summaryrefslogtreecommitdiffstats
path: root/src/3rdparty/assimp/code/glTF2Exporter.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/3rdparty/assimp/code/glTF2Exporter.cpp')
-rw-r--r--src/3rdparty/assimp/code/glTF2Exporter.cpp1080
1 files changed, 1080 insertions, 0 deletions
diff --git a/src/3rdparty/assimp/code/glTF2Exporter.cpp b/src/3rdparty/assimp/code/glTF2Exporter.cpp
new file mode 100644
index 000000000..c1a803c1f
--- /dev/null
+++ b/src/3rdparty/assimp/code/glTF2Exporter.cpp
@@ -0,0 +1,1080 @@
+/*
+Open Asset Import Library (assimp)
+----------------------------------------------------------------------
+
+Copyright (c) 2006-2017, assimp team
+
+All rights reserved.
+
+Redistribution and use of this software in source and binary forms,
+with or without modification, are permitted provided that the
+following conditions are met:
+
+* Redistributions of source code must retain the above
+copyright notice, this list of conditions and the
+following disclaimer.
+
+* Redistributions in binary form must reproduce the above
+copyright notice, this list of conditions and the
+following disclaimer in the documentation and/or other
+materials provided with the distribution.
+
+* Neither the name of the assimp team, nor the names of its
+contributors may be used to endorse or promote products
+derived from this software without specific prior
+written permission of the assimp team.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+----------------------------------------------------------------------
+*/
+#ifndef ASSIMP_BUILD_NO_EXPORT
+#ifndef ASSIMP_BUILD_NO_GLTF_EXPORTER
+
+#include "glTF2Exporter.h"
+
+#include "Exceptional.h"
+#include "StringComparison.h"
+#include "ByteSwapper.h"
+
+#include "SplitLargeMeshes.h"
+
+#include <assimp/SceneCombiner.h>
+#include <assimp/version.h>
+#include <assimp/IOSystem.hpp>
+#include <assimp/Exporter.hpp>
+#include <assimp/material.h>
+#include <assimp/scene.h>
+
+// Header files, standard library.
+#include <memory>
+#include <inttypes.h>
+
+#include "glTF2AssetWriter.h"
+
+using namespace rapidjson;
+
+using namespace Assimp;
+using namespace glTF2;
+
+namespace Assimp {
+
+ // ------------------------------------------------------------------------------------------------
+ // Worker function for exporting a scene to GLTF. Prototyped and registered in Exporter.cpp
+ void ExportSceneGLTF2(const char* pFile, IOSystem* pIOSystem, const aiScene* pScene, const ExportProperties* pProperties)
+ {
+ // invoke the exporter
+ glTF2Exporter exporter(pFile, pIOSystem, pScene, pProperties, false);
+ }
+
+} // end of namespace Assimp
+
+glTF2Exporter::glTF2Exporter(const char* filename, IOSystem* pIOSystem, const aiScene* pScene,
+ const ExportProperties* pProperties, bool /*isBinary*/)
+ : mFilename(filename)
+ , mIOSystem(pIOSystem)
+ , mProperties(pProperties)
+{
+ aiScene* sceneCopy_tmp;
+ SceneCombiner::CopyScene(&sceneCopy_tmp, pScene);
+ std::unique_ptr<aiScene> sceneCopy(sceneCopy_tmp);
+
+ SplitLargeMeshesProcess_Triangle tri_splitter;
+ tri_splitter.SetLimit(0xffff);
+ tri_splitter.Execute(sceneCopy.get());
+
+ SplitLargeMeshesProcess_Vertex vert_splitter;
+ vert_splitter.SetLimit(0xffff);
+ vert_splitter.Execute(sceneCopy.get());
+
+ mScene = sceneCopy.get();
+
+ mAsset.reset( new Asset( pIOSystem ) );
+
+ ExportMetadata();
+
+ ExportMaterials();
+
+ if (mScene->mRootNode) {
+ ExportNodeHierarchy(mScene->mRootNode);
+ }
+
+ ExportMeshes();
+ MergeMeshes();
+
+ ExportScene();
+
+ ExportAnimations();
+
+ AssetWriter writer(*mAsset);
+
+ writer.WriteFile(filename);
+}
+
+/*
+ * Copy a 4x4 matrix from struct aiMatrix to typedef mat4.
+ * Also converts from row-major to column-major storage.
+ */
+static void CopyValue(const aiMatrix4x4& v, mat4& o)
+{
+ o[ 0] = v.a1; o[ 1] = v.b1; o[ 2] = v.c1; o[ 3] = v.d1;
+ o[ 4] = v.a2; o[ 5] = v.b2; o[ 6] = v.c2; o[ 7] = v.d2;
+ o[ 8] = v.a3; o[ 9] = v.b3; o[10] = v.c3; o[11] = v.d3;
+ o[12] = v.a4; o[13] = v.b4; o[14] = v.c4; o[15] = v.d4;
+}
+
+static void CopyValue(const aiMatrix4x4& v, aiMatrix4x4& o)
+{
+ o.a1 = v.a1; o.a2 = v.a2; o.a3 = v.a3; o.a4 = v.a4;
+ o.b1 = v.b1; o.b2 = v.b2; o.b3 = v.b3; o.b4 = v.b4;
+ o.c1 = v.c1; o.c2 = v.c2; o.c3 = v.c3; o.c4 = v.c4;
+ o.d1 = v.d1; o.d2 = v.d2; o.d3 = v.d3; o.d4 = v.d4;
+}
+
+static void IdentityMatrix4(mat4& o)
+{
+ o[ 0] = 1; o[ 1] = 0; o[ 2] = 0; o[ 3] = 0;
+ o[ 4] = 0; o[ 5] = 1; o[ 6] = 0; o[ 7] = 0;
+ o[ 8] = 0; o[ 9] = 0; o[10] = 1; o[11] = 0;
+ o[12] = 0; o[13] = 0; o[14] = 0; o[15] = 1;
+}
+
+inline Ref<Accessor> ExportData(Asset& a, std::string& meshName, Ref<Buffer>& buffer,
+ unsigned int count, void* data, AttribType::Value typeIn, AttribType::Value typeOut, ComponentType compType, bool isIndices = false)
+{
+ if (!count || !data) return Ref<Accessor>();
+
+ unsigned int numCompsIn = AttribType::GetNumComponents(typeIn);
+ unsigned int numCompsOut = AttribType::GetNumComponents(typeOut);
+ unsigned int bytesPerComp = ComponentTypeSize(compType);
+
+ size_t offset = buffer->byteLength;
+ // make sure offset is correctly byte-aligned, as required by spec
+ size_t padding = offset % bytesPerComp;
+ offset += padding;
+ size_t length = count * numCompsOut * bytesPerComp;
+ buffer->Grow(length + padding);
+
+ // bufferView
+ Ref<BufferView> bv = a.bufferViews.Create(a.FindUniqueID(meshName, "view"));
+ bv->buffer = buffer;
+ bv->byteOffset = unsigned(offset);
+ bv->byteLength = length; //! The target that the WebGL buffer should be bound to.
+ bv->byteStride = 0;
+ bv->target = isIndices ? BufferViewTarget_ELEMENT_ARRAY_BUFFER : BufferViewTarget_ARRAY_BUFFER;
+
+ // accessor
+ Ref<Accessor> acc = a.accessors.Create(a.FindUniqueID(meshName, "accessor"));
+ acc->bufferView = bv;
+ acc->byteOffset = 0;
+ acc->componentType = compType;
+ acc->count = count;
+ acc->type = typeOut;
+
+ // calculate min and max values
+ {
+ // Allocate and initialize with large values.
+ float float_MAX = 10000000000000.0f;
+ for (unsigned int i = 0 ; i < numCompsOut ; i++) {
+ acc->min.push_back( float_MAX);
+ acc->max.push_back(-float_MAX);
+ }
+
+ // Search and set extreme values.
+ float valueTmp;
+ for (unsigned int i = 0 ; i < count ; i++) {
+ for (unsigned int j = 0 ; j < numCompsOut ; j++) {
+ if (numCompsOut == 1) {
+ valueTmp = static_cast<unsigned short*>(data)[i];
+ } else {
+ valueTmp = static_cast<aiVector3D*>(data)[i][j];
+ }
+
+ if (valueTmp < acc->min[j]) {
+ acc->min[j] = valueTmp;
+ }
+ if (valueTmp > acc->max[j]) {
+ acc->max[j] = valueTmp;
+ }
+ }
+ }
+ }
+
+ // copy the data
+ acc->WriteData(count, data, numCompsIn*bytesPerComp);
+
+ return acc;
+}
+
+inline void SetSamplerWrap(SamplerWrap& wrap, aiTextureMapMode map)
+{
+ switch (map) {
+ case aiTextureMapMode_Clamp:
+ wrap = SamplerWrap::Clamp_To_Edge;
+ break;
+ case aiTextureMapMode_Mirror:
+ wrap = SamplerWrap::Mirrored_Repeat;
+ break;
+ case aiTextureMapMode_Wrap:
+ case aiTextureMapMode_Decal:
+ default:
+ wrap = SamplerWrap::Repeat;
+ break;
+ };
+}
+
+void glTF2Exporter::GetTexSampler(const aiMaterial* mat, Ref<Texture> texture, aiTextureType tt, unsigned int slot)
+{
+ aiString aId;
+ std::string id;
+ if (aiGetMaterialString(mat, AI_MATKEY_GLTF_MAPPINGID(tt, slot), &aId) == AI_SUCCESS) {
+ id = aId.C_Str();
+ }
+
+ if (Ref<Sampler> ref = mAsset->samplers.Get(id.c_str())) {
+ texture->sampler = ref;
+ } else {
+ id = mAsset->FindUniqueID(id, "sampler");
+
+ texture->sampler = mAsset->samplers.Create(id.c_str());
+
+ aiTextureMapMode mapU, mapV;
+ SamplerMagFilter filterMag;
+ SamplerMinFilter filterMin;
+
+ if (aiGetMaterialInteger(mat, AI_MATKEY_MAPPINGMODE_U(tt, slot), (int*)&mapU) == AI_SUCCESS) {
+ SetSamplerWrap(texture->sampler->wrapS, mapU);
+ }
+
+ if (aiGetMaterialInteger(mat, AI_MATKEY_MAPPINGMODE_V(tt, slot), (int*)&mapV) == AI_SUCCESS) {
+ SetSamplerWrap(texture->sampler->wrapT, mapV);
+ }
+
+ if (aiGetMaterialInteger(mat, AI_MATKEY_GLTF_MAPPINGFILTER_MAG(tt, slot), (int*)&filterMag) == AI_SUCCESS) {
+ texture->sampler->magFilter = filterMag;
+ }
+
+ if (aiGetMaterialInteger(mat, AI_MATKEY_GLTF_MAPPINGFILTER_MIN(tt, slot), (int*)&filterMin) == AI_SUCCESS) {
+ texture->sampler->minFilter = filterMin;
+ }
+
+ aiString name;
+ if (aiGetMaterialString(mat, AI_MATKEY_GLTF_MAPPINGNAME(tt, slot), &name) == AI_SUCCESS) {
+ texture->sampler->name = name.C_Str();
+ }
+ }
+}
+
+void glTF2Exporter::GetMatTexProp(const aiMaterial* mat, unsigned int& prop, const char* propName, aiTextureType tt, unsigned int slot)
+{
+ std::string textureKey = std::string(_AI_MATKEY_TEXTURE_BASE) + "." + propName;
+
+ mat->Get(textureKey.c_str(), tt, slot, prop);
+}
+
+void glTF2Exporter::GetMatTexProp(const aiMaterial* mat, float& prop, const char* propName, aiTextureType tt, unsigned int slot)
+{
+ std::string textureKey = std::string(_AI_MATKEY_TEXTURE_BASE) + "." + propName;
+
+ mat->Get(textureKey.c_str(), tt, slot, prop);
+}
+
+void glTF2Exporter::GetMatTex(const aiMaterial* mat, Ref<Texture>& texture, aiTextureType tt, unsigned int slot = 0)
+{
+
+ if (mat->GetTextureCount(tt) > 0) {
+ aiString tex;
+
+ if (mat->Get(AI_MATKEY_TEXTURE(tt, slot), tex) == AI_SUCCESS) {
+ std::string path = tex.C_Str();
+
+ if (path.size() > 0) {
+ if (path[0] != '*') {
+ std::map<std::string, unsigned int>::iterator it = mTexturesByPath.find(path);
+ if (it != mTexturesByPath.end()) {
+ texture = mAsset->textures.Get(it->second);
+ }
+ }
+
+ if (!texture) {
+ std::string texId = mAsset->FindUniqueID("", "texture");
+ texture = mAsset->textures.Create(texId);
+ mTexturesByPath[path] = texture.GetIndex();
+
+ std::string imgId = mAsset->FindUniqueID("", "image");
+ texture->source = mAsset->images.Create(imgId);
+
+ if (path[0] == '*') { // embedded
+ aiTexture* tex = mScene->mTextures[atoi(&path[1])];
+
+ uint8_t* data = reinterpret_cast<uint8_t*>(tex->pcData);
+ texture->source->SetData(data, tex->mWidth, *mAsset);
+
+ if (tex->achFormatHint[0]) {
+ std::string mimeType = "image/";
+ mimeType += (memcmp(tex->achFormatHint, "jpg", 3) == 0) ? "jpeg" : tex->achFormatHint;
+ texture->source->mimeType = mimeType;
+ }
+ }
+ else {
+ texture->source->uri = path;
+ }
+
+ GetTexSampler(mat, texture, tt, slot);
+ }
+ }
+ }
+ }
+}
+
+void glTF2Exporter::GetMatTex(const aiMaterial* mat, TextureInfo& prop, aiTextureType tt, unsigned int slot = 0)
+{
+ Ref<Texture>& texture = prop.texture;
+
+ GetMatTex(mat, texture, tt, slot);
+
+ if (texture) {
+ GetMatTexProp(mat, prop.texCoord, "texCoord", tt, slot);
+ }
+}
+
+void glTF2Exporter::GetMatTex(const aiMaterial* mat, NormalTextureInfo& prop, aiTextureType tt, unsigned int slot = 0)
+{
+ Ref<Texture>& texture = prop.texture;
+
+ GetMatTex(mat, texture, tt, slot);
+
+ if (texture) {
+ GetMatTexProp(mat, prop.texCoord, "texCoord", tt, slot);
+ GetMatTexProp(mat, prop.scale, "scale", tt, slot);
+ }
+}
+
+void glTF2Exporter::GetMatTex(const aiMaterial* mat, OcclusionTextureInfo& prop, aiTextureType tt, unsigned int slot = 0)
+{
+ Ref<Texture>& texture = prop.texture;
+
+ GetMatTex(mat, texture, tt, slot);
+
+ if (texture) {
+ GetMatTexProp(mat, prop.texCoord, "texCoord", tt, slot);
+ GetMatTexProp(mat, prop.strength, "strength", tt, slot);
+ }
+}
+
+aiReturn glTF2Exporter::GetMatColor(const aiMaterial* mat, vec4& prop, const char* propName, int type, int idx)
+{
+ aiColor4D col;
+ aiReturn result = mat->Get(propName, type, idx, col);
+
+ if (result == AI_SUCCESS) {
+ prop[0] = col.r; prop[1] = col.g; prop[2] = col.b; prop[3] = col.a;
+ }
+
+ return result;
+}
+
+aiReturn glTF2Exporter::GetMatColor(const aiMaterial* mat, vec3& prop, const char* propName, int type, int idx)
+{
+ aiColor3D col;
+ aiReturn result = mat->Get(propName, type, idx, col);
+
+ if (result == AI_SUCCESS) {
+ prop[0] = col.r; prop[1] = col.g; prop[2] = col.b;
+ }
+
+ return result;
+}
+
+void glTF2Exporter::ExportMaterials()
+{
+ aiString aiName;
+ for (unsigned int i = 0; i < mScene->mNumMaterials; ++i) {
+ const aiMaterial* mat = mScene->mMaterials[i];
+
+ std::string id = "material_" + to_string(i);
+
+ Ref<Material> m = mAsset->materials.Create(id);
+
+ std::string name;
+ if (mat->Get(AI_MATKEY_NAME, aiName) == AI_SUCCESS) {
+ name = aiName.C_Str();
+ }
+ name = mAsset->FindUniqueID(name, "material");
+
+ m->name = name;
+
+ GetMatTex(mat, m->pbrMetallicRoughness.baseColorTexture, AI_MATKEY_GLTF_PBRMETALLICROUGHNESS_BASE_COLOR_TEXTURE);
+
+ if (!m->pbrMetallicRoughness.baseColorTexture.texture) {
+ //if there wasn't a baseColorTexture defined in the source, fallback to any diffuse texture
+ GetMatTex(mat, m->pbrMetallicRoughness.baseColorTexture, aiTextureType_DIFFUSE);
+ }
+
+ GetMatTex(mat, m->pbrMetallicRoughness.metallicRoughnessTexture, AI_MATKEY_GLTF_PBRMETALLICROUGHNESS_METALLICROUGHNESS_TEXTURE);
+
+ if (GetMatColor(mat, m->pbrMetallicRoughness.baseColorFactor, AI_MATKEY_GLTF_PBRMETALLICROUGHNESS_BASE_COLOR_FACTOR) != AI_SUCCESS) {
+ // if baseColorFactor wasn't defined, then the source is likely not a metallic roughness material.
+ //a fallback to any diffuse color should be used instead
+ GetMatColor(mat, m->pbrMetallicRoughness.baseColorFactor, AI_MATKEY_COLOR_DIFFUSE);
+ }
+
+ if (mat->Get(AI_MATKEY_GLTF_PBRMETALLICROUGHNESS_METALLIC_FACTOR, m->pbrMetallicRoughness.metallicFactor) != AI_SUCCESS) {
+ //if metallicFactor wasn't defined, then the source is likely not a PBR file, and the metallicFactor should be 0
+ m->pbrMetallicRoughness.metallicFactor = 0;
+ }
+
+ // get roughness if source is gltf2 file
+ if (mat->Get(AI_MATKEY_GLTF_PBRMETALLICROUGHNESS_ROUGHNESS_FACTOR, m->pbrMetallicRoughness.roughnessFactor) != AI_SUCCESS) {
+ // otherwise, try to derive and convert from specular + shininess values
+ aiColor4D specularColor;
+ ai_real shininess;
+
+ if (
+ mat->Get(AI_MATKEY_COLOR_SPECULAR, specularColor) == AI_SUCCESS &&
+ mat->Get(AI_MATKEY_SHININESS, shininess) == AI_SUCCESS
+ ) {
+ // convert specular color to luminance
+ float specularIntensity = specularColor[0] * 0.2125f + specularColor[1] * 0.7154f + specularColor[2] * 0.0721f;
+ //normalize shininess (assuming max is 1000) with an inverse exponentional curve
+ float normalizedShininess = std::sqrt(shininess / 1000);
+
+ //clamp the shininess value between 0 and 1
+ normalizedShininess = std::min(std::max(normalizedShininess, 0.0f), 1.0f);
+ // low specular intensity values should produce a rough material even if shininess is high.
+ normalizedShininess = normalizedShininess * specularIntensity;
+
+ m->pbrMetallicRoughness.roughnessFactor = 1 - normalizedShininess;
+ }
+ }
+
+ GetMatTex(mat, m->normalTexture, aiTextureType_NORMALS);
+ GetMatTex(mat, m->occlusionTexture, aiTextureType_LIGHTMAP);
+ GetMatTex(mat, m->emissiveTexture, aiTextureType_EMISSIVE);
+ GetMatColor(mat, m->emissiveFactor, AI_MATKEY_COLOR_EMISSIVE);
+
+ mat->Get(AI_MATKEY_TWOSIDED, m->doubleSided);
+ mat->Get(AI_MATKEY_GLTF_ALPHACUTOFF, m->alphaCutoff);
+
+ aiString alphaMode;
+
+ if (mat->Get(AI_MATKEY_GLTF_ALPHAMODE, alphaMode) == AI_SUCCESS) {
+ m->alphaMode = alphaMode.C_Str();
+ } else {
+ float opacity;
+
+ if (mat->Get(AI_MATKEY_OPACITY, opacity) == AI_SUCCESS) {
+ if (opacity < 1) {
+ m->alphaMode = "BLEND";
+ m->pbrMetallicRoughness.baseColorFactor[3] *= opacity;
+ }
+ }
+ }
+
+ bool hasPbrSpecularGlossiness = false;
+ mat->Get(AI_MATKEY_GLTF_PBRSPECULARGLOSSINESS, hasPbrSpecularGlossiness);
+
+ if (hasPbrSpecularGlossiness) {
+
+ if (!mAsset->extensionsUsed.KHR_materials_pbrSpecularGlossiness) {
+ mAsset->extensionsUsed.KHR_materials_pbrSpecularGlossiness = true;
+ }
+
+ PbrSpecularGlossiness pbrSG;
+
+ GetMatColor(mat, pbrSG.diffuseFactor, AI_MATKEY_COLOR_DIFFUSE);
+ GetMatColor(mat, pbrSG.specularFactor, AI_MATKEY_COLOR_SPECULAR);
+
+ if (mat->Get(AI_MATKEY_GLTF_PBRSPECULARGLOSSINESS_GLOSSINESS_FACTOR, pbrSG.glossinessFactor) != AI_SUCCESS) {
+ float shininess;
+
+ if (mat->Get(AI_MATKEY_SHININESS, shininess)) {
+ pbrSG.glossinessFactor = shininess / 1000;
+ }
+ }
+
+ GetMatTex(mat, pbrSG.diffuseTexture, aiTextureType_DIFFUSE);
+ GetMatTex(mat, pbrSG.specularGlossinessTexture, aiTextureType_SPECULAR);
+
+ m->pbrSpecularGlossiness = Nullable<PbrSpecularGlossiness>(pbrSG);
+ }
+ }
+}
+
+/*
+ * Search through node hierarchy and find the node containing the given meshID.
+ * Returns true on success, and false otherwise.
+ */
+bool FindMeshNode(Ref<Node>& nodeIn, Ref<Node>& meshNode, std::string meshID)
+{
+ for (unsigned int i = 0; i < nodeIn->meshes.size(); ++i) {
+ if (meshID.compare(nodeIn->meshes[i]->id) == 0) {
+ meshNode = nodeIn;
+ return true;
+ }
+ }
+
+ for (unsigned int i = 0; i < nodeIn->children.size(); ++i) {
+ if(FindMeshNode(nodeIn->children[i], meshNode, meshID)) {
+ return true;
+ }
+ }
+
+ return false;
+}
+
+/*
+ * Find the root joint of the skeleton.
+ * Starts will any joint node and traces up the tree,
+ * until a parent is found that does not have a jointName.
+ * Returns the first parent Ref<Node> found that does not have a jointName.
+ */
+Ref<Node> FindSkeletonRootJoint(Ref<Skin>& skinRef)
+{
+ Ref<Node> startNodeRef;
+ Ref<Node> parentNodeRef;
+
+ // Arbitrarily use the first joint to start the search.
+ startNodeRef = skinRef->jointNames[0];
+ parentNodeRef = skinRef->jointNames[0];
+
+ do {
+ startNodeRef = parentNodeRef;
+ parentNodeRef = startNodeRef->parent;
+ } while (!parentNodeRef->jointName.empty());
+
+ return parentNodeRef;
+}
+
+void ExportSkin(Asset& mAsset, const aiMesh* aimesh, Ref<Mesh>& meshRef, Ref<Buffer>& bufferRef, Ref<Skin>& skinRef, std::vector<aiMatrix4x4>& inverseBindMatricesData)
+{
+ if (aimesh->mNumBones < 1) {
+ return;
+ }
+
+ // Store the vertex joint and weight data.
+ const size_t NumVerts( aimesh->mNumVertices );
+ vec4* vertexJointData = new vec4[ NumVerts ];
+ vec4* vertexWeightData = new vec4[ NumVerts ];
+ int* jointsPerVertex = new int[ NumVerts ];
+ for (size_t i = 0; i < NumVerts; ++i) {
+ jointsPerVertex[i] = 0;
+ for (size_t j = 0; j < 4; ++j) {
+ vertexJointData[i][j] = 0;
+ vertexWeightData[i][j] = 0;
+ }
+ }
+
+ for (unsigned int idx_bone = 0; idx_bone < aimesh->mNumBones; ++idx_bone) {
+ const aiBone* aib = aimesh->mBones[idx_bone];
+
+ // aib->mName =====> skinRef->jointNames
+ // Find the node with id = mName.
+ Ref<Node> nodeRef = mAsset.nodes.Get(aib->mName.C_Str());
+ nodeRef->jointName = nodeRef->name;
+
+ unsigned int jointNamesIndex = 0;
+ bool addJointToJointNames = true;
+ for ( unsigned int idx_joint = 0; idx_joint < skinRef->jointNames.size(); ++idx_joint) {
+ if (skinRef->jointNames[idx_joint]->jointName.compare(nodeRef->jointName) == 0) {
+ addJointToJointNames = false;
+ jointNamesIndex = idx_joint;
+ }
+ }
+
+ if (addJointToJointNames) {
+ skinRef->jointNames.push_back(nodeRef);
+
+ // aib->mOffsetMatrix =====> skinRef->inverseBindMatrices
+ aiMatrix4x4 tmpMatrix4;
+ CopyValue(aib->mOffsetMatrix, tmpMatrix4);
+ inverseBindMatricesData.push_back(tmpMatrix4);
+ jointNamesIndex = static_cast<unsigned int>(inverseBindMatricesData.size() - 1);
+ }
+
+ // aib->mWeights =====> vertexWeightData
+ for (unsigned int idx_weights = 0; idx_weights < aib->mNumWeights; ++idx_weights) {
+ unsigned int vertexId = aib->mWeights[idx_weights].mVertexId;
+ float vertWeight = aib->mWeights[idx_weights].mWeight;
+
+ // A vertex can only have at most four joint weights. Ignore all others.
+ if (jointsPerVertex[vertexId] > 3) {
+ continue;
+ }
+
+ vertexJointData[vertexId][jointsPerVertex[vertexId]] = static_cast<float>(jointNamesIndex);
+ vertexWeightData[vertexId][jointsPerVertex[vertexId]] = vertWeight;
+
+ jointsPerVertex[vertexId] += 1;
+ }
+
+ } // End: for-loop mNumMeshes
+
+ Mesh::Primitive& p = meshRef->primitives.back();
+ Ref<Accessor> vertexJointAccessor = ExportData(mAsset, skinRef->id, bufferRef, aimesh->mNumVertices, vertexJointData, AttribType::VEC4, AttribType::VEC4, ComponentType_FLOAT);
+ if ( vertexJointAccessor ) {
+ p.attributes.joint.push_back( vertexJointAccessor );
+ }
+
+ Ref<Accessor> vertexWeightAccessor = ExportData(mAsset, skinRef->id, bufferRef, aimesh->mNumVertices, vertexWeightData, AttribType::VEC4, AttribType::VEC4, ComponentType_FLOAT);
+ if ( vertexWeightAccessor ) {
+ p.attributes.weight.push_back( vertexWeightAccessor );
+ }
+ delete[] jointsPerVertex;
+ delete[] vertexWeightData;
+ delete[] vertexJointData;
+}
+
+void glTF2Exporter::ExportMeshes()
+{
+ // Not for
+ // using IndicesType = decltype(aiFace::mNumIndices);
+ // But yes for
+ // using IndicesType = unsigned short;
+ // because "ComponentType_UNSIGNED_SHORT" used for indices. And it's a maximal type according to glTF specification.
+ typedef unsigned short IndicesType;
+
+ std::string fname = std::string(mFilename);
+ std::string bufferIdPrefix = fname.substr(0, fname.rfind(".gltf"));
+ std::string bufferId = mAsset->FindUniqueID("", bufferIdPrefix.c_str());
+
+ Ref<Buffer> b = mAsset->GetBodyBuffer();
+ if (!b) {
+ b = mAsset->buffers.Create(bufferId);
+ }
+
+ //----------------------------------------
+ // Initialize variables for the skin
+ bool createSkin = false;
+ for (unsigned int idx_mesh = 0; idx_mesh < mScene->mNumMeshes; ++idx_mesh) {
+ const aiMesh* aim = mScene->mMeshes[idx_mesh];
+ if(aim->HasBones()) {
+ createSkin = true;
+ break;
+ }
+ }
+
+ Ref<Skin> skinRef;
+ std::string skinName = mAsset->FindUniqueID("skin", "skin");
+ std::vector<aiMatrix4x4> inverseBindMatricesData;
+ if(createSkin) {
+ skinRef = mAsset->skins.Create(skinName);
+ skinRef->name = skinName;
+ }
+ //----------------------------------------
+
+ for (unsigned int idx_mesh = 0; idx_mesh < mScene->mNumMeshes; ++idx_mesh) {
+ const aiMesh* aim = mScene->mMeshes[idx_mesh];
+
+ std::string name = aim->mName.C_Str();
+
+ std::string meshId = mAsset->FindUniqueID(name, "mesh");
+ Ref<Mesh> m = mAsset->meshes.Create(meshId);
+ m->primitives.resize(1);
+ Mesh::Primitive& p = m->primitives.back();
+
+ m->name = name;
+
+ p.material = mAsset->materials.Get(aim->mMaterialIndex);
+
+ /******************* Vertices ********************/
+ Ref<Accessor> v = ExportData(*mAsset, meshId, b, aim->mNumVertices, aim->mVertices, AttribType::VEC3, AttribType::VEC3, ComponentType_FLOAT);
+ if (v) p.attributes.position.push_back(v);
+
+ /******************** Normals ********************/
+ Ref<Accessor> n = ExportData(*mAsset, meshId, b, aim->mNumVertices, aim->mNormals, AttribType::VEC3, AttribType::VEC3, ComponentType_FLOAT);
+ if (n) p.attributes.normal.push_back(n);
+
+ /************** Texture coordinates **************/
+ for (int i = 0; i < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++i) {
+ // Flip UV y coords
+ if (aim -> mNumUVComponents[i] > 1) {
+ for (unsigned int j = 0; j < aim->mNumVertices; ++j) {
+ aim->mTextureCoords[i][j].y = 1 - aim->mTextureCoords[i][j].y;
+ }
+ }
+
+ if (aim->mNumUVComponents[i] > 0) {
+ AttribType::Value type = (aim->mNumUVComponents[i] == 2) ? AttribType::VEC2 : AttribType::VEC3;
+
+ Ref<Accessor> tc = ExportData(*mAsset, meshId, b, aim->mNumVertices, aim->mTextureCoords[i], AttribType::VEC3, type, ComponentType_FLOAT, false);
+ if (tc) p.attributes.texcoord.push_back(tc);
+ }
+ }
+
+ /*************** Vertices indices ****************/
+ if (aim->mNumFaces > 0) {
+ std::vector<IndicesType> indices;
+ unsigned int nIndicesPerFace = aim->mFaces[0].mNumIndices;
+ indices.resize(aim->mNumFaces * nIndicesPerFace);
+ for (size_t i = 0; i < aim->mNumFaces; ++i) {
+ for (size_t j = 0; j < nIndicesPerFace; ++j) {
+ indices[i*nIndicesPerFace + j] = uint16_t(aim->mFaces[i].mIndices[j]);
+ }
+ }
+
+ p.indices = ExportData(*mAsset, meshId, b, unsigned(indices.size()), &indices[0], AttribType::SCALAR, AttribType::SCALAR, ComponentType_UNSIGNED_SHORT, true);
+ }
+
+ switch (aim->mPrimitiveTypes) {
+ case aiPrimitiveType_POLYGON:
+ p.mode = PrimitiveMode_TRIANGLES; break; // TODO implement this
+ case aiPrimitiveType_LINE:
+ p.mode = PrimitiveMode_LINES; break;
+ case aiPrimitiveType_POINT:
+ p.mode = PrimitiveMode_POINTS; break;
+ default: // aiPrimitiveType_TRIANGLE
+ p.mode = PrimitiveMode_TRIANGLES;
+ }
+
+ /*************** Skins ****************/
+ if(aim->HasBones()) {
+ ExportSkin(*mAsset, aim, m, b, skinRef, inverseBindMatricesData);
+ }
+ }
+
+ //----------------------------------------
+ // Finish the skin
+ // Create the Accessor for skinRef->inverseBindMatrices
+ if (createSkin) {
+ mat4* invBindMatrixData = new mat4[inverseBindMatricesData.size()];
+ for ( unsigned int idx_joint = 0; idx_joint < inverseBindMatricesData.size(); ++idx_joint) {
+ CopyValue(inverseBindMatricesData[idx_joint], invBindMatrixData[idx_joint]);
+ }
+
+ Ref<Accessor> invBindMatrixAccessor = ExportData(*mAsset, skinName, b, static_cast<unsigned int>(inverseBindMatricesData.size()), invBindMatrixData, AttribType::MAT4, AttribType::MAT4, ComponentType_FLOAT);
+ if (invBindMatrixAccessor) skinRef->inverseBindMatrices = invBindMatrixAccessor;
+
+ // Identity Matrix =====> skinRef->bindShapeMatrix
+ // Temporary. Hard-coded identity matrix here
+ skinRef->bindShapeMatrix.isPresent = true;
+ IdentityMatrix4(skinRef->bindShapeMatrix.value);
+
+ // Find nodes that contain a mesh with bones and add "skeletons" and "skin" attributes to those nodes.
+ Ref<Node> rootNode = mAsset->nodes.Get(unsigned(0));
+ Ref<Node> meshNode;
+ for (unsigned int meshIndex = 0; meshIndex < mAsset->meshes.Size(); ++meshIndex) {
+ Ref<Mesh> mesh = mAsset->meshes.Get(meshIndex);
+ bool hasBones = false;
+ for (unsigned int i = 0; i < mesh->primitives.size(); ++i) {
+ if (!mesh->primitives[i].attributes.weight.empty()) {
+ hasBones = true;
+ break;
+ }
+ }
+ if (!hasBones) {
+ continue;
+ }
+ std::string meshID = mesh->id;
+ FindMeshNode(rootNode, meshNode, meshID);
+ Ref<Node> rootJoint = FindSkeletonRootJoint(skinRef);
+ meshNode->skeletons.push_back(rootJoint);
+ meshNode->skin = skinRef;
+ }
+ }
+}
+
+//merges a node's multiple meshes (with one primitive each) into one mesh with multiple primitives
+void glTF2Exporter::MergeMeshes()
+{
+ for (unsigned int n = 0; n < mAsset->nodes.Size(); ++n) {
+ Ref<Node> node = mAsset->nodes.Get(n);
+
+ unsigned int nMeshes = static_cast<unsigned int>(node->meshes.size());
+
+ //skip if it's 1 or less meshes per node
+ if (nMeshes > 1) {
+ Ref<Mesh> firstMesh = node->meshes.at(0);
+
+ //loop backwards to allow easy removal of a mesh from a node once it's merged
+ for (unsigned int m = nMeshes - 1; m >= 1; --m) {
+ Ref<Mesh> mesh = node->meshes.at(m);
+
+ //append this mesh's primitives to the first mesh's primitives
+ firstMesh->primitives.insert(
+ firstMesh->primitives.end(),
+ mesh->primitives.begin(),
+ mesh->primitives.end()
+ );
+
+ //remove the mesh from the list of meshes
+ unsigned int removedIndex = mAsset->meshes.Remove(mesh->id.c_str());
+
+ //find the presence of the removed mesh in other nodes
+ for (unsigned int nn = 0; nn < mAsset->nodes.Size(); ++nn) {
+ Ref<Node> node = mAsset->nodes.Get(nn);
+
+ for (unsigned int mm = 0; mm < node->meshes.size(); ++mm) {
+ Ref<Mesh>& meshRef = node->meshes.at(mm);
+ unsigned int meshIndex = meshRef.GetIndex();
+
+ if (meshIndex == removedIndex) {
+ node->meshes.erase(node->meshes.begin() + mm);
+ } else if (meshIndex > removedIndex) {
+ Ref<Mesh> newMeshRef = mAsset->meshes.Get(meshIndex - 1);
+
+ meshRef = newMeshRef;
+ }
+ }
+ }
+ }
+
+ //since we were looping backwards, reverse the order of merged primitives to their original order
+ std::reverse(firstMesh->primitives.begin() + 1, firstMesh->primitives.end());
+ }
+ }
+}
+
+/*
+ * Export the root node of the node hierarchy.
+ * Calls ExportNode for all children.
+ */
+unsigned int glTF2Exporter::ExportNodeHierarchy(const aiNode* n)
+{
+ Ref<Node> node = mAsset->nodes.Create(mAsset->FindUniqueID(n->mName.C_Str(), "node"));
+
+ if (!n->mTransformation.IsIdentity()) {
+ node->matrix.isPresent = true;
+ CopyValue(n->mTransformation, node->matrix.value);
+ }
+
+ for (unsigned int i = 0; i < n->mNumMeshes; ++i) {
+ node->meshes.push_back(mAsset->meshes.Get(n->mMeshes[i]));
+ }
+
+ for (unsigned int i = 0; i < n->mNumChildren; ++i) {
+ unsigned int idx = ExportNode(n->mChildren[i], node);
+ node->children.push_back(mAsset->nodes.Get(idx));
+ }
+
+ return node.GetIndex();
+}
+
+/*
+ * Export node and recursively calls ExportNode for all children.
+ * Since these nodes are not the root node, we also export the parent Ref<Node>
+ */
+unsigned int glTF2Exporter::ExportNode(const aiNode* n, Ref<Node>& parent)
+{
+ std::string name = mAsset->FindUniqueID(n->mName.C_Str(), "node");
+ Ref<Node> node = mAsset->nodes.Create(name);
+
+ node->parent = parent;
+ node->name = name;
+
+ if (!n->mTransformation.IsIdentity()) {
+ node->matrix.isPresent = true;
+ CopyValue(n->mTransformation, node->matrix.value);
+ }
+
+ for (unsigned int i = 0; i < n->mNumMeshes; ++i) {
+ node->meshes.push_back(mAsset->meshes.Get(n->mMeshes[i]));
+ }
+
+ for (unsigned int i = 0; i < n->mNumChildren; ++i) {
+ unsigned int idx = ExportNode(n->mChildren[i], node);
+ node->children.push_back(mAsset->nodes.Get(idx));
+ }
+
+ return node.GetIndex();
+}
+
+
+void glTF2Exporter::ExportScene()
+{
+ const char* sceneName = "defaultScene";
+ Ref<Scene> scene = mAsset->scenes.Create(sceneName);
+
+ // root node will be the first one exported (idx 0)
+ if (mAsset->nodes.Size() > 0) {
+ scene->nodes.push_back(mAsset->nodes.Get(0u));
+ }
+
+ // set as the default scene
+ mAsset->scene = scene;
+}
+
+void glTF2Exporter::ExportMetadata()
+{
+ AssetMetadata& asset = mAsset->asset;
+ asset.version = "2.0";
+
+ char buffer[256];
+ ai_snprintf(buffer, 256, "Open Asset Import Library (assimp v%d.%d.%d)",
+ aiGetVersionMajor(), aiGetVersionMinor(), aiGetVersionRevision());
+
+ asset.generator = buffer;
+}
+
+inline void ExtractAnimationData(Asset& mAsset, std::string& animId, Ref<Animation>& animRef, Ref<Buffer>& buffer, const aiNodeAnim* nodeChannel, float ticksPerSecond)
+{
+ // Loop over the data and check to see if it exactly matches an existing buffer.
+ // If yes, then reference the existing corresponding accessor.
+ // Otherwise, add to the buffer and create a new accessor.
+
+ size_t counts[3] = {
+ nodeChannel->mNumPositionKeys,
+ nodeChannel->mNumScalingKeys,
+ nodeChannel->mNumRotationKeys,
+ };
+ size_t numKeyframes = 1;
+ for (int i = 0; i < 3; ++i) {
+ if (counts[i] > numKeyframes) {
+ numKeyframes = counts[i];
+ }
+ }
+
+ //-------------------------------------------------------
+ // Extract TIME parameter data.
+ // Check if the timeStamps are the same for mPositionKeys, mRotationKeys, and mScalingKeys.
+ if(nodeChannel->mNumPositionKeys > 0) {
+ typedef float TimeType;
+ std::vector<TimeType> timeData;
+ timeData.resize(numKeyframes);
+ for (size_t i = 0; i < numKeyframes; ++i) {
+ size_t frameIndex = i * nodeChannel->mNumPositionKeys / numKeyframes;
+ // mTime is measured in ticks, but GLTF time is measured in seconds, so convert.
+ // Check if we have to cast type here. e.g. uint16_t()
+ timeData[i] = static_cast<float>(nodeChannel->mPositionKeys[frameIndex].mTime / ticksPerSecond);
+ }
+
+ Ref<Accessor> timeAccessor = ExportData(mAsset, animId, buffer, static_cast<unsigned int>(numKeyframes), &timeData[0], AttribType::SCALAR, AttribType::SCALAR, ComponentType_FLOAT);
+ if (timeAccessor) animRef->Parameters.TIME = timeAccessor;
+ }
+
+ //-------------------------------------------------------
+ // Extract translation parameter data
+ if(nodeChannel->mNumPositionKeys > 0) {
+ C_STRUCT aiVector3D* translationData = new aiVector3D[numKeyframes];
+ for (size_t i = 0; i < numKeyframes; ++i) {
+ size_t frameIndex = i * nodeChannel->mNumPositionKeys / numKeyframes;
+ translationData[i] = nodeChannel->mPositionKeys[frameIndex].mValue;
+ }
+
+ Ref<Accessor> tranAccessor = ExportData(mAsset, animId, buffer, static_cast<unsigned int>(numKeyframes), translationData, AttribType::VEC3, AttribType::VEC3, ComponentType_FLOAT);
+ if ( tranAccessor ) {
+ animRef->Parameters.translation = tranAccessor;
+ }
+ delete[] translationData;
+ }
+
+ //-------------------------------------------------------
+ // Extract scale parameter data
+ if(nodeChannel->mNumScalingKeys > 0) {
+ C_STRUCT aiVector3D* scaleData = new aiVector3D[numKeyframes];
+ for (size_t i = 0; i < numKeyframes; ++i) {
+ size_t frameIndex = i * nodeChannel->mNumScalingKeys / numKeyframes;
+ scaleData[i] = nodeChannel->mScalingKeys[frameIndex].mValue;
+ }
+
+ Ref<Accessor> scaleAccessor = ExportData(mAsset, animId, buffer, static_cast<unsigned int>(numKeyframes), scaleData, AttribType::VEC3, AttribType::VEC3, ComponentType_FLOAT);
+ if ( scaleAccessor ) {
+ animRef->Parameters.scale = scaleAccessor;
+ }
+ delete[] scaleData;
+ }
+
+ //-------------------------------------------------------
+ // Extract rotation parameter data
+ if(nodeChannel->mNumRotationKeys > 0) {
+ vec4* rotationData = new vec4[numKeyframes];
+ for (size_t i = 0; i < numKeyframes; ++i) {
+ size_t frameIndex = i * nodeChannel->mNumRotationKeys / numKeyframes;
+ rotationData[i][0] = nodeChannel->mRotationKeys[frameIndex].mValue.x;
+ rotationData[i][1] = nodeChannel->mRotationKeys[frameIndex].mValue.y;
+ rotationData[i][2] = nodeChannel->mRotationKeys[frameIndex].mValue.z;
+ rotationData[i][3] = nodeChannel->mRotationKeys[frameIndex].mValue.w;
+ }
+
+ Ref<Accessor> rotAccessor = ExportData(mAsset, animId, buffer, static_cast<unsigned int>(numKeyframes), rotationData, AttribType::VEC4, AttribType::VEC4, ComponentType_FLOAT);
+ if ( rotAccessor ) {
+ animRef->Parameters.rotation = rotAccessor;
+ }
+ delete[] rotationData;
+ }
+}
+
+void glTF2Exporter::ExportAnimations()
+{
+ Ref<Buffer> bufferRef = mAsset->buffers.Get(unsigned (0));
+
+ for (unsigned int i = 0; i < mScene->mNumAnimations; ++i) {
+ const aiAnimation* anim = mScene->mAnimations[i];
+
+ std::string nameAnim = "anim";
+ if (anim->mName.length > 0) {
+ nameAnim = anim->mName.C_Str();
+ }
+
+ for (unsigned int channelIndex = 0; channelIndex < anim->mNumChannels; ++channelIndex) {
+ const aiNodeAnim* nodeChannel = anim->mChannels[channelIndex];
+
+ // It appears that assimp stores this type of animation as multiple animations.
+ // where each aiNodeAnim in mChannels animates a specific node.
+ std::string name = nameAnim + "_" + to_string(channelIndex);
+ name = mAsset->FindUniqueID(name, "animation");
+ Ref<Animation> animRef = mAsset->animations.Create(name);
+
+ // Parameters
+ ExtractAnimationData(*mAsset, name, animRef, bufferRef, nodeChannel, static_cast<float>(anim->mTicksPerSecond));
+
+ for (unsigned int j = 0; j < 3; ++j) {
+ std::string channelType;
+ int channelSize;
+ switch (j) {
+ case 0:
+ channelType = "rotation";
+ channelSize = nodeChannel->mNumRotationKeys;
+ break;
+ case 1:
+ channelType = "scale";
+ channelSize = nodeChannel->mNumScalingKeys;
+ break;
+ case 2:
+ channelType = "translation";
+ channelSize = nodeChannel->mNumPositionKeys;
+ break;
+ }
+
+ if (channelSize < 1) { continue; }
+
+ Animation::AnimChannel tmpAnimChannel;
+ Animation::AnimSampler tmpAnimSampler;
+
+ tmpAnimChannel.sampler = static_cast<int>(animRef->Samplers.size());
+ tmpAnimChannel.target.path = channelType;
+ tmpAnimSampler.output = channelType;
+ tmpAnimSampler.id = name + "_" + channelType;
+
+ tmpAnimChannel.target.node = mAsset->nodes.Get(nodeChannel->mNodeName.C_Str());
+
+ tmpAnimSampler.input = "TIME";
+ tmpAnimSampler.interpolation = "LINEAR";
+
+ animRef->Channels.push_back(tmpAnimChannel);
+ animRef->Samplers.push_back(tmpAnimSampler);
+ }
+
+ }
+
+ // Assimp documentation staes this is not used (not implemented)
+ // for (unsigned int channelIndex = 0; channelIndex < anim->mNumMeshChannels; ++channelIndex) {
+ // const aiMeshAnim* meshChannel = anim->mMeshChannels[channelIndex];
+ // }
+
+ } // End: for-loop mNumAnimations
+}
+
+
+#endif // ASSIMP_BUILD_NO_GLTF_EXPORTER
+#endif // ASSIMP_BUILD_NO_EXPORT