/**************************************************************************** ** ** Copyright (C) 2017 Klaralvdalens Datakonsult AB (KDAB). ** Contact: https://www.qt.io/licensing/ ** ** This file is part of the Qt3D module of the Qt Toolkit. ** ** $QT_BEGIN_LICENSE:COMM$ ** ** Commercial License Usage ** Licensees holding valid commercial Qt licenses may use this file in ** accordance with the commercial license agreement provided with the ** Software or, alternatively, in accordance with the terms contained in ** a written agreement between you and The Qt Company. For licensing terms ** and conditions see https://www.qt.io/terms-conditions. For further ** information use the contact form at https://www.qt.io/contact-us. ** ** $QT_END_LICENSE$ ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ****************************************************************************/ #include "bezierevaluator_p.h" #include #include #include #include QT_BEGIN_NAMESPACE namespace { inline double qCbrt(double x) { // Android is just broken and doesn't define cbrt in std namespace #if defined(Q_OS_ANDROID) if (x > 0.0) return std::pow(x, 1.0 / 3.0); else if (x < 0.0) return -std::pow(-x, 1.0 / 3.0); else return 0.0; #else return std::cbrt(x); #endif } } // anonymous namespace Qt3DAnimation { namespace Animation { /*! \internal Evaluates the value of the cubic bezier at time \a time. This requires first finding the value of the bezier parameter, u, corresponding to the requested time which should itself be sandwiched by the provided times and keyframes. Once u is found, substitute this back into the cubic Bezier equation using the y components of the keyframe control points. */ float BezierEvaluator::valueForTime(float time) const { const float u = parameterForTime(time); // Calculate powers of u and (1-u) that we need const float u2 = u * u; const float u3 = u2 * u; const float mu = 1.0f - u; const float mu2 = mu * mu; const float mu3 = mu2 * mu; // The cubic Bezier control points const float p0 = m_keyframe0.value; const float p1 = m_keyframe0.rightControlPoint.y(); const float p2 = m_keyframe1.leftControlPoint.y(); const float p3 = m_keyframe1.value; // Evaluate the cubic Bezier function return p0 * mu3 + 3.0f * p1 * mu2 * u + 3.0f * p2 * mu * u2 + p3 * u3; } /*! \internal Calculates the value of the Bezier parameter, u, for the requested time which is the x coordinate of the Keyframes. Given 4 ordered control points p0, p1, p2, and p3, the cubic Bezier equation is: x(u) = (1-u)^3 p0 + 3 (1-u)^2 u p1 + 3 (1-u) u^2 p2 + u^3 p3 To find the value of u that corresponds with a given x value (time in the case of keyframes), we can expand the above equation, and then collect terms to arrive at: 0 = a u^3 + b u^2 + c u + d where a = p3 - p0 + 3 (p1 - p2) b = 3 (p0 - 2 p1 + p2) c = 3 (p1 - p0) d = p0 - x(u) We can then use findCubicRoots to locate the single root of this cubic equation found in the range [0,1] used for this section of the FCurve. This works because the FCurve ensures that the function it represents via the Bezier control points in the Keyframes is single valued. (as a function of time). Time, therefore must be single valued on the interval and therefore have a single root for any given time in the interval covered by the Keyframes. */ float BezierEvaluator::parameterForTime(float time) const { Q_ASSERT(time >= m_time0); Q_ASSERT(time <= m_time1); const float p0 = m_time0; const float p1 = m_keyframe0.rightControlPoint.x(); const float p2 = m_keyframe1.leftControlPoint.x(); const float p3 = m_time1; const float coeffs[4] = { p0 - time, // d 3.0f * (p1 - p0), // c 3.0f * (p0 - 2.0f * p1 + p2), // b p3 - p0 + 3.0f * (p1 - p2) // a }; float roots[3]; const int numberOfRoots = findCubicRoots(coeffs, roots); for (int i = 0; i < numberOfRoots; ++i) { if (roots[i] >= -0.01f && roots[i] <= 1.01f) return qMin(qMax(roots[i], 0.0f), 1.0f); } qWarning() << "Failed to find root of cubic bezier at time" << time << "with coeffs: a =" << coeffs[3] << "b =" << coeffs[2] << "c =" << coeffs[1] << "d =" << coeffs[0]; return 0.0f; } bool almostZero(float value, float threshold=1e-3f) { // 1e-3 might seem excessively fuzzy, but any smaller value will make the // factors a, b, and c large enough to knock out the cubic solver. return value > -threshold && value < threshold; } /*! \internal Finds the roots of the cubic equation ax^3 + bx^2 + cx + d = 0 for real coefficients and returns the number of roots. The roots are put into the \a roots array. The coefficients should be passed in as coeffs[0] = d, coeffs[1] = c, coeffs[2] = b, coeffs[3] = a. */ int BezierEvaluator::findCubicRoots(const float coeffs[4], float roots[3]) { const float a = coeffs[3]; const float b = coeffs[2]; const float c = coeffs[1]; const float d = coeffs[0]; // Simple cases with linear, quadratic or invalid equations if (almostZero(a)) { if (almostZero(b)) { if (almostZero(c)) return 0; roots[0] = -d / c; return 1; } const float discriminant = c * c - 4.f * b * d; if (discriminant < 0.f) return 0; if (discriminant == 0.f) { roots[0] = -c / (2.f * b); return 1; } roots[0] = (-c + std::sqrt(discriminant)) / (2.f * b); roots[1] = (-c - std::sqrt(discriminant)) / (2.f * b); return 2; } // See https://en.wikipedia.org/wiki/Cubic_function#General_solution_to_the_cubic_equation_with_real_coefficients // for a description. We depress the general cubic to a form that can more easily be solved. Solve it and then // substitue the results back to get the roots of the original cubic. int numberOfRoots = 0; const double oneThird = 1.0 / 3.0; const double piByThree = M_PI / 3.0; // Put cubic into normal format: x^3 + Ax^2 + Bx + C = 0 const double A = double(b / a); const double B = double(c / a); const double C = double(d / a); // Substitute x = y - A/3 to eliminate quadratic term (depressed form): // x^3 + px + q = 0 const double Asq = A * A; const double p = oneThird * (-oneThird * Asq + B); const double q = 1.0 / 2.0 * (2.0 / 27.0 * A * Asq - oneThird * A * B + C); // Use Cardano's formula const double pCubed = p * p * p; const double discriminant = q * q + pCubed; if (almostZero(discriminant, 1e-6f)) { if (qIsNull(q)) { // One repeated triple root roots[0] = 0.0; numberOfRoots = 1; } else { // One single and one double root double u = qCbrt(-q); roots[0] = 2.0 * u; roots[1] = -u; numberOfRoots = 2; } } else if (discriminant < 0) { // Three real solutions double phi = oneThird * std::acos(-q / std::sqrt(-pCubed)); double t = 2.0 * std::sqrt(-p); roots[0] = t * std::cos(phi); roots[1] = -t * std::cos(phi + piByThree); roots[2] = -t * std::cos(phi - piByThree); numberOfRoots = 3; } else { // One real solution double sqrtDisc = std::sqrt(discriminant); double u = qCbrt(sqrtDisc - q); double v = -qCbrt(sqrtDisc + q); roots[0] = u + v; numberOfRoots = 1; } // Substitute back in const double sub = oneThird * A; for (int i = 0; i < numberOfRoots; ++i) { roots[i] -= sub; // Take care of cases where we are close to zero or one if (almostZero(roots[i], 1e-6f)) roots[i] = 0.f; if (almostZero(roots[i] - 1.f, 1e-6f)) roots[i] = 1.f; } return numberOfRoots; } } // namespace Animation } // namespace Qt3DAnimation QT_END_NAMESPACE