/**************************************************************************** ** ** Copyright (C) 2014 Klaralvdalens Datakonsult AB (KDAB). ** Copyright (C) 2017 The Qt Company Ltd. ** Contact: https://www.qt.io/licensing/ ** ** This file is part of the Qt3D module of the Qt Toolkit. ** ** $QT_BEGIN_LICENSE:BSD$ ** Commercial License Usage ** Licensees holding valid commercial Qt licenses may use this file in ** accordance with the commercial license agreement provided with the ** Software or, alternatively, in accordance with the terms contained in ** a written agreement between you and The Qt Company. For licensing terms ** and conditions see https://www.qt.io/terms-conditions. For further ** information use the contact form at https://www.qt.io/contact-us. ** ** BSD License Usage ** Alternatively, you may use this file under the terms of the BSD license ** as follows: ** ** "Redistribution and use in source and binary forms, with or without ** modification, are permitted provided that the following conditions are ** met: ** * Redistributions of source code must retain the above copyright ** notice, this list of conditions and the following disclaimer. ** * Redistributions in binary form must reproduce the above copyright ** notice, this list of conditions and the following disclaimer in ** the documentation and/or other materials provided with the ** distribution. ** * Neither the name of The Qt Company Ltd nor the names of its ** contributors may be used to endorse or promote products derived ** from this software without specific prior written permission. ** ** ** THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ** "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT ** LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR ** A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT ** OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, ** SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT ** LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, ** DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY ** THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT ** (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE ** OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE." ** ** $QT_END_LICENSE$ ** ****************************************************************************/ #version 450 core layout(std140, binding = 2) uniform extras_uniforms { float texCoordScale; vec3 ka; // Ambient reflectivity vec3 ks; // Specular reflectivity float shininess; // Specular shininess factor float opacity; // Alpha channel vec3 lightPosition; vec3 lightIntensity; }; layout(binding=3) uniform sampler2D diffuseTexture; layout(location=0) in vec3 position; layout(location=1) in vec3 normal; layout(location=2) in vec2 texCoord; layout(std140, binding = 0) uniform qt3d_render_view_uniforms { mat4 viewMatrix; mat4 projectionMatrix; mat4 uncorrectedProjectionMatrix; mat4 clipCorrectionMatrix; mat4 viewProjectionMatrix; mat4 inverseViewMatrix; mat4 inverseProjectionMatrix; mat4 inverseViewProjectionMatrix; mat4 viewportMatrix; mat4 inverseViewportMatrix; vec4 textureTransformMatrix; vec3 eyePosition; float aspectRatio; float gamma; float exposure; float time; }; layout(location=0) out vec4 fragColor; vec3 dModel(const in vec2 flipYTexCoord) { // Calculate the vector from the light to the fragment vec3 s = normalize(vec3(viewMatrix * vec4(lightPosition, 1.0)) - position); // Calculate the vector from the fragment to the eye position // (origin since this is in "eye" or "camera" space) vec3 v = normalize(-position); // Reflect the light beam using the normal at this fragment vec3 r = reflect(-s, normal); // Calculate the diffuse component float diffuse = max(dot(s, normal), 0.0); // Calculate the specular component float specular = 0.0; if (dot(s, normal) > 0.0) specular = (shininess / (8.0 * 3.14)) * pow(max(dot(r, v), 0.0), shininess); // Lookup diffuse and specular factors vec3 diffuseColor = texture(diffuseTexture, flipYTexCoord).rgb; // Combine the ambient, diffuse and specular contributions return lightIntensity * ((ka + diffuse) * diffuseColor + specular * ks); } void main() { vec2 flipYTexCoord = texCoord; flipYTexCoord.y = 1.0 - texCoord.y; vec3 result = lightIntensity * ka * texture(diffuseTexture, flipYTexCoord).rgb; result += dModel(flipYTexCoord); float alpha = opacity * texture(diffuseTexture, flipYTexCoord).a; fragColor = vec4(result, alpha); }