISSIVE);
+ mtl->AddProperty(&shiny, 1, AI_MATKEY_SHININESS);
+ mtl->AddProperty(&name, AI_MATKEY_NAME);
+ if (tex.length > 0) {
+ mtl->AddProperty(&tex, AI_MATKEY_TEXTURE_DIFFUSE(0));
+ mtl->AddProperty(&tex, AI_MATKEY_TEXTURE_AMBIENT(0));
+ }
+
+ sib->mtls.push_back(mtl);
+}
+
+// ------------------------------------------------------------------------------------------------
+static void ReadLightInfo(aiLight* light, StreamReaderLE* stream)
+{
+ uint32_t type = stream->GetU4();
+ switch (type) {
+ case 0: light->mType = aiLightSource_POINT; break;
+ case 1: light->mType = aiLightSource_SPOT; break;
+ case 2: light->mType = aiLightSource_DIRECTIONAL; break;
+ default: light->mType = aiLightSource_UNDEFINED; break;
+ }
+
+ light->mPosition.x = stream->GetF4();
+ light->mPosition.y = stream->GetF4();
+ light->mPosition.z = stream->GetF4();
+ light->mDirection.x = stream->GetF4();
+ light->mDirection.y = stream->GetF4();
+ light->mDirection.z = stream->GetF4();
+ light->mColorDiffuse = ReadColor(stream);
+ light->mColorAmbient = ReadColor(stream);
+ light->mColorSpecular = ReadColor(stream);
+ float spotExponent = stream->GetF4();
+ float spotCutoff = stream->GetF4();
+ light->mAttenuationConstant = stream->GetF4();
+ light->mAttenuationLinear = stream->GetF4();
+ light->mAttenuationQuadratic = stream->GetF4();
+
+ // Silo uses the OpenGL default lighting model for it's
+ // spot cutoff/exponent. AssImp unfortunately, does not.
+ // Let's try and approximate it by solving for the
+ // 99% and 1% percentiles.
+ // OpenGL: I = cos(angle)^E
+ // Solving: angle = acos(I^(1/E))
+ float E = 1.0f / std::max(spotExponent, 0.00001f);
+ float inner = acosf(powf(0.99f, E));
+ float outer = acosf(powf(0.01f, E));
+
+ // Apply the cutoff.
+ outer = std::min(outer, AI_DEG_TO_RAD(spotCutoff));
+
+ light->mAngleInnerCone = std::min(inner, outer);
+ light->mAngleOuterCone = outer;
+}
+
+static void ReadLight(SIB* sib, StreamReaderLE* stream)
+{
+ aiLight* light = new aiLight();
+
+ while (stream->GetRemainingSizeToLimit() >= sizeof(SIBChunk))
+ {
+ SIBChunk chunk = ReadChunk(stream);
+ unsigned oldLimit = stream->SetReadLimit(stream->GetCurrentPos() + chunk.Size);
+
+ switch (chunk.Tag)
+ {
+ case TAG('L','N','F','O'): ReadLightInfo(light, stream); break;
+ case TAG('S','N','A','M'): light->mName = ReadString(stream, chunk.Size/2); break;
+ default: UnknownChunk(stream, chunk); break;
+ }
+
+ stream->SetCurrentPos(stream->GetReadLimit());
+ stream->SetReadLimit(oldLimit);
+ }
+
+ sib->lights.push_back(light);
+}
+
+// ------------------------------------------------------------------------------------------------
+static void ReadScale(aiMatrix4x4& axis, StreamReaderLE* stream)
+{
+ aiMatrix4x4 scale;
+ scale.a1 = stream->GetF4();
+ scale.b1 = stream->GetF4();
+ scale.c1 = stream->GetF4();
+ scale.d1 = stream->GetF4();
+ scale.a2 = stream->GetF4();
+ scale.b2 = stream->GetF4();
+ scale.c2 = stream->GetF4();
+ scale.d2 = stream->GetF4();
+ scale.a3 = stream->GetF4();
+ scale.b3 = stream->GetF4();
+ scale.c3 = stream->GetF4();
+ scale.d3 = stream->GetF4();
+ scale.a4 = stream->GetF4();
+ scale.b4 = stream->GetF4();
+ scale.c4 = stream->GetF4();
+ scale.d4 = stream->GetF4();
+
+ axis = axis * scale;
+}
+
+static void ReadInstance(SIB* sib, StreamReaderLE* stream)
+{
+ SIBObject inst;
+ uint32_t shapeIndex = 0;
+
+ while (stream->GetRemainingSizeToLimit() >= sizeof(SIBChunk))
+ {
+ SIBChunk chunk = ReadChunk(stream);
+ unsigned oldLimit = stream->SetReadLimit(stream->GetCurrentPos() + chunk.Size);
+
+ switch (chunk.Tag)
+ {
+ case TAG('D','I','N','F'): break; // display info, not needed
+ case TAG('P','I','N','F'): break; // ?
+ case TAG('A','X','I','S'): ReadAxis(inst.axis, stream); break;
+ case TAG('I','N','S','I'): shapeIndex = stream->GetU4(); break;
+ case TAG('S','M','T','X'): ReadScale(inst.axis, stream); break;
+ case TAG('S','N','A','M'): inst.name = ReadString(stream, chunk.Size/2); break;
+ default: UnknownChunk(stream, chunk); break;
+ }
+
+ stream->SetCurrentPos(stream->GetReadLimit());
+ stream->SetReadLimit(oldLimit);
+ }
+
+ if (shapeIndex >= sib->objs.size())
+ throw DeadlyImportError("SIB: Invalid shape index.");
+
+ const SIBObject& src = sib->objs[shapeIndex];
+ inst.meshIdx = src.meshIdx;
+ inst.meshCount = src.meshCount;
+ sib->insts.push_back(inst);
+}
+
+// ------------------------------------------------------------------------------------------------
+static void CheckVersion(StreamReaderLE* stream)
+{
+ uint32_t version = stream->GetU4();
+ if (version != 1)
+ throw DeadlyImportError("SIB: Unsupported file version.");
+}
+
+static void ReadScene(SIB* sib, StreamReaderLE* stream)
+{
+ // Parse each chunk in turn.
+ while (stream->GetRemainingSizeToLimit() >= sizeof(SIBChunk))
+ {
+ SIBChunk chunk = ReadChunk(stream);
+ unsigned oldLimit = stream->SetReadLimit(stream->GetCurrentPos() + chunk.Size);
+
+ switch (chunk.Tag)
+ {
+ case TAG('H','E','A','D'): CheckVersion(stream); break;
+ case TAG('S','H','A','P'): ReadShape(sib, stream); break;
+ case TAG('G','R','P','S'): break; // group assignment, we don't import this
+ case TAG('T','E','X','P'): break; // ?
+ case TAG('I','N','S','T'): ReadInstance(sib, stream); break;
+ case TAG('M','A','T','R'): ReadMaterial(sib, stream); break;
+ case TAG('L','G','H','T'): ReadLight(sib, stream); break;
+ default: UnknownChunk(stream, chunk); break;
+ }
+
+ stream->SetCurrentPos(stream->GetReadLimit());
+ stream->SetReadLimit(oldLimit);
+ }
+}
+
+// ------------------------------------------------------------------------------------------------
+// Imports the given file into the given scene structure.
+void SIBImporter::InternReadFile(const std::string& pFile,
+ aiScene* pScene, IOSystem* pIOHandler)
+{
+ StreamReaderLE stream(pIOHandler->Open(pFile, "rb"));
+
+ // We should have at least one chunk
+ if (stream.GetRemainingSize() < 16)
+ throw DeadlyImportError("SIB file is either empty or corrupt: " + pFile);
+
+ SIB sib;
+
+ // Default material.
+ aiMaterial* defmtl = new aiMaterial;
+ aiString defname = aiString(AI_DEFAULT_MATERIAL_NAME);
+ defmtl->AddProperty(&defname, AI_MATKEY_NAME);
+ sib.mtls.push_back(defmtl);
+
+ // Read it all.
+ ReadScene(&sib, &stream);
+
+ // Join the instances and objects together.
+ size_t firstInst = sib.objs.size();
+ sib.objs.insert(sib.objs.end(), sib.insts.begin(), sib.insts.end());
+ sib.insts.clear();
+
+ // Transfer to the aiScene.
+ pScene->mNumMaterials = sib.mtls.size();
+ pScene->mNumMeshes = sib.meshes.size();
+ pScene->mNumLights = sib.lights.size();
+ pScene->mMaterials = pScene->mNumMaterials ? new aiMaterial*[pScene->mNumMaterials] : NULL;
+ pScene->mMeshes = pScene->mNumMeshes ? new aiMesh*[pScene->mNumMeshes] : NULL;
+ pScene->mLights = pScene->mNumLights ? new aiLight*[pScene->mNumLights] : NULL;
+ if (pScene->mNumMaterials)
+ memcpy(pScene->mMaterials, &sib.mtls[0], sizeof(aiMaterial*) * pScene->mNumMaterials);
+ if (pScene->mNumMeshes)
+ memcpy(pScene->mMeshes, &sib.meshes[0], sizeof(aiMesh*) * pScene->mNumMeshes);
+ if (pScene->mNumLights)
+ memcpy(pScene->mLights, &sib.lights[0], sizeof(aiLight*) * pScene->mNumLights);
+
+ // Construct the root node.
+ size_t childIdx = 0;
+ aiNode *root = new aiNode();
+ root->mName.Set("<SIBRoot>");
+ root->mNumChildren = sib.objs.size() + sib.lights.size();
+ root->mChildren = root->mNumChildren ? new aiNode*[root->mNumChildren] : NULL;
+ pScene->mRootNode = root;
+
+ // Add nodes for each object.
+ for (size_t n=0;n<sib.objs.size();n++)
+ {
+ SIBObject& obj = sib.objs[n];
+ aiNode* node = new aiNode;
+ root->mChildren[childIdx++] = node;
+ node->mName = obj.name;
+ node->mParent = root;
+ node->mTransformation = obj.axis;
+
+ node->mNumMeshes = obj.meshCount;
+ node->mMeshes = node->mNumMeshes ? new unsigned[node->mNumMeshes] : NULL;
+ for (unsigned i=0;i<node->mNumMeshes;i++)
+ node->mMeshes[i] = obj.meshIdx + i;
+
+ // Mark instanced objects as being so.
+ if (n >= firstInst)
+ {
+ node->mMetaData = new aiMetadata;
+ node->mMetaData->mNumProperties = 1;
+ node->mMetaData->mKeys = new aiString[1];
+ node->mMetaData->mValues = new aiMetadataEntry[1];
+ node->mMetaData->Set(0, "IsInstance", true);
+ }
+ }
+
+ // Add nodes for each light.
+ // (no transformation as the light is already in world space)
+ for (size_t n=0;n<sib.lights.size();n++)
+ {
+ aiLight* light = sib.lights[n];
+ if ( nullptr != light ) {
+ aiNode* node = new aiNode;
+ root->mChildren[ childIdx++ ] = node;
+ node->mName = light->mName;
+ node->mParent = root;
+ }
+ }
+}
+
+#endif // !! ASSIMP_BUILD_NO_SIB_IMPORTER