/* --------------------------------------------------------------------------- Open Asset Import Library (assimp) --------------------------------------------------------------------------- Copyright (c) 2006-2017, assimp team All rights reserved. Redistribution and use of this software in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the assimp team, nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission of the assimp team. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. --------------------------------------------------------------------------- */ /** @file AssbinLoader.cpp * @brief Implementation of the .assbin importer class * * see assbin_chunks.h */ #ifndef ASSIMP_BUILD_NO_ASSBIN_IMPORTER // internal headers #include "AssbinLoader.h" #include "assbin_chunks.h" #include "MemoryIOWrapper.h" #include #include #include #include #ifdef ASSIMP_BUILD_NO_OWN_ZLIB # include #else # include #endif using namespace Assimp; static const aiImporterDesc desc = { ".assbin Importer", "Gargaj / Conspiracy", "", "", aiImporterFlags_SupportBinaryFlavour | aiImporterFlags_SupportCompressedFlavour, 0, 0, 0, 0, "assbin" }; const aiImporterDesc* AssbinImporter::GetInfo() const { return &desc; } bool AssbinImporter::CanRead( const std::string& pFile, IOSystem* pIOHandler, bool /*checkSig*/ ) const { IOStream * in = pIOHandler->Open(pFile); if (!in) return false; char s[32]; in->Read( s, sizeof(char), 32 ); pIOHandler->Close(in); return strncmp( s, "ASSIMP.binary-dump.", 19 ) == 0; } template T Read(IOStream * stream) { T t; stream->Read( &t, sizeof(T), 1 ); return t; } template <> aiVector3D Read(IOStream * stream) { aiVector3D v; v.x = Read(stream); v.y = Read(stream); v.z = Read(stream); return v; } template <> aiColor4D Read(IOStream * stream) { aiColor4D c; c.r = Read(stream); c.g = Read(stream); c.b = Read(stream); c.a = Read(stream); return c; } template <> aiQuaternion Read(IOStream * stream) { aiQuaternion v; v.w = Read(stream); v.x = Read(stream); v.y = Read(stream); v.z = Read(stream); return v; } template <> aiString Read(IOStream * stream) { aiString s; stream->Read(&s.length,4,1); stream->Read(s.data,s.length,1); s.data[s.length] = 0; return s; } template <> aiVertexWeight Read(IOStream * stream) { aiVertexWeight w; w.mVertexId = Read(stream); w.mWeight = Read(stream); return w; } template <> aiMatrix4x4 Read(IOStream * stream) { aiMatrix4x4 m; for (unsigned int i = 0; i < 4;++i) { for (unsigned int i2 = 0; i2 < 4;++i2) { m[i][i2] = Read(stream); } } return m; } template <> aiVectorKey Read(IOStream * stream) { aiVectorKey v; v.mTime = Read(stream); v.mValue = Read(stream); return v; } template <> aiQuatKey Read(IOStream * stream) { aiQuatKey v; v.mTime = Read(stream); v.mValue = Read(stream); return v; } template void ReadArray(IOStream * stream, T * out, unsigned int size) { for (unsigned int i=0; i(stream); } template void ReadBounds( IOStream * stream, T* /*p*/, unsigned int n ) { // not sure what to do here, the data isn't really useful. stream->Seek( sizeof(T) * n, aiOrigin_CUR ); } void AssbinImporter::ReadBinaryNode( IOStream * stream, aiNode** node, aiNode* parent ) { uint32_t chunkID = Read(stream); (void)(chunkID); ai_assert(chunkID == ASSBIN_CHUNK_AINODE); /*uint32_t size =*/ Read(stream); *node = new aiNode(); (*node)->mName = Read(stream); (*node)->mTransformation = Read(stream); (*node)->mNumChildren = Read(stream); (*node)->mNumMeshes = Read(stream); unsigned int nb_metadata = Read(stream); if(parent) { (*node)->mParent = parent; } if ((*node)->mNumMeshes) { (*node)->mMeshes = new unsigned int[(*node)->mNumMeshes]; for (unsigned int i = 0; i < (*node)->mNumMeshes; ++i) { (*node)->mMeshes[i] = Read(stream); } } if ((*node)->mNumChildren) { (*node)->mChildren = new aiNode*[(*node)->mNumChildren]; for (unsigned int i = 0; i < (*node)->mNumChildren; ++i) { ReadBinaryNode( stream, &(*node)->mChildren[i], *node ); } } if ( nb_metadata > 0 ) { (*node)->mMetaData = aiMetadata::Alloc(nb_metadata); for (unsigned int i = 0; i < nb_metadata; ++i) { (*node)->mMetaData->mKeys[i] = Read(stream); (*node)->mMetaData->mValues[i].mType = (aiMetadataType) Read(stream); void* data( nullptr ); switch ((*node)->mMetaData->mValues[i].mType) { case AI_BOOL: data = new bool(Read(stream)); break; case AI_INT32: data = new int32_t(Read(stream)); break; case AI_UINT64: data = new uint64_t(Read(stream)); break; case AI_FLOAT: data = new float(Read(stream)); break; case AI_DOUBLE: data = new double(Read(stream)); break; case AI_AISTRING: data = new aiString(Read(stream)); break; case AI_AIVECTOR3D: data = new aiVector3D(Read(stream)); break; #ifndef SWIG case FORCE_32BIT: #endif // SWIG default: break; } (*node)->mMetaData->mValues[i].mData = data; } } } // ----------------------------------------------------------------------------------- void AssbinImporter::ReadBinaryBone( IOStream * stream, aiBone* b ) { uint32_t chunkID = Read(stream); (void)(chunkID); ai_assert(chunkID == ASSBIN_CHUNK_AIBONE); /*uint32_t size =*/ Read(stream); b->mName = Read(stream); b->mNumWeights = Read(stream); b->mOffsetMatrix = Read(stream); // for the moment we write dumb min/max values for the bones, too. // maybe I'll add a better, hash-like solution later if (shortened) { ReadBounds(stream,b->mWeights,b->mNumWeights); } // else write as usual else { b->mWeights = new aiVertexWeight[b->mNumWeights]; ReadArray(stream,b->mWeights,b->mNumWeights); } } void AssbinImporter::ReadBinaryMesh( IOStream * stream, aiMesh* mesh ) { uint32_t chunkID = Read(stream); (void)(chunkID); ai_assert(chunkID == ASSBIN_CHUNK_AIMESH); /*uint32_t size =*/ Read(stream); mesh->mPrimitiveTypes = Read(stream); mesh->mNumVertices = Read(stream); mesh->mNumFaces = Read(stream); mesh->mNumBones = Read(stream); mesh->mMaterialIndex = Read(stream); // first of all, write bits for all existent vertex components unsigned int c = Read(stream); if (c & ASSBIN_MESH_HAS_POSITIONS) { if (shortened) { ReadBounds(stream,mesh->mVertices,mesh->mNumVertices); } // else write as usual else { mesh->mVertices = new aiVector3D[mesh->mNumVertices]; ReadArray(stream,mesh->mVertices,mesh->mNumVertices); } } if (c & ASSBIN_MESH_HAS_NORMALS) { if (shortened) { ReadBounds(stream,mesh->mNormals,mesh->mNumVertices); } // else write as usual else { mesh->mNormals = new aiVector3D[mesh->mNumVertices]; ReadArray(stream,mesh->mNormals,mesh->mNumVertices); } } if (c & ASSBIN_MESH_HAS_TANGENTS_AND_BITANGENTS) { if (shortened) { ReadBounds(stream,mesh->mTangents,mesh->mNumVertices); ReadBounds(stream,mesh->mBitangents,mesh->mNumVertices); } // else write as usual else { mesh->mTangents = new aiVector3D[mesh->mNumVertices]; ReadArray(stream,mesh->mTangents,mesh->mNumVertices); mesh->mBitangents = new aiVector3D[mesh->mNumVertices]; ReadArray(stream,mesh->mBitangents,mesh->mNumVertices); } } for (unsigned int n = 0; n < AI_MAX_NUMBER_OF_COLOR_SETS;++n) { if (!(c & ASSBIN_MESH_HAS_COLOR(n))) break; if (shortened) { ReadBounds(stream,mesh->mColors[n],mesh->mNumVertices); } // else write as usual else { mesh->mColors[n] = new aiColor4D[mesh->mNumVertices]; ReadArray(stream,mesh->mColors[n],mesh->mNumVertices); } } for (unsigned int n = 0; n < AI_MAX_NUMBER_OF_TEXTURECOORDS;++n) { if (!(c & ASSBIN_MESH_HAS_TEXCOORD(n))) break; // write number of UV components mesh->mNumUVComponents[n] = Read(stream); if (shortened) { ReadBounds(stream,mesh->mTextureCoords[n],mesh->mNumVertices); } // else write as usual else { mesh->mTextureCoords[n] = new aiVector3D[mesh->mNumVertices]; ReadArray(stream,mesh->mTextureCoords[n],mesh->mNumVertices); } } // write faces. There are no floating-point calculations involved // in these, so we can write a simple hash over the face data // to the dump file. We generate a single 32 Bit hash for 512 faces // using Assimp's standard hashing function. if (shortened) { Read(stream); } else // else write as usual { // if there are less than 2^16 vertices, we can simply use 16 bit integers ... mesh->mFaces = new aiFace[mesh->mNumFaces]; for (unsigned int i = 0; i < mesh->mNumFaces;++i) { aiFace& f = mesh->mFaces[i]; static_assert(AI_MAX_FACE_INDICES <= 0xffff, "AI_MAX_FACE_INDICES <= 0xffff"); f.mNumIndices = Read(stream); f.mIndices = new unsigned int[f.mNumIndices]; for (unsigned int a = 0; a < f.mNumIndices;++a) { if (mesh->mNumVertices < (1u<<16)) { f.mIndices[a] = Read(stream); } else { f.mIndices[a] = Read(stream); } } } } // write bones if (mesh->mNumBones) { mesh->mBones = new C_STRUCT aiBone*[mesh->mNumBones]; for (unsigned int a = 0; a < mesh->mNumBones;++a) { mesh->mBones[a] = new aiBone(); ReadBinaryBone(stream,mesh->mBones[a]); } } } void AssbinImporter::ReadBinaryMaterialProperty(IOStream * stream, aiMaterialProperty* prop) { uint32_t chunkID = Read(stream); (void)(chunkID); ai_assert(chunkID == ASSBIN_CHUNK_AIMATERIALPROPERTY); /*uint32_t size =*/ Read(stream); prop->mKey = Read(stream); prop->mSemantic = Read(stream); prop->mIndex = Read(stream); prop->mDataLength = Read(stream); prop->mType = (aiPropertyTypeInfo)Read(stream); prop->mData = new char [ prop->mDataLength ]; stream->Read(prop->mData,1,prop->mDataLength); } // ----------------------------------------------------------------------------------- void AssbinImporter::ReadBinaryMaterial(IOStream * stream, aiMaterial* mat) { uint32_t chunkID = Read(stream); (void)(chunkID); ai_assert(chunkID == ASSBIN_CHUNK_AIMATERIAL); /*uint32_t size =*/ Read(stream); mat->mNumAllocated = mat->mNumProperties = Read(stream); if (mat->mNumProperties) { if (mat->mProperties) { delete[] mat->mProperties; } mat->mProperties = new aiMaterialProperty*[mat->mNumProperties]; for (unsigned int i = 0; i < mat->mNumProperties;++i) { mat->mProperties[i] = new aiMaterialProperty(); ReadBinaryMaterialProperty( stream, mat->mProperties[i]); } } } // ----------------------------------------------------------------------------------- void AssbinImporter::ReadBinaryNodeAnim(IOStream * stream, aiNodeAnim* nd) { uint32_t chunkID = Read(stream); (void)(chunkID); ai_assert(chunkID == ASSBIN_CHUNK_AINODEANIM); /*uint32_t size =*/ Read(stream); nd->mNodeName = Read(stream); nd->mNumPositionKeys = Read(stream); nd->mNumRotationKeys = Read(stream); nd->mNumScalingKeys = Read(stream); nd->mPreState = (aiAnimBehaviour)Read(stream); nd->mPostState = (aiAnimBehaviour)Read(stream); if (nd->mNumPositionKeys) { if (shortened) { ReadBounds(stream,nd->mPositionKeys,nd->mNumPositionKeys); } // else write as usual else { nd->mPositionKeys = new aiVectorKey[nd->mNumPositionKeys]; ReadArray(stream,nd->mPositionKeys,nd->mNumPositionKeys); } } if (nd->mNumRotationKeys) { if (shortened) { ReadBounds(stream,nd->mRotationKeys,nd->mNumRotationKeys); } // else write as usual else { nd->mRotationKeys = new aiQuatKey[nd->mNumRotationKeys]; ReadArray(stream,nd->mRotationKeys,nd->mNumRotationKeys); } } if (nd->mNumScalingKeys) { if (shortened) { ReadBounds(stream,nd->mScalingKeys,nd->mNumScalingKeys); } // else write as usual else { nd->mScalingKeys = new aiVectorKey[nd->mNumScalingKeys]; ReadArray(stream,nd->mScalingKeys,nd->mNumScalingKeys); } } } // ----------------------------------------------------------------------------------- void AssbinImporter::ReadBinaryAnim( IOStream * stream, aiAnimation* anim ) { uint32_t chunkID = Read(stream); (void)(chunkID); ai_assert(chunkID == ASSBIN_CHUNK_AIANIMATION); /*uint32_t size =*/ Read(stream); anim->mName = Read (stream); anim->mDuration = Read (stream); anim->mTicksPerSecond = Read (stream); anim->mNumChannels = Read(stream); if (anim->mNumChannels) { anim->mChannels = new aiNodeAnim*[ anim->mNumChannels ]; for (unsigned int a = 0; a < anim->mNumChannels;++a) { anim->mChannels[a] = new aiNodeAnim(); ReadBinaryNodeAnim(stream,anim->mChannels[a]); } } } void AssbinImporter::ReadBinaryTexture(IOStream * stream, aiTexture* tex) { uint32_t chunkID = Read(stream); (void)(chunkID); ai_assert(chunkID == ASSBIN_CHUNK_AITEXTURE); /*uint32_t size =*/ Read(stream); tex->mWidth = Read(stream); tex->mHeight = Read(stream); stream->Read( tex->achFormatHint, sizeof(char), 4 ); if(!shortened) { if (!tex->mHeight) { tex->pcData = new aiTexel[ tex->mWidth ]; stream->Read(tex->pcData,1,tex->mWidth); } else { tex->pcData = new aiTexel[ tex->mWidth*tex->mHeight ]; stream->Read(tex->pcData,1,tex->mWidth*tex->mHeight*4); } } } // ----------------------------------------------------------------------------------- void AssbinImporter::ReadBinaryLight( IOStream * stream, aiLight* l ) { uint32_t chunkID = Read(stream); (void)(chunkID); ai_assert(chunkID == ASSBIN_CHUNK_AILIGHT); /*uint32_t size =*/ Read(stream); l->mName = Read(stream); l->mType = (aiLightSourceType)Read(stream); if (l->mType != aiLightSource_DIRECTIONAL) { l->mAttenuationConstant = Read(stream); l->mAttenuationLinear = Read(stream); l->mAttenuationQuadratic = Read(stream); } l->mColorDiffuse = Read(stream); l->mColorSpecular = Read(stream); l->mColorAmbient = Read(stream); if (l->mType == aiLightSource_SPOT) { l->mAngleInnerCone = Read(stream); l->mAngleOuterCone = Read(stream); } } // ----------------------------------------------------------------------------------- void AssbinImporter::ReadBinaryCamera( IOStream * stream, aiCamera* cam ) { uint32_t chunkID = Read(stream); (void)(chunkID); ai_assert(chunkID == ASSBIN_CHUNK_AICAMERA); /*uint32_t size =*/ Read(stream); cam->mName = Read(stream); cam->mPosition = Read(stream); cam->mLookAt = Read(stream); cam->mUp = Read(stream); cam->mHorizontalFOV = Read(stream); cam->mClipPlaneNear = Read(stream); cam->mClipPlaneFar = Read(stream); cam->mAspect = Read(stream); } void AssbinImporter::ReadBinaryScene( IOStream * stream, aiScene* scene ) { uint32_t chunkID = Read(stream); (void)(chunkID); ai_assert(chunkID == ASSBIN_CHUNK_AISCENE); /*uint32_t size =*/ Read(stream); scene->mFlags = Read(stream); scene->mNumMeshes = Read(stream); scene->mNumMaterials = Read(stream); scene->mNumAnimations = Read(stream); scene->mNumTextures = Read(stream); scene->mNumLights = Read(stream); scene->mNumCameras = Read(stream); // Read node graph scene->mRootNode = new aiNode[1]; ReadBinaryNode( stream, &scene->mRootNode, (aiNode*)NULL ); // Read all meshes if (scene->mNumMeshes) { scene->mMeshes = new aiMesh*[scene->mNumMeshes]; for (unsigned int i = 0; i < scene->mNumMeshes;++i) { scene->mMeshes[i] = new aiMesh(); ReadBinaryMesh( stream,scene->mMeshes[i]); } } // Read materials if (scene->mNumMaterials) { scene->mMaterials = new aiMaterial*[scene->mNumMaterials]; for (unsigned int i = 0; i< scene->mNumMaterials; ++i) { scene->mMaterials[i] = new aiMaterial(); ReadBinaryMaterial(stream,scene->mMaterials[i]); } } // Read all animations if (scene->mNumAnimations) { scene->mAnimations = new aiAnimation*[scene->mNumAnimations]; for (unsigned int i = 0; i < scene->mNumAnimations;++i) { scene->mAnimations[i] = new aiAnimation(); ReadBinaryAnim(stream,scene->mAnimations[i]); } } // Read all textures if (scene->mNumTextures) { scene->mTextures = new aiTexture*[scene->mNumTextures]; for (unsigned int i = 0; i < scene->mNumTextures;++i) { scene->mTextures[i] = new aiTexture(); ReadBinaryTexture(stream,scene->mTextures[i]); } } // Read lights if (scene->mNumLights) { scene->mLights = new aiLight*[scene->mNumLights]; for (unsigned int i = 0; i < scene->mNumLights;++i) { scene->mLights[i] = new aiLight(); ReadBinaryLight(stream,scene->mLights[i]); } } // Read cameras if (scene->mNumCameras) { scene->mCameras = new aiCamera*[scene->mNumCameras]; for (unsigned int i = 0; i < scene->mNumCameras;++i) { scene->mCameras[i] = new aiCamera(); ReadBinaryCamera(stream,scene->mCameras[i]); } } } void AssbinImporter::InternReadFile( const std::string& pFile, aiScene* pScene, IOSystem* pIOHandler ) { IOStream * stream = pIOHandler->Open(pFile,"rb"); if (!stream) return; stream->Seek( 44, aiOrigin_CUR ); // signature /*unsigned int versionMajor =*/ Read(stream); /*unsigned int versionMinor =*/ Read(stream); /*unsigned int versionRevision =*/ Read(stream); /*unsigned int compileFlags =*/ Read(stream); shortened = Read(stream) > 0; compressed = Read(stream) > 0; if (shortened) throw DeadlyImportError( "Shortened binaries are not supported!" ); stream->Seek( 256, aiOrigin_CUR ); // original filename stream->Seek( 128, aiOrigin_CUR ); // options stream->Seek( 64, aiOrigin_CUR ); // padding if (compressed) { uLongf uncompressedSize = Read(stream); uLongf compressedSize = static_cast(stream->FileSize() - stream->Tell()); unsigned char * compressedData = new unsigned char[ compressedSize ]; stream->Read( compressedData, 1, compressedSize ); unsigned char * uncompressedData = new unsigned char[ uncompressedSize ]; uncompress( uncompressedData, &uncompressedSize, compressedData, compressedSize ); MemoryIOStream io( uncompressedData, uncompressedSize ); ReadBinaryScene(&io,pScene); delete[] uncompressedData; delete[] compressedData; } else { ReadBinaryScene(stream,pScene); } pIOHandler->Close(stream); } #endif // !! ASSIMP_BUILD_NO_ASSBIN_IMPORTER