/* --------------------------------------------------------------------------- Open Asset Import Library (assimp) --------------------------------------------------------------------------- Copyright (c) 2006-2016, assimp team All rights reserved. Redistribution and use of this software in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the assimp team, nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission of the assimp team. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. --------------------------------------------------------------------------- */ #ifndef ASSIMP_BUILD_NO_OBJ_IMPORTER #include "DefaultIOSystem.h" #include "ObjFileImporter.h" #include "ObjFileParser.h" #include "ObjFileData.h" #include #include #include #include #include static const aiImporterDesc desc = { "Wavefront Object Importer", "", "", "surfaces not supported", aiImporterFlags_SupportTextFlavour, 0, 0, 0, 0, "obj" }; static const unsigned int ObjMinSize = 16; namespace Assimp { using namespace std; // ------------------------------------------------------------------------------------------------ // Default constructor ObjFileImporter::ObjFileImporter() : m_Buffer(), m_pRootObject( NULL ), m_strAbsPath( "" ) { DefaultIOSystem io; m_strAbsPath = io.getOsSeparator(); } // ------------------------------------------------------------------------------------------------ // Destructor. ObjFileImporter::~ObjFileImporter() { delete m_pRootObject; m_pRootObject = NULL; } // ------------------------------------------------------------------------------------------------ // Returns true, if file is an obj file. bool ObjFileImporter::CanRead( const std::string& pFile, IOSystem* pIOHandler , bool checkSig ) const { if(!checkSig) //Check File Extension { return SimpleExtensionCheck(pFile,"obj"); } else //Check file Header { static const char *pTokens[] = { "mtllib", "usemtl", "v ", "vt ", "vn ", "o ", "g ", "s ", "f " }; return BaseImporter::SearchFileHeaderForToken(pIOHandler, pFile, pTokens, 9 ); } } // ------------------------------------------------------------------------------------------------ const aiImporterDesc* ObjFileImporter::GetInfo () const { return &desc; } // ------------------------------------------------------------------------------------------------ // Obj-file import implementation void ObjFileImporter::InternReadFile( const std::string &file, aiScene* pScene, IOSystem* pIOHandler) { // Read file into memory static const std::string mode = "rb"; std::unique_ptr fileStream( pIOHandler->Open( file, mode)); if( !fileStream.get() ) { throw DeadlyImportError( "Failed to open file " + file + "." ); } // Get the file-size and validate it, throwing an exception when fails size_t fileSize = fileStream->FileSize(); if( fileSize < ObjMinSize ) { throw DeadlyImportError( "OBJ-file is too small."); } // Allocate buffer and read file into it TextFileToBuffer( fileStream.get(),m_Buffer); // Get the model name std::string modelName, folderName; std::string::size_type pos = file.find_last_of( "\\/" ); if ( pos != std::string::npos ) { modelName = file.substr(pos+1, file.size() - pos - 1); folderName = file.substr( 0, pos ); if ( !folderName.empty() ) { pIOHandler->PushDirectory( folderName ); } } else { modelName = file; } // This next stage takes ~ 1/3th of the total readFile task // so should amount for 1/3th of the progress // only update every 100KB or it'll be too slow unsigned int progress = 0; unsigned int progressCounter = 0; const unsigned int updateProgressEveryBytes = 100 * 1024; const unsigned int progressTotal = (3*m_Buffer.size()/updateProgressEveryBytes); // process all '\' std::vector ::iterator iter = m_Buffer.begin(); while (iter != m_Buffer.end()) { if (*iter == '\\') { // remove '\' iter = m_Buffer.erase(iter); // remove next character while (*iter == '\r' || *iter == '\n') iter = m_Buffer.erase(iter); } else ++iter; if (++progressCounter >= updateProgressEveryBytes) { m_progress->UpdateFileRead(++progress, progressTotal); progressCounter = 0; } } // 1/3rd progress m_progress->UpdateFileRead(1, 3); // parse the file into a temporary representation ObjFileParser parser(m_Buffer, modelName, pIOHandler, m_progress, file); // And create the proper return structures out of it CreateDataFromImport(parser.GetModel(), pScene); // Clean up allocated storage for the next import m_Buffer.clear(); // Pop directory stack if ( pIOHandler->StackSize() > 0 ) { pIOHandler->PopDirectory(); } } // ------------------------------------------------------------------------------------------------ // Create the data from parsed obj-file void ObjFileImporter::CreateDataFromImport(const ObjFile::Model* pModel, aiScene* pScene) { if( 0L == pModel ) { return; } // Create the root node of the scene pScene->mRootNode = new aiNode; if ( !pModel->m_ModelName.empty() ) { // Set the name of the scene pScene->mRootNode->mName.Set(pModel->m_ModelName); } else { // This is a fatal error, so break down the application ai_assert(false); } // Create nodes for the whole scene std::vector MeshArray; for (size_t index = 0; index < pModel->m_Objects.size(); index++) { createNodes(pModel, pModel->m_Objects[ index ], pScene->mRootNode, pScene, MeshArray); } // Create mesh pointer buffer for this scene if (pScene->mNumMeshes > 0) { pScene->mMeshes = new aiMesh*[ MeshArray.size() ]; for (size_t index =0; index < MeshArray.size(); index++) { pScene->mMeshes[ index ] = MeshArray[ index ]; } } // Create all materials createMaterials( pModel, pScene ); } // ------------------------------------------------------------------------------------------------ // Creates all nodes of the model aiNode *ObjFileImporter::createNodes(const ObjFile::Model* pModel, const ObjFile::Object* pObject, aiNode *pParent, aiScene* pScene, std::vector &MeshArray ) { ai_assert( NULL != pModel ); if( NULL == pObject ) { return NULL; } // Store older mesh size to be able to computes mesh offsets for new mesh instances const size_t oldMeshSize = MeshArray.size(); aiNode *pNode = new aiNode; pNode->mName = pObject->m_strObjName; // If we have a parent node, store it if( pParent != NULL ) { appendChildToParentNode( pParent, pNode ); } for ( size_t i=0; i< pObject->m_Meshes.size(); i++ ) { unsigned int meshId = pObject->m_Meshes[ i ]; aiMesh *pMesh = createTopology( pModel, pObject, meshId ); if( pMesh && pMesh->mNumFaces > 0 ) { MeshArray.push_back( pMesh ); } } // Create all nodes from the sub-objects stored in the current object if ( !pObject->m_SubObjects.empty() ) { size_t numChilds = pObject->m_SubObjects.size(); pNode->mNumChildren = static_cast( numChilds ); pNode->mChildren = new aiNode*[ numChilds ]; pNode->mNumMeshes = 1; pNode->mMeshes = new unsigned int[ 1 ]; } // Set mesh instances into scene- and node-instances const size_t meshSizeDiff = MeshArray.size()- oldMeshSize; if ( meshSizeDiff > 0 ) { pNode->mMeshes = new unsigned int[ meshSizeDiff ]; pNode->mNumMeshes = static_cast( meshSizeDiff ); size_t index = 0; for (size_t i = oldMeshSize; i < MeshArray.size(); i++) { pNode->mMeshes[ index ] = pScene->mNumMeshes; pScene->mNumMeshes++; index++; } } return pNode; } // ------------------------------------------------------------------------------------------------ // Create topology data aiMesh *ObjFileImporter::createTopology( const ObjFile::Model* pModel, const ObjFile::Object* pData, unsigned int meshIndex ) { // Checking preconditions ai_assert( NULL != pModel ); if( NULL == pData ) { return NULL; } // Create faces ObjFile::Mesh *pObjMesh = pModel->m_Meshes[ meshIndex ]; if( !pObjMesh ) { return NULL; } if( pObjMesh->m_Faces.empty() ) { return NULL; } aiMesh* pMesh = new aiMesh; if( !pObjMesh->m_name.empty() ) { pMesh->mName.Set( pObjMesh->m_name ); } for (size_t index = 0; index < pObjMesh->m_Faces.size(); index++) { ObjFile::Face *const inp = pObjMesh->m_Faces[ index ]; ai_assert( NULL != inp ); if (inp->m_PrimitiveType == aiPrimitiveType_LINE) { pMesh->mNumFaces += inp->m_pVertices->size() - 1; pMesh->mPrimitiveTypes |= aiPrimitiveType_LINE; } else if (inp->m_PrimitiveType == aiPrimitiveType_POINT) { pMesh->mNumFaces += inp->m_pVertices->size(); pMesh->mPrimitiveTypes |= aiPrimitiveType_POINT; } else { ++pMesh->mNumFaces; if (inp->m_pVertices->size() > 3) { pMesh->mPrimitiveTypes |= aiPrimitiveType_POLYGON; } else { pMesh->mPrimitiveTypes |= aiPrimitiveType_TRIANGLE; } } } unsigned int uiIdxCount( 0u ); if ( pMesh->mNumFaces > 0 ) { pMesh->mFaces = new aiFace[ pMesh->mNumFaces ]; if ( pObjMesh->m_uiMaterialIndex != ObjFile::Mesh::NoMaterial ) { pMesh->mMaterialIndex = pObjMesh->m_uiMaterialIndex; } unsigned int outIndex( 0 ); // Copy all data from all stored meshes for (size_t index = 0; index < pObjMesh->m_Faces.size(); index++) { ObjFile::Face* const inp = pObjMesh->m_Faces[ index ]; if (inp->m_PrimitiveType == aiPrimitiveType_LINE) { for(size_t i = 0; i < inp->m_pVertices->size() - 1; ++i) { aiFace& f = pMesh->mFaces[ outIndex++ ]; uiIdxCount += f.mNumIndices = 2; f.mIndices = new unsigned int[2]; } continue; } else if (inp->m_PrimitiveType == aiPrimitiveType_POINT) { for(size_t i = 0; i < inp->m_pVertices->size(); ++i) { aiFace& f = pMesh->mFaces[ outIndex++ ]; uiIdxCount += f.mNumIndices = 1; f.mIndices = new unsigned int[1]; } continue; } aiFace *pFace = &pMesh->mFaces[ outIndex++ ]; const unsigned int uiNumIndices = (unsigned int) pObjMesh->m_Faces[ index ]->m_pVertices->size(); uiIdxCount += pFace->mNumIndices = (unsigned int) uiNumIndices; if (pFace->mNumIndices > 0) { pFace->mIndices = new unsigned int[ uiNumIndices ]; } } } // Create mesh vertices createVertexArray(pModel, pData, meshIndex, pMesh, uiIdxCount); return pMesh; } // ------------------------------------------------------------------------------------------------ // Creates a vertex array void ObjFileImporter::createVertexArray(const ObjFile::Model* pModel, const ObjFile::Object* pCurrentObject, unsigned int uiMeshIndex, aiMesh* pMesh, unsigned int numIndices) { // Checking preconditions ai_assert( NULL != pCurrentObject ); // Break, if no faces are stored in object if ( pCurrentObject->m_Meshes.empty() ) return; // Get current mesh ObjFile::Mesh *pObjMesh = pModel->m_Meshes[ uiMeshIndex ]; if ( NULL == pObjMesh || pObjMesh->m_uiNumIndices < 1) return; // Copy vertices of this mesh instance pMesh->mNumVertices = numIndices; if (pMesh->mNumVertices == 0) { throw DeadlyImportError( "OBJ: no vertices" ); } else if (pMesh->mNumVertices > AI_MAX_ALLOC(aiVector3D)) { throw DeadlyImportError( "OBJ: Too many vertices, would run out of memory" ); } pMesh->mVertices = new aiVector3D[ pMesh->mNumVertices ]; // Allocate buffer for normal vectors if ( !pModel->m_Normals.empty() && pObjMesh->m_hasNormals ) pMesh->mNormals = new aiVector3D[ pMesh->mNumVertices ]; // Allocate buffer for vertex-color vectors if ( !pModel->m_VertexColors.empty() ) pMesh->mColors[0] = new aiColor4D[ pMesh->mNumVertices ]; // Allocate buffer for texture coordinates if ( !pModel->m_TextureCoord.empty() && pObjMesh->m_uiUVCoordinates[0] ) { pMesh->mNumUVComponents[ 0 ] = 2; pMesh->mTextureCoords[ 0 ] = new aiVector3D[ pMesh->mNumVertices ]; } // Copy vertices, normals and textures into aiMesh instance unsigned int newIndex = 0, outIndex = 0; for ( size_t index=0; index < pObjMesh->m_Faces.size(); index++ ) { // Get source face ObjFile::Face *pSourceFace = pObjMesh->m_Faces[ index ]; // Copy all index arrays for ( size_t vertexIndex = 0, outVertexIndex = 0; vertexIndex < pSourceFace->m_pVertices->size(); vertexIndex++ ) { const unsigned int vertex = pSourceFace->m_pVertices->at( vertexIndex ); if ( vertex >= pModel->m_Vertices.size() ) throw DeadlyImportError( "OBJ: vertex index out of range" ); pMesh->mVertices[ newIndex ] = pModel->m_Vertices[ vertex ]; // Copy all normals if ( !pModel->m_Normals.empty() && vertexIndex < pSourceFace->m_pNormals->size()) { const unsigned int normal = pSourceFace->m_pNormals->at( vertexIndex ); if ( normal >= pModel->m_Normals.size() ) throw DeadlyImportError("OBJ: vertex normal index out of range"); pMesh->mNormals[ newIndex ] = pModel->m_Normals[ normal ]; } // Copy all vertex colors if ( !pModel->m_VertexColors.empty()) { const aiVector3D color = pModel->m_VertexColors[ vertex ]; pMesh->mColors[0][ newIndex ] = aiColor4D(color.x, color.y, color.z, 1.0); } // Copy all texture coordinates if ( !pModel->m_TextureCoord.empty() && vertexIndex < pSourceFace->m_pTexturCoords->size()) { const unsigned int tex = pSourceFace->m_pTexturCoords->at( vertexIndex ); ai_assert( tex < pModel->m_TextureCoord.size() ); if ( tex >= pModel->m_TextureCoord.size() ) throw DeadlyImportError("OBJ: texture coordinate index out of range"); const aiVector3D &coord3d = pModel->m_TextureCoord[ tex ]; pMesh->mTextureCoords[ 0 ][ newIndex ] = aiVector3D( coord3d.x, coord3d.y, coord3d.z ); } if ( pMesh->mNumVertices <= newIndex ) { throw DeadlyImportError("OBJ: bad vertex index"); } // Get destination face aiFace *pDestFace = &pMesh->mFaces[ outIndex ]; const bool last = ( vertexIndex == pSourceFace->m_pVertices->size() - 1 ); if (pSourceFace->m_PrimitiveType != aiPrimitiveType_LINE || !last) { pDestFace->mIndices[ outVertexIndex ] = newIndex; outVertexIndex++; } if (pSourceFace->m_PrimitiveType == aiPrimitiveType_POINT) { outIndex++; outVertexIndex = 0; } else if (pSourceFace->m_PrimitiveType == aiPrimitiveType_LINE) { outVertexIndex = 0; if(!last) outIndex++; if (vertexIndex) { if(!last) { pMesh->mVertices[ newIndex+1 ] = pMesh->mVertices[ newIndex ]; if ( !pSourceFace->m_pNormals->empty() && !pModel->m_Normals.empty()) { pMesh->mNormals[ newIndex+1 ] = pMesh->mNormals[newIndex ]; } if ( !pModel->m_TextureCoord.empty() ) { for ( size_t i=0; i < pMesh->GetNumUVChannels(); i++ ) { pMesh->mTextureCoords[ i ][ newIndex+1 ] = pMesh->mTextureCoords[ i ][ newIndex ]; } } ++newIndex; } pDestFace[-1].mIndices[1] = newIndex; } } else if (last) { outIndex++; } ++newIndex; } } } // ------------------------------------------------------------------------------------------------ // Counts all stored meshes void ObjFileImporter::countObjects(const std::vector &rObjects, int &iNumMeshes) { iNumMeshes = 0; if ( rObjects.empty() ) return; iNumMeshes += static_cast( rObjects.size() ); for (std::vector::const_iterator it = rObjects.begin(); it != rObjects.end(); ++it) { if (!(*it)->m_SubObjects.empty()) { countObjects((*it)->m_SubObjects, iNumMeshes); } } } // ------------------------------------------------------------------------------------------------ // Add clamp mode property to material if necessary void ObjFileImporter::addTextureMappingModeProperty(aiMaterial* mat, aiTextureType type, int clampMode) { ai_assert( NULL != mat); mat->AddProperty(&clampMode, 1, AI_MATKEY_MAPPINGMODE_U(type, 0)); mat->AddProperty(&clampMode, 1, AI_MATKEY_MAPPINGMODE_V(type, 0)); } // ------------------------------------------------------------------------------------------------ // Creates the material void ObjFileImporter::createMaterials(const ObjFile::Model* pModel, aiScene* pScene ) { ai_assert( NULL != pScene ); if ( NULL == pScene ) return; const unsigned int numMaterials = (unsigned int) pModel->m_MaterialLib.size(); pScene->mNumMaterials = 0; if ( pModel->m_MaterialLib.empty() ) { DefaultLogger::get()->debug("OBJ: no materials specified"); return; } pScene->mMaterials = new aiMaterial*[ numMaterials ]; for ( unsigned int matIndex = 0; matIndex < numMaterials; matIndex++ ) { // Store material name std::map::const_iterator it; it = pModel->m_MaterialMap.find( pModel->m_MaterialLib[ matIndex ] ); // No material found, use the default material if ( pModel->m_MaterialMap.end() == it ) continue; aiMaterial* mat = new aiMaterial; ObjFile::Material *pCurrentMaterial = (*it).second; mat->AddProperty( &pCurrentMaterial->MaterialName, AI_MATKEY_NAME ); // convert illumination model int sm = 0; switch (pCurrentMaterial->illumination_model) { case 0: sm = aiShadingMode_NoShading; break; case 1: sm = aiShadingMode_Gouraud; break; case 2: sm = aiShadingMode_Phong; break; default: sm = aiShadingMode_Gouraud; DefaultLogger::get()->error("OBJ: unexpected illumination model (0-2 recognized)"); } mat->AddProperty( &sm, 1, AI_MATKEY_SHADING_MODEL); // multiplying the specular exponent with 2 seems to yield better results pCurrentMaterial->shineness *= 4.f; // Adding material colors mat->AddProperty( &pCurrentMaterial->ambient, 1, AI_MATKEY_COLOR_AMBIENT ); mat->AddProperty( &pCurrentMaterial->diffuse, 1, AI_MATKEY_COLOR_DIFFUSE ); mat->AddProperty( &pCurrentMaterial->specular, 1, AI_MATKEY_COLOR_SPECULAR ); mat->AddProperty( &pCurrentMaterial->emissive, 1, AI_MATKEY_COLOR_EMISSIVE ); mat->AddProperty( &pCurrentMaterial->shineness, 1, AI_MATKEY_SHININESS ); mat->AddProperty( &pCurrentMaterial->alpha, 1, AI_MATKEY_OPACITY ); // Adding refraction index mat->AddProperty( &pCurrentMaterial->ior, 1, AI_MATKEY_REFRACTI ); // Adding textures if ( 0 != pCurrentMaterial->texture.length ) { mat->AddProperty( &pCurrentMaterial->texture, AI_MATKEY_TEXTURE_DIFFUSE(0)); if (pCurrentMaterial->clamp[ObjFile::Material::TextureDiffuseType]) { addTextureMappingModeProperty(mat, aiTextureType_DIFFUSE); } } if ( 0 != pCurrentMaterial->textureAmbient.length ) { mat->AddProperty( &pCurrentMaterial->textureAmbient, AI_MATKEY_TEXTURE_AMBIENT(0)); if (pCurrentMaterial->clamp[ObjFile::Material::TextureAmbientType]) { addTextureMappingModeProperty(mat, aiTextureType_AMBIENT); } } if ( 0 != pCurrentMaterial->textureEmissive.length ) mat->AddProperty( &pCurrentMaterial->textureEmissive, AI_MATKEY_TEXTURE_EMISSIVE(0)); if ( 0 != pCurrentMaterial->textureSpecular.length ) { mat->AddProperty( &pCurrentMaterial->textureSpecular, AI_MATKEY_TEXTURE_SPECULAR(0)); if (pCurrentMaterial->clamp[ObjFile::Material::TextureSpecularType]) { addTextureMappingModeProperty(mat, aiTextureType_SPECULAR); } } if ( 0 != pCurrentMaterial->textureBump.length ) { mat->AddProperty( &pCurrentMaterial->textureBump, AI_MATKEY_TEXTURE_HEIGHT(0)); if (pCurrentMaterial->clamp[ObjFile::Material::TextureBumpType]) { addTextureMappingModeProperty(mat, aiTextureType_HEIGHT); } } if ( 0 != pCurrentMaterial->textureNormal.length ) { mat->AddProperty( &pCurrentMaterial->textureNormal, AI_MATKEY_TEXTURE_NORMALS(0)); if (pCurrentMaterial->clamp[ObjFile::Material::TextureNormalType]) { addTextureMappingModeProperty(mat, aiTextureType_NORMALS); } } if( 0 != pCurrentMaterial->textureReflection[0].length ) { ObjFile::Material::TextureType type = 0 != pCurrentMaterial->textureReflection[1].length ? ObjFile::Material::TextureReflectionCubeTopType : ObjFile::Material::TextureReflectionSphereType; unsigned count = type == ObjFile::Material::TextureReflectionSphereType ? 1 : 6; for( unsigned i = 0; i < count; i++ ) mat->AddProperty(&pCurrentMaterial->textureReflection[i], AI_MATKEY_TEXTURE_REFLECTION(i)); if(pCurrentMaterial->clamp[type]) //TODO addTextureMappingModeProperty should accept an index to handle clamp option for each //texture of a cubemap addTextureMappingModeProperty(mat, aiTextureType_REFLECTION); } if ( 0 != pCurrentMaterial->textureDisp.length ) { mat->AddProperty( &pCurrentMaterial->textureDisp, AI_MATKEY_TEXTURE_DISPLACEMENT(0) ); if (pCurrentMaterial->clamp[ObjFile::Material::TextureDispType]) { addTextureMappingModeProperty(mat, aiTextureType_DISPLACEMENT); } } if ( 0 != pCurrentMaterial->textureOpacity.length ) { mat->AddProperty( &pCurrentMaterial->textureOpacity, AI_MATKEY_TEXTURE_OPACITY(0)); if (pCurrentMaterial->clamp[ObjFile::Material::TextureOpacityType]) { addTextureMappingModeProperty(mat, aiTextureType_OPACITY); } } if ( 0 != pCurrentMaterial->textureSpecularity.length ) { mat->AddProperty( &pCurrentMaterial->textureSpecularity, AI_MATKEY_TEXTURE_SHININESS(0)); if (pCurrentMaterial->clamp[ObjFile::Material::TextureSpecularityType]) { addTextureMappingModeProperty(mat, aiTextureType_SHININESS); } } // Store material property info in material array in scene pScene->mMaterials[ pScene->mNumMaterials ] = mat; pScene->mNumMaterials++; } // Test number of created materials. ai_assert( pScene->mNumMaterials == numMaterials ); } // ------------------------------------------------------------------------------------------------ // Appends this node to the parent node void ObjFileImporter::appendChildToParentNode(aiNode *pParent, aiNode *pChild) { // Checking preconditions ai_assert( NULL != pParent ); ai_assert( NULL != pChild ); // Assign parent to child pChild->mParent = pParent; // If already children was assigned to the parent node, store them in a std::vector temp; if (pParent->mChildren != NULL) { ai_assert( 0 != pParent->mNumChildren ); for (size_t index = 0; index < pParent->mNumChildren; index++) { temp.push_back(pParent->mChildren [ index ] ); } delete [] pParent->mChildren; } // Copy node instances into parent node pParent->mNumChildren++; pParent->mChildren = new aiNode*[ pParent->mNumChildren ]; for (size_t index = 0; index < pParent->mNumChildren-1; index++) { pParent->mChildren[ index ] = temp [ index ]; } pParent->mChildren[ pParent->mNumChildren-1 ] = pChild; } // ------------------------------------------------------------------------------------------------ } // Namespace Assimp #endif // !! ASSIMP_BUILD_NO_OBJ_IMPORTER