/* Open Asset Import Library (assimp) ---------------------------------------------------------------------- Copyright (c) 2006-2017, assimp team All rights reserved. Redistribution and use of this software in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the assimp team, nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission of the assimp team. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ---------------------------------------------------------------------- */ /** @file IFC.cpp * @brief Implementation of the Industry Foundation Classes loader. */ #ifndef INCLUDED_IFCUTIL_H #define INCLUDED_IFCUTIL_H #include "IFCReaderGen.h" #include "IFCLoader.h" #include "STEPFile.h" #include #include struct aiNode; namespace Assimp { namespace IFC { typedef double IfcFloat; // IfcFloat-precision math data types typedef aiVector2t IfcVector2; typedef aiVector3t IfcVector3; typedef aiMatrix4x4t IfcMatrix4; typedef aiMatrix3x3t IfcMatrix3; typedef aiColor4t IfcColor4; // ------------------------------------------------------------------------------------------------ // Helper for std::for_each to delete all heap-allocated items in a container // ------------------------------------------------------------------------------------------------ template struct delete_fun { void operator()(T* del) { delete del; } }; // ------------------------------------------------------------------------------------------------ // Helper used during mesh construction. Aids at creating aiMesh'es out of relatively few polygons. // ------------------------------------------------------------------------------------------------ struct TempMesh { std::vector verts; std::vector vertcnt; // utilities aiMesh* ToMesh(); void Clear(); void Transform(const IfcMatrix4& mat); IfcVector3 Center() const; void Append(const TempMesh& other); bool IsEmpty() const { return verts.empty() && vertcnt.empty(); } void RemoveAdjacentDuplicates(); void RemoveDegenerates(); void FixupFaceOrientation(); static IfcVector3 ComputePolygonNormal(const IfcVector3* vtcs, size_t cnt, bool normalize = true); IfcVector3 ComputeLastPolygonNormal(bool normalize = true) const; void ComputePolygonNormals(std::vector& normals, bool normalize = true, size_t ofs = 0) const; void Swap(TempMesh& other); }; // ------------------------------------------------------------------------------------------------ // Temporary representation of an opening in a wall or a floor // ------------------------------------------------------------------------------------------------ struct TempOpening { const IFC::IfcSolidModel* solid; IfcVector3 extrusionDir; std::shared_ptr profileMesh; std::shared_ptr profileMesh2D; // list of points generated for this opening. This is used to // create connections between two opposing holes created // from a single opening instance (two because walls tend to // have two sides). If !empty(), the other side of the wall // has already been processed. std::vector wallPoints; // ------------------------------------------------------------------------------ TempOpening() : solid() , extrusionDir() , profileMesh() { } // ------------------------------------------------------------------------------ TempOpening(const IFC::IfcSolidModel* solid,IfcVector3 extrusionDir, std::shared_ptr profileMesh, std::shared_ptr profileMesh2D) : solid(solid) , extrusionDir(extrusionDir) , profileMesh(profileMesh) , profileMesh2D(profileMesh2D) { } // ------------------------------------------------------------------------------ void Transform(const IfcMatrix4& mat); // defined later since TempMesh is not complete yet // ------------------------------------------------------------------------------ // Helper to sort openings by distance from a given base point struct DistanceSorter { DistanceSorter(const IfcVector3& base) : base(base) {} bool operator () (const TempOpening& a, const TempOpening& b) const { return (a.profileMesh->Center()-base).SquareLength() < (b.profileMesh->Center()-base).SquareLength(); } IfcVector3 base; }; }; // ------------------------------------------------------------------------------------------------ // Intermediate data storage during conversion. Keeps everything and a bit more. // ------------------------------------------------------------------------------------------------ struct ConversionData { ConversionData(const STEP::DB& db, const IFC::IfcProject& proj, aiScene* out,const IFCImporter::Settings& settings) : len_scale(1.0) , angle_scale(-1.0) , db(db) , proj(proj) , out(out) , settings(settings) , apply_openings() , collect_openings() {} ~ConversionData() { std::for_each(meshes.begin(),meshes.end(),delete_fun()); std::for_each(materials.begin(),materials.end(),delete_fun()); } IfcFloat len_scale, angle_scale; bool plane_angle_in_radians; const STEP::DB& db; const IFC::IfcProject& proj; aiScene* out; IfcMatrix4 wcs; std::vector meshes; std::vector materials; struct MeshCacheIndex { const IFC::IfcRepresentationItem* item; unsigned int matindex; MeshCacheIndex() : item(NULL), matindex(0) { } MeshCacheIndex(const IFC::IfcRepresentationItem* i, unsigned int mi) : item(i), matindex(mi) { } bool operator == (const MeshCacheIndex& o) const { return item == o.item && matindex == o.matindex; } bool operator < (const MeshCacheIndex& o) const { return item < o.item || (item == o.item && matindex < o.matindex); } }; typedef std::map > MeshCache; MeshCache cached_meshes; typedef std::map MaterialCache; MaterialCache cached_materials; const IFCImporter::Settings& settings; // Intermediate arrays used to resolve openings in walls: only one of them // can be given at a time. apply_openings if present if the current element // is a wall and needs its openings to be poured into its geometry while // collect_openings is present only if the current element is an // IfcOpeningElement, for which all the geometry needs to be preserved // for later processing by a parent, which is a wall. std::vector* apply_openings; std::vector* collect_openings; std::set already_processed; }; // ------------------------------------------------------------------------------------------------ // Binary predicate to compare vectors with a given, quadratic epsilon. // ------------------------------------------------------------------------------------------------ struct FuzzyVectorCompare { FuzzyVectorCompare(IfcFloat epsilon) : epsilon(epsilon) {} bool operator()(const IfcVector3& a, const IfcVector3& b) { return std::abs((a-b).SquareLength()) < epsilon; } const IfcFloat epsilon; }; // ------------------------------------------------------------------------------------------------ // Ordering predicate to totally order R^2 vectors first by x and then by y // ------------------------------------------------------------------------------------------------ struct XYSorter { // sort first by X coordinates, then by Y coordinates bool operator () (const IfcVector2&a, const IfcVector2& b) const { if (a.x == b.x) { return a.y < b.y; } return a.x < b.x; } }; // conversion routines for common IFC entities, implemented in IFCUtil.cpp void ConvertColor(aiColor4D& out, const IfcColourRgb& in); void ConvertColor(aiColor4D& out, const IfcColourOrFactor& in,ConversionData& conv,const aiColor4D* base); void ConvertCartesianPoint(IfcVector3& out, const IfcCartesianPoint& in); void ConvertDirection(IfcVector3& out, const IfcDirection& in); void ConvertVector(IfcVector3& out, const IfcVector& in); void AssignMatrixAxes(IfcMatrix4& out, const IfcVector3& x, const IfcVector3& y, const IfcVector3& z); void ConvertAxisPlacement(IfcMatrix4& out, const IfcAxis2Placement3D& in); void ConvertAxisPlacement(IfcMatrix4& out, const IfcAxis2Placement2D& in); void ConvertAxisPlacement(IfcVector3& axis, IfcVector3& pos, const IFC::IfcAxis1Placement& in); void ConvertAxisPlacement(IfcMatrix4& out, const IfcAxis2Placement& in, ConversionData& conv); void ConvertTransformOperator(IfcMatrix4& out, const IfcCartesianTransformationOperator& op); bool IsTrue(const EXPRESS::BOOLEAN& in); IfcFloat ConvertSIPrefix(const std::string& prefix); // IFCProfile.cpp bool ProcessProfile(const IfcProfileDef& prof, TempMesh& meshout, ConversionData& conv); bool ProcessCurve(const IfcCurve& curve, TempMesh& meshout, ConversionData& conv); // IFCMaterial.cpp unsigned int ProcessMaterials(uint64_t id, unsigned int prevMatId, ConversionData& conv, bool forceDefaultMat); // IFCGeometry.cpp IfcMatrix3 DerivePlaneCoordinateSpace(const TempMesh& curmesh, bool& ok, IfcVector3& norOut); bool ProcessRepresentationItem(const IfcRepresentationItem& item, unsigned int matid, std::vector& mesh_indices, ConversionData& conv); void AssignAddedMeshes(std::vector& mesh_indices,aiNode* nd,ConversionData& /*conv*/); void ProcessSweptAreaSolid(const IfcSweptAreaSolid& swept, TempMesh& meshout, ConversionData& conv); void ProcessExtrudedAreaSolid(const IfcExtrudedAreaSolid& solid, TempMesh& result, ConversionData& conv, bool collect_openings); // IFCBoolean.cpp void ProcessBoolean(const IfcBooleanResult& boolean, TempMesh& result, ConversionData& conv); void ProcessBooleanHalfSpaceDifference(const IfcHalfSpaceSolid* hs, TempMesh& result, const TempMesh& first_operand, ConversionData& conv); void ProcessPolygonalBoundedBooleanHalfSpaceDifference(const IfcPolygonalBoundedHalfSpace* hs, TempMesh& result, const TempMesh& first_operand, ConversionData& conv); void ProcessBooleanExtrudedAreaSolidDifference(const IfcExtrudedAreaSolid* as, TempMesh& result, const TempMesh& first_operand, ConversionData& conv); // IFCOpenings.cpp bool GenerateOpenings(std::vector& openings, const std::vector& nors, TempMesh& curmesh, bool check_intersection, bool generate_connection_geometry, const IfcVector3& wall_extrusion_axis = IfcVector3(0,1,0)); // IFCCurve.cpp // ------------------------------------------------------------------------------------------------ // Custom exception for use by members of the Curve class // ------------------------------------------------------------------------------------------------ class CurveError { public: CurveError(const std::string& s) : s(s) { } std::string s; }; // ------------------------------------------------------------------------------------------------ // Temporary representation for an arbitrary sub-class of IfcCurve. Used to sample the curves // to obtain a list of line segments. // ------------------------------------------------------------------------------------------------ class Curve { protected: Curve(const IfcCurve& base_entity, ConversionData& conv) : base_entity(base_entity) , conv(conv) {} public: typedef std::pair ParamRange; public: virtual ~Curve() {} // check if a curve is closed virtual bool IsClosed() const = 0; // evaluate the curve at the given parametric position virtual IfcVector3 Eval(IfcFloat p) const = 0; // try to match a point on the curve to a given parameter // for self-intersecting curves, the result is not ambiguous and // it is undefined which parameter is returned. virtual bool ReverseEval(const IfcVector3& val, IfcFloat& paramOut) const; // get the range of the curve (both inclusive). // +inf and -inf are valid return values, the curve is not bounded in such a case. virtual std::pair GetParametricRange() const = 0; IfcFloat GetParametricRangeDelta() const; // estimate the number of sample points that this curve will require virtual size_t EstimateSampleCount(IfcFloat start,IfcFloat end) const; // intelligently sample the curve based on the current settings // and append the result to the mesh virtual void SampleDiscrete(TempMesh& out,IfcFloat start,IfcFloat end) const; #ifdef ASSIMP_BUILD_DEBUG // check if a particular parameter value lies within the well-defined range bool InRange(IfcFloat) const; #endif public: static Curve* Convert(const IFC::IfcCurve&,ConversionData& conv); protected: const IfcCurve& base_entity; ConversionData& conv; }; // -------------------------------------------------------------------------------- // A BoundedCurve always holds the invariant that GetParametricRange() // never returns infinite values. // -------------------------------------------------------------------------------- class BoundedCurve : public Curve { public: BoundedCurve(const IfcBoundedCurve& entity, ConversionData& conv) : Curve(entity,conv) {} public: bool IsClosed() const; public: // sample the entire curve void SampleDiscrete(TempMesh& out) const; using Curve::SampleDiscrete; }; // IfcProfile.cpp bool ProcessCurve(const IfcCurve& curve, TempMesh& meshout, ConversionData& conv); } } #endif